Merge remote-tracking branch 'spi/fix/core' into spi-linus
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / i2c / busses / i2c-mxs.c
1 /*
2  * Freescale MXS I2C bus driver
3  *
4  * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
5  * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
6  *
7  * based on a (non-working) driver which was:
8  *
9  * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  */
17
18 #include <linux/slab.h>
19 #include <linux/device.h>
20 #include <linux/module.h>
21 #include <linux/i2c.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/completion.h>
25 #include <linux/platform_device.h>
26 #include <linux/jiffies.h>
27 #include <linux/io.h>
28 #include <linux/stmp_device.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/dmaengine.h>
33
34 #define DRIVER_NAME "mxs-i2c"
35
36 #define MXS_I2C_CTRL0           (0x00)
37 #define MXS_I2C_CTRL0_SET       (0x04)
38 #define MXS_I2C_CTRL0_CLR       (0x08)
39
40 #define MXS_I2C_CTRL0_SFTRST                    0x80000000
41 #define MXS_I2C_CTRL0_RUN                       0x20000000
42 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST          0x02000000
43 #define MXS_I2C_CTRL0_PIO_MODE                  0x01000000
44 #define MXS_I2C_CTRL0_RETAIN_CLOCK              0x00200000
45 #define MXS_I2C_CTRL0_POST_SEND_STOP            0x00100000
46 #define MXS_I2C_CTRL0_PRE_SEND_START            0x00080000
47 #define MXS_I2C_CTRL0_MASTER_MODE               0x00020000
48 #define MXS_I2C_CTRL0_DIRECTION                 0x00010000
49 #define MXS_I2C_CTRL0_XFER_COUNT(v)             ((v) & 0x0000FFFF)
50
51 #define MXS_I2C_TIMING0         (0x10)
52 #define MXS_I2C_TIMING1         (0x20)
53 #define MXS_I2C_TIMING2         (0x30)
54
55 #define MXS_I2C_CTRL1           (0x40)
56 #define MXS_I2C_CTRL1_SET       (0x44)
57 #define MXS_I2C_CTRL1_CLR       (0x48)
58
59 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK             0x10000000
60 #define MXS_I2C_CTRL1_BUS_FREE_IRQ              0x80
61 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ     0x40
62 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ          0x20
63 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ    0x10
64 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ            0x08
65 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ           0x04
66 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ            0x02
67 #define MXS_I2C_CTRL1_SLAVE_IRQ                 0x01
68
69 #define MXS_I2C_STAT            (0x50)
70 #define MXS_I2C_STAT_GOT_A_NAK                  0x10000000
71 #define MXS_I2C_STAT_BUS_BUSY                   0x00000800
72 #define MXS_I2C_STAT_CLK_GEN_BUSY               0x00000400
73
74 #define MXS_I2C_DATA(i2c)       ((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
75
76 #define MXS_I2C_DEBUG0_CLR(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
77
78 #define MXS_I2C_DEBUG0_DMAREQ   0x80000000
79
80 #define MXS_I2C_IRQ_MASK        (MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
81                                  MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
82                                  MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
83                                  MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
84                                  MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
85                                  MXS_I2C_CTRL1_SLAVE_IRQ)
86
87
88 #define MXS_CMD_I2C_SELECT      (MXS_I2C_CTRL0_RETAIN_CLOCK |   \
89                                  MXS_I2C_CTRL0_PRE_SEND_START | \
90                                  MXS_I2C_CTRL0_MASTER_MODE |    \
91                                  MXS_I2C_CTRL0_DIRECTION |      \
92                                  MXS_I2C_CTRL0_XFER_COUNT(1))
93
94 #define MXS_CMD_I2C_WRITE       (MXS_I2C_CTRL0_PRE_SEND_START | \
95                                  MXS_I2C_CTRL0_MASTER_MODE |    \
96                                  MXS_I2C_CTRL0_DIRECTION)
97
98 #define MXS_CMD_I2C_READ        (MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
99                                  MXS_I2C_CTRL0_MASTER_MODE)
100
101 enum mxs_i2c_devtype {
102         MXS_I2C_UNKNOWN = 0,
103         MXS_I2C_V1,
104         MXS_I2C_V2,
105 };
106
107 /**
108  * struct mxs_i2c_dev - per device, private MXS-I2C data
109  *
110  * @dev: driver model device node
111  * @dev_type: distinguish i.MX23/i.MX28 features
112  * @regs: IO registers pointer
113  * @cmd_complete: completion object for transaction wait
114  * @cmd_err: error code for last transaction
115  * @adapter: i2c subsystem adapter node
116  */
117 struct mxs_i2c_dev {
118         struct device *dev;
119         enum mxs_i2c_devtype dev_type;
120         void __iomem *regs;
121         struct completion cmd_complete;
122         int cmd_err;
123         struct i2c_adapter adapter;
124
125         uint32_t timing0;
126         uint32_t timing1;
127         uint32_t timing2;
128
129         /* DMA support components */
130         struct dma_chan                 *dmach;
131         uint32_t                        pio_data[2];
132         uint32_t                        addr_data;
133         struct scatterlist              sg_io[2];
134         bool                            dma_read;
135 };
136
137 static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
138 {
139         int ret = stmp_reset_block(i2c->regs);
140         if (ret)
141                 return ret;
142
143         /*
144          * Configure timing for the I2C block. The I2C TIMING2 register has to
145          * be programmed with this particular magic number. The rest is derived
146          * from the XTAL speed and requested I2C speed.
147          *
148          * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
149          */
150         writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
151         writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
152         writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
153
154         writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
155
156         return 0;
157 }
158
159 static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
160 {
161         if (i2c->dma_read) {
162                 dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
163                 dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
164         } else {
165                 dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
166         }
167 }
168
169 static void mxs_i2c_dma_irq_callback(void *param)
170 {
171         struct mxs_i2c_dev *i2c = param;
172
173         complete(&i2c->cmd_complete);
174         mxs_i2c_dma_finish(i2c);
175 }
176
177 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
178                         struct i2c_msg *msg, uint32_t flags)
179 {
180         struct dma_async_tx_descriptor *desc;
181         struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
182
183         if (msg->flags & I2C_M_RD) {
184                 i2c->dma_read = 1;
185                 i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_READ;
186
187                 /*
188                  * SELECT command.
189                  */
190
191                 /* Queue the PIO register write transfer. */
192                 i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
193                 desc = dmaengine_prep_slave_sg(i2c->dmach,
194                                         (struct scatterlist *)&i2c->pio_data[0],
195                                         1, DMA_TRANS_NONE, 0);
196                 if (!desc) {
197                         dev_err(i2c->dev,
198                                 "Failed to get PIO reg. write descriptor.\n");
199                         goto select_init_pio_fail;
200                 }
201
202                 /* Queue the DMA data transfer. */
203                 sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
204                 dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
205                 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
206                                         DMA_MEM_TO_DEV,
207                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
208                 if (!desc) {
209                         dev_err(i2c->dev,
210                                 "Failed to get DMA data write descriptor.\n");
211                         goto select_init_dma_fail;
212                 }
213
214                 /*
215                  * READ command.
216                  */
217
218                 /* Queue the PIO register write transfer. */
219                 i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
220                                 MXS_I2C_CTRL0_XFER_COUNT(msg->len);
221                 desc = dmaengine_prep_slave_sg(i2c->dmach,
222                                         (struct scatterlist *)&i2c->pio_data[1],
223                                         1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
224                 if (!desc) {
225                         dev_err(i2c->dev,
226                                 "Failed to get PIO reg. write descriptor.\n");
227                         goto select_init_dma_fail;
228                 }
229
230                 /* Queue the DMA data transfer. */
231                 sg_init_one(&i2c->sg_io[1], msg->buf, msg->len);
232                 dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
233                 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
234                                         DMA_DEV_TO_MEM,
235                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
236                 if (!desc) {
237                         dev_err(i2c->dev,
238                                 "Failed to get DMA data write descriptor.\n");
239                         goto read_init_dma_fail;
240                 }
241         } else {
242                 i2c->dma_read = 0;
243                 i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_WRITE;
244
245                 /*
246                  * WRITE command.
247                  */
248
249                 /* Queue the PIO register write transfer. */
250                 i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
251                                 MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
252                 desc = dmaengine_prep_slave_sg(i2c->dmach,
253                                         (struct scatterlist *)&i2c->pio_data[0],
254                                         1, DMA_TRANS_NONE, 0);
255                 if (!desc) {
256                         dev_err(i2c->dev,
257                                 "Failed to get PIO reg. write descriptor.\n");
258                         goto write_init_pio_fail;
259                 }
260
261                 /* Queue the DMA data transfer. */
262                 sg_init_table(i2c->sg_io, 2);
263                 sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
264                 sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len);
265                 dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
266                 desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
267                                         DMA_MEM_TO_DEV,
268                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
269                 if (!desc) {
270                         dev_err(i2c->dev,
271                                 "Failed to get DMA data write descriptor.\n");
272                         goto write_init_dma_fail;
273                 }
274         }
275
276         /*
277          * The last descriptor must have this callback,
278          * to finish the DMA transaction.
279          */
280         desc->callback = mxs_i2c_dma_irq_callback;
281         desc->callback_param = i2c;
282
283         /* Start the transfer. */
284         dmaengine_submit(desc);
285         dma_async_issue_pending(i2c->dmach);
286         return 0;
287
288 /* Read failpath. */
289 read_init_dma_fail:
290         dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
291 select_init_dma_fail:
292         dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
293 select_init_pio_fail:
294         dmaengine_terminate_all(i2c->dmach);
295         return -EINVAL;
296
297 /* Write failpath. */
298 write_init_dma_fail:
299         dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
300 write_init_pio_fail:
301         dmaengine_terminate_all(i2c->dmach);
302         return -EINVAL;
303 }
304
305 static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
306 {
307         unsigned long timeout = jiffies + msecs_to_jiffies(1000);
308
309         while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
310                 if (time_after(jiffies, timeout))
311                         return -ETIMEDOUT;
312                 cond_resched();
313         }
314
315         return 0;
316 }
317
318 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
319 {
320         u32 state;
321
322         state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
323
324         if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
325                 i2c->cmd_err = -ENXIO;
326         else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
327                           MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
328                           MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
329                           MXS_I2C_CTRL1_SLAVE_IRQ))
330                 i2c->cmd_err = -EIO;
331
332         return i2c->cmd_err;
333 }
334
335 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
336 {
337         u32 reg;
338
339         writel(cmd, i2c->regs + MXS_I2C_CTRL0);
340
341         /* readback makes sure the write is latched into hardware */
342         reg = readl(i2c->regs + MXS_I2C_CTRL0);
343         reg |= MXS_I2C_CTRL0_RUN;
344         writel(reg, i2c->regs + MXS_I2C_CTRL0);
345 }
346
347 /*
348  * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
349  * CTRL0::PIO_MODE bit description clarifies the order in which the registers
350  * must be written during PIO mode operation. First, the CTRL0 register has
351  * to be programmed with all the necessary bits but the RUN bit. Then the
352  * payload has to be written into the DATA register. Finally, the transmission
353  * is executed by setting the RUN bit in CTRL0.
354  */
355 static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
356                                           u32 data)
357 {
358         writel(cmd, i2c->regs + MXS_I2C_CTRL0);
359
360         if (i2c->dev_type == MXS_I2C_V1)
361                 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);
362
363         writel(data, i2c->regs + MXS_I2C_DATA(i2c));
364         writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
365 }
366
367 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
368                         struct i2c_msg *msg, uint32_t flags)
369 {
370         struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
371         uint32_t addr_data = msg->addr << 1;
372         uint32_t data = 0;
373         int i, ret, xlen = 0, xmit = 0;
374         uint32_t start;
375
376         /* Mute IRQs coming from this block. */
377         writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
378
379         /*
380          * MX23 idea:
381          * - Enable CTRL0::PIO_MODE (1 << 24)
382          * - Enable CTRL1::ACK_MODE (1 << 27)
383          *
384          * WARNING! The MX23 is broken in some way, even if it claims
385          * to support PIO, when we try to transfer any amount of data
386          * that is not aligned to 4 bytes, the DMA engine will have
387          * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
388          * transfer. This in turn will mess up the next transfer as
389          * the block it emit one byte write onto the bus terminated
390          * with a NAK+STOP. A possible workaround is to reset the IP
391          * block after every PIO transmission, which might just work.
392          *
393          * NOTE: The CTRL0::PIO_MODE description is important, since
394          * it outlines how the PIO mode is really supposed to work.
395          */
396         if (msg->flags & I2C_M_RD) {
397                 /*
398                  * PIO READ transfer:
399                  *
400                  * This transfer MUST be limited to 4 bytes maximum. It is not
401                  * possible to transfer more than four bytes via PIO, since we
402                  * can not in any way make sure we can read the data from the
403                  * DATA register fast enough. Besides, the RX FIFO is only four
404                  * bytes deep, thus we can only really read up to four bytes at
405                  * time. Finally, there is no bit indicating us that new data
406                  * arrived at the FIFO and can thus be fetched from the DATA
407                  * register.
408                  */
409                 BUG_ON(msg->len > 4);
410
411                 addr_data |= I2C_SMBUS_READ;
412
413                 /* SELECT command. */
414                 mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
415                                               addr_data);
416
417                 ret = mxs_i2c_pio_wait_xfer_end(i2c);
418                 if (ret) {
419                         dev_err(i2c->dev,
420                                 "PIO: Failed to send SELECT command!\n");
421                         goto cleanup;
422                 }
423
424                 /* READ command. */
425                 mxs_i2c_pio_trigger_cmd(i2c,
426                                         MXS_CMD_I2C_READ | flags |
427                                         MXS_I2C_CTRL0_XFER_COUNT(msg->len));
428
429                 ret = mxs_i2c_pio_wait_xfer_end(i2c);
430                 if (ret) {
431                         dev_err(i2c->dev,
432                                 "PIO: Failed to send SELECT command!\n");
433                         goto cleanup;
434                 }
435
436                 data = readl(i2c->regs + MXS_I2C_DATA(i2c));
437                 for (i = 0; i < msg->len; i++) {
438                         msg->buf[i] = data & 0xff;
439                         data >>= 8;
440                 }
441         } else {
442                 /*
443                  * PIO WRITE transfer:
444                  *
445                  * The code below implements clock stretching to circumvent
446                  * the possibility of kernel not being able to supply data
447                  * fast enough. It is possible to transfer arbitrary amount
448                  * of data using PIO write.
449                  */
450                 addr_data |= I2C_SMBUS_WRITE;
451
452                 /*
453                  * The LSB of data buffer is the first byte blasted across
454                  * the bus. Higher order bytes follow. Thus the following
455                  * filling schematic.
456                  */
457
458                 data = addr_data << 24;
459
460                 /* Start the transfer with START condition. */
461                 start = MXS_I2C_CTRL0_PRE_SEND_START;
462
463                 /* If the transfer is long, use clock stretching. */
464                 if (msg->len > 3)
465                         start |= MXS_I2C_CTRL0_RETAIN_CLOCK;
466
467                 for (i = 0; i < msg->len; i++) {
468                         data >>= 8;
469                         data |= (msg->buf[i] << 24);
470
471                         xmit = 0;
472
473                         /* This is the last transfer of the message. */
474                         if (i + 1 == msg->len) {
475                                 /* Add optional STOP flag. */
476                                 start |= flags;
477                                 /* Remove RETAIN_CLOCK bit. */
478                                 start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
479                                 xmit = 1;
480                         }
481
482                         /* Four bytes are ready in the "data" variable. */
483                         if ((i & 3) == 2)
484                                 xmit = 1;
485
486                         /* Nothing interesting happened, continue stuffing. */
487                         if (!xmit)
488                                 continue;
489
490                         /*
491                          * Compute the size of the transfer and shift the
492                          * data accordingly.
493                          *
494                          * i = (4k + 0) .... xlen = 2
495                          * i = (4k + 1) .... xlen = 3
496                          * i = (4k + 2) .... xlen = 4
497                          * i = (4k + 3) .... xlen = 1
498                          */
499
500                         if ((i % 4) == 3)
501                                 xlen = 1;
502                         else
503                                 xlen = (i % 4) + 2;
504
505                         data >>= (4 - xlen) * 8;
506
507                         dev_dbg(i2c->dev,
508                                 "PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
509                                 xlen, i, msg->len,
510                                 start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
511                                 start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
512                                 start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");
513
514                         writel(MXS_I2C_DEBUG0_DMAREQ,
515                                i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));
516
517                         mxs_i2c_pio_trigger_write_cmd(i2c,
518                                 start | MXS_I2C_CTRL0_MASTER_MODE |
519                                 MXS_I2C_CTRL0_DIRECTION |
520                                 MXS_I2C_CTRL0_XFER_COUNT(xlen), data);
521
522                         /* The START condition is sent only once. */
523                         start &= ~MXS_I2C_CTRL0_PRE_SEND_START;
524
525                         /* Wait for the end of the transfer. */
526                         ret = mxs_i2c_pio_wait_xfer_end(i2c);
527                         if (ret) {
528                                 dev_err(i2c->dev,
529                                         "PIO: Failed to finish WRITE cmd!\n");
530                                 break;
531                         }
532
533                         /* Check NAK here. */
534                         ret = readl(i2c->regs + MXS_I2C_STAT) &
535                                     MXS_I2C_STAT_GOT_A_NAK;
536                         if (ret) {
537                                 ret = -ENXIO;
538                                 goto cleanup;
539                         }
540                 }
541         }
542
543         /* make sure we capture any occurred error into cmd_err */
544         ret = mxs_i2c_pio_check_error_state(i2c);
545
546 cleanup:
547         /* Clear any dangling IRQs and re-enable interrupts. */
548         writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
549         writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
550
551         /* Clear the PIO_MODE on i.MX23 */
552         if (i2c->dev_type == MXS_I2C_V1)
553                 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);
554
555         return ret;
556 }
557
558 /*
559  * Low level master read/write transaction.
560  */
561 static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
562                                 int stop)
563 {
564         struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
565         int ret;
566         int flags;
567         int use_pio = 0;
568
569         flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
570
571         dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
572                 msg->addr, msg->len, msg->flags, stop);
573
574         if (msg->len == 0)
575                 return -EINVAL;
576
577         /*
578          * The MX28 I2C IP block can only do PIO READ for transfer of to up
579          * 4 bytes of length. The write transfer is not limited as it can use
580          * clock stretching to avoid FIFO underruns.
581          */
582         if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
583                 use_pio = 1;
584         if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
585                 use_pio = 1;
586
587         i2c->cmd_err = 0;
588         if (use_pio) {
589                 ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
590                 /* No need to reset the block if NAK was received. */
591                 if (ret && (ret != -ENXIO))
592                         mxs_i2c_reset(i2c);
593         } else {
594                 reinit_completion(&i2c->cmd_complete);
595                 ret = mxs_i2c_dma_setup_xfer(adap, msg, flags);
596                 if (ret)
597                         return ret;
598
599                 ret = wait_for_completion_timeout(&i2c->cmd_complete,
600                                                 msecs_to_jiffies(1000));
601                 if (ret == 0)
602                         goto timeout;
603
604                 ret = i2c->cmd_err;
605         }
606
607         if (ret == -ENXIO) {
608                 /*
609                  * If the transfer fails with a NAK from the slave the
610                  * controller halts until it gets told to return to idle state.
611                  */
612                 writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
613                        i2c->regs + MXS_I2C_CTRL1_SET);
614         }
615
616         /*
617          * WARNING!
618          * The i.MX23 is strange. After each and every operation, it's I2C IP
619          * block must be reset, otherwise the IP block will misbehave. This can
620          * be observed on the bus by the block sending out one single byte onto
621          * the bus. In case such an error happens, bit 27 will be set in the
622          * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
623          * and is marked as "TBD" instead. To reset this bit to a correct state,
624          * reset the whole block. Since the block reset does not take long, do
625          * reset the block after every transfer to play safe.
626          */
627         if (i2c->dev_type == MXS_I2C_V1)
628                 mxs_i2c_reset(i2c);
629
630         dev_dbg(i2c->dev, "Done with err=%d\n", ret);
631
632         return ret;
633
634 timeout:
635         dev_dbg(i2c->dev, "Timeout!\n");
636         mxs_i2c_dma_finish(i2c);
637         ret = mxs_i2c_reset(i2c);
638         if (ret)
639                 return ret;
640
641         return -ETIMEDOUT;
642 }
643
644 static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
645                         int num)
646 {
647         int i;
648         int err;
649
650         for (i = 0; i < num; i++) {
651                 err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
652                 if (err)
653                         return err;
654         }
655
656         return num;
657 }
658
659 static u32 mxs_i2c_func(struct i2c_adapter *adap)
660 {
661         return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
662 }
663
664 static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
665 {
666         struct mxs_i2c_dev *i2c = dev_id;
667         u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
668
669         if (!stat)
670                 return IRQ_NONE;
671
672         if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
673                 i2c->cmd_err = -ENXIO;
674         else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
675                     MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
676                     MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
677                 /* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
678                 i2c->cmd_err = -EIO;
679
680         writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
681
682         return IRQ_HANDLED;
683 }
684
685 static const struct i2c_algorithm mxs_i2c_algo = {
686         .master_xfer = mxs_i2c_xfer,
687         .functionality = mxs_i2c_func,
688 };
689
690 static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
691 {
692         /* The I2C block clock runs at 24MHz */
693         const uint32_t clk = 24000000;
694         uint32_t divider;
695         uint16_t high_count, low_count, rcv_count, xmit_count;
696         uint32_t bus_free, leadin;
697         struct device *dev = i2c->dev;
698
699         divider = DIV_ROUND_UP(clk, speed);
700
701         if (divider < 25) {
702                 /*
703                  * limit the divider, so that min(low_count, high_count)
704                  * is >= 1
705                  */
706                 divider = 25;
707                 dev_warn(dev,
708                         "Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
709                         speed / 1000, speed % 1000,
710                         clk / divider / 1000, clk / divider % 1000);
711         } else if (divider > 1897) {
712                 /*
713                  * limit the divider, so that max(low_count, high_count)
714                  * cannot exceed 1023
715                  */
716                 divider = 1897;
717                 dev_warn(dev,
718                         "Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
719                         speed / 1000, speed % 1000,
720                         clk / divider / 1000, clk / divider % 1000);
721         }
722
723         /*
724          * The I2C spec specifies the following timing data:
725          *                          standard mode  fast mode Bitfield name
726          * tLOW (SCL LOW period)     4700 ns        1300 ns
727          * tHIGH (SCL HIGH period)   4000 ns         600 ns
728          * tSU;DAT (data setup time)  250 ns         100 ns
729          * tHD;STA (START hold time) 4000 ns         600 ns
730          * tBUF (bus free time)      4700 ns        1300 ns
731          *
732          * The hardware (of the i.MX28 at least) seems to add 2 additional
733          * clock cycles to the low_count and 7 cycles to the high_count.
734          * This is compensated for by subtracting the respective constants
735          * from the values written to the timing registers.
736          */
737         if (speed > 100000) {
738                 /* fast mode */
739                 low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
740                 high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
741                 leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
742                 bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
743         } else {
744                 /* normal mode */
745                 low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
746                 high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
747                 leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
748                 bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
749         }
750         rcv_count = high_count * 3 / 8;
751         xmit_count = low_count * 3 / 8;
752
753         dev_dbg(dev,
754                 "speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
755                 speed, clk / divider, divider, low_count, high_count,
756                 xmit_count, rcv_count, leadin, bus_free);
757
758         low_count -= 2;
759         high_count -= 7;
760         i2c->timing0 = (high_count << 16) | rcv_count;
761         i2c->timing1 = (low_count << 16) | xmit_count;
762         i2c->timing2 = (bus_free << 16 | leadin);
763 }
764
765 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
766 {
767         uint32_t speed;
768         struct device *dev = i2c->dev;
769         struct device_node *node = dev->of_node;
770         int ret;
771
772         ret = of_property_read_u32(node, "clock-frequency", &speed);
773         if (ret) {
774                 dev_warn(dev, "No I2C speed selected, using 100kHz\n");
775                 speed = 100000;
776         }
777
778         mxs_i2c_derive_timing(i2c, speed);
779
780         return 0;
781 }
782
783 static struct platform_device_id mxs_i2c_devtype[] = {
784         {
785                 .name = "imx23-i2c",
786                 .driver_data = MXS_I2C_V1,
787         }, {
788                 .name = "imx28-i2c",
789                 .driver_data = MXS_I2C_V2,
790         }, { /* sentinel */ }
791 };
792 MODULE_DEVICE_TABLE(platform, mxs_i2c_devtype);
793
794 static const struct of_device_id mxs_i2c_dt_ids[] = {
795         { .compatible = "fsl,imx23-i2c", .data = &mxs_i2c_devtype[0], },
796         { .compatible = "fsl,imx28-i2c", .data = &mxs_i2c_devtype[1], },
797         { /* sentinel */ }
798 };
799 MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
800
801 static int mxs_i2c_probe(struct platform_device *pdev)
802 {
803         const struct of_device_id *of_id =
804                                 of_match_device(mxs_i2c_dt_ids, &pdev->dev);
805         struct device *dev = &pdev->dev;
806         struct mxs_i2c_dev *i2c;
807         struct i2c_adapter *adap;
808         struct resource *res;
809         resource_size_t res_size;
810         int err, irq;
811
812         i2c = devm_kzalloc(dev, sizeof(struct mxs_i2c_dev), GFP_KERNEL);
813         if (!i2c)
814                 return -ENOMEM;
815
816         if (of_id) {
817                 const struct platform_device_id *device_id = of_id->data;
818                 i2c->dev_type = device_id->driver_data;
819         }
820
821         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
822         irq = platform_get_irq(pdev, 0);
823
824         if (!res || irq < 0)
825                 return -ENOENT;
826
827         res_size = resource_size(res);
828         if (!devm_request_mem_region(dev, res->start, res_size, res->name))
829                 return -EBUSY;
830
831         i2c->regs = devm_ioremap_nocache(dev, res->start, res_size);
832         if (!i2c->regs)
833                 return -EBUSY;
834
835         err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
836         if (err)
837                 return err;
838
839         i2c->dev = dev;
840
841         init_completion(&i2c->cmd_complete);
842
843         if (dev->of_node) {
844                 err = mxs_i2c_get_ofdata(i2c);
845                 if (err)
846                         return err;
847         }
848
849         /* Setup the DMA */
850         i2c->dmach = dma_request_slave_channel(dev, "rx-tx");
851         if (!i2c->dmach) {
852                 dev_err(dev, "Failed to request dma\n");
853                 return -ENODEV;
854         }
855
856         platform_set_drvdata(pdev, i2c);
857
858         /* Do reset to enforce correct startup after pinmuxing */
859         err = mxs_i2c_reset(i2c);
860         if (err)
861                 return err;
862
863         adap = &i2c->adapter;
864         strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
865         adap->owner = THIS_MODULE;
866         adap->algo = &mxs_i2c_algo;
867         adap->dev.parent = dev;
868         adap->nr = pdev->id;
869         adap->dev.of_node = pdev->dev.of_node;
870         i2c_set_adapdata(adap, i2c);
871         err = i2c_add_numbered_adapter(adap);
872         if (err) {
873                 dev_err(dev, "Failed to add adapter (%d)\n", err);
874                 writel(MXS_I2C_CTRL0_SFTRST,
875                                 i2c->regs + MXS_I2C_CTRL0_SET);
876                 return err;
877         }
878
879         return 0;
880 }
881
882 static int mxs_i2c_remove(struct platform_device *pdev)
883 {
884         struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
885
886         i2c_del_adapter(&i2c->adapter);
887
888         if (i2c->dmach)
889                 dma_release_channel(i2c->dmach);
890
891         writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
892
893         return 0;
894 }
895
896 static struct platform_driver mxs_i2c_driver = {
897         .driver = {
898                    .name = DRIVER_NAME,
899                    .owner = THIS_MODULE,
900                    .of_match_table = mxs_i2c_dt_ids,
901                    },
902         .probe = mxs_i2c_probe,
903         .remove = mxs_i2c_remove,
904 };
905
906 static int __init mxs_i2c_init(void)
907 {
908         return platform_driver_register(&mxs_i2c_driver);
909 }
910 subsys_initcall(mxs_i2c_init);
911
912 static void __exit mxs_i2c_exit(void)
913 {
914         platform_driver_unregister(&mxs_i2c_driver);
915 }
916 module_exit(mxs_i2c_exit);
917
918 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
919 MODULE_AUTHOR("Wolfram Sang <w.sang@pengutronix.de>");
920 MODULE_DESCRIPTION("MXS I2C Bus Driver");
921 MODULE_LICENSE("GPL");
922 MODULE_ALIAS("platform:" DRIVER_NAME);