1 // SPDX-License-Identifier: GPL-2.0-only
2 // Copyright (C) 2014 Broadcom Corporation
4 #include <linux/delay.h>
6 #include <linux/interrupt.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of_device.h>
11 #include <linux/platform_device.h>
12 #include <linux/slab.h>
14 #define IDM_CTRL_DIRECT_OFFSET 0x00
15 #define CFG_OFFSET 0x00
16 #define CFG_RESET_SHIFT 31
17 #define CFG_EN_SHIFT 30
18 #define CFG_SLAVE_ADDR_0_SHIFT 28
19 #define CFG_M_RETRY_CNT_SHIFT 16
20 #define CFG_M_RETRY_CNT_MASK 0x0f
22 #define TIM_CFG_OFFSET 0x04
23 #define TIM_CFG_MODE_400_SHIFT 31
24 #define TIM_RAND_SLAVE_STRETCH_SHIFT 24
25 #define TIM_RAND_SLAVE_STRETCH_MASK 0x7f
26 #define TIM_PERIODIC_SLAVE_STRETCH_SHIFT 16
27 #define TIM_PERIODIC_SLAVE_STRETCH_MASK 0x7f
29 #define S_CFG_SMBUS_ADDR_OFFSET 0x08
30 #define S_CFG_EN_NIC_SMB_ADDR3_SHIFT 31
31 #define S_CFG_NIC_SMB_ADDR3_SHIFT 24
32 #define S_CFG_NIC_SMB_ADDR3_MASK 0x7f
33 #define S_CFG_EN_NIC_SMB_ADDR2_SHIFT 23
34 #define S_CFG_NIC_SMB_ADDR2_SHIFT 16
35 #define S_CFG_NIC_SMB_ADDR2_MASK 0x7f
36 #define S_CFG_EN_NIC_SMB_ADDR1_SHIFT 15
37 #define S_CFG_NIC_SMB_ADDR1_SHIFT 8
38 #define S_CFG_NIC_SMB_ADDR1_MASK 0x7f
39 #define S_CFG_EN_NIC_SMB_ADDR0_SHIFT 7
40 #define S_CFG_NIC_SMB_ADDR0_SHIFT 0
41 #define S_CFG_NIC_SMB_ADDR0_MASK 0x7f
43 #define M_FIFO_CTRL_OFFSET 0x0c
44 #define M_FIFO_RX_FLUSH_SHIFT 31
45 #define M_FIFO_TX_FLUSH_SHIFT 30
46 #define M_FIFO_RX_CNT_SHIFT 16
47 #define M_FIFO_RX_CNT_MASK 0x7f
48 #define M_FIFO_RX_THLD_SHIFT 8
49 #define M_FIFO_RX_THLD_MASK 0x3f
51 #define S_FIFO_CTRL_OFFSET 0x10
52 #define S_FIFO_RX_FLUSH_SHIFT 31
53 #define S_FIFO_TX_FLUSH_SHIFT 30
54 #define S_FIFO_RX_CNT_SHIFT 16
55 #define S_FIFO_RX_CNT_MASK 0x7f
56 #define S_FIFO_RX_THLD_SHIFT 8
57 #define S_FIFO_RX_THLD_MASK 0x3f
59 #define M_CMD_OFFSET 0x30
60 #define M_CMD_START_BUSY_SHIFT 31
61 #define M_CMD_STATUS_SHIFT 25
62 #define M_CMD_STATUS_MASK 0x07
63 #define M_CMD_STATUS_SUCCESS 0x0
64 #define M_CMD_STATUS_LOST_ARB 0x1
65 #define M_CMD_STATUS_NACK_ADDR 0x2
66 #define M_CMD_STATUS_NACK_DATA 0x3
67 #define M_CMD_STATUS_TIMEOUT 0x4
68 #define M_CMD_STATUS_FIFO_UNDERRUN 0x5
69 #define M_CMD_STATUS_RX_FIFO_FULL 0x6
70 #define M_CMD_PROTOCOL_SHIFT 9
71 #define M_CMD_PROTOCOL_MASK 0xf
72 #define M_CMD_PROTOCOL_QUICK 0x0
73 #define M_CMD_PROTOCOL_BLK_WR 0x7
74 #define M_CMD_PROTOCOL_BLK_RD 0x8
75 #define M_CMD_PROTOCOL_PROCESS 0xa
76 #define M_CMD_PEC_SHIFT 8
77 #define M_CMD_RD_CNT_SHIFT 0
78 #define M_CMD_RD_CNT_MASK 0xff
80 #define S_CMD_OFFSET 0x34
81 #define S_CMD_START_BUSY_SHIFT 31
82 #define S_CMD_STATUS_SHIFT 23
83 #define S_CMD_STATUS_MASK 0x07
84 #define S_CMD_STATUS_SUCCESS 0x0
85 #define S_CMD_STATUS_TIMEOUT 0x5
86 #define S_CMD_STATUS_MASTER_ABORT 0x7
88 #define IE_OFFSET 0x38
89 #define IE_M_RX_FIFO_FULL_SHIFT 31
90 #define IE_M_RX_THLD_SHIFT 30
91 #define IE_M_START_BUSY_SHIFT 28
92 #define IE_M_TX_UNDERRUN_SHIFT 27
93 #define IE_S_RX_FIFO_FULL_SHIFT 26
94 #define IE_S_RX_THLD_SHIFT 25
95 #define IE_S_RX_EVENT_SHIFT 24
96 #define IE_S_START_BUSY_SHIFT 23
97 #define IE_S_TX_UNDERRUN_SHIFT 22
98 #define IE_S_RD_EVENT_SHIFT 21
100 #define IS_OFFSET 0x3c
101 #define IS_M_RX_FIFO_FULL_SHIFT 31
102 #define IS_M_RX_THLD_SHIFT 30
103 #define IS_M_START_BUSY_SHIFT 28
104 #define IS_M_TX_UNDERRUN_SHIFT 27
105 #define IS_S_RX_FIFO_FULL_SHIFT 26
106 #define IS_S_RX_THLD_SHIFT 25
107 #define IS_S_RX_EVENT_SHIFT 24
108 #define IS_S_START_BUSY_SHIFT 23
109 #define IS_S_TX_UNDERRUN_SHIFT 22
110 #define IS_S_RD_EVENT_SHIFT 21
112 #define M_TX_OFFSET 0x40
113 #define M_TX_WR_STATUS_SHIFT 31
114 #define M_TX_DATA_SHIFT 0
115 #define M_TX_DATA_MASK 0xff
117 #define M_RX_OFFSET 0x44
118 #define M_RX_STATUS_SHIFT 30
119 #define M_RX_STATUS_MASK 0x03
120 #define M_RX_PEC_ERR_SHIFT 29
121 #define M_RX_DATA_SHIFT 0
122 #define M_RX_DATA_MASK 0xff
124 #define S_TX_OFFSET 0x48
125 #define S_TX_WR_STATUS_SHIFT 31
126 #define S_TX_DATA_SHIFT 0
127 #define S_TX_DATA_MASK 0xff
129 #define S_RX_OFFSET 0x4c
130 #define S_RX_STATUS_SHIFT 30
131 #define S_RX_STATUS_MASK 0x03
132 #define S_RX_PEC_ERR_SHIFT 29
133 #define S_RX_DATA_SHIFT 0
134 #define S_RX_DATA_MASK 0xff
136 #define I2C_TIMEOUT_MSEC 50000
137 #define M_TX_RX_FIFO_SIZE 64
138 #define M_RX_FIFO_MAX_THLD_VALUE (M_TX_RX_FIFO_SIZE - 1)
140 #define M_RX_MAX_READ_LEN 255
141 #define M_RX_FIFO_THLD_VALUE 50
143 #define IE_M_ALL_INTERRUPT_SHIFT 27
144 #define IE_M_ALL_INTERRUPT_MASK 0x1e
146 #define SLAVE_READ_WRITE_BIT_MASK 0x1
147 #define SLAVE_READ_WRITE_BIT_SHIFT 0x1
148 #define SLAVE_MAX_SIZE_TRANSACTION 64
149 #define SLAVE_CLOCK_STRETCH_TIME 25
151 #define IE_S_ALL_INTERRUPT_SHIFT 21
152 #define IE_S_ALL_INTERRUPT_MASK 0x3f
154 * It takes ~18us to reading 10bytes of data, hence to keep tasklet
155 * running for less time, max slave read per tasklet is set to 10 bytes.
157 #define MAX_SLAVE_RX_PER_INT 10
159 enum i2c_slave_read_status {
160 I2C_SLAVE_RX_FIFO_EMPTY = 0,
166 enum bus_speed_index {
171 enum bcm_iproc_i2c_type {
176 struct bcm_iproc_i2c_dev {
177 struct device *device;
178 enum bcm_iproc_i2c_type type;
182 void __iomem *idm_base;
186 /* lock for indirect access through IDM */
189 struct i2c_adapter adapter;
190 unsigned int bus_speed;
192 struct completion done;
197 struct i2c_client *slave;
199 /* bytes that have been transferred */
200 unsigned int tx_bytes;
201 /* bytes that have been read */
202 unsigned int rx_bytes;
203 unsigned int thld_bytes;
207 bool slave_read_complete;
210 struct tasklet_struct slave_rx_tasklet;
213 /* tasklet to process slave rx data */
214 static void slave_rx_tasklet_fn(unsigned long);
217 * Can be expanded in the future if more interrupt status bits are utilized
219 #define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
220 | BIT(IS_M_RX_THLD_SHIFT))
222 #define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
223 | BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
224 | BIT(IS_S_TX_UNDERRUN_SHIFT) | BIT(IS_S_RX_FIFO_FULL_SHIFT)\
225 | BIT(IS_S_RX_THLD_SHIFT))
227 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
228 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
229 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
232 static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
238 if (iproc_i2c->idm_base) {
239 spin_lock_irqsave(&iproc_i2c->idm_lock, flags);
240 writel(iproc_i2c->ape_addr_mask,
241 iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
242 val = readl(iproc_i2c->base + offset);
243 spin_unlock_irqrestore(&iproc_i2c->idm_lock, flags);
245 val = readl(iproc_i2c->base + offset);
251 static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
256 if (iproc_i2c->idm_base) {
257 spin_lock_irqsave(&iproc_i2c->idm_lock, flags);
258 writel(iproc_i2c->ape_addr_mask,
259 iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
260 writel(val, iproc_i2c->base + offset);
261 spin_unlock_irqrestore(&iproc_i2c->idm_lock, flags);
263 writel(val, iproc_i2c->base + offset);
267 static void bcm_iproc_i2c_slave_init(
268 struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
272 iproc_i2c->tx_underrun = 0;
274 /* put controller in reset */
275 val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
276 val |= BIT(CFG_RESET_SHIFT);
277 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
279 /* wait 100 usec per spec */
282 /* bring controller out of reset */
283 val &= ~(BIT(CFG_RESET_SHIFT));
284 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
287 /* flush TX/RX FIFOs */
288 val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
289 iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
291 /* Maximum slave stretch time */
292 val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
293 val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
294 val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
295 iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
297 /* Configure the slave address */
298 val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
299 val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
300 val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
301 val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
302 iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
304 /* clear all pending slave interrupts */
305 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
307 /* Enable interrupt register to indicate a valid byte in receive fifo */
308 val = BIT(IE_S_RX_EVENT_SHIFT);
309 /* Enable interrupt register to indicate Slave Rx FIFO Full */
310 val |= BIT(IE_S_RX_FIFO_FULL_SHIFT);
311 /* Enable interrupt register to indicate a Master read transaction */
312 val |= BIT(IE_S_RD_EVENT_SHIFT);
313 /* Enable interrupt register for the Slave BUSY command */
314 val |= BIT(IE_S_START_BUSY_SHIFT);
315 iproc_i2c->slave_int_mask = val;
316 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
319 static void bcm_iproc_i2c_check_slave_status(
320 struct bcm_iproc_i2c_dev *iproc_i2c)
324 val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
325 /* status is valid only when START_BUSY is cleared after it was set */
326 if (val & BIT(S_CMD_START_BUSY_SHIFT))
329 val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
330 if (val == S_CMD_STATUS_TIMEOUT || val == S_CMD_STATUS_MASTER_ABORT) {
331 dev_err(iproc_i2c->device, (val == S_CMD_STATUS_TIMEOUT) ?
332 "slave random stretch time timeout\n" :
333 "Master aborted read transaction\n");
334 /* re-initialize i2c for recovery */
335 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
336 bcm_iproc_i2c_slave_init(iproc_i2c, true);
337 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
341 static void bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev *iproc_i2c)
343 u8 rx_data, rx_status;
347 while (rx_bytes < MAX_SLAVE_RX_PER_INT) {
348 val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
349 rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
350 rx_data = ((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
352 if (rx_status == I2C_SLAVE_RX_START) {
353 /* Start of SMBUS Master write */
354 i2c_slave_event(iproc_i2c->slave,
355 I2C_SLAVE_WRITE_REQUESTED, &rx_data);
356 iproc_i2c->rx_start_rcvd = true;
357 iproc_i2c->slave_read_complete = false;
358 } else if (rx_status == I2C_SLAVE_RX_DATA &&
359 iproc_i2c->rx_start_rcvd) {
360 /* Middle of SMBUS Master write */
361 i2c_slave_event(iproc_i2c->slave,
362 I2C_SLAVE_WRITE_RECEIVED, &rx_data);
363 } else if (rx_status == I2C_SLAVE_RX_END &&
364 iproc_i2c->rx_start_rcvd) {
365 /* End of SMBUS Master write */
366 if (iproc_i2c->slave_rx_only)
367 i2c_slave_event(iproc_i2c->slave,
368 I2C_SLAVE_WRITE_RECEIVED,
371 i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP,
373 } else if (rx_status == I2C_SLAVE_RX_FIFO_EMPTY) {
374 iproc_i2c->rx_start_rcvd = false;
375 iproc_i2c->slave_read_complete = true;
383 static void slave_rx_tasklet_fn(unsigned long data)
385 struct bcm_iproc_i2c_dev *iproc_i2c = (struct bcm_iproc_i2c_dev *)data;
388 bcm_iproc_i2c_slave_read(iproc_i2c);
390 /* clear pending IS_S_RX_EVENT_SHIFT interrupt */
391 int_clr = BIT(IS_S_RX_EVENT_SHIFT);
393 if (!iproc_i2c->slave_rx_only && iproc_i2c->slave_read_complete) {
395 * In case of single byte master-read request,
396 * IS_S_TX_UNDERRUN_SHIFT event is generated before
397 * IS_S_START_BUSY_SHIFT event. Hence start slave data send
398 * from first IS_S_TX_UNDERRUN_SHIFT event.
400 * This means don't send any data from slave when
401 * IS_S_RD_EVENT_SHIFT event is generated else it will increment
402 * eeprom or other backend slave driver read pointer twice.
404 iproc_i2c->tx_underrun = 0;
405 iproc_i2c->slave_int_mask |= BIT(IE_S_TX_UNDERRUN_SHIFT);
407 /* clear IS_S_RD_EVENT_SHIFT interrupt */
408 int_clr |= BIT(IS_S_RD_EVENT_SHIFT);
411 /* clear slave interrupt */
412 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, int_clr);
413 /* enable slave interrupts */
414 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, iproc_i2c->slave_int_mask);
417 static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
424 * Slave events in case of master-write, master-write-read and,
427 * Master-write : only IS_S_RX_EVENT_SHIFT event
428 * Master-write-read: both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
430 * Master-read : both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
431 * events or only IS_S_RD_EVENT_SHIFT
433 * iproc has a slave rx fifo size of 64 bytes. Rx fifo full interrupt
434 * (IS_S_RX_FIFO_FULL_SHIFT) will be generated when RX fifo becomes
435 * full. This can happen if Master issues write requests of more than
438 if (status & BIT(IS_S_RX_EVENT_SHIFT) ||
439 status & BIT(IS_S_RD_EVENT_SHIFT) ||
440 status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) {
441 /* disable slave interrupts */
442 val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
443 val &= ~iproc_i2c->slave_int_mask;
444 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
446 if (status & BIT(IS_S_RD_EVENT_SHIFT))
447 /* Master-write-read request */
448 iproc_i2c->slave_rx_only = false;
450 /* Master-write request only */
451 iproc_i2c->slave_rx_only = true;
453 /* schedule tasklet to read data later */
454 tasklet_schedule(&iproc_i2c->slave_rx_tasklet);
457 * clear only IS_S_RX_EVENT_SHIFT and
458 * IS_S_RX_FIFO_FULL_SHIFT interrupt.
460 val = BIT(IS_S_RX_EVENT_SHIFT);
461 if (status & BIT(IS_S_RX_FIFO_FULL_SHIFT))
462 val |= BIT(IS_S_RX_FIFO_FULL_SHIFT);
463 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, val);
466 if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
467 iproc_i2c->tx_underrun++;
468 if (iproc_i2c->tx_underrun == 1)
469 /* Start of SMBUS for Master Read */
470 i2c_slave_event(iproc_i2c->slave,
471 I2C_SLAVE_READ_REQUESTED,
474 /* Master read other than start */
475 i2c_slave_event(iproc_i2c->slave,
476 I2C_SLAVE_READ_PROCESSED,
479 iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
481 val = BIT(S_CMD_START_BUSY_SHIFT);
482 iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
484 /* clear interrupt */
485 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
486 BIT(IS_S_TX_UNDERRUN_SHIFT));
489 /* Stop received from master in case of master read transaction */
490 if (status & BIT(IS_S_START_BUSY_SHIFT)) {
492 * Disable interrupt for TX FIFO becomes empty and
493 * less than PKT_LENGTH bytes were output on the SMBUS
495 iproc_i2c->slave_int_mask &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
496 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
497 iproc_i2c->slave_int_mask);
499 /* End of SMBUS for Master Read */
500 val = BIT(S_TX_WR_STATUS_SHIFT);
501 iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, val);
503 val = BIT(S_CMD_START_BUSY_SHIFT);
504 iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
507 val = iproc_i2c_rd_reg(iproc_i2c, S_FIFO_CTRL_OFFSET);
508 val |= (BIT(S_FIFO_TX_FLUSH_SHIFT));
509 iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
511 i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
513 /* clear interrupt */
514 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
515 BIT(IS_S_START_BUSY_SHIFT));
518 /* check slave transmit status only if slave is transmitting */
519 if (!iproc_i2c->slave_rx_only)
520 bcm_iproc_i2c_check_slave_status(iproc_i2c);
525 static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
527 struct i2c_msg *msg = iproc_i2c->msg;
530 /* Read valid data from RX FIFO */
531 while (iproc_i2c->rx_bytes < msg->len) {
532 val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
535 if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
538 msg->buf[iproc_i2c->rx_bytes] =
539 (val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
540 iproc_i2c->rx_bytes++;
544 static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
546 struct i2c_msg *msg = iproc_i2c->msg;
547 unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
551 /* can only fill up to the FIFO size */
552 tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
553 for (i = 0; i < tx_bytes; i++) {
554 /* start from where we left over */
555 unsigned int idx = iproc_i2c->tx_bytes + i;
559 /* mark the last byte */
560 if (idx == msg->len - 1) {
561 val |= BIT(M_TX_WR_STATUS_SHIFT);
563 if (iproc_i2c->irq) {
567 * Since this is the last byte, we should now
568 * disable TX FIFO underrun interrupt
570 tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
571 tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
572 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
577 /* load data into TX FIFO */
578 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
581 /* update number of transferred bytes */
582 iproc_i2c->tx_bytes += tx_bytes;
585 static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
587 struct i2c_msg *msg = iproc_i2c->msg;
590 bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
591 bytes_left = msg->len - iproc_i2c->rx_bytes;
592 if (bytes_left == 0) {
593 if (iproc_i2c->irq) {
594 /* finished reading all data, disable rx thld event */
595 val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
596 val &= ~BIT(IS_M_RX_THLD_SHIFT);
597 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
599 } else if (bytes_left < iproc_i2c->thld_bytes) {
600 /* set bytes left as threshold */
601 val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
602 val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
603 val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
604 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
605 iproc_i2c->thld_bytes = bytes_left;
608 * bytes_left >= iproc_i2c->thld_bytes,
609 * hence no need to change the THRESHOLD SET.
610 * It will remain as iproc_i2c->thld_bytes itself
614 static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
617 /* TX FIFO is empty and we have more data to send */
618 if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
619 bcm_iproc_i2c_send(iproc_i2c);
621 /* RX FIFO threshold is reached and data needs to be read out */
622 if (status & BIT(IS_M_RX_THLD_SHIFT))
623 bcm_iproc_i2c_read(iproc_i2c);
625 /* transfer is done */
626 if (status & BIT(IS_M_START_BUSY_SHIFT)) {
627 iproc_i2c->xfer_is_done = 1;
629 complete(&iproc_i2c->done);
633 static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
635 struct bcm_iproc_i2c_dev *iproc_i2c = data;
640 status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
641 /* process only slave interrupt which are enabled */
642 slave_status = status & iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET) &
646 ret = bcm_iproc_i2c_slave_isr(iproc_i2c, slave_status);
657 /* process all master based events */
658 bcm_iproc_i2c_process_m_event(iproc_i2c, status);
659 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
664 static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
668 /* put controller in reset */
669 val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
670 val |= BIT(CFG_RESET_SHIFT);
671 val &= ~(BIT(CFG_EN_SHIFT));
672 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
674 /* wait 100 usec per spec */
677 /* bring controller out of reset */
678 val &= ~(BIT(CFG_RESET_SHIFT));
679 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
681 /* flush TX/RX FIFOs and set RX FIFO threshold to zero */
682 val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
683 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
684 /* disable all interrupts */
685 val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
686 val &= ~(IE_M_ALL_INTERRUPT_MASK <<
687 IE_M_ALL_INTERRUPT_SHIFT);
688 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
690 /* clear all pending interrupts */
691 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
696 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
701 val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
703 val |= BIT(CFG_EN_SHIFT);
705 val &= ~BIT(CFG_EN_SHIFT);
706 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
709 static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
714 val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
715 val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
718 case M_CMD_STATUS_SUCCESS:
721 case M_CMD_STATUS_LOST_ARB:
722 dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
725 case M_CMD_STATUS_NACK_ADDR:
726 dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
729 case M_CMD_STATUS_NACK_DATA:
730 dev_dbg(iproc_i2c->device, "NAK data\n");
733 case M_CMD_STATUS_TIMEOUT:
734 dev_dbg(iproc_i2c->device, "bus timeout\n");
737 case M_CMD_STATUS_FIFO_UNDERRUN:
738 dev_dbg(iproc_i2c->device, "FIFO under-run\n");
741 case M_CMD_STATUS_RX_FIFO_FULL:
742 dev_dbg(iproc_i2c->device, "RX FIFO full\n");
746 dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
748 /* re-initialize i2c for recovery */
749 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
750 bcm_iproc_i2c_init(iproc_i2c);
751 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
757 static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
761 unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
765 iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
767 if (iproc_i2c->irq) {
768 time_left = wait_for_completion_timeout(&iproc_i2c->done,
770 /* disable all interrupts */
771 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
772 /* read it back to flush the write */
773 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
774 /* make sure the interrupt handler isn't running */
775 synchronize_irq(iproc_i2c->irq);
777 } else { /* polling mode */
778 unsigned long timeout = jiffies + time_left;
781 status = iproc_i2c_rd_reg(iproc_i2c,
782 IS_OFFSET) & ISR_MASK;
783 bcm_iproc_i2c_process_m_event(iproc_i2c, status);
784 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
786 if (time_after(jiffies, timeout)) {
793 } while (!iproc_i2c->xfer_is_done);
796 if (!time_left && !iproc_i2c->xfer_is_done) {
797 dev_err(iproc_i2c->device, "transaction timed out\n");
799 /* flush both TX/RX FIFOs */
800 val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
801 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
805 ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
807 /* flush both TX/RX FIFOs */
808 val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
809 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
817 * If 'process_call' is true, then this is a multi-msg transfer that requires
818 * a repeated start between the messages.
819 * More specifically, it must be a write (reg) followed by a read (data).
820 * The i2c quirks are set to enforce this rule.
822 static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c,
823 struct i2c_msg *msgs, bool process_call)
827 u32 val, tmp, val_intr_en;
828 unsigned int tx_bytes;
829 struct i2c_msg *msg = &msgs[0];
831 /* check if bus is busy */
832 if (!!(iproc_i2c_rd_reg(iproc_i2c,
833 M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
834 dev_warn(iproc_i2c->device, "bus is busy\n");
838 iproc_i2c->msg = msg;
840 /* format and load slave address into the TX FIFO */
841 addr = i2c_8bit_addr_from_msg(msg);
842 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
845 * For a write transaction, load data into the TX FIFO. Only allow
846 * loading up to TX FIFO size - 1 bytes of data since the first byte
847 * has been used up by the slave address
849 tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
850 if (!(msg->flags & I2C_M_RD)) {
851 for (i = 0; i < tx_bytes; i++) {
854 /* mark the last byte */
855 if (!process_call && (i == msg->len - 1))
856 val |= BIT(M_TX_WR_STATUS_SHIFT);
858 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
860 iproc_i2c->tx_bytes = tx_bytes;
863 /* Process the read message if this is process call */
866 iproc_i2c->msg = msg; /* point to second msg */
869 * The last byte to be sent out should be a slave
870 * address with read operation
872 addr = i2c_8bit_addr_from_msg(msg);
873 /* mark it the last byte out */
874 val = addr | BIT(M_TX_WR_STATUS_SHIFT);
875 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
878 /* mark as incomplete before starting the transaction */
880 reinit_completion(&iproc_i2c->done);
882 iproc_i2c->xfer_is_done = 0;
885 * Enable the "start busy" interrupt, which will be triggered after the
886 * transaction is done, i.e., the internal start_busy bit, transitions
889 val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
892 * If TX data size is larger than the TX FIFO, need to enable TX
893 * underrun interrupt, which will be triggerred when the TX FIFO is
894 * empty. When that happens we can then pump more data into the FIFO
896 if (!process_call && !(msg->flags & I2C_M_RD) &&
897 msg->len > iproc_i2c->tx_bytes)
898 val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
901 * Now we can activate the transfer. For a read operation, specify the
902 * number of bytes to read
904 val = BIT(M_CMD_START_BUSY_SHIFT);
907 /* SMBUS QUICK Command (Read/Write) */
908 val |= (M_CMD_PROTOCOL_QUICK << M_CMD_PROTOCOL_SHIFT);
909 } else if (msg->flags & I2C_M_RD) {
912 iproc_i2c->rx_bytes = 0;
913 if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
914 iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
916 iproc_i2c->thld_bytes = msg->len;
918 /* set threshold value */
919 tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
920 tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
921 tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
922 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
924 /* enable the RX threshold interrupt */
925 val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
927 protocol = process_call ?
928 M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD;
930 val |= (protocol << M_CMD_PROTOCOL_SHIFT) |
931 (msg->len << M_CMD_RD_CNT_SHIFT);
933 val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
937 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
939 return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
942 static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
943 struct i2c_msg msgs[], int num)
945 struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
946 bool process_call = false;
950 /* Repeated start, use process call */
952 if (msgs[1].flags & I2C_M_NOSTART) {
953 dev_err(iproc_i2c->device, "Invalid repeated start\n");
958 ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call);
960 dev_dbg(iproc_i2c->device, "xfer failed\n");
967 static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
971 val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
973 if (adap->algo->reg_slave)
974 val |= I2C_FUNC_SLAVE;
979 static struct i2c_algorithm bcm_iproc_algo = {
980 .master_xfer = bcm_iproc_i2c_xfer,
981 .functionality = bcm_iproc_i2c_functionality,
982 .reg_slave = bcm_iproc_i2c_reg_slave,
983 .unreg_slave = bcm_iproc_i2c_unreg_slave,
986 static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
987 .flags = I2C_AQ_COMB_WRITE_THEN_READ,
988 .max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE,
989 .max_read_len = M_RX_MAX_READ_LEN,
992 static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
994 unsigned int bus_speed;
996 int ret = of_property_read_u32(iproc_i2c->device->of_node,
997 "clock-frequency", &bus_speed);
999 dev_info(iproc_i2c->device,
1000 "unable to interpret clock-frequency DT property\n");
1001 bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1004 if (bus_speed < I2C_MAX_STANDARD_MODE_FREQ) {
1005 dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
1007 dev_err(iproc_i2c->device,
1008 "valid speeds are 100khz and 400khz\n");
1010 } else if (bus_speed < I2C_MAX_FAST_MODE_FREQ) {
1011 bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1013 bus_speed = I2C_MAX_FAST_MODE_FREQ;
1016 iproc_i2c->bus_speed = bus_speed;
1017 val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1018 val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1019 val |= (bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1020 iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1022 dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
1027 static int bcm_iproc_i2c_probe(struct platform_device *pdev)
1030 struct bcm_iproc_i2c_dev *iproc_i2c;
1031 struct i2c_adapter *adap;
1032 struct resource *res;
1034 iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
1039 platform_set_drvdata(pdev, iproc_i2c);
1040 iproc_i2c->device = &pdev->dev;
1042 (enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
1043 init_completion(&iproc_i2c->done);
1045 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1046 iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
1047 if (IS_ERR(iproc_i2c->base))
1048 return PTR_ERR(iproc_i2c->base);
1050 if (iproc_i2c->type == IPROC_I2C_NIC) {
1051 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1052 iproc_i2c->idm_base = devm_ioremap_resource(iproc_i2c->device,
1054 if (IS_ERR(iproc_i2c->idm_base))
1055 return PTR_ERR(iproc_i2c->idm_base);
1057 ret = of_property_read_u32(iproc_i2c->device->of_node,
1058 "brcm,ape-hsls-addr-mask",
1059 &iproc_i2c->ape_addr_mask);
1061 dev_err(iproc_i2c->device,
1062 "'brcm,ape-hsls-addr-mask' missing\n");
1066 spin_lock_init(&iproc_i2c->idm_lock);
1068 /* no slave support */
1069 bcm_iproc_algo.reg_slave = NULL;
1070 bcm_iproc_algo.unreg_slave = NULL;
1073 ret = bcm_iproc_i2c_init(iproc_i2c);
1077 ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
1081 irq = platform_get_irq(pdev, 0);
1083 ret = devm_request_irq(iproc_i2c->device, irq,
1084 bcm_iproc_i2c_isr, 0, pdev->name,
1087 dev_err(iproc_i2c->device,
1088 "unable to request irq %i\n", irq);
1092 iproc_i2c->irq = irq;
1094 dev_warn(iproc_i2c->device,
1095 "no irq resource, falling back to poll mode\n");
1098 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1100 adap = &iproc_i2c->adapter;
1101 i2c_set_adapdata(adap, iproc_i2c);
1102 snprintf(adap->name, sizeof(adap->name),
1103 "Broadcom iProc (%s)",
1104 of_node_full_name(iproc_i2c->device->of_node));
1105 adap->algo = &bcm_iproc_algo;
1106 adap->quirks = &bcm_iproc_i2c_quirks;
1107 adap->dev.parent = &pdev->dev;
1108 adap->dev.of_node = pdev->dev.of_node;
1110 return i2c_add_adapter(adap);
1113 static void bcm_iproc_i2c_remove(struct platform_device *pdev)
1115 struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
1117 if (iproc_i2c->irq) {
1119 * Make sure there's no pending interrupt when we remove the
1122 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1123 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1124 synchronize_irq(iproc_i2c->irq);
1127 i2c_del_adapter(&iproc_i2c->adapter);
1128 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1131 #ifdef CONFIG_PM_SLEEP
1133 static int bcm_iproc_i2c_suspend(struct device *dev)
1135 struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1137 if (iproc_i2c->irq) {
1139 * Make sure there's no pending interrupt when we go into
1142 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1143 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1144 synchronize_irq(iproc_i2c->irq);
1147 /* now disable the controller */
1148 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1153 static int bcm_iproc_i2c_resume(struct device *dev)
1155 struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1160 * Power domain could have been shut off completely in system deep
1161 * sleep, so re-initialize the block here
1163 ret = bcm_iproc_i2c_init(iproc_i2c);
1167 /* configure to the desired bus speed */
1168 val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1169 val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1170 val |= (iproc_i2c->bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1171 iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1173 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1178 static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
1179 .suspend_late = &bcm_iproc_i2c_suspend,
1180 .resume_early = &bcm_iproc_i2c_resume
1183 #define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
1185 #define BCM_IPROC_I2C_PM_OPS NULL
1186 #endif /* CONFIG_PM_SLEEP */
1189 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
1191 struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1193 if (iproc_i2c->slave)
1196 if (slave->flags & I2C_CLIENT_TEN)
1197 return -EAFNOSUPPORT;
1199 iproc_i2c->slave = slave;
1201 tasklet_init(&iproc_i2c->slave_rx_tasklet, slave_rx_tasklet_fn,
1202 (unsigned long)iproc_i2c);
1204 bcm_iproc_i2c_slave_init(iproc_i2c, false);
1208 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
1211 struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1213 if (!iproc_i2c->slave)
1216 disable_irq(iproc_i2c->irq);
1218 tasklet_kill(&iproc_i2c->slave_rx_tasklet);
1220 /* disable all slave interrupts */
1221 tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1222 tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
1223 IE_S_ALL_INTERRUPT_SHIFT);
1224 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
1226 /* Erase the slave address programmed */
1227 tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
1228 tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
1229 iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
1231 /* flush TX/RX FIFOs */
1232 tmp = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
1233 iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, tmp);
1235 /* clear all pending slave interrupts */
1236 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
1238 iproc_i2c->slave = NULL;
1240 enable_irq(iproc_i2c->irq);
1245 static const struct of_device_id bcm_iproc_i2c_of_match[] = {
1247 .compatible = "brcm,iproc-i2c",
1248 .data = (int *)IPROC_I2C,
1250 .compatible = "brcm,iproc-nic-i2c",
1251 .data = (int *)IPROC_I2C_NIC,
1255 MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
1257 static struct platform_driver bcm_iproc_i2c_driver = {
1259 .name = "bcm-iproc-i2c",
1260 .of_match_table = bcm_iproc_i2c_of_match,
1261 .pm = BCM_IPROC_I2C_PM_OPS,
1263 .probe = bcm_iproc_i2c_probe,
1264 .remove_new = bcm_iproc_i2c_remove,
1266 module_platform_driver(bcm_iproc_i2c_driver);
1268 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1269 MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1270 MODULE_LICENSE("GPL v2");