Merge tag 'i2c-for-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[platform/kernel/linux-starfive.git] / drivers / i2c / busses / i2c-mlxbf.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Mellanox BlueField I2C bus driver
4  *
5  *  Copyright (C) 2020 Mellanox Technologies, Ltd.
6  */
7
8 #include <linux/acpi.h>
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/err.h>
12 #include <linux/interrupt.h>
13 #include <linux/i2c.h>
14 #include <linux/io.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/string.h>
21
22 /* Defines what functionality is present. */
23 #define MLXBF_I2C_FUNC_SMBUS_BLOCK \
24         (I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL)
25
26 #define MLXBF_I2C_FUNC_SMBUS_DEFAULT \
27         (I2C_FUNC_SMBUS_BYTE      | I2C_FUNC_SMBUS_BYTE_DATA | \
28          I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK | \
29          I2C_FUNC_SMBUS_PROC_CALL)
30
31 #define MLXBF_I2C_FUNC_ALL \
32         (MLXBF_I2C_FUNC_SMBUS_DEFAULT | MLXBF_I2C_FUNC_SMBUS_BLOCK | \
33          I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SLAVE)
34
35 /* Shared resources info in BlueField platforms. */
36
37 #define MLXBF_I2C_COALESCE_TYU_ADDR    0x02801300
38 #define MLXBF_I2C_COALESCE_TYU_SIZE    0x010
39
40 #define MLXBF_I2C_GPIO_TYU_ADDR        0x02802000
41 #define MLXBF_I2C_GPIO_TYU_SIZE        0x100
42
43 #define MLXBF_I2C_COREPLL_TYU_ADDR     0x02800358
44 #define MLXBF_I2C_COREPLL_TYU_SIZE     0x008
45
46 #define MLXBF_I2C_COREPLL_YU_ADDR      0x02800c30
47 #define MLXBF_I2C_COREPLL_YU_SIZE      0x00c
48
49 #define MLXBF_I2C_COREPLL_RSH_YU_ADDR  0x13409824
50 #define MLXBF_I2C_COREPLL_RSH_YU_SIZE  0x00c
51
52 #define MLXBF_I2C_SHARED_RES_MAX       3
53
54 /*
55  * Note that the following SMBus, CAUSE, GPIO and PLL register addresses
56  * refer to their respective offsets relative to the corresponding
57  * memory-mapped region whose addresses are specified in either the DT or
58  * the ACPI tables or above.
59  */
60
61 /*
62  * SMBus Master core clock frequency. Timing configurations are
63  * strongly dependent on the core clock frequency of the SMBus
64  * Master. Default value is set to 400MHz.
65  */
66 #define MLXBF_I2C_TYU_PLL_OUT_FREQ  (400 * 1000 * 1000)
67 /* Reference clock for Bluefield - 156 MHz. */
68 #define MLXBF_I2C_PLL_IN_FREQ       156250000ULL
69
70 /* Constant used to determine the PLL frequency. */
71 #define MLNXBF_I2C_COREPLL_CONST    16384ULL
72
73 #define MLXBF_I2C_FREQUENCY_1GHZ  1000000000ULL
74
75 /* PLL registers. */
76 #define MLXBF_I2C_CORE_PLL_REG1         0x4
77 #define MLXBF_I2C_CORE_PLL_REG2         0x8
78
79 /* OR cause register. */
80 #define MLXBF_I2C_CAUSE_OR_EVTEN0    0x14
81 #define MLXBF_I2C_CAUSE_OR_CLEAR     0x18
82
83 /* Arbiter Cause Register. */
84 #define MLXBF_I2C_CAUSE_ARBITER      0x1c
85
86 /*
87  * Cause Status flags. Note that those bits might be considered
88  * as interrupt enabled bits.
89  */
90
91 /* Transaction ended with STOP. */
92 #define MLXBF_I2C_CAUSE_TRANSACTION_ENDED  BIT(0)
93 /* Master arbitration lost. */
94 #define MLXBF_I2C_CAUSE_M_ARBITRATION_LOST BIT(1)
95 /* Unexpected start detected. */
96 #define MLXBF_I2C_CAUSE_UNEXPECTED_START   BIT(2)
97 /* Unexpected stop detected. */
98 #define MLXBF_I2C_CAUSE_UNEXPECTED_STOP    BIT(3)
99 /* Wait for transfer continuation. */
100 #define MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA   BIT(4)
101 /* Failed to generate STOP. */
102 #define MLXBF_I2C_CAUSE_PUT_STOP_FAILED    BIT(5)
103 /* Failed to generate START. */
104 #define MLXBF_I2C_CAUSE_PUT_START_FAILED   BIT(6)
105 /* Clock toggle completed. */
106 #define MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE    BIT(7)
107 /* Transfer timeout occurred. */
108 #define MLXBF_I2C_CAUSE_M_FW_TIMEOUT       BIT(8)
109 /* Master busy bit reset. */
110 #define MLXBF_I2C_CAUSE_M_GW_BUSY_FALL     BIT(9)
111
112 #define MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK     GENMASK(9, 0)
113
114 #define MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR \
115         (MLXBF_I2C_CAUSE_M_ARBITRATION_LOST | \
116          MLXBF_I2C_CAUSE_UNEXPECTED_START | \
117          MLXBF_I2C_CAUSE_UNEXPECTED_STOP | \
118          MLXBF_I2C_CAUSE_PUT_STOP_FAILED | \
119          MLXBF_I2C_CAUSE_PUT_START_FAILED | \
120          MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE | \
121          MLXBF_I2C_CAUSE_M_FW_TIMEOUT)
122
123 /*
124  * Slave cause status flags. Note that those bits might be considered
125  * as interrupt enabled bits.
126  */
127
128 /* Write transaction received successfully. */
129 #define MLXBF_I2C_CAUSE_WRITE_SUCCESS         BIT(0)
130 /* Read transaction received, waiting for response. */
131 #define MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE BIT(13)
132 /* Slave busy bit reset. */
133 #define MLXBF_I2C_CAUSE_S_GW_BUSY_FALL        BIT(18)
134
135 /* Cause coalesce registers. */
136 #define MLXBF_I2C_CAUSE_COALESCE_0        0x00
137
138 #define MLXBF_I2C_CAUSE_TYU_SLAVE_BIT   3
139 #define MLXBF_I2C_CAUSE_YU_SLAVE_BIT    1
140
141 /* Functional enable register. */
142 #define MLXBF_I2C_GPIO_0_FUNC_EN_0    0x28
143 /* Force OE enable register. */
144 #define MLXBF_I2C_GPIO_0_FORCE_OE_EN  0x30
145 /*
146  * Note that Smbus GWs are on GPIOs 30:25. Two pins are used to control
147  * SDA/SCL lines:
148  *
149  *  SMBUS GW0 -> bits[26:25]
150  *  SMBUS GW1 -> bits[28:27]
151  *  SMBUS GW2 -> bits[30:29]
152  */
153 #define MLXBF_I2C_GPIO_SMBUS_GW_PINS(num) (25 + ((num) << 1))
154
155 /* Note that gw_id can be 0,1 or 2. */
156 #define MLXBF_I2C_GPIO_SMBUS_GW_MASK(num) \
157         (0xffffffff & (~(0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num))))
158
159 #define MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(num, val) \
160         ((val) & MLXBF_I2C_GPIO_SMBUS_GW_MASK(num))
161
162 #define MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(num, val) \
163         ((val) | (0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num)))
164
165 /*
166  * Defines SMBus operating frequency and core clock frequency.
167  * According to ADB files, default values are compliant to 100KHz SMBus
168  * @ 400MHz core clock. The driver should be able to calculate core
169  * frequency based on PLL parameters.
170  */
171 #define MLXBF_I2C_COREPLL_FREQ          MLXBF_I2C_TYU_PLL_OUT_FREQ
172
173 /* Core PLL TYU configuration. */
174 #define MLXBF_I2C_COREPLL_CORE_F_TYU_MASK   GENMASK(15, 3)
175 #define MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK  GENMASK(19, 16)
176 #define MLXBF_I2C_COREPLL_CORE_R_TYU_MASK   GENMASK(25, 20)
177
178 /* Core PLL YU configuration. */
179 #define MLXBF_I2C_COREPLL_CORE_F_YU_MASK    GENMASK(25, 0)
180 #define MLXBF_I2C_COREPLL_CORE_OD_YU_MASK   GENMASK(3, 0)
181 #define MLXBF_I2C_COREPLL_CORE_R_YU_MASK    GENMASK(31, 26)
182
183 /* SMBus timing parameters. */
184 #define MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH    0x00
185 #define MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE     0x04
186 #define MLXBF_I2C_SMBUS_TIMER_THOLD               0x08
187 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP   0x0c
188 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA         0x10
189 #define MLXBF_I2C_SMBUS_THIGH_MAX_TBUF            0x14
190 #define MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT           0x18
191
192 #define MLXBF_I2C_SHIFT_0   0
193 #define MLXBF_I2C_SHIFT_8   8
194 #define MLXBF_I2C_SHIFT_16  16
195 #define MLXBF_I2C_SHIFT_24  24
196
197 #define MLXBF_I2C_MASK_8    GENMASK(7, 0)
198 #define MLXBF_I2C_MASK_16   GENMASK(15, 0)
199
200 #define MLXBF_I2C_MST_ADDR_OFFSET         0x200
201
202 /* SMBus Master GW. */
203 #define MLXBF_I2C_SMBUS_MASTER_GW         0x0
204 /* Number of bytes received and sent. */
205 #define MLXBF_I2C_YU_SMBUS_RS_BYTES       0x100
206 #define MLXBF_I2C_RSH_YU_SMBUS_RS_BYTES   0x10c
207 /* Packet error check (PEC) value. */
208 #define MLXBF_I2C_SMBUS_MASTER_PEC        0x104
209 /* Status bits (ACK/NACK/FW Timeout). */
210 #define MLXBF_I2C_SMBUS_MASTER_STATUS     0x108
211 /* SMbus Master Finite State Machine. */
212 #define MLXBF_I2C_YU_SMBUS_MASTER_FSM     0x110
213 #define MLXBF_I2C_RSH_YU_SMBUS_MASTER_FSM 0x100
214
215 /* SMBus master GW control bits offset in MLXBF_I2C_SMBUS_MASTER_GW[31:3]. */
216 #define MLXBF_I2C_MASTER_LOCK_BIT         BIT(31) /* Lock bit. */
217 #define MLXBF_I2C_MASTER_BUSY_BIT         BIT(30) /* Busy bit. */
218 #define MLXBF_I2C_MASTER_START_BIT        BIT(29) /* Control start. */
219 #define MLXBF_I2C_MASTER_CTL_WRITE_BIT    BIT(28) /* Control write phase. */
220 #define MLXBF_I2C_MASTER_CTL_READ_BIT     BIT(19) /* Control read phase. */
221 #define MLXBF_I2C_MASTER_STOP_BIT         BIT(3)  /* Control stop. */
222
223 #define MLXBF_I2C_MASTER_ENABLE \
224         (MLXBF_I2C_MASTER_LOCK_BIT | MLXBF_I2C_MASTER_BUSY_BIT | \
225          MLXBF_I2C_MASTER_START_BIT | MLXBF_I2C_MASTER_STOP_BIT)
226
227 #define MLXBF_I2C_MASTER_ENABLE_WRITE \
228         (MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_WRITE_BIT)
229
230 #define MLXBF_I2C_MASTER_ENABLE_READ \
231         (MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_READ_BIT)
232
233 #define MLXBF_I2C_MASTER_WRITE_SHIFT      21 /* Control write bytes */
234 #define MLXBF_I2C_MASTER_SEND_PEC_SHIFT   20 /* Send PEC byte when set to 1 */
235 #define MLXBF_I2C_MASTER_PARSE_EXP_SHIFT  11 /* Control parse expected bytes */
236 #define MLXBF_I2C_MASTER_SLV_ADDR_SHIFT   12 /* Slave address */
237 #define MLXBF_I2C_MASTER_READ_SHIFT       4  /* Control read bytes */
238
239 /* SMBus master GW Data descriptor. */
240 #define MLXBF_I2C_MASTER_DATA_DESC_ADDR   0x80
241 #define MLXBF_I2C_MASTER_DATA_DESC_SIZE   0x80 /* Size in bytes. */
242
243 /* Maximum bytes to read/write per SMBus transaction. */
244 #define MLXBF_I2C_MASTER_DATA_R_LENGTH  MLXBF_I2C_MASTER_DATA_DESC_SIZE
245 #define MLXBF_I2C_MASTER_DATA_W_LENGTH (MLXBF_I2C_MASTER_DATA_DESC_SIZE - 1)
246
247 /* All bytes were transmitted. */
248 #define MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE      BIT(0)
249 /* NACK received. */
250 #define MLXBF_I2C_SMBUS_STATUS_NACK_RCV           BIT(1)
251 /* Slave's byte count >128 bytes. */
252 #define MLXBF_I2C_SMBUS_STATUS_READ_ERR           BIT(2)
253 /* Timeout occurred. */
254 #define MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT         BIT(3)
255
256 #define MLXBF_I2C_SMBUS_MASTER_STATUS_MASK        GENMASK(3, 0)
257
258 #define MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR \
259         (MLXBF_I2C_SMBUS_STATUS_NACK_RCV | \
260          MLXBF_I2C_SMBUS_STATUS_READ_ERR | \
261          MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT)
262
263 #define MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK      BIT(31)
264 #define MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK  BIT(15)
265
266 #define MLXBF_I2C_SLV_ADDR_OFFSET             0x400
267
268 /* SMBus slave GW. */
269 #define MLXBF_I2C_SMBUS_SLAVE_GW              0x0
270 /* Number of bytes received and sent from/to master. */
271 #define MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES 0x100
272 /* Packet error check (PEC) value. */
273 #define MLXBF_I2C_SMBUS_SLAVE_PEC             0x104
274 /* SMBus slave Finite State Machine (FSM). */
275 #define MLXBF_I2C_SMBUS_SLAVE_FSM             0x110
276 /*
277  * Should be set when all raised causes handled, and cleared by HW on
278  * every new cause.
279  */
280 #define MLXBF_I2C_SMBUS_SLAVE_READY           0x12c
281
282 /* SMBus slave GW control bits offset in MLXBF_I2C_SMBUS_SLAVE_GW[31:19]. */
283 #define MLXBF_I2C_SLAVE_BUSY_BIT         BIT(30) /* Busy bit. */
284 #define MLXBF_I2C_SLAVE_WRITE_BIT        BIT(29) /* Control write enable. */
285
286 #define MLXBF_I2C_SLAVE_ENABLE \
287         (MLXBF_I2C_SLAVE_BUSY_BIT | MLXBF_I2C_SLAVE_WRITE_BIT)
288
289 #define MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT 22 /* Number of bytes to write. */
290 #define MLXBF_I2C_SLAVE_SEND_PEC_SHIFT    21 /* Send PEC byte shift. */
291
292 /* SMBus slave GW Data descriptor. */
293 #define MLXBF_I2C_SLAVE_DATA_DESC_ADDR   0x80
294 #define MLXBF_I2C_SLAVE_DATA_DESC_SIZE   0x80 /* Size in bytes. */
295
296 /* SMbus slave configuration registers. */
297 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG        0x114
298 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT        16
299 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT     BIT(7)
300 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK       GENMASK(6, 0)
301
302 /*
303  * Timeout is given in microsends. Note also that timeout handling is not
304  * exact.
305  */
306 #define MLXBF_I2C_SMBUS_TIMEOUT   (300 * 1000) /* 300ms */
307 #define MLXBF_I2C_SMBUS_LOCK_POLL_TIMEOUT (300 * 1000) /* 300ms */
308
309 /* Polling frequency in microseconds. */
310 #define MLXBF_I2C_POLL_FREQ_IN_USEC        200
311
312 #define MLXBF_I2C_SMBUS_OP_CNT_1   1
313 #define MLXBF_I2C_SMBUS_OP_CNT_2   2
314 #define MLXBF_I2C_SMBUS_OP_CNT_3   3
315 #define MLXBF_I2C_SMBUS_MAX_OP_CNT MLXBF_I2C_SMBUS_OP_CNT_3
316
317 /* Helper macro to define an I2C resource parameters. */
318 #define MLXBF_I2C_RES_PARAMS(addr, size, str) \
319         { \
320                 .start = (addr), \
321                 .end = (addr) + (size) - 1, \
322                 .name = (str) \
323         }
324
325 enum {
326         MLXBF_I2C_TIMING_100KHZ = 100000,
327         MLXBF_I2C_TIMING_400KHZ = 400000,
328         MLXBF_I2C_TIMING_1000KHZ = 1000000,
329 };
330
331 enum {
332         MLXBF_I2C_F_READ = BIT(0),
333         MLXBF_I2C_F_WRITE = BIT(1),
334         MLXBF_I2C_F_NORESTART = BIT(3),
335         MLXBF_I2C_F_SMBUS_OPERATION = BIT(4),
336         MLXBF_I2C_F_SMBUS_BLOCK = BIT(5),
337         MLXBF_I2C_F_SMBUS_PEC = BIT(6),
338         MLXBF_I2C_F_SMBUS_PROCESS_CALL = BIT(7),
339 };
340
341 /* Mellanox BlueField chip type. */
342 enum mlxbf_i2c_chip_type {
343         MLXBF_I2C_CHIP_TYPE_1, /* Mellanox BlueField-1 chip. */
344         MLXBF_I2C_CHIP_TYPE_2, /* Mellanox BlueField-2 chip. */
345         MLXBF_I2C_CHIP_TYPE_3 /* Mellanox BlueField-3 chip. */
346 };
347
348 /* List of chip resources that are being accessed by the driver. */
349 enum {
350         MLXBF_I2C_SMBUS_RES,
351         MLXBF_I2C_MST_CAUSE_RES,
352         MLXBF_I2C_SLV_CAUSE_RES,
353         MLXBF_I2C_COALESCE_RES,
354         MLXBF_I2C_SMBUS_TIMER_RES,
355         MLXBF_I2C_SMBUS_MST_RES,
356         MLXBF_I2C_SMBUS_SLV_RES,
357         MLXBF_I2C_COREPLL_RES,
358         MLXBF_I2C_GPIO_RES,
359         MLXBF_I2C_END_RES
360 };
361
362 /* Encapsulates timing parameters. */
363 struct mlxbf_i2c_timings {
364         u16 scl_high;           /* Clock high period. */
365         u16 scl_low;            /* Clock low period. */
366         u8 sda_rise;            /* Data rise time. */
367         u8 sda_fall;            /* Data fall time. */
368         u8 scl_rise;            /* Clock rise time. */
369         u8 scl_fall;            /* Clock fall time. */
370         u16 hold_start;         /* Hold time after (REPEATED) START. */
371         u16 hold_data;          /* Data hold time. */
372         u16 setup_start;        /* REPEATED START condition setup time. */
373         u16 setup_stop;         /* STOP condition setup time. */
374         u16 setup_data;         /* Data setup time. */
375         u16 pad;                /* Padding. */
376         u16 buf;                /* Bus free time between STOP and START. */
377         u16 thigh_max;          /* Thigh max. */
378         u32 timeout;            /* Detect clock low timeout. */
379 };
380
381 struct mlxbf_i2c_smbus_operation {
382         u32 flags;
383         u32 length; /* Buffer length in bytes. */
384         u8 *buffer;
385 };
386
387 struct mlxbf_i2c_smbus_request {
388         u8 slave;
389         u8 operation_cnt;
390         struct mlxbf_i2c_smbus_operation operation[MLXBF_I2C_SMBUS_MAX_OP_CNT];
391 };
392
393 struct mlxbf_i2c_resource {
394         void __iomem *io;
395         struct resource *params;
396         struct mutex *lock; /* Mutex to protect mlxbf_i2c_resource. */
397         u8 type;
398 };
399
400 struct mlxbf_i2c_chip_info {
401         enum mlxbf_i2c_chip_type type;
402         /* Chip shared resources that are being used by the I2C controller. */
403         struct mlxbf_i2c_resource *shared_res[MLXBF_I2C_SHARED_RES_MAX];
404
405         /* Callback to calculate the core PLL frequency. */
406         u64 (*calculate_freq)(struct mlxbf_i2c_resource *corepll_res);
407
408         /* Registers' address offset */
409         u32 smbus_master_rs_bytes_off;
410         u32 smbus_master_fsm_off;
411 };
412
413 struct mlxbf_i2c_priv {
414         const struct mlxbf_i2c_chip_info *chip;
415         struct i2c_adapter adap;
416         struct mlxbf_i2c_resource *smbus;
417         struct mlxbf_i2c_resource *timer;
418         struct mlxbf_i2c_resource *mst;
419         struct mlxbf_i2c_resource *slv;
420         struct mlxbf_i2c_resource *mst_cause;
421         struct mlxbf_i2c_resource *slv_cause;
422         struct mlxbf_i2c_resource *coalesce;
423         u64 frequency; /* Core frequency in Hz. */
424         int bus; /* Physical bus identifier. */
425         int irq;
426         struct i2c_client *slave[MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT];
427         u32 resource_version;
428 };
429
430 /* Core PLL frequency. */
431 static u64 mlxbf_i2c_corepll_frequency;
432
433 static struct resource mlxbf_i2c_coalesce_tyu_params =
434                 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COALESCE_TYU_ADDR,
435                                      MLXBF_I2C_COALESCE_TYU_SIZE,
436                                      "COALESCE_MEM");
437 static struct resource mlxbf_i2c_corepll_tyu_params =
438                 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_TYU_ADDR,
439                                      MLXBF_I2C_COREPLL_TYU_SIZE,
440                                      "COREPLL_MEM");
441 static struct resource mlxbf_i2c_corepll_yu_params =
442                 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_YU_ADDR,
443                                      MLXBF_I2C_COREPLL_YU_SIZE,
444                                      "COREPLL_MEM");
445 static struct resource mlxbf_i2c_corepll_rsh_yu_params =
446                 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_RSH_YU_ADDR,
447                                      MLXBF_I2C_COREPLL_RSH_YU_SIZE,
448                                      "COREPLL_MEM");
449 static struct resource mlxbf_i2c_gpio_tyu_params =
450                 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_GPIO_TYU_ADDR,
451                                      MLXBF_I2C_GPIO_TYU_SIZE,
452                                      "GPIO_MEM");
453
454 static struct mutex mlxbf_i2c_coalesce_lock;
455 static struct mutex mlxbf_i2c_corepll_lock;
456 static struct mutex mlxbf_i2c_gpio_lock;
457
458 static struct mlxbf_i2c_resource mlxbf_i2c_coalesce_res[] = {
459         [MLXBF_I2C_CHIP_TYPE_1] = {
460                 .params = &mlxbf_i2c_coalesce_tyu_params,
461                 .lock = &mlxbf_i2c_coalesce_lock,
462                 .type = MLXBF_I2C_COALESCE_RES
463         },
464         {}
465 };
466
467 static struct mlxbf_i2c_resource mlxbf_i2c_corepll_res[] = {
468         [MLXBF_I2C_CHIP_TYPE_1] = {
469                 .params = &mlxbf_i2c_corepll_tyu_params,
470                 .lock = &mlxbf_i2c_corepll_lock,
471                 .type = MLXBF_I2C_COREPLL_RES
472         },
473         [MLXBF_I2C_CHIP_TYPE_2] = {
474                 .params = &mlxbf_i2c_corepll_yu_params,
475                 .lock = &mlxbf_i2c_corepll_lock,
476                 .type = MLXBF_I2C_COREPLL_RES,
477         },
478         [MLXBF_I2C_CHIP_TYPE_3] = {
479                 .params = &mlxbf_i2c_corepll_rsh_yu_params,
480                 .lock = &mlxbf_i2c_corepll_lock,
481                 .type = MLXBF_I2C_COREPLL_RES,
482         }
483 };
484
485 static struct mlxbf_i2c_resource mlxbf_i2c_gpio_res[] = {
486         [MLXBF_I2C_CHIP_TYPE_1] = {
487                 .params = &mlxbf_i2c_gpio_tyu_params,
488                 .lock = &mlxbf_i2c_gpio_lock,
489                 .type = MLXBF_I2C_GPIO_RES
490         },
491         {}
492 };
493
494 static u8 mlxbf_i2c_bus_count;
495
496 static struct mutex mlxbf_i2c_bus_lock;
497
498 /*
499  * Function to poll a set of bits at a specific address; it checks whether
500  * the bits are equal to zero when eq_zero is set to 'true', and not equal
501  * to zero when eq_zero is set to 'false'.
502  * Note that the timeout is given in microseconds.
503  */
504 static u32 mlxbf_i2c_poll(void __iomem *io, u32 addr, u32 mask,
505                             bool eq_zero, u32  timeout)
506 {
507         u32 bits;
508
509         timeout = (timeout / MLXBF_I2C_POLL_FREQ_IN_USEC) + 1;
510
511         do {
512                 bits = readl(io + addr) & mask;
513                 if (eq_zero ? bits == 0 : bits != 0)
514                         return eq_zero ? 1 : bits;
515                 udelay(MLXBF_I2C_POLL_FREQ_IN_USEC);
516         } while (timeout-- != 0);
517
518         return 0;
519 }
520
521 /*
522  * SW must make sure that the SMBus Master GW is idle before starting
523  * a transaction. Accordingly, this function polls the Master FSM stop
524  * bit; it returns false when the bit is asserted, true if not.
525  */
526 static bool mlxbf_i2c_smbus_master_wait_for_idle(struct mlxbf_i2c_priv *priv)
527 {
528         u32 mask = MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK;
529         u32 addr = priv->chip->smbus_master_fsm_off;
530         u32 timeout = MLXBF_I2C_SMBUS_TIMEOUT;
531
532         if (mlxbf_i2c_poll(priv->mst->io, addr, mask, true, timeout))
533                 return true;
534
535         return false;
536 }
537
538 /*
539  * wait for the lock to be released before acquiring it.
540  */
541 static bool mlxbf_i2c_smbus_master_lock(struct mlxbf_i2c_priv *priv)
542 {
543         if (mlxbf_i2c_poll(priv->mst->io, MLXBF_I2C_SMBUS_MASTER_GW,
544                            MLXBF_I2C_MASTER_LOCK_BIT, true,
545                            MLXBF_I2C_SMBUS_LOCK_POLL_TIMEOUT))
546                 return true;
547
548         return false;
549 }
550
551 static void mlxbf_i2c_smbus_master_unlock(struct mlxbf_i2c_priv *priv)
552 {
553         /* Clear the gw to clear the lock */
554         writel(0, priv->mst->io + MLXBF_I2C_SMBUS_MASTER_GW);
555 }
556
557 static bool mlxbf_i2c_smbus_transaction_success(u32 master_status,
558                                                 u32 cause_status)
559 {
560         /*
561          * When transaction ended with STOP, all bytes were transmitted,
562          * and no NACK received, then the transaction ended successfully.
563          * On the other hand, when the GW is configured with the stop bit
564          * de-asserted then the SMBus expects the following GW configuration
565          * for transfer continuation.
566          */
567         if ((cause_status & MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA) ||
568             ((cause_status & MLXBF_I2C_CAUSE_TRANSACTION_ENDED) &&
569              (master_status & MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE) &&
570              !(master_status & MLXBF_I2C_SMBUS_STATUS_NACK_RCV)))
571                 return true;
572
573         return false;
574 }
575
576 /*
577  * Poll SMBus master status and return transaction status,
578  * i.e. whether succeeded or failed. I2C and SMBus fault codes
579  * are returned as negative numbers from most calls, with zero
580  * or some positive number indicating a non-fault return.
581  */
582 static int mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv *priv)
583 {
584         u32 master_status_bits;
585         u32 cause_status_bits;
586
587         /*
588          * GW busy bit is raised by the driver and cleared by the HW
589          * when the transaction is completed. The busy bit is a good
590          * indicator of transaction status. So poll the busy bit, and
591          * then read the cause and master status bits to determine if
592          * errors occurred during the transaction.
593          */
594         mlxbf_i2c_poll(priv->mst->io, MLXBF_I2C_SMBUS_MASTER_GW,
595                          MLXBF_I2C_MASTER_BUSY_BIT, true,
596                          MLXBF_I2C_SMBUS_TIMEOUT);
597
598         /* Read cause status bits. */
599         cause_status_bits = readl(priv->mst_cause->io +
600                                         MLXBF_I2C_CAUSE_ARBITER);
601         cause_status_bits &= MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK;
602
603         /*
604          * Parse both Cause and Master GW bits, then return transaction status.
605          */
606
607         master_status_bits = readl(priv->mst->io +
608                                         MLXBF_I2C_SMBUS_MASTER_STATUS);
609         master_status_bits &= MLXBF_I2C_SMBUS_MASTER_STATUS_MASK;
610
611         if (mlxbf_i2c_smbus_transaction_success(master_status_bits,
612                                                 cause_status_bits))
613                 return 0;
614
615         /*
616          * In case of timeout on GW busy, the ISR will clear busy bit but
617          * transaction ended bits cause will not be set so the transaction
618          * fails. Then, we must check Master GW status bits.
619          */
620         if ((master_status_bits & MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR) &&
621             (cause_status_bits & (MLXBF_I2C_CAUSE_TRANSACTION_ENDED |
622                                   MLXBF_I2C_CAUSE_M_GW_BUSY_FALL)))
623                 return -EIO;
624
625         if (cause_status_bits & MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR)
626                 return -EAGAIN;
627
628         return -ETIMEDOUT;
629 }
630
631 static void mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv *priv,
632                                        const u8 *data, u8 length, u32 addr,
633                                        bool is_master)
634 {
635         u8 offset, aligned_length;
636         u32 data32;
637
638         aligned_length = round_up(length, 4);
639
640         /*
641          * Copy data bytes from 4-byte aligned source buffer.
642          * Data copied to the Master GW Data Descriptor MUST be shifted
643          * left so the data starts at the MSB of the descriptor registers
644          * as required by the underlying hardware. Enable byte swapping
645          * when writing data bytes to the 32 * 32-bit HW Data registers
646          * a.k.a Master GW Data Descriptor.
647          */
648         for (offset = 0; offset < aligned_length; offset += sizeof(u32)) {
649                 data32 = *((u32 *)(data + offset));
650                 if (is_master)
651                         iowrite32be(data32, priv->mst->io + addr + offset);
652                 else
653                         iowrite32be(data32, priv->slv->io + addr + offset);
654         }
655 }
656
657 static void mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv *priv,
658                                       u8 *data, u8 length, u32 addr,
659                                       bool is_master)
660 {
661         u32 data32, mask;
662         u8 byte, offset;
663
664         mask = sizeof(u32) - 1;
665
666         /*
667          * Data bytes in the Master GW Data Descriptor are shifted left
668          * so the data starts at the MSB of the descriptor registers as
669          * set by the underlying hardware. Enable byte swapping while
670          * reading data bytes from the 32 * 32-bit HW Data registers
671          * a.k.a Master GW Data Descriptor.
672          */
673
674         for (offset = 0; offset < (length & ~mask); offset += sizeof(u32)) {
675                 if (is_master)
676                         data32 = ioread32be(priv->mst->io + addr + offset);
677                 else
678                         data32 = ioread32be(priv->slv->io + addr + offset);
679                 *((u32 *)(data + offset)) = data32;
680         }
681
682         if (!(length & mask))
683                 return;
684
685         if (is_master)
686                 data32 = ioread32be(priv->mst->io + addr + offset);
687         else
688                 data32 = ioread32be(priv->slv->io + addr + offset);
689
690         for (byte = 0; byte < (length & mask); byte++) {
691                 data[offset + byte] = data32 & GENMASK(7, 0);
692                 data32 = ror32(data32, MLXBF_I2C_SHIFT_8);
693         }
694 }
695
696 static int mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv *priv, u8 slave,
697                                   u8 len, u8 block_en, u8 pec_en, bool read)
698 {
699         u32 command;
700
701         /* Set Master GW control word. */
702         if (read) {
703                 command = MLXBF_I2C_MASTER_ENABLE_READ;
704                 command |= rol32(len, MLXBF_I2C_MASTER_READ_SHIFT);
705         } else {
706                 command = MLXBF_I2C_MASTER_ENABLE_WRITE;
707                 command |= rol32(len, MLXBF_I2C_MASTER_WRITE_SHIFT);
708         }
709         command |= rol32(slave, MLXBF_I2C_MASTER_SLV_ADDR_SHIFT);
710         command |= rol32(block_en, MLXBF_I2C_MASTER_PARSE_EXP_SHIFT);
711         command |= rol32(pec_en, MLXBF_I2C_MASTER_SEND_PEC_SHIFT);
712
713         /* Clear status bits. */
714         writel(0x0, priv->mst->io + MLXBF_I2C_SMBUS_MASTER_STATUS);
715         /* Set the cause data. */
716         writel(~0x0, priv->mst_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
717         /* Zero PEC byte. */
718         writel(0x0, priv->mst->io + MLXBF_I2C_SMBUS_MASTER_PEC);
719         /* Zero byte count. */
720         writel(0x0, priv->mst->io + priv->chip->smbus_master_rs_bytes_off);
721
722         /* GW activation. */
723         writel(command, priv->mst->io + MLXBF_I2C_SMBUS_MASTER_GW);
724
725         /*
726          * Poll master status and check status bits. An ACK is sent when
727          * completing writing data to the bus (Master 'byte_count_done' bit
728          * is set to 1).
729          */
730         return mlxbf_i2c_smbus_check_status(priv);
731 }
732
733 static int
734 mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv *priv,
735                                   struct mlxbf_i2c_smbus_request *request)
736 {
737         u8 data_desc[MLXBF_I2C_MASTER_DATA_DESC_SIZE] = { 0 };
738         u8 op_idx, data_idx, data_len, write_len, read_len;
739         struct mlxbf_i2c_smbus_operation *operation;
740         u8 read_en, write_en, block_en, pec_en;
741         u8 slave, flags, addr;
742         u8 *read_buf;
743         int ret = 0;
744
745         if (request->operation_cnt > MLXBF_I2C_SMBUS_MAX_OP_CNT)
746                 return -EINVAL;
747
748         read_buf = NULL;
749         data_idx = 0;
750         read_en = 0;
751         write_en = 0;
752         write_len = 0;
753         read_len = 0;
754         block_en = 0;
755         pec_en = 0;
756         slave = request->slave & GENMASK(6, 0);
757         addr = slave << 1;
758
759         /*
760          * Try to acquire the smbus gw lock before any reads of the GW register since
761          * a read sets the lock.
762          */
763         if (WARN_ON(!mlxbf_i2c_smbus_master_lock(priv)))
764                 return -EBUSY;
765
766         /* Check whether the HW is idle */
767         if (WARN_ON(!mlxbf_i2c_smbus_master_wait_for_idle(priv))) {
768                 ret = -EBUSY;
769                 goto out_unlock;
770         }
771
772         /* Set first byte. */
773         data_desc[data_idx++] = addr;
774
775         for (op_idx = 0; op_idx < request->operation_cnt; op_idx++) {
776                 operation = &request->operation[op_idx];
777                 flags = operation->flags;
778
779                 /*
780                  * Note that read and write operations might be handled by a
781                  * single command. If the MLXBF_I2C_F_SMBUS_OPERATION is set
782                  * then write command byte and set the optional SMBus specific
783                  * bits such as block_en and pec_en. These bits MUST be
784                  * submitted by the first operation only.
785                  */
786                 if (op_idx == 0 && flags & MLXBF_I2C_F_SMBUS_OPERATION) {
787                         block_en = flags & MLXBF_I2C_F_SMBUS_BLOCK;
788                         pec_en = flags & MLXBF_I2C_F_SMBUS_PEC;
789                 }
790
791                 if (flags & MLXBF_I2C_F_WRITE) {
792                         write_en = 1;
793                         write_len += operation->length;
794                         if (data_idx + operation->length >
795                                         MLXBF_I2C_MASTER_DATA_DESC_SIZE) {
796                                 ret = -ENOBUFS;
797                                 goto out_unlock;
798                         }
799                         memcpy(data_desc + data_idx,
800                                operation->buffer, operation->length);
801                         data_idx += operation->length;
802                 }
803                 /*
804                  * We assume that read operations are performed only once per
805                  * SMBus transaction. *TBD* protect this statement so it won't
806                  * be executed twice? or return an error if we try to read more
807                  * than once?
808                  */
809                 if (flags & MLXBF_I2C_F_READ) {
810                         read_en = 1;
811                         /* Subtract 1 as required by HW. */
812                         read_len = operation->length - 1;
813                         read_buf = operation->buffer;
814                 }
815         }
816
817         /* Set Master GW data descriptor. */
818         data_len = write_len + 1; /* Add one byte of the slave address. */
819         /*
820          * Note that data_len cannot be 0. Indeed, the slave address byte
821          * must be written to the data registers.
822          */
823         mlxbf_i2c_smbus_write_data(priv, (const u8 *)data_desc, data_len,
824                                    MLXBF_I2C_MASTER_DATA_DESC_ADDR, true);
825
826         if (write_en) {
827                 ret = mlxbf_i2c_smbus_enable(priv, slave, write_len, block_en,
828                                          pec_en, 0);
829                 if (ret)
830                         goto out_unlock;
831         }
832
833         if (read_en) {
834                 /* Write slave address to Master GW data descriptor. */
835                 mlxbf_i2c_smbus_write_data(priv, (const u8 *)&addr, 1,
836                                            MLXBF_I2C_MASTER_DATA_DESC_ADDR, true);
837                 ret = mlxbf_i2c_smbus_enable(priv, slave, read_len, block_en,
838                                          pec_en, 1);
839                 if (!ret) {
840                         /* Get Master GW data descriptor. */
841                         mlxbf_i2c_smbus_read_data(priv, data_desc, read_len + 1,
842                                              MLXBF_I2C_MASTER_DATA_DESC_ADDR, true);
843
844                         /* Get data from Master GW data descriptor. */
845                         memcpy(read_buf, data_desc, read_len + 1);
846                 }
847
848                 /*
849                  * After a read operation the SMBus FSM ps (present state)
850                  * needs to be 'manually' reset. This should be removed in
851                  * next tag integration.
852                  */
853                 writel(MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK,
854                         priv->mst->io + priv->chip->smbus_master_fsm_off);
855         }
856
857 out_unlock:
858         mlxbf_i2c_smbus_master_unlock(priv);
859
860         return ret;
861 }
862
863 /* I2C SMBus protocols. */
864
865 static void
866 mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request *request,
867                               u8 read)
868 {
869         request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
870
871         request->operation[0].length = 0;
872         request->operation[0].flags = MLXBF_I2C_F_WRITE;
873         request->operation[0].flags |= read ? MLXBF_I2C_F_READ : 0;
874 }
875
876 static void mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request *request,
877                                       u8 *data, bool read, bool pec_check)
878 {
879         request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
880
881         request->operation[0].length = 1;
882         request->operation[0].length += pec_check;
883
884         request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION;
885         request->operation[0].flags |= read ?
886                                 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
887         request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
888
889         request->operation[0].buffer = data;
890 }
891
892 static void
893 mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request *request,
894                                u8 *command, u8 *data, bool read, bool pec_check)
895 {
896         request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
897
898         request->operation[0].length = 1;
899         request->operation[0].flags =
900                         MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
901         request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
902         request->operation[0].buffer = command;
903
904         request->operation[1].length = 1;
905         request->operation[1].length += pec_check;
906         request->operation[1].flags = read ?
907                                 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
908         request->operation[1].buffer = data;
909 }
910
911 static void
912 mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request *request,
913                                u8 *command, u8 *data, bool read, bool pec_check)
914 {
915         request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
916
917         request->operation[0].length = 1;
918         request->operation[0].flags =
919                         MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
920         request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
921         request->operation[0].buffer = command;
922
923         request->operation[1].length = 2;
924         request->operation[1].length += pec_check;
925         request->operation[1].flags = read ?
926                                 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
927         request->operation[1].buffer = data;
928 }
929
930 static void
931 mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request *request,
932                                u8 *command, u8 *data, u8 *data_len, bool read,
933                                bool pec_check)
934 {
935         request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
936
937         request->operation[0].length = 1;
938         request->operation[0].flags =
939                         MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
940         request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
941         request->operation[0].buffer = command;
942
943         /*
944          * As specified in the standard, the max number of bytes to read/write
945          * per block operation is 32 bytes. In Golan code, the controller can
946          * read up to 128 bytes and write up to 127 bytes.
947          */
948         request->operation[1].length =
949             (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
950             I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
951         request->operation[1].flags = read ?
952                                 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
953         /*
954          * Skip the first data byte, which corresponds to the number of bytes
955          * to read/write.
956          */
957         request->operation[1].buffer = data + 1;
958
959         *data_len = request->operation[1].length;
960
961         /* Set the number of byte to read. This will be used by userspace. */
962         if (read)
963                 data[0] = *data_len;
964 }
965
966 static void mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request *request,
967                                        u8 *command, u8 *data, u8 *data_len,
968                                        bool read, bool pec_check)
969 {
970         request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
971
972         request->operation[0].length = 1;
973         request->operation[0].flags =
974                         MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
975         request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
976         request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
977         request->operation[0].buffer = command;
978
979         request->operation[1].length =
980             (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
981             I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
982         request->operation[1].flags = read ?
983                                 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
984         request->operation[1].buffer = data + 1;
985
986         *data_len = request->operation[1].length;
987
988         /* Set the number of bytes to read. This will be used by userspace. */
989         if (read)
990                 data[0] = *data_len;
991 }
992
993 static void
994 mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request *request,
995                                   u8 *command, u8 *data, bool pec_check)
996 {
997         request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
998
999         request->operation[0].length = 1;
1000         request->operation[0].flags =
1001                         MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
1002         request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
1003         request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
1004         request->operation[0].buffer = command;
1005
1006         request->operation[1].length = 2;
1007         request->operation[1].flags = MLXBF_I2C_F_WRITE;
1008         request->operation[1].buffer = data;
1009
1010         request->operation[2].length = 3;
1011         request->operation[2].flags = MLXBF_I2C_F_READ;
1012         request->operation[2].buffer = data;
1013 }
1014
1015 static void
1016 mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request *request,
1017                                       u8 *command, u8 *data, u8 *data_len,
1018                                       bool pec_check)
1019 {
1020         u32 length;
1021
1022         request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
1023
1024         request->operation[0].length = 1;
1025         request->operation[0].flags =
1026                         MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
1027         request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
1028         request->operation[0].flags |= (pec_check) ? MLXBF_I2C_F_SMBUS_PEC : 0;
1029         request->operation[0].buffer = command;
1030
1031         length = (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
1032             I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
1033
1034         request->operation[1].length = length - pec_check;
1035         request->operation[1].flags = MLXBF_I2C_F_WRITE;
1036         request->operation[1].buffer = data;
1037
1038         request->operation[2].length = length;
1039         request->operation[2].flags = MLXBF_I2C_F_READ;
1040         request->operation[2].buffer = data;
1041
1042         *data_len = length; /* including PEC byte. */
1043 }
1044
1045 /* Initialization functions. */
1046
1047 static bool mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv *priv, u8 type)
1048 {
1049         return priv->chip->type == type;
1050 }
1051
1052 static struct mlxbf_i2c_resource *
1053 mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv *priv, u8 type)
1054 {
1055         const struct mlxbf_i2c_chip_info *chip = priv->chip;
1056         struct mlxbf_i2c_resource *res;
1057         u8 res_idx = 0;
1058
1059         for (res_idx = 0; res_idx < MLXBF_I2C_SHARED_RES_MAX; res_idx++) {
1060                 res = chip->shared_res[res_idx];
1061                 if (res && res->type == type)
1062                         return res;
1063         }
1064
1065         return NULL;
1066 }
1067
1068 static int mlxbf_i2c_init_resource(struct platform_device *pdev,
1069                                    struct mlxbf_i2c_resource **res,
1070                                    u8 type)
1071 {
1072         struct mlxbf_i2c_resource *tmp_res;
1073         struct device *dev = &pdev->dev;
1074
1075         if (!res || *res || type >= MLXBF_I2C_END_RES)
1076                 return -EINVAL;
1077
1078         tmp_res = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource),
1079                                GFP_KERNEL);
1080         if (!tmp_res)
1081                 return -ENOMEM;
1082
1083         tmp_res->params = platform_get_resource(pdev, IORESOURCE_MEM, type);
1084         if (!tmp_res->params) {
1085                 devm_kfree(dev, tmp_res);
1086                 return -EIO;
1087         }
1088
1089         tmp_res->io = devm_ioremap_resource(dev, tmp_res->params);
1090         if (IS_ERR(tmp_res->io)) {
1091                 devm_kfree(dev, tmp_res);
1092                 return PTR_ERR(tmp_res->io);
1093         }
1094
1095         tmp_res->type = type;
1096
1097         *res = tmp_res;
1098
1099         return 0;
1100 }
1101
1102 static u32 mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv *priv, u64 nanoseconds,
1103                                bool minimum)
1104 {
1105         u64 frequency;
1106         u32 ticks;
1107
1108         /*
1109          * Compute ticks as follow:
1110          *
1111          *           Ticks
1112          * Time = --------- x 10^9    =>    Ticks = Time x Frequency x 10^-9
1113          *         Frequency
1114          */
1115         frequency = priv->frequency;
1116         ticks = (nanoseconds * frequency) / MLXBF_I2C_FREQUENCY_1GHZ;
1117         /*
1118          * The number of ticks is rounded down and if minimum is equal to 1
1119          * then add one tick.
1120          */
1121         if (minimum)
1122                 ticks++;
1123
1124         return ticks;
1125 }
1126
1127 static u32 mlxbf_i2c_set_timer(struct mlxbf_i2c_priv *priv, u64 nsec, bool opt,
1128                                u32 mask, u8 shift)
1129 {
1130         u32 val = (mlxbf_i2c_get_ticks(priv, nsec, opt) & mask) << shift;
1131
1132         return val;
1133 }
1134
1135 static void mlxbf_i2c_set_timings(struct mlxbf_i2c_priv *priv,
1136                                   const struct mlxbf_i2c_timings *timings)
1137 {
1138         u32 timer;
1139
1140         timer = mlxbf_i2c_set_timer(priv, timings->scl_high,
1141                                     false, MLXBF_I2C_MASK_16,
1142                                     MLXBF_I2C_SHIFT_0);
1143         timer |= mlxbf_i2c_set_timer(priv, timings->scl_low,
1144                                      false, MLXBF_I2C_MASK_16,
1145                                      MLXBF_I2C_SHIFT_16);
1146         writel(timer, priv->timer->io +
1147                 MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH);
1148
1149         timer = mlxbf_i2c_set_timer(priv, timings->sda_rise, false,
1150                                     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_0);
1151         timer |= mlxbf_i2c_set_timer(priv, timings->sda_fall, false,
1152                                      MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_8);
1153         timer |= mlxbf_i2c_set_timer(priv, timings->scl_rise, false,
1154                                      MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_16);
1155         timer |= mlxbf_i2c_set_timer(priv, timings->scl_fall, false,
1156                                      MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_24);
1157         writel(timer, priv->timer->io +
1158                 MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE);
1159
1160         timer = mlxbf_i2c_set_timer(priv, timings->hold_start, true,
1161                                     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1162         timer |= mlxbf_i2c_set_timer(priv, timings->hold_data, true,
1163                                      MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1164         writel(timer, priv->timer->io + MLXBF_I2C_SMBUS_TIMER_THOLD);
1165
1166         timer = mlxbf_i2c_set_timer(priv, timings->setup_start, true,
1167                                     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1168         timer |= mlxbf_i2c_set_timer(priv, timings->setup_stop, true,
1169                                      MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1170         writel(timer, priv->timer->io +
1171                 MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP);
1172
1173         timer = mlxbf_i2c_set_timer(priv, timings->setup_data, true,
1174                                     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1175         writel(timer, priv->timer->io + MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA);
1176
1177         timer = mlxbf_i2c_set_timer(priv, timings->buf, false,
1178                                     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1179         timer |= mlxbf_i2c_set_timer(priv, timings->thigh_max, false,
1180                                      MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1181         writel(timer, priv->timer->io + MLXBF_I2C_SMBUS_THIGH_MAX_TBUF);
1182
1183         timer = timings->timeout;
1184         writel(timer, priv->timer->io + MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT);
1185 }
1186
1187 enum mlxbf_i2c_timings_config {
1188         MLXBF_I2C_TIMING_CONFIG_100KHZ,
1189         MLXBF_I2C_TIMING_CONFIG_400KHZ,
1190         MLXBF_I2C_TIMING_CONFIG_1000KHZ,
1191 };
1192
1193 /*
1194  * Note that the mlxbf_i2c_timings->timeout value is not related to the
1195  * bus frequency, it is impacted by the time it takes the driver to
1196  * complete data transmission before transaction abort.
1197  */
1198 static const struct mlxbf_i2c_timings mlxbf_i2c_timings[] = {
1199         [MLXBF_I2C_TIMING_CONFIG_100KHZ] = {
1200                 .scl_high = 4810,
1201                 .scl_low = 5000,
1202                 .hold_start = 4000,
1203                 .setup_start = 4800,
1204                 .setup_stop = 4000,
1205                 .setup_data = 250,
1206                 .sda_rise = 50,
1207                 .sda_fall = 50,
1208                 .scl_rise = 50,
1209                 .scl_fall = 50,
1210                 .hold_data = 300,
1211                 .buf = 20000,
1212                 .thigh_max = 5000,
1213                 .timeout = 106500
1214         },
1215         [MLXBF_I2C_TIMING_CONFIG_400KHZ] = {
1216                 .scl_high = 1011,
1217                 .scl_low = 1300,
1218                 .hold_start = 600,
1219                 .setup_start = 700,
1220                 .setup_stop = 600,
1221                 .setup_data = 100,
1222                 .sda_rise = 50,
1223                 .sda_fall = 50,
1224                 .scl_rise = 50,
1225                 .scl_fall = 50,
1226                 .hold_data = 300,
1227                 .buf = 20000,
1228                 .thigh_max = 5000,
1229                 .timeout = 106500
1230         },
1231         [MLXBF_I2C_TIMING_CONFIG_1000KHZ] = {
1232                 .scl_high = 600,
1233                 .scl_low = 1300,
1234                 .hold_start = 600,
1235                 .setup_start = 600,
1236                 .setup_stop = 600,
1237                 .setup_data = 100,
1238                 .sda_rise = 50,
1239                 .sda_fall = 50,
1240                 .scl_rise = 50,
1241                 .scl_fall = 50,
1242                 .hold_data = 300,
1243                 .buf = 20000,
1244                 .thigh_max = 5000,
1245                 .timeout = 106500
1246         }
1247 };
1248
1249 static int mlxbf_i2c_init_timings(struct platform_device *pdev,
1250                                   struct mlxbf_i2c_priv *priv)
1251 {
1252         enum mlxbf_i2c_timings_config config_idx;
1253         struct device *dev = &pdev->dev;
1254         u32 config_khz;
1255
1256         int ret;
1257
1258         ret = device_property_read_u32(dev, "clock-frequency", &config_khz);
1259         if (ret < 0)
1260                 config_khz = I2C_MAX_STANDARD_MODE_FREQ;
1261
1262         switch (config_khz) {
1263         default:
1264                 /* Default settings is 100 KHz. */
1265                 pr_warn("Illegal value %d: defaulting to 100 KHz\n",
1266                         config_khz);
1267                 fallthrough;
1268         case I2C_MAX_STANDARD_MODE_FREQ:
1269                 config_idx = MLXBF_I2C_TIMING_CONFIG_100KHZ;
1270                 break;
1271
1272         case I2C_MAX_FAST_MODE_FREQ:
1273                 config_idx = MLXBF_I2C_TIMING_CONFIG_400KHZ;
1274                 break;
1275
1276         case I2C_MAX_FAST_MODE_PLUS_FREQ:
1277                 config_idx = MLXBF_I2C_TIMING_CONFIG_1000KHZ;
1278                 break;
1279         }
1280
1281         mlxbf_i2c_set_timings(priv, &mlxbf_i2c_timings[config_idx]);
1282
1283         return 0;
1284 }
1285
1286 static int mlxbf_i2c_get_gpio(struct platform_device *pdev,
1287                               struct mlxbf_i2c_priv *priv)
1288 {
1289         struct mlxbf_i2c_resource *gpio_res;
1290         struct device *dev = &pdev->dev;
1291         struct resource *params;
1292         resource_size_t size;
1293
1294         gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1295         if (!gpio_res)
1296                 return -EPERM;
1297
1298         /*
1299          * The GPIO region in TYU space is shared among I2C busses.
1300          * This function MUST be serialized to avoid racing when
1301          * claiming the memory region and/or setting up the GPIO.
1302          */
1303         lockdep_assert_held(gpio_res->lock);
1304
1305         /* Check whether the memory map exist. */
1306         if (gpio_res->io)
1307                 return 0;
1308
1309         params = gpio_res->params;
1310         size = resource_size(params);
1311
1312         if (!devm_request_mem_region(dev, params->start, size, params->name))
1313                 return -EFAULT;
1314
1315         gpio_res->io = devm_ioremap(dev, params->start, size);
1316         if (!gpio_res->io) {
1317                 devm_release_mem_region(dev, params->start, size);
1318                 return -ENOMEM;
1319         }
1320
1321         return 0;
1322 }
1323
1324 static int mlxbf_i2c_release_gpio(struct platform_device *pdev,
1325                                   struct mlxbf_i2c_priv *priv)
1326 {
1327         struct mlxbf_i2c_resource *gpio_res;
1328         struct device *dev = &pdev->dev;
1329         struct resource *params;
1330
1331         gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1332         if (!gpio_res)
1333                 return 0;
1334
1335         mutex_lock(gpio_res->lock);
1336
1337         if (gpio_res->io) {
1338                 /* Release the GPIO resource. */
1339                 params = gpio_res->params;
1340                 devm_iounmap(dev, gpio_res->io);
1341                 devm_release_mem_region(dev, params->start,
1342                                         resource_size(params));
1343         }
1344
1345         mutex_unlock(gpio_res->lock);
1346
1347         return 0;
1348 }
1349
1350 static int mlxbf_i2c_get_corepll(struct platform_device *pdev,
1351                                  struct mlxbf_i2c_priv *priv)
1352 {
1353         struct mlxbf_i2c_resource *corepll_res;
1354         struct device *dev = &pdev->dev;
1355         struct resource *params;
1356         resource_size_t size;
1357
1358         corepll_res = mlxbf_i2c_get_shared_resource(priv,
1359                                                     MLXBF_I2C_COREPLL_RES);
1360         if (!corepll_res)
1361                 return -EPERM;
1362
1363         /*
1364          * The COREPLL region in TYU space is shared among I2C busses.
1365          * This function MUST be serialized to avoid racing when
1366          * claiming the memory region.
1367          */
1368         lockdep_assert_held(corepll_res->lock);
1369
1370         /* Check whether the memory map exist. */
1371         if (corepll_res->io)
1372                 return 0;
1373
1374         params = corepll_res->params;
1375         size = resource_size(params);
1376
1377         if (!devm_request_mem_region(dev, params->start, size, params->name))
1378                 return -EFAULT;
1379
1380         corepll_res->io = devm_ioremap(dev, params->start, size);
1381         if (!corepll_res->io) {
1382                 devm_release_mem_region(dev, params->start, size);
1383                 return -ENOMEM;
1384         }
1385
1386         return 0;
1387 }
1388
1389 static int mlxbf_i2c_release_corepll(struct platform_device *pdev,
1390                                      struct mlxbf_i2c_priv *priv)
1391 {
1392         struct mlxbf_i2c_resource *corepll_res;
1393         struct device *dev = &pdev->dev;
1394         struct resource *params;
1395
1396         corepll_res = mlxbf_i2c_get_shared_resource(priv,
1397                                                     MLXBF_I2C_COREPLL_RES);
1398
1399         mutex_lock(corepll_res->lock);
1400
1401         if (corepll_res->io) {
1402                 /* Release the CorePLL resource. */
1403                 params = corepll_res->params;
1404                 devm_iounmap(dev, corepll_res->io);
1405                 devm_release_mem_region(dev, params->start,
1406                                         resource_size(params));
1407         }
1408
1409         mutex_unlock(corepll_res->lock);
1410
1411         return 0;
1412 }
1413
1414 static int mlxbf_i2c_init_master(struct platform_device *pdev,
1415                                  struct mlxbf_i2c_priv *priv)
1416 {
1417         struct mlxbf_i2c_resource *gpio_res;
1418         struct device *dev = &pdev->dev;
1419         u32 config_reg;
1420         int ret;
1421
1422         /* This configuration is only needed for BlueField 1. */
1423         if (!mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1))
1424                 return 0;
1425
1426         gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1427         if (!gpio_res)
1428                 return -EPERM;
1429
1430         /*
1431          * The GPIO region in TYU space is shared among I2C busses.
1432          * This function MUST be serialized to avoid racing when
1433          * claiming the memory region and/or setting up the GPIO.
1434          */
1435
1436         mutex_lock(gpio_res->lock);
1437
1438         ret = mlxbf_i2c_get_gpio(pdev, priv);
1439         if (ret < 0) {
1440                 dev_err(dev, "Failed to get gpio resource");
1441                 mutex_unlock(gpio_res->lock);
1442                 return ret;
1443         }
1444
1445         /*
1446          * TYU - Configuration for GPIO pins. Those pins must be asserted in
1447          * MLXBF_I2C_GPIO_0_FUNC_EN_0, i.e. GPIO 0 is controlled by HW, and must
1448          * be reset in MLXBF_I2C_GPIO_0_FORCE_OE_EN, i.e. GPIO_OE will be driven
1449          * instead of HW_OE.
1450          * For now, we do not reset the GPIO state when the driver is removed.
1451          * First, it is not necessary to disable the bus since we are using
1452          * the same busses. Then, some busses might be shared among Linux and
1453          * platform firmware; disabling the bus might compromise the system
1454          * functionality.
1455          */
1456         config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1457         config_reg = MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(priv->bus,
1458                                                          config_reg);
1459         writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1460
1461         config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1462         config_reg = MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(priv->bus,
1463                                                         config_reg);
1464         writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1465
1466         mutex_unlock(gpio_res->lock);
1467
1468         return 0;
1469 }
1470
1471 static u64 mlxbf_i2c_calculate_freq_from_tyu(struct mlxbf_i2c_resource *corepll_res)
1472 {
1473         u64 core_frequency;
1474         u8 core_od, core_r;
1475         u32 corepll_val;
1476         u16 core_f;
1477
1478         corepll_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1479
1480         /* Get Core PLL configuration bits. */
1481         core_f = FIELD_GET(MLXBF_I2C_COREPLL_CORE_F_TYU_MASK, corepll_val);
1482         core_od = FIELD_GET(MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK, corepll_val);
1483         core_r = FIELD_GET(MLXBF_I2C_COREPLL_CORE_R_TYU_MASK, corepll_val);
1484
1485         /*
1486          * Compute PLL output frequency as follow:
1487          *
1488          *                                       CORE_F + 1
1489          * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1490          *                              (CORE_R + 1) * (CORE_OD + 1)
1491          *
1492          * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1493          * and PadFrequency, respectively.
1494          */
1495         core_frequency = MLXBF_I2C_PLL_IN_FREQ * (++core_f);
1496         core_frequency /= (++core_r) * (++core_od);
1497
1498         return core_frequency;
1499 }
1500
1501 static u64 mlxbf_i2c_calculate_freq_from_yu(struct mlxbf_i2c_resource *corepll_res)
1502 {
1503         u32 corepll_reg1_val, corepll_reg2_val;
1504         u64 corepll_frequency;
1505         u8 core_od, core_r;
1506         u32 core_f;
1507
1508         corepll_reg1_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1509         corepll_reg2_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG2);
1510
1511         /* Get Core PLL configuration bits */
1512         core_f = FIELD_GET(MLXBF_I2C_COREPLL_CORE_F_YU_MASK, corepll_reg1_val);
1513         core_r = FIELD_GET(MLXBF_I2C_COREPLL_CORE_R_YU_MASK, corepll_reg1_val);
1514         core_od = FIELD_GET(MLXBF_I2C_COREPLL_CORE_OD_YU_MASK, corepll_reg2_val);
1515
1516         /*
1517          * Compute PLL output frequency as follow:
1518          *
1519          *                                     CORE_F / 16384
1520          * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1521          *                              (CORE_R + 1) * (CORE_OD + 1)
1522          *
1523          * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1524          * and PadFrequency, respectively.
1525          */
1526         corepll_frequency = (MLXBF_I2C_PLL_IN_FREQ * core_f) / MLNXBF_I2C_COREPLL_CONST;
1527         corepll_frequency /= (++core_r) * (++core_od);
1528
1529         return corepll_frequency;
1530 }
1531
1532 static int mlxbf_i2c_calculate_corepll_freq(struct platform_device *pdev,
1533                                             struct mlxbf_i2c_priv *priv)
1534 {
1535         const struct mlxbf_i2c_chip_info *chip = priv->chip;
1536         struct mlxbf_i2c_resource *corepll_res;
1537         struct device *dev = &pdev->dev;
1538         u64 *freq = &priv->frequency;
1539         int ret;
1540
1541         corepll_res = mlxbf_i2c_get_shared_resource(priv,
1542                                                     MLXBF_I2C_COREPLL_RES);
1543         if (!corepll_res)
1544                 return -EPERM;
1545
1546         /*
1547          * First, check whether the TYU core Clock frequency is set.
1548          * The TYU core frequency is the same for all I2C busses; when
1549          * the first device gets probed the frequency is determined and
1550          * stored into a globally visible variable. So, first of all,
1551          * check whether the frequency is already set. Here, we assume
1552          * that the frequency is expected to be greater than 0.
1553          */
1554         mutex_lock(corepll_res->lock);
1555         if (!mlxbf_i2c_corepll_frequency) {
1556                 if (!chip->calculate_freq) {
1557                         mutex_unlock(corepll_res->lock);
1558                         return -EPERM;
1559                 }
1560
1561                 ret = mlxbf_i2c_get_corepll(pdev, priv);
1562                 if (ret < 0) {
1563                         dev_err(dev, "Failed to get corePLL resource");
1564                         mutex_unlock(corepll_res->lock);
1565                         return ret;
1566                 }
1567
1568                 mlxbf_i2c_corepll_frequency = chip->calculate_freq(corepll_res);
1569         }
1570         mutex_unlock(corepll_res->lock);
1571
1572         *freq = mlxbf_i2c_corepll_frequency;
1573
1574         return 0;
1575 }
1576
1577 static int mlxbf_i2c_slave_enable(struct mlxbf_i2c_priv *priv,
1578                               struct i2c_client *slave)
1579 {
1580         u8 reg, reg_cnt, byte, addr_tmp;
1581         u32 slave_reg, slave_reg_tmp;
1582
1583         if (!priv)
1584                 return -EPERM;
1585
1586         reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1587
1588         /*
1589          * Read the slave registers. There are 4 * 32-bit slave registers.
1590          * Each slave register can hold up to 4 * 8-bit slave configuration:
1591          * 1) A 7-bit address
1592          * 2) And a status bit (1 if enabled, 0 if not).
1593          * Look for the next available slave register slot.
1594          */
1595         for (reg = 0; reg < reg_cnt; reg++) {
1596                 slave_reg = readl(priv->slv->io +
1597                                 MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1598                 /*
1599                  * Each register holds 4 slave addresses. So, we have to keep
1600                  * the byte order consistent with the value read in order to
1601                  * update the register correctly, if needed.
1602                  */
1603                 slave_reg_tmp = slave_reg;
1604                 for (byte = 0; byte < 4; byte++) {
1605                         addr_tmp = slave_reg_tmp & GENMASK(7, 0);
1606
1607                         /*
1608                          * If an enable bit is not set in the
1609                          * MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG register, then the
1610                          * slave address slot associated with that bit is
1611                          * free. So set the enable bit and write the
1612                          * slave address bits.
1613                          */
1614                         if (!(addr_tmp & MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT)) {
1615                                 slave_reg &= ~(MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK << (byte * 8));
1616                                 slave_reg |= (slave->addr << (byte * 8));
1617                                 slave_reg |= MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT << (byte * 8);
1618                                 writel(slave_reg, priv->slv->io +
1619                                         MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1620                                         (reg * 0x4));
1621
1622                                 /*
1623                                  * Set the slave at the corresponding index.
1624                                  */
1625                                 priv->slave[(reg * 4) + byte] = slave;
1626
1627                                 return 0;
1628                         }
1629
1630                         /* Parse next byte. */
1631                         slave_reg_tmp >>= 8;
1632                 }
1633         }
1634
1635         return -EBUSY;
1636 }
1637
1638 static int mlxbf_i2c_slave_disable(struct mlxbf_i2c_priv *priv, u8 addr)
1639 {
1640         u8 addr_tmp, reg, reg_cnt, byte;
1641         u32 slave_reg, slave_reg_tmp;
1642
1643         reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1644
1645         /*
1646          * Read the slave registers. There are 4 * 32-bit slave registers.
1647          * Each slave register can hold up to 4 * 8-bit slave configuration:
1648          * 1) A 7-bit address
1649          * 2) And a status bit (1 if enabled, 0 if not).
1650          * Check if addr is present in the registers.
1651          */
1652         for (reg = 0; reg < reg_cnt; reg++) {
1653                 slave_reg = readl(priv->slv->io +
1654                                 MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1655
1656                 /* Check whether the address slots are empty. */
1657                 if (!slave_reg)
1658                         continue;
1659
1660                 /*
1661                  * Check if addr matches any of the 4 slave addresses
1662                  * in the register.
1663                  */
1664                 slave_reg_tmp = slave_reg;
1665                 for (byte = 0; byte < 4; byte++) {
1666                         addr_tmp = slave_reg_tmp & MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1667                         /*
1668                          * Parse slave address bytes and check whether the
1669                          * slave address already exists.
1670                          */
1671                         if (addr_tmp == addr) {
1672                                 /* Clear the slave address slot. */
1673                                 slave_reg &= ~(GENMASK(7, 0) << (byte * 8));
1674                                 writel(slave_reg, priv->slv->io +
1675                                         MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1676                                         (reg * 0x4));
1677                                 /* Free slave at the corresponding index */
1678                                 priv->slave[(reg * 4) + byte] = NULL;
1679
1680                                 return 0;
1681                         }
1682
1683                         /* Parse next byte. */
1684                         slave_reg_tmp >>= 8;
1685                 }
1686         }
1687
1688         return -ENXIO;
1689 }
1690
1691 static int mlxbf_i2c_init_coalesce(struct platform_device *pdev,
1692                                    struct mlxbf_i2c_priv *priv)
1693 {
1694         struct mlxbf_i2c_resource *coalesce_res;
1695         struct resource *params;
1696         resource_size_t size;
1697         int ret = 0;
1698
1699         /*
1700          * Unlike BlueField-1 platform, the coalesce registers is a dedicated
1701          * resource in the next generations of BlueField.
1702          */
1703         if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1704                 coalesce_res = mlxbf_i2c_get_shared_resource(priv,
1705                                                 MLXBF_I2C_COALESCE_RES);
1706                 if (!coalesce_res)
1707                         return -EPERM;
1708
1709                 /*
1710                  * The Cause Coalesce group in TYU space is shared among
1711                  * I2C busses. This function MUST be serialized to avoid
1712                  * racing when claiming the memory region.
1713                  */
1714                 lockdep_assert_held(mlxbf_i2c_gpio_res->lock);
1715
1716                 /* Check whether the memory map exist. */
1717                 if (coalesce_res->io) {
1718                         priv->coalesce = coalesce_res;
1719                         return 0;
1720                 }
1721
1722                 params = coalesce_res->params;
1723                 size = resource_size(params);
1724
1725                 if (!request_mem_region(params->start, size, params->name))
1726                         return -EFAULT;
1727
1728                 coalesce_res->io = ioremap(params->start, size);
1729                 if (!coalesce_res->io) {
1730                         release_mem_region(params->start, size);
1731                         return -ENOMEM;
1732                 }
1733
1734                 priv->coalesce = coalesce_res;
1735
1736         } else {
1737                 ret = mlxbf_i2c_init_resource(pdev, &priv->coalesce,
1738                                               MLXBF_I2C_COALESCE_RES);
1739         }
1740
1741         return ret;
1742 }
1743
1744 static int mlxbf_i2c_release_coalesce(struct platform_device *pdev,
1745                                       struct mlxbf_i2c_priv *priv)
1746 {
1747         struct mlxbf_i2c_resource *coalesce_res;
1748         struct device *dev = &pdev->dev;
1749         struct resource *params;
1750         resource_size_t size;
1751
1752         coalesce_res = priv->coalesce;
1753
1754         if (coalesce_res->io) {
1755                 params = coalesce_res->params;
1756                 size = resource_size(params);
1757                 if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1758                         mutex_lock(coalesce_res->lock);
1759                         iounmap(coalesce_res->io);
1760                         release_mem_region(params->start, size);
1761                         mutex_unlock(coalesce_res->lock);
1762                 } else {
1763                         devm_release_mem_region(dev, params->start, size);
1764                 }
1765         }
1766
1767         return 0;
1768 }
1769
1770 static int mlxbf_i2c_init_slave(struct platform_device *pdev,
1771                                 struct mlxbf_i2c_priv *priv)
1772 {
1773         struct device *dev = &pdev->dev;
1774         u32 int_reg;
1775         int ret;
1776
1777         /* Reset FSM. */
1778         writel(0, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_FSM);
1779
1780         /*
1781          * Enable slave cause interrupt bits. Drive
1782          * MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE and
1783          * MLXBF_I2C_CAUSE_WRITE_SUCCESS, these are enabled when an external
1784          * masters issue a Read and Write, respectively. But, clear all
1785          * interrupts first.
1786          */
1787         writel(~0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1788         int_reg = MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE;
1789         int_reg |= MLXBF_I2C_CAUSE_WRITE_SUCCESS;
1790         writel(int_reg, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_EVTEN0);
1791
1792         /* Finally, set the 'ready' bit to start handling transactions. */
1793         writel(0x1, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1794
1795         /* Initialize the cause coalesce resource. */
1796         ret = mlxbf_i2c_init_coalesce(pdev, priv);
1797         if (ret < 0) {
1798                 dev_err(dev, "failed to initialize cause coalesce\n");
1799                 return ret;
1800         }
1801
1802         return 0;
1803 }
1804
1805 static bool mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv *priv, bool *read,
1806                                    bool *write)
1807 {
1808         const struct mlxbf_i2c_chip_info *chip = priv->chip;
1809         u32 coalesce0_reg, cause_reg;
1810         u8 slave_shift, is_set;
1811
1812         *write = false;
1813         *read = false;
1814
1815         slave_shift = chip->type != MLXBF_I2C_CHIP_TYPE_1 ?
1816                                 MLXBF_I2C_CAUSE_YU_SLAVE_BIT :
1817                                 priv->bus + MLXBF_I2C_CAUSE_TYU_SLAVE_BIT;
1818
1819         coalesce0_reg = readl(priv->coalesce->io + MLXBF_I2C_CAUSE_COALESCE_0);
1820         is_set = coalesce0_reg & (1 << slave_shift);
1821
1822         if (!is_set)
1823                 return false;
1824
1825         /* Check the source of the interrupt, i.e. whether a Read or Write. */
1826         cause_reg = readl(priv->slv_cause->io + MLXBF_I2C_CAUSE_ARBITER);
1827         if (cause_reg & MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE)
1828                 *read = true;
1829         else if (cause_reg & MLXBF_I2C_CAUSE_WRITE_SUCCESS)
1830                 *write = true;
1831
1832         /* Clear cause bits. */
1833         writel(~0x0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1834
1835         return true;
1836 }
1837
1838 static bool mlxbf_i2c_slave_wait_for_idle(struct mlxbf_i2c_priv *priv,
1839                                             u32 timeout)
1840 {
1841         u32 mask = MLXBF_I2C_CAUSE_S_GW_BUSY_FALL;
1842         u32 addr = MLXBF_I2C_CAUSE_ARBITER;
1843
1844         if (mlxbf_i2c_poll(priv->slv_cause->io, addr, mask, false, timeout))
1845                 return true;
1846
1847         return false;
1848 }
1849
1850 static struct i2c_client *mlxbf_i2c_get_slave_from_addr(
1851                         struct mlxbf_i2c_priv *priv, u8 addr)
1852 {
1853         int i;
1854
1855         for (i = 0; i < MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT; i++) {
1856                 if (!priv->slave[i])
1857                         continue;
1858
1859                 if (priv->slave[i]->addr == addr)
1860                         return priv->slave[i];
1861         }
1862
1863         return NULL;
1864 }
1865
1866 /*
1867  * Send byte to 'external' smbus master. This function is executed when
1868  * an external smbus master wants to read data from the BlueField.
1869  */
1870 static int mlxbf_i2c_irq_send(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1871 {
1872         u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1873         u8 write_size, pec_en, addr, value, byte_cnt;
1874         struct i2c_client *slave;
1875         u32 control32, data32;
1876         int ret = 0;
1877
1878         /*
1879          * Read the first byte received from the external master to
1880          * determine the slave address. This byte is located in the
1881          * first data descriptor register of the slave GW.
1882          */
1883         data32 = ioread32be(priv->slv->io +
1884                                 MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1885         addr = (data32 & GENMASK(7, 0)) >> 1;
1886
1887         /*
1888          * Check if the slave address received in the data descriptor register
1889          * matches any of the slave addresses registered. If there is a match,
1890          * set the slave.
1891          */
1892         slave = mlxbf_i2c_get_slave_from_addr(priv, addr);
1893         if (!slave) {
1894                 ret = -ENXIO;
1895                 goto clear_csr;
1896         }
1897
1898         /*
1899          * An I2C read can consist of a WRITE bit transaction followed by
1900          * a READ bit transaction. Indeed, slave devices often expect
1901          * the slave address to be followed by the internal address.
1902          * So, write the internal address byte first, and then, send the
1903          * requested data to the master.
1904          */
1905         if (recv_bytes > 1) {
1906                 i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1907                 value = (data32 >> 8) & GENMASK(7, 0);
1908                 ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1909                                       &value);
1910                 i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1911
1912                 if (ret < 0)
1913                         goto clear_csr;
1914         }
1915
1916         /*
1917          * Send data to the master. Currently, the driver supports
1918          * READ_BYTE, READ_WORD and BLOCK READ protocols. The
1919          * hardware can send up to 128 bytes per transfer which is
1920          * the total size of the data registers.
1921          */
1922         i2c_slave_event(slave, I2C_SLAVE_READ_REQUESTED, &value);
1923
1924         for (byte_cnt = 0; byte_cnt < MLXBF_I2C_SLAVE_DATA_DESC_SIZE; byte_cnt++) {
1925                 data_desc[byte_cnt] = value;
1926                 i2c_slave_event(slave, I2C_SLAVE_READ_PROCESSED, &value);
1927         }
1928
1929         /* Send a stop condition to the backend. */
1930         i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1931
1932         /* Set the number of bytes to write to master. */
1933         write_size = (byte_cnt - 1) & 0x7f;
1934
1935         /* Write data to Slave GW data descriptor. */
1936         mlxbf_i2c_smbus_write_data(priv, data_desc, byte_cnt,
1937                                    MLXBF_I2C_SLAVE_DATA_DESC_ADDR, false);
1938
1939         pec_en = 0; /* Disable PEC since it is not supported. */
1940
1941         /* Prepare control word. */
1942         control32 = MLXBF_I2C_SLAVE_ENABLE;
1943         control32 |= rol32(write_size, MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT);
1944         control32 |= rol32(pec_en, MLXBF_I2C_SLAVE_SEND_PEC_SHIFT);
1945
1946         writel(control32, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_GW);
1947
1948         /*
1949          * Wait until the transfer is completed; the driver will wait
1950          * until the GW is idle, a cause will rise on fall of GW busy.
1951          */
1952         mlxbf_i2c_slave_wait_for_idle(priv, MLXBF_I2C_SMBUS_TIMEOUT);
1953
1954 clear_csr:
1955         /* Release the Slave GW. */
1956         writel(0x0, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
1957         writel(0x0, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
1958         writel(0x1, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1959
1960         return ret;
1961 }
1962
1963 /*
1964  * Receive bytes from 'external' smbus master. This function is executed when
1965  * an external smbus master wants to write data to the BlueField.
1966  */
1967 static int mlxbf_i2c_irq_recv(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1968 {
1969         u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1970         struct i2c_client *slave;
1971         u8 value, byte, addr;
1972         int ret = 0;
1973
1974         /* Read data from Slave GW data descriptor. */
1975         mlxbf_i2c_smbus_read_data(priv, data_desc, recv_bytes,
1976                                   MLXBF_I2C_SLAVE_DATA_DESC_ADDR, false);
1977         addr = data_desc[0] >> 1;
1978
1979         /*
1980          * Check if the slave address received in the data descriptor register
1981          * matches any of the slave addresses registered.
1982          */
1983         slave = mlxbf_i2c_get_slave_from_addr(priv, addr);
1984         if (!slave) {
1985                 ret = -EINVAL;
1986                 goto clear_csr;
1987         }
1988
1989         /*
1990          * Notify the slave backend that an smbus master wants to write data
1991          * to the BlueField.
1992          */
1993         i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1994
1995         /* Send the received data to the slave backend. */
1996         for (byte = 1; byte < recv_bytes; byte++) {
1997                 value = data_desc[byte];
1998                 ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1999                                       &value);
2000                 if (ret < 0)
2001                         break;
2002         }
2003
2004         /*
2005          * Send a stop event to the slave backend, to signal
2006          * the end of the write transactions.
2007          */
2008         i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
2009
2010 clear_csr:
2011         /* Release the Slave GW. */
2012         writel(0x0, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2013         writel(0x0, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
2014         writel(0x1, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_READY);
2015
2016         return ret;
2017 }
2018
2019 static irqreturn_t mlxbf_i2c_irq(int irq, void *ptr)
2020 {
2021         struct mlxbf_i2c_priv *priv = ptr;
2022         bool read, write, irq_is_set;
2023         u32 rw_bytes_reg;
2024         u8 recv_bytes;
2025
2026         /*
2027          * Read TYU interrupt register and determine the source of the
2028          * interrupt. Based on the source of the interrupt one of the
2029          * following actions are performed:
2030          *  - Receive data and send response to master.
2031          *  - Send data and release slave GW.
2032          *
2033          * Handle read/write transaction only. CRmaster and Iarp requests
2034          * are ignored for now.
2035          */
2036         irq_is_set = mlxbf_i2c_has_coalesce(priv, &read, &write);
2037         if (!irq_is_set || (!read && !write)) {
2038                 /* Nothing to do here, interrupt was not from this device. */
2039                 return IRQ_NONE;
2040         }
2041
2042         /*
2043          * The MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES includes the number of
2044          * bytes from/to master. These are defined by 8-bits each. If the lower
2045          * 8 bits are set, then the master expect to read N bytes from the
2046          * slave, if the higher 8 bits are sent then the slave expect N bytes
2047          * from the master.
2048          */
2049         rw_bytes_reg = readl(priv->slv->io +
2050                                 MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2051         recv_bytes = (rw_bytes_reg >> 8) & GENMASK(7, 0);
2052
2053         /*
2054          * For now, the slave supports 128 bytes transfer. Discard remaining
2055          * data bytes if the master wrote more than
2056          * MLXBF_I2C_SLAVE_DATA_DESC_SIZE, i.e, the actual size of the slave
2057          * data descriptor.
2058          *
2059          * Note that we will never expect to transfer more than 128 bytes; as
2060          * specified in the SMBus standard, block transactions cannot exceed
2061          * 32 bytes.
2062          */
2063         recv_bytes = recv_bytes > MLXBF_I2C_SLAVE_DATA_DESC_SIZE ?
2064                 MLXBF_I2C_SLAVE_DATA_DESC_SIZE : recv_bytes;
2065
2066         if (read)
2067                 mlxbf_i2c_irq_send(priv, recv_bytes);
2068         else
2069                 mlxbf_i2c_irq_recv(priv, recv_bytes);
2070
2071         return IRQ_HANDLED;
2072 }
2073
2074 /* Return negative errno on error. */
2075 static s32 mlxbf_i2c_smbus_xfer(struct i2c_adapter *adap, u16 addr,
2076                                 unsigned short flags, char read_write,
2077                                 u8 command, int size,
2078                                 union i2c_smbus_data *data)
2079 {
2080         struct mlxbf_i2c_smbus_request request = { 0 };
2081         struct mlxbf_i2c_priv *priv;
2082         bool read, pec;
2083         u8 byte_cnt;
2084
2085         request.slave = addr;
2086
2087         read = (read_write == I2C_SMBUS_READ);
2088         pec = flags & I2C_FUNC_SMBUS_PEC;
2089
2090         switch (size) {
2091         case I2C_SMBUS_QUICK:
2092                 mlxbf_i2c_smbus_quick_command(&request, read);
2093                 dev_dbg(&adap->dev, "smbus quick, slave 0x%02x\n", addr);
2094                 break;
2095
2096         case I2C_SMBUS_BYTE:
2097                 mlxbf_i2c_smbus_byte_func(&request,
2098                                           read ? &data->byte : &command, read,
2099                                           pec);
2100                 dev_dbg(&adap->dev, "smbus %s byte, slave 0x%02x.\n",
2101                         read ? "read" : "write", addr);
2102                 break;
2103
2104         case I2C_SMBUS_BYTE_DATA:
2105                 mlxbf_i2c_smbus_data_byte_func(&request, &command, &data->byte,
2106                                                read, pec);
2107                 dev_dbg(&adap->dev, "smbus %s byte data at 0x%02x, slave 0x%02x.\n",
2108                         read ? "read" : "write", command, addr);
2109                 break;
2110
2111         case I2C_SMBUS_WORD_DATA:
2112                 mlxbf_i2c_smbus_data_word_func(&request, &command,
2113                                                (u8 *)&data->word, read, pec);
2114                 dev_dbg(&adap->dev, "smbus %s word data at 0x%02x, slave 0x%02x.\n",
2115                         read ? "read" : "write", command, addr);
2116                 break;
2117
2118         case I2C_SMBUS_I2C_BLOCK_DATA:
2119                 byte_cnt = data->block[0];
2120                 mlxbf_i2c_smbus_i2c_block_func(&request, &command, data->block,
2121                                                &byte_cnt, read, pec);
2122                 dev_dbg(&adap->dev, "i2c %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2123                         read ? "read" : "write", byte_cnt, command, addr);
2124                 break;
2125
2126         case I2C_SMBUS_BLOCK_DATA:
2127                 byte_cnt = read ? I2C_SMBUS_BLOCK_MAX : data->block[0];
2128                 mlxbf_i2c_smbus_block_func(&request, &command, data->block,
2129                                            &byte_cnt, read, pec);
2130                 dev_dbg(&adap->dev, "smbus %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2131                         read ? "read" : "write", byte_cnt, command, addr);
2132                 break;
2133
2134         case I2C_FUNC_SMBUS_PROC_CALL:
2135                 mlxbf_i2c_smbus_process_call_func(&request, &command,
2136                                                   (u8 *)&data->word, pec);
2137                 dev_dbg(&adap->dev, "process call, wr/rd at 0x%02x, slave 0x%02x.\n",
2138                         command, addr);
2139                 break;
2140
2141         case I2C_FUNC_SMBUS_BLOCK_PROC_CALL:
2142                 byte_cnt = data->block[0];
2143                 mlxbf_i2c_smbus_blk_process_call_func(&request, &command,
2144                                                       data->block, &byte_cnt,
2145                                                       pec);
2146                 dev_dbg(&adap->dev, "block process call, wr/rd %d bytes, slave 0x%02x.\n",
2147                         byte_cnt, addr);
2148                 break;
2149
2150         default:
2151                 dev_dbg(&adap->dev, "Unsupported I2C/SMBus command %d\n",
2152                         size);
2153                 return -EOPNOTSUPP;
2154         }
2155
2156         priv = i2c_get_adapdata(adap);
2157
2158         return mlxbf_i2c_smbus_start_transaction(priv, &request);
2159 }
2160
2161 static int mlxbf_i2c_reg_slave(struct i2c_client *slave)
2162 {
2163         struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2164         struct device *dev = &slave->dev;
2165         int ret;
2166
2167         /*
2168          * Do not support ten bit chip address and do not use Packet Error
2169          * Checking (PEC).
2170          */
2171         if (slave->flags & (I2C_CLIENT_TEN | I2C_CLIENT_PEC)) {
2172                 dev_err(dev, "SMBus PEC and 10 bit address not supported\n");
2173                 return -EAFNOSUPPORT;
2174         }
2175
2176         ret = mlxbf_i2c_slave_enable(priv, slave);
2177         if (ret)
2178                 dev_err(dev, "Surpassed max number of registered slaves allowed\n");
2179
2180         return 0;
2181 }
2182
2183 static int mlxbf_i2c_unreg_slave(struct i2c_client *slave)
2184 {
2185         struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2186         struct device *dev = &slave->dev;
2187         int ret;
2188
2189         /*
2190          * Unregister slave by:
2191          * 1) Disabling the slave address in hardware
2192          * 2) Freeing priv->slave at the corresponding index
2193          */
2194         ret = mlxbf_i2c_slave_disable(priv, slave->addr);
2195         if (ret)
2196                 dev_err(dev, "Unable to find slave 0x%x\n", slave->addr);
2197
2198         return ret;
2199 }
2200
2201 static u32 mlxbf_i2c_functionality(struct i2c_adapter *adap)
2202 {
2203         return MLXBF_I2C_FUNC_ALL;
2204 }
2205
2206 static struct mlxbf_i2c_chip_info mlxbf_i2c_chip[] = {
2207         [MLXBF_I2C_CHIP_TYPE_1] = {
2208                 .type = MLXBF_I2C_CHIP_TYPE_1,
2209                 .shared_res = {
2210                         [0] = &mlxbf_i2c_coalesce_res[MLXBF_I2C_CHIP_TYPE_1],
2211                         [1] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_1],
2212                         [2] = &mlxbf_i2c_gpio_res[MLXBF_I2C_CHIP_TYPE_1]
2213                 },
2214                 .calculate_freq = mlxbf_i2c_calculate_freq_from_tyu,
2215                 .smbus_master_rs_bytes_off = MLXBF_I2C_YU_SMBUS_RS_BYTES,
2216                 .smbus_master_fsm_off = MLXBF_I2C_YU_SMBUS_MASTER_FSM
2217         },
2218         [MLXBF_I2C_CHIP_TYPE_2] = {
2219                 .type = MLXBF_I2C_CHIP_TYPE_2,
2220                 .shared_res = {
2221                         [0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_2]
2222                 },
2223                 .calculate_freq = mlxbf_i2c_calculate_freq_from_yu,
2224                 .smbus_master_rs_bytes_off = MLXBF_I2C_YU_SMBUS_RS_BYTES,
2225                 .smbus_master_fsm_off = MLXBF_I2C_YU_SMBUS_MASTER_FSM
2226         },
2227         [MLXBF_I2C_CHIP_TYPE_3] = {
2228                 .type = MLXBF_I2C_CHIP_TYPE_3,
2229                 .shared_res = {
2230                         [0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_3]
2231                 },
2232                 .calculate_freq = mlxbf_i2c_calculate_freq_from_yu,
2233                 .smbus_master_rs_bytes_off = MLXBF_I2C_RSH_YU_SMBUS_RS_BYTES,
2234                 .smbus_master_fsm_off = MLXBF_I2C_RSH_YU_SMBUS_MASTER_FSM
2235         }
2236 };
2237
2238 static const struct i2c_algorithm mlxbf_i2c_algo = {
2239         .smbus_xfer = mlxbf_i2c_smbus_xfer,
2240         .functionality = mlxbf_i2c_functionality,
2241         .reg_slave = mlxbf_i2c_reg_slave,
2242         .unreg_slave = mlxbf_i2c_unreg_slave,
2243 };
2244
2245 static struct i2c_adapter_quirks mlxbf_i2c_quirks = {
2246         .max_read_len = MLXBF_I2C_MASTER_DATA_R_LENGTH,
2247         .max_write_len = MLXBF_I2C_MASTER_DATA_W_LENGTH,
2248 };
2249
2250 #ifdef CONFIG_ACPI
2251 static const struct acpi_device_id mlxbf_i2c_acpi_ids[] = {
2252         { "MLNXBF03", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1] },
2253         { "MLNXBF23", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2] },
2254         { "MLNXBF31", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_3] },
2255         {},
2256 };
2257
2258 MODULE_DEVICE_TABLE(acpi, mlxbf_i2c_acpi_ids);
2259
2260 static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2261 {
2262         const struct acpi_device_id *aid;
2263         u64 bus_id;
2264         int ret;
2265
2266         if (acpi_disabled)
2267                 return -ENOENT;
2268
2269         aid = acpi_match_device(mlxbf_i2c_acpi_ids, dev);
2270         if (!aid)
2271                 return -ENODEV;
2272
2273         priv->chip = (struct mlxbf_i2c_chip_info *)aid->driver_data;
2274
2275         ret = acpi_dev_uid_to_integer(ACPI_COMPANION(dev), &bus_id);
2276         if (ret) {
2277                 dev_err(dev, "Cannot retrieve UID\n");
2278                 return ret;
2279         }
2280
2281         priv->bus = bus_id;
2282
2283         return 0;
2284 }
2285 #else
2286 static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2287 {
2288         return -ENOENT;
2289 }
2290 #endif /* CONFIG_ACPI */
2291
2292 static int mlxbf_i2c_probe(struct platform_device *pdev)
2293 {
2294         struct device *dev = &pdev->dev;
2295         struct mlxbf_i2c_priv *priv;
2296         struct i2c_adapter *adap;
2297         u32 resource_version;
2298         int irq, ret;
2299
2300         priv = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_priv), GFP_KERNEL);
2301         if (!priv)
2302                 return -ENOMEM;
2303
2304         ret = mlxbf_i2c_acpi_probe(dev, priv);
2305         if (ret < 0)
2306                 return ret;
2307
2308         /* This property allows the driver to stay backward compatible with older
2309          * ACPI tables.
2310          * Starting BlueField-3 SoC, the "smbus" resource was broken down into 3
2311          * separate resources "timer", "master" and "slave".
2312          */
2313         if (device_property_read_u32(dev, "resource_version", &resource_version))
2314                 resource_version = 0;
2315
2316         priv->resource_version = resource_version;
2317
2318         if (priv->chip->type < MLXBF_I2C_CHIP_TYPE_3 && resource_version == 0) {
2319                 priv->timer = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource), GFP_KERNEL);
2320                 if (!priv->timer)
2321                         return -ENOMEM;
2322
2323                 priv->mst = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource), GFP_KERNEL);
2324                 if (!priv->mst)
2325                         return -ENOMEM;
2326
2327                 priv->slv = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource), GFP_KERNEL);
2328                 if (!priv->slv)
2329                         return -ENOMEM;
2330
2331                 ret = mlxbf_i2c_init_resource(pdev, &priv->smbus,
2332                                               MLXBF_I2C_SMBUS_RES);
2333                 if (ret < 0) {
2334                         dev_err(dev, "Cannot fetch smbus resource info");
2335                         return ret;
2336                 }
2337
2338                 priv->timer->io = priv->smbus->io;
2339                 priv->mst->io = priv->smbus->io + MLXBF_I2C_MST_ADDR_OFFSET;
2340                 priv->slv->io = priv->smbus->io + MLXBF_I2C_SLV_ADDR_OFFSET;
2341         } else {
2342                 ret = mlxbf_i2c_init_resource(pdev, &priv->timer,
2343                                               MLXBF_I2C_SMBUS_TIMER_RES);
2344                 if (ret < 0) {
2345                         dev_err(dev, "Cannot fetch timer resource info");
2346                         return ret;
2347                 }
2348
2349                 ret = mlxbf_i2c_init_resource(pdev, &priv->mst,
2350                                               MLXBF_I2C_SMBUS_MST_RES);
2351                 if (ret < 0) {
2352                         dev_err(dev, "Cannot fetch master resource info");
2353                         return ret;
2354                 }
2355
2356                 ret = mlxbf_i2c_init_resource(pdev, &priv->slv,
2357                                               MLXBF_I2C_SMBUS_SLV_RES);
2358                 if (ret < 0) {
2359                         dev_err(dev, "Cannot fetch slave resource info");
2360                         return ret;
2361                 }
2362         }
2363
2364         ret = mlxbf_i2c_init_resource(pdev, &priv->mst_cause,
2365                                       MLXBF_I2C_MST_CAUSE_RES);
2366         if (ret < 0) {
2367                 dev_err(dev, "Cannot fetch cause master resource info");
2368                 return ret;
2369         }
2370
2371         ret = mlxbf_i2c_init_resource(pdev, &priv->slv_cause,
2372                                       MLXBF_I2C_SLV_CAUSE_RES);
2373         if (ret < 0) {
2374                 dev_err(dev, "Cannot fetch cause slave resource info");
2375                 return ret;
2376         }
2377
2378         adap = &priv->adap;
2379         adap->owner = THIS_MODULE;
2380         adap->class = I2C_CLASS_HWMON;
2381         adap->algo = &mlxbf_i2c_algo;
2382         adap->quirks = &mlxbf_i2c_quirks;
2383         adap->dev.parent = dev;
2384         adap->dev.of_node = dev->of_node;
2385         adap->nr = priv->bus;
2386
2387         snprintf(adap->name, sizeof(adap->name), "i2c%d", adap->nr);
2388         i2c_set_adapdata(adap, priv);
2389
2390         /* Read Core PLL frequency. */
2391         ret = mlxbf_i2c_calculate_corepll_freq(pdev, priv);
2392         if (ret < 0) {
2393                 dev_err(dev, "cannot get core clock frequency\n");
2394                 /* Set to default value. */
2395                 priv->frequency = MLXBF_I2C_COREPLL_FREQ;
2396         }
2397
2398         /*
2399          * Initialize master.
2400          * Note that a physical bus might be shared among Linux and firmware
2401          * (e.g., ATF). Thus, the bus should be initialized and ready and
2402          * bus initialization would be unnecessary. This requires additional
2403          * knowledge about physical busses. But, since an extra initialization
2404          * does not really hurt, then keep the code as is.
2405          */
2406         ret = mlxbf_i2c_init_master(pdev, priv);
2407         if (ret < 0) {
2408                 dev_err(dev, "failed to initialize smbus master %d",
2409                         priv->bus);
2410                 return ret;
2411         }
2412
2413         mlxbf_i2c_init_timings(pdev, priv);
2414
2415         mlxbf_i2c_init_slave(pdev, priv);
2416
2417         irq = platform_get_irq(pdev, 0);
2418         if (irq < 0)
2419                 return irq;
2420         ret = devm_request_irq(dev, irq, mlxbf_i2c_irq,
2421                                IRQF_SHARED | IRQF_PROBE_SHARED,
2422                                dev_name(dev), priv);
2423         if (ret < 0) {
2424                 dev_err(dev, "Cannot get irq %d\n", irq);
2425                 return ret;
2426         }
2427
2428         priv->irq = irq;
2429
2430         platform_set_drvdata(pdev, priv);
2431
2432         ret = i2c_add_numbered_adapter(adap);
2433         if (ret < 0)
2434                 return ret;
2435
2436         mutex_lock(&mlxbf_i2c_bus_lock);
2437         mlxbf_i2c_bus_count++;
2438         mutex_unlock(&mlxbf_i2c_bus_lock);
2439
2440         return 0;
2441 }
2442
2443 static int mlxbf_i2c_remove(struct platform_device *pdev)
2444 {
2445         struct mlxbf_i2c_priv *priv = platform_get_drvdata(pdev);
2446         struct device *dev = &pdev->dev;
2447         struct resource *params;
2448
2449         if (priv->chip->type < MLXBF_I2C_CHIP_TYPE_3 && priv->resource_version == 0) {
2450                 params = priv->smbus->params;
2451                 devm_release_mem_region(dev, params->start, resource_size(params));
2452         } else {
2453                 params = priv->timer->params;
2454                 devm_release_mem_region(dev, params->start, resource_size(params));
2455
2456                 params = priv->mst->params;
2457                 devm_release_mem_region(dev, params->start, resource_size(params));
2458
2459                 params = priv->slv->params;
2460                 devm_release_mem_region(dev, params->start, resource_size(params));
2461         }
2462
2463         params = priv->mst_cause->params;
2464         devm_release_mem_region(dev, params->start, resource_size(params));
2465
2466         params = priv->slv_cause->params;
2467         devm_release_mem_region(dev, params->start, resource_size(params));
2468
2469         /*
2470          * Release shared resources. This should be done when releasing
2471          * the I2C controller.
2472          */
2473         mutex_lock(&mlxbf_i2c_bus_lock);
2474         if (--mlxbf_i2c_bus_count == 0) {
2475                 mlxbf_i2c_release_coalesce(pdev, priv);
2476                 mlxbf_i2c_release_corepll(pdev, priv);
2477                 mlxbf_i2c_release_gpio(pdev, priv);
2478         }
2479         mutex_unlock(&mlxbf_i2c_bus_lock);
2480
2481         devm_free_irq(dev, priv->irq, priv);
2482
2483         i2c_del_adapter(&priv->adap);
2484
2485         return 0;
2486 }
2487
2488 static struct platform_driver mlxbf_i2c_driver = {
2489         .probe = mlxbf_i2c_probe,
2490         .remove = mlxbf_i2c_remove,
2491         .driver = {
2492                 .name = "i2c-mlxbf",
2493 #ifdef CONFIG_ACPI
2494                 .acpi_match_table = ACPI_PTR(mlxbf_i2c_acpi_ids),
2495 #endif /* CONFIG_ACPI  */
2496         },
2497 };
2498
2499 static int __init mlxbf_i2c_init(void)
2500 {
2501         mutex_init(&mlxbf_i2c_coalesce_lock);
2502         mutex_init(&mlxbf_i2c_corepll_lock);
2503         mutex_init(&mlxbf_i2c_gpio_lock);
2504
2505         mutex_init(&mlxbf_i2c_bus_lock);
2506
2507         return platform_driver_register(&mlxbf_i2c_driver);
2508 }
2509 module_init(mlxbf_i2c_init);
2510
2511 static void __exit mlxbf_i2c_exit(void)
2512 {
2513         platform_driver_unregister(&mlxbf_i2c_driver);
2514
2515         mutex_destroy(&mlxbf_i2c_bus_lock);
2516
2517         mutex_destroy(&mlxbf_i2c_gpio_lock);
2518         mutex_destroy(&mlxbf_i2c_corepll_lock);
2519         mutex_destroy(&mlxbf_i2c_coalesce_lock);
2520 }
2521 module_exit(mlxbf_i2c_exit);
2522
2523 MODULE_DESCRIPTION("Mellanox BlueField I2C bus driver");
2524 MODULE_AUTHOR("Khalil Blaiech <kblaiech@nvidia.com>");
2525 MODULE_AUTHOR("Asmaa Mnebhi <asmaa@nvidia.com>");
2526 MODULE_LICENSE("GPL v2");