Merge tag 'flex-array-transformations-6.5-rc1' of git://git.kernel.org/pub/scm/linux...
[platform/kernel/linux-starfive.git] / drivers / hwmon / w83627ehf.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  w83627ehf - Driver for the hardware monitoring functionality of
4  *              the Winbond W83627EHF Super-I/O chip
5  *  Copyright (C) 2005-2012  Jean Delvare <jdelvare@suse.de>
6  *  Copyright (C) 2006  Yuan Mu (Winbond),
7  *                      Rudolf Marek <r.marek@assembler.cz>
8  *                      David Hubbard <david.c.hubbard@gmail.com>
9  *                      Daniel J Blueman <daniel.blueman@gmail.com>
10  *  Copyright (C) 2010  Sheng-Yuan Huang (Nuvoton) (PS00)
11  *
12  *  Shamelessly ripped from the w83627hf driver
13  *  Copyright (C) 2003  Mark Studebaker
14  *
15  *  Thanks to Leon Moonen, Steve Cliffe and Grant Coady for their help
16  *  in testing and debugging this driver.
17  *
18  *  This driver also supports the W83627EHG, which is the lead-free
19  *  version of the W83627EHF.
20  *
21  *  Supports the following chips:
22  *
23  *  Chip        #vin    #fan    #pwm    #temp  chip IDs       man ID
24  *  w83627ehf   10      5       4       3      0x8850 0x88    0x5ca3
25  *                                             0x8860 0xa1
26  *  w83627dhg    9      5       4       3      0xa020 0xc1    0x5ca3
27  *  w83627dhg-p  9      5       4       3      0xb070 0xc1    0x5ca3
28  *  w83627uhg    8      2       2       3      0xa230 0xc1    0x5ca3
29  *  w83667hg     9      5       3       3      0xa510 0xc1    0x5ca3
30  *  w83667hg-b   9      5       3       4      0xb350 0xc1    0x5ca3
31  */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/jiffies.h>
39 #include <linux/platform_device.h>
40 #include <linux/hwmon.h>
41 #include <linux/hwmon-sysfs.h>
42 #include <linux/hwmon-vid.h>
43 #include <linux/err.h>
44 #include <linux/mutex.h>
45 #include <linux/acpi.h>
46 #include <linux/io.h>
47 #include "lm75.h"
48
49 enum kinds {
50         w83627ehf, w83627dhg, w83627dhg_p, w83627uhg,
51         w83667hg, w83667hg_b,
52 };
53
54 /* used to set data->name = w83627ehf_device_names[data->sio_kind] */
55 static const char * const w83627ehf_device_names[] = {
56         "w83627ehf",
57         "w83627dhg",
58         "w83627dhg",
59         "w83627uhg",
60         "w83667hg",
61         "w83667hg",
62 };
63
64 static unsigned short force_id;
65 module_param(force_id, ushort, 0);
66 MODULE_PARM_DESC(force_id, "Override the detected device ID");
67
68 #define DRVNAME "w83627ehf"
69
70 /*
71  * Super-I/O constants and functions
72  */
73
74 #define W83627EHF_LD_HWM        0x0b
75 #define W83667HG_LD_VID         0x0d
76
77 #define SIO_REG_LDSEL           0x07    /* Logical device select */
78 #define SIO_REG_DEVID           0x20    /* Device ID (2 bytes) */
79 #define SIO_REG_EN_VRM10        0x2C    /* GPIO3, GPIO4 selection */
80 #define SIO_REG_ENABLE          0x30    /* Logical device enable */
81 #define SIO_REG_ADDR            0x60    /* Logical device address (2 bytes) */
82 #define SIO_REG_VID_CTRL        0xF0    /* VID control */
83 #define SIO_REG_VID_DATA        0xF1    /* VID data */
84
85 #define SIO_W83627EHF_ID        0x8850
86 #define SIO_W83627EHG_ID        0x8860
87 #define SIO_W83627DHG_ID        0xa020
88 #define SIO_W83627DHG_P_ID      0xb070
89 #define SIO_W83627UHG_ID        0xa230
90 #define SIO_W83667HG_ID         0xa510
91 #define SIO_W83667HG_B_ID       0xb350
92 #define SIO_ID_MASK             0xFFF0
93
94 static inline void
95 superio_outb(int ioreg, int reg, int val)
96 {
97         outb(reg, ioreg);
98         outb(val, ioreg + 1);
99 }
100
101 static inline int
102 superio_inb(int ioreg, int reg)
103 {
104         outb(reg, ioreg);
105         return inb(ioreg + 1);
106 }
107
108 static inline void
109 superio_select(int ioreg, int ld)
110 {
111         outb(SIO_REG_LDSEL, ioreg);
112         outb(ld, ioreg + 1);
113 }
114
115 static inline int
116 superio_enter(int ioreg)
117 {
118         if (!request_muxed_region(ioreg, 2, DRVNAME))
119                 return -EBUSY;
120
121         outb(0x87, ioreg);
122         outb(0x87, ioreg);
123
124         return 0;
125 }
126
127 static inline void
128 superio_exit(int ioreg)
129 {
130         outb(0xaa, ioreg);
131         outb(0x02, ioreg);
132         outb(0x02, ioreg + 1);
133         release_region(ioreg, 2);
134 }
135
136 /*
137  * ISA constants
138  */
139
140 #define IOREGION_ALIGNMENT      (~7)
141 #define IOREGION_OFFSET         5
142 #define IOREGION_LENGTH         2
143 #define ADDR_REG_OFFSET         0
144 #define DATA_REG_OFFSET         1
145
146 #define W83627EHF_REG_BANK              0x4E
147 #define W83627EHF_REG_CONFIG            0x40
148
149 /*
150  * Not currently used:
151  * REG_MAN_ID has the value 0x5ca3 for all supported chips.
152  * REG_CHIP_ID == 0x88/0xa1/0xc1 depending on chip model.
153  * REG_MAN_ID is at port 0x4f
154  * REG_CHIP_ID is at port 0x58
155  */
156
157 static const u16 W83627EHF_REG_FAN[] = { 0x28, 0x29, 0x2a, 0x3f, 0x553 };
158 static const u16 W83627EHF_REG_FAN_MIN[] = { 0x3b, 0x3c, 0x3d, 0x3e, 0x55c };
159
160 /* The W83627EHF registers for nr=7,8,9 are in bank 5 */
161 #define W83627EHF_REG_IN_MAX(nr)        ((nr < 7) ? (0x2b + (nr) * 2) : \
162                                          (0x554 + (((nr) - 7) * 2)))
163 #define W83627EHF_REG_IN_MIN(nr)        ((nr < 7) ? (0x2c + (nr) * 2) : \
164                                          (0x555 + (((nr) - 7) * 2)))
165 #define W83627EHF_REG_IN(nr)            ((nr < 7) ? (0x20 + (nr)) : \
166                                          (0x550 + (nr) - 7))
167
168 static const u16 W83627EHF_REG_TEMP[] = { 0x27, 0x150, 0x250, 0x7e };
169 static const u16 W83627EHF_REG_TEMP_HYST[] = { 0x3a, 0x153, 0x253, 0 };
170 static const u16 W83627EHF_REG_TEMP_OVER[] = { 0x39, 0x155, 0x255, 0 };
171 static const u16 W83627EHF_REG_TEMP_CONFIG[] = { 0, 0x152, 0x252, 0 };
172
173 /* Fan clock dividers are spread over the following five registers */
174 #define W83627EHF_REG_FANDIV1           0x47
175 #define W83627EHF_REG_FANDIV2           0x4B
176 #define W83627EHF_REG_VBAT              0x5D
177 #define W83627EHF_REG_DIODE             0x59
178 #define W83627EHF_REG_SMI_OVT           0x4C
179
180 #define W83627EHF_REG_ALARM1            0x459
181 #define W83627EHF_REG_ALARM2            0x45A
182 #define W83627EHF_REG_ALARM3            0x45B
183
184 #define W83627EHF_REG_CASEOPEN_DET      0x42 /* SMI STATUS #2 */
185 #define W83627EHF_REG_CASEOPEN_CLR      0x46 /* SMI MASK #3 */
186
187 /* SmartFan registers */
188 #define W83627EHF_REG_FAN_STEPUP_TIME 0x0f
189 #define W83627EHF_REG_FAN_STEPDOWN_TIME 0x0e
190
191 /* DC or PWM output fan configuration */
192 static const u8 W83627EHF_REG_PWM_ENABLE[] = {
193         0x04,                   /* SYS FAN0 output mode and PWM mode */
194         0x04,                   /* CPU FAN0 output mode and PWM mode */
195         0x12,                   /* AUX FAN mode */
196         0x62,                   /* CPU FAN1 mode */
197 };
198
199 static const u8 W83627EHF_PWM_MODE_SHIFT[] = { 0, 1, 0, 6 };
200 static const u8 W83627EHF_PWM_ENABLE_SHIFT[] = { 2, 4, 1, 4 };
201
202 /* FAN Duty Cycle, be used to control */
203 static const u16 W83627EHF_REG_PWM[] = { 0x01, 0x03, 0x11, 0x61 };
204 static const u16 W83627EHF_REG_TARGET[] = { 0x05, 0x06, 0x13, 0x63 };
205 static const u8 W83627EHF_REG_TOLERANCE[] = { 0x07, 0x07, 0x14, 0x62 };
206
207 /* Advanced Fan control, some values are common for all fans */
208 static const u16 W83627EHF_REG_FAN_START_OUTPUT[] = { 0x0a, 0x0b, 0x16, 0x65 };
209 static const u16 W83627EHF_REG_FAN_STOP_OUTPUT[] = { 0x08, 0x09, 0x15, 0x64 };
210 static const u16 W83627EHF_REG_FAN_STOP_TIME[] = { 0x0c, 0x0d, 0x17, 0x66 };
211
212 static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_COMMON[]
213                                                 = { 0xff, 0x67, 0xff, 0x69 };
214 static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_COMMON[]
215                                                 = { 0xff, 0x68, 0xff, 0x6a };
216
217 static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B[] = { 0x67, 0x69, 0x6b };
218 static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B[]
219                                                 = { 0x68, 0x6a, 0x6c };
220
221 static const u16 W83627EHF_REG_TEMP_OFFSET[] = { 0x454, 0x455, 0x456 };
222
223 static const char *const w83667hg_b_temp_label[] = {
224         "SYSTIN",
225         "CPUTIN",
226         "AUXTIN",
227         "AMDTSI",
228         "PECI Agent 1",
229         "PECI Agent 2",
230         "PECI Agent 3",
231         "PECI Agent 4"
232 };
233
234 #define NUM_REG_TEMP    ARRAY_SIZE(W83627EHF_REG_TEMP)
235
236 static int is_word_sized(u16 reg)
237 {
238         return ((((reg & 0xff00) == 0x100
239               || (reg & 0xff00) == 0x200)
240              && ((reg & 0x00ff) == 0x50
241               || (reg & 0x00ff) == 0x53
242               || (reg & 0x00ff) == 0x55))
243              || (reg & 0xfff0) == 0x630
244              || reg == 0x640 || reg == 0x642
245              || ((reg & 0xfff0) == 0x650
246                  && (reg & 0x000f) >= 0x06)
247              || reg == 0x73 || reg == 0x75 || reg == 0x77
248                 );
249 }
250
251 /*
252  * Conversions
253  */
254
255 /* 1 is PWM mode, output in ms */
256 static inline unsigned int step_time_from_reg(u8 reg, u8 mode)
257 {
258         return mode ? 100 * reg : 400 * reg;
259 }
260
261 static inline u8 step_time_to_reg(unsigned int msec, u8 mode)
262 {
263         return clamp_val((mode ? (msec + 50) / 100 : (msec + 200) / 400),
264                          1, 255);
265 }
266
267 static unsigned int fan_from_reg8(u16 reg, unsigned int divreg)
268 {
269         if (reg == 0 || reg == 255)
270                 return 0;
271         return 1350000U / (reg << divreg);
272 }
273
274 static inline unsigned int
275 div_from_reg(u8 reg)
276 {
277         return 1 << reg;
278 }
279
280 /*
281  * Some of the voltage inputs have internal scaling, the tables below
282  * contain 8 (the ADC LSB in mV) * scaling factor * 100
283  */
284 static const u16 scale_in_common[10] = {
285         800, 800, 1600, 1600, 800, 800, 800, 1600, 1600, 800
286 };
287 static const u16 scale_in_w83627uhg[9] = {
288         800, 800, 3328, 3424, 800, 800, 0, 3328, 3400
289 };
290
291 static inline long in_from_reg(u8 reg, u8 nr, const u16 *scale_in)
292 {
293         return DIV_ROUND_CLOSEST(reg * scale_in[nr], 100);
294 }
295
296 static inline u8 in_to_reg(u32 val, u8 nr, const u16 *scale_in)
297 {
298         return clamp_val(DIV_ROUND_CLOSEST(val * 100, scale_in[nr]), 0, 255);
299 }
300
301 /*
302  * Data structures and manipulation thereof
303  */
304
305 struct w83627ehf_data {
306         int addr;       /* IO base of hw monitor block */
307         const char *name;
308
309         struct mutex lock;
310
311         u16 reg_temp[NUM_REG_TEMP];
312         u16 reg_temp_over[NUM_REG_TEMP];
313         u16 reg_temp_hyst[NUM_REG_TEMP];
314         u16 reg_temp_config[NUM_REG_TEMP];
315         u8 temp_src[NUM_REG_TEMP];
316         const char * const *temp_label;
317
318         const u16 *REG_FAN_MAX_OUTPUT;
319         const u16 *REG_FAN_STEP_OUTPUT;
320         const u16 *scale_in;
321
322         struct mutex update_lock;
323         bool valid;             /* true if following fields are valid */
324         unsigned long last_updated;     /* In jiffies */
325
326         /* Register values */
327         u8 bank;                /* current register bank */
328         u8 in_num;              /* number of in inputs we have */
329         u8 in[10];              /* Register value */
330         u8 in_max[10];          /* Register value */
331         u8 in_min[10];          /* Register value */
332         unsigned int rpm[5];
333         u16 fan_min[5];
334         u8 fan_div[5];
335         u8 has_fan;             /* some fan inputs can be disabled */
336         u8 has_fan_min;         /* some fans don't have min register */
337         u8 temp_type[3];
338         s8 temp_offset[3];
339         s16 temp[9];
340         s16 temp_max[9];
341         s16 temp_max_hyst[9];
342         u32 alarms;
343         u8 caseopen;
344
345         u8 pwm_mode[4]; /* 0->DC variable voltage, 1->PWM variable duty cycle */
346         u8 pwm_enable[4]; /* 1->manual
347                            * 2->thermal cruise mode (also called SmartFan I)
348                            * 3->fan speed cruise mode
349                            * 4->variable thermal cruise (also called
350                            * SmartFan III)
351                            * 5->enhanced variable thermal cruise (also called
352                            * SmartFan IV)
353                            */
354         u8 pwm_enable_orig[4];  /* original value of pwm_enable */
355         u8 pwm_num;             /* number of pwm */
356         u8 pwm[4];
357         u8 target_temp[4];
358         u8 tolerance[4];
359
360         u8 fan_start_output[4]; /* minimum fan speed when spinning up */
361         u8 fan_stop_output[4]; /* minimum fan speed when spinning down */
362         u8 fan_stop_time[4]; /* time at minimum before disabling fan */
363         u8 fan_max_output[4]; /* maximum fan speed */
364         u8 fan_step_output[4]; /* rate of change output value */
365
366         u8 vid;
367         u8 vrm;
368
369         u16 have_temp;
370         u16 have_temp_offset;
371         u8 in6_skip:1;
372         u8 temp3_val_only:1;
373         u8 have_vid:1;
374
375         /* Remember extra register values over suspend/resume */
376         u8 vbat;
377         u8 fandiv1;
378         u8 fandiv2;
379 };
380
381 struct w83627ehf_sio_data {
382         int sioreg;
383         enum kinds kind;
384 };
385
386 /*
387  * On older chips, only registers 0x50-0x5f are banked.
388  * On more recent chips, all registers are banked.
389  * Assume that is the case and set the bank number for each access.
390  * Cache the bank number so it only needs to be set if it changes.
391  */
392 static inline void w83627ehf_set_bank(struct w83627ehf_data *data, u16 reg)
393 {
394         u8 bank = reg >> 8;
395         if (data->bank != bank) {
396                 outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
397                 outb_p(bank, data->addr + DATA_REG_OFFSET);
398                 data->bank = bank;
399         }
400 }
401
402 static u16 w83627ehf_read_value(struct w83627ehf_data *data, u16 reg)
403 {
404         int res, word_sized = is_word_sized(reg);
405
406         mutex_lock(&data->lock);
407
408         w83627ehf_set_bank(data, reg);
409         outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
410         res = inb_p(data->addr + DATA_REG_OFFSET);
411         if (word_sized) {
412                 outb_p((reg & 0xff) + 1,
413                        data->addr + ADDR_REG_OFFSET);
414                 res = (res << 8) + inb_p(data->addr + DATA_REG_OFFSET);
415         }
416
417         mutex_unlock(&data->lock);
418         return res;
419 }
420
421 static int w83627ehf_write_value(struct w83627ehf_data *data, u16 reg,
422                                  u16 value)
423 {
424         int word_sized = is_word_sized(reg);
425
426         mutex_lock(&data->lock);
427
428         w83627ehf_set_bank(data, reg);
429         outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
430         if (word_sized) {
431                 outb_p(value >> 8, data->addr + DATA_REG_OFFSET);
432                 outb_p((reg & 0xff) + 1,
433                        data->addr + ADDR_REG_OFFSET);
434         }
435         outb_p(value & 0xff, data->addr + DATA_REG_OFFSET);
436
437         mutex_unlock(&data->lock);
438         return 0;
439 }
440
441 /* We left-align 8-bit temperature values to make the code simpler */
442 static u16 w83627ehf_read_temp(struct w83627ehf_data *data, u16 reg)
443 {
444         u16 res;
445
446         res = w83627ehf_read_value(data, reg);
447         if (!is_word_sized(reg))
448                 res <<= 8;
449
450         return res;
451 }
452
453 static int w83627ehf_write_temp(struct w83627ehf_data *data, u16 reg,
454                                        u16 value)
455 {
456         if (!is_word_sized(reg))
457                 value >>= 8;
458         return w83627ehf_write_value(data, reg, value);
459 }
460
461 /* This function assumes that the caller holds data->update_lock */
462 static void w83627ehf_write_fan_div(struct w83627ehf_data *data, int nr)
463 {
464         u8 reg;
465
466         switch (nr) {
467         case 0:
468                 reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0xcf)
469                     | ((data->fan_div[0] & 0x03) << 4);
470                 /* fan5 input control bit is write only, compute the value */
471                 reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
472                 w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
473                 reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xdf)
474                     | ((data->fan_div[0] & 0x04) << 3);
475                 w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
476                 break;
477         case 1:
478                 reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0x3f)
479                     | ((data->fan_div[1] & 0x03) << 6);
480                 /* fan5 input control bit is write only, compute the value */
481                 reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
482                 w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
483                 reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xbf)
484                     | ((data->fan_div[1] & 0x04) << 4);
485                 w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
486                 break;
487         case 2:
488                 reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV2) & 0x3f)
489                     | ((data->fan_div[2] & 0x03) << 6);
490                 w83627ehf_write_value(data, W83627EHF_REG_FANDIV2, reg);
491                 reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0x7f)
492                     | ((data->fan_div[2] & 0x04) << 5);
493                 w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
494                 break;
495         case 3:
496                 reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0xfc)
497                     | (data->fan_div[3] & 0x03);
498                 w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
499                 reg = (w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT) & 0x7f)
500                     | ((data->fan_div[3] & 0x04) << 5);
501                 w83627ehf_write_value(data, W83627EHF_REG_SMI_OVT, reg);
502                 break;
503         case 4:
504                 reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0x73)
505                     | ((data->fan_div[4] & 0x03) << 2)
506                     | ((data->fan_div[4] & 0x04) << 5);
507                 w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
508                 break;
509         }
510 }
511
512 static void w83627ehf_update_fan_div(struct w83627ehf_data *data)
513 {
514         int i;
515
516         i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
517         data->fan_div[0] = (i >> 4) & 0x03;
518         data->fan_div[1] = (i >> 6) & 0x03;
519         i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV2);
520         data->fan_div[2] = (i >> 6) & 0x03;
521         i = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
522         data->fan_div[0] |= (i >> 3) & 0x04;
523         data->fan_div[1] |= (i >> 4) & 0x04;
524         data->fan_div[2] |= (i >> 5) & 0x04;
525         if (data->has_fan & ((1 << 3) | (1 << 4))) {
526                 i = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
527                 data->fan_div[3] = i & 0x03;
528                 data->fan_div[4] = ((i >> 2) & 0x03)
529                                  | ((i >> 5) & 0x04);
530         }
531         if (data->has_fan & (1 << 3)) {
532                 i = w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT);
533                 data->fan_div[3] |= (i >> 5) & 0x04;
534         }
535 }
536
537 static void w83627ehf_update_pwm(struct w83627ehf_data *data)
538 {
539         int i;
540         int pwmcfg = 0, tolerance = 0; /* shut up the compiler */
541
542         for (i = 0; i < data->pwm_num; i++) {
543                 if (!(data->has_fan & (1 << i)))
544                         continue;
545
546                 /* pwmcfg, tolerance mapped for i=0, i=1 to same reg */
547                 if (i != 1) {
548                         pwmcfg = w83627ehf_read_value(data,
549                                         W83627EHF_REG_PWM_ENABLE[i]);
550                         tolerance = w83627ehf_read_value(data,
551                                         W83627EHF_REG_TOLERANCE[i]);
552                 }
553                 data->pwm_mode[i] =
554                         ((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1) ? 0 : 1;
555                 data->pwm_enable[i] = ((pwmcfg >> W83627EHF_PWM_ENABLE_SHIFT[i])
556                                        & 3) + 1;
557                 data->pwm[i] = w83627ehf_read_value(data, W83627EHF_REG_PWM[i]);
558
559                 data->tolerance[i] = (tolerance >> (i == 1 ? 4 : 0)) & 0x0f;
560         }
561 }
562
563 static struct w83627ehf_data *w83627ehf_update_device(struct device *dev)
564 {
565         struct w83627ehf_data *data = dev_get_drvdata(dev);
566         int i;
567
568         mutex_lock(&data->update_lock);
569
570         if (time_after(jiffies, data->last_updated + HZ + HZ/2)
571          || !data->valid) {
572                 /* Fan clock dividers */
573                 w83627ehf_update_fan_div(data);
574
575                 /* Measured voltages and limits */
576                 for (i = 0; i < data->in_num; i++) {
577                         if ((i == 6) && data->in6_skip)
578                                 continue;
579
580                         data->in[i] = w83627ehf_read_value(data,
581                                       W83627EHF_REG_IN(i));
582                         data->in_min[i] = w83627ehf_read_value(data,
583                                           W83627EHF_REG_IN_MIN(i));
584                         data->in_max[i] = w83627ehf_read_value(data,
585                                           W83627EHF_REG_IN_MAX(i));
586                 }
587
588                 /* Measured fan speeds and limits */
589                 for (i = 0; i < 5; i++) {
590                         u16 reg;
591
592                         if (!(data->has_fan & (1 << i)))
593                                 continue;
594
595                         reg = w83627ehf_read_value(data, W83627EHF_REG_FAN[i]);
596                         data->rpm[i] = fan_from_reg8(reg, data->fan_div[i]);
597
598                         if (data->has_fan_min & (1 << i))
599                                 data->fan_min[i] = w83627ehf_read_value(data,
600                                            W83627EHF_REG_FAN_MIN[i]);
601
602                         /*
603                          * If we failed to measure the fan speed and clock
604                          * divider can be increased, let's try that for next
605                          * time
606                          */
607                         if (reg >= 0xff && data->fan_div[i] < 0x07) {
608                                 dev_dbg(dev,
609                                         "Increasing fan%d clock divider from %u to %u\n",
610                                         i + 1, div_from_reg(data->fan_div[i]),
611                                         div_from_reg(data->fan_div[i] + 1));
612                                 data->fan_div[i]++;
613                                 w83627ehf_write_fan_div(data, i);
614                                 /* Preserve min limit if possible */
615                                 if ((data->has_fan_min & (1 << i))
616                                  && data->fan_min[i] >= 2
617                                  && data->fan_min[i] != 255)
618                                         w83627ehf_write_value(data,
619                                                 W83627EHF_REG_FAN_MIN[i],
620                                                 (data->fan_min[i] /= 2));
621                         }
622                 }
623
624                 w83627ehf_update_pwm(data);
625
626                 for (i = 0; i < data->pwm_num; i++) {
627                         if (!(data->has_fan & (1 << i)))
628                                 continue;
629
630                         data->fan_start_output[i] =
631                           w83627ehf_read_value(data,
632                                              W83627EHF_REG_FAN_START_OUTPUT[i]);
633                         data->fan_stop_output[i] =
634                           w83627ehf_read_value(data,
635                                              W83627EHF_REG_FAN_STOP_OUTPUT[i]);
636                         data->fan_stop_time[i] =
637                           w83627ehf_read_value(data,
638                                                W83627EHF_REG_FAN_STOP_TIME[i]);
639
640                         if (data->REG_FAN_MAX_OUTPUT &&
641                             data->REG_FAN_MAX_OUTPUT[i] != 0xff)
642                                 data->fan_max_output[i] =
643                                   w83627ehf_read_value(data,
644                                                 data->REG_FAN_MAX_OUTPUT[i]);
645
646                         if (data->REG_FAN_STEP_OUTPUT &&
647                             data->REG_FAN_STEP_OUTPUT[i] != 0xff)
648                                 data->fan_step_output[i] =
649                                   w83627ehf_read_value(data,
650                                                 data->REG_FAN_STEP_OUTPUT[i]);
651
652                         data->target_temp[i] =
653                                 w83627ehf_read_value(data,
654                                         W83627EHF_REG_TARGET[i]) &
655                                         (data->pwm_mode[i] == 1 ? 0x7f : 0xff);
656                 }
657
658                 /* Measured temperatures and limits */
659                 for (i = 0; i < NUM_REG_TEMP; i++) {
660                         if (!(data->have_temp & (1 << i)))
661                                 continue;
662                         data->temp[i] = w83627ehf_read_temp(data,
663                                                 data->reg_temp[i]);
664                         if (data->reg_temp_over[i])
665                                 data->temp_max[i]
666                                   = w83627ehf_read_temp(data,
667                                                 data->reg_temp_over[i]);
668                         if (data->reg_temp_hyst[i])
669                                 data->temp_max_hyst[i]
670                                   = w83627ehf_read_temp(data,
671                                                 data->reg_temp_hyst[i]);
672                         if (i > 2)
673                                 continue;
674                         if (data->have_temp_offset & (1 << i))
675                                 data->temp_offset[i]
676                                   = w83627ehf_read_value(data,
677                                                 W83627EHF_REG_TEMP_OFFSET[i]);
678                 }
679
680                 data->alarms = w83627ehf_read_value(data,
681                                         W83627EHF_REG_ALARM1) |
682                                (w83627ehf_read_value(data,
683                                         W83627EHF_REG_ALARM2) << 8) |
684                                (w83627ehf_read_value(data,
685                                         W83627EHF_REG_ALARM3) << 16);
686
687                 data->caseopen = w83627ehf_read_value(data,
688                                                 W83627EHF_REG_CASEOPEN_DET);
689
690                 data->last_updated = jiffies;
691                 data->valid = true;
692         }
693
694         mutex_unlock(&data->update_lock);
695         return data;
696 }
697
698 #define store_in_reg(REG, reg) \
699 static int \
700 store_in_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \
701                long val) \
702 { \
703         if (val < 0) \
704                 return -EINVAL; \
705         mutex_lock(&data->update_lock); \
706         data->in_##reg[channel] = in_to_reg(val, channel, data->scale_in); \
707         w83627ehf_write_value(data, W83627EHF_REG_IN_##REG(channel), \
708                               data->in_##reg[channel]); \
709         mutex_unlock(&data->update_lock); \
710         return 0; \
711 }
712
713 store_in_reg(MIN, min)
714 store_in_reg(MAX, max)
715
716 static int
717 store_fan_min(struct device *dev, struct w83627ehf_data *data, int channel,
718               long val)
719 {
720         unsigned int reg;
721         u8 new_div;
722
723         if (val < 0)
724                 return -EINVAL;
725
726         mutex_lock(&data->update_lock);
727         if (!val) {
728                 /* No min limit, alarm disabled */
729                 data->fan_min[channel] = 255;
730                 new_div = data->fan_div[channel]; /* No change */
731                 dev_info(dev, "fan%u low limit and alarm disabled\n",
732                          channel + 1);
733         } else if ((reg = 1350000U / val) >= 128 * 255) {
734                 /*
735                  * Speed below this value cannot possibly be represented,
736                  * even with the highest divider (128)
737                  */
738                 data->fan_min[channel] = 254;
739                 new_div = 7; /* 128 == (1 << 7) */
740                 dev_warn(dev,
741                          "fan%u low limit %lu below minimum %u, set to minimum\n",
742                          channel + 1, val, fan_from_reg8(254, 7));
743         } else if (!reg) {
744                 /*
745                  * Speed above this value cannot possibly be represented,
746                  * even with the lowest divider (1)
747                  */
748                 data->fan_min[channel] = 1;
749                 new_div = 0; /* 1 == (1 << 0) */
750                 dev_warn(dev,
751                          "fan%u low limit %lu above maximum %u, set to maximum\n",
752                          channel + 1, val, fan_from_reg8(1, 0));
753         } else {
754                 /*
755                  * Automatically pick the best divider, i.e. the one such
756                  * that the min limit will correspond to a register value
757                  * in the 96..192 range
758                  */
759                 new_div = 0;
760                 while (reg > 192 && new_div < 7) {
761                         reg >>= 1;
762                         new_div++;
763                 }
764                 data->fan_min[channel] = reg;
765         }
766
767         /*
768          * Write both the fan clock divider (if it changed) and the new
769          * fan min (unconditionally)
770          */
771         if (new_div != data->fan_div[channel]) {
772                 dev_dbg(dev, "fan%u clock divider changed from %u to %u\n",
773                         channel + 1, div_from_reg(data->fan_div[channel]),
774                         div_from_reg(new_div));
775                 data->fan_div[channel] = new_div;
776                 w83627ehf_write_fan_div(data, channel);
777                 /* Give the chip time to sample a new speed value */
778                 data->last_updated = jiffies;
779         }
780
781         w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[channel],
782                               data->fan_min[channel]);
783         mutex_unlock(&data->update_lock);
784
785         return 0;
786 }
787
788 #define store_temp_reg(addr, reg) \
789 static int \
790 store_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \
791             long val) \
792 { \
793         mutex_lock(&data->update_lock); \
794         data->reg[channel] = LM75_TEMP_TO_REG(val); \
795         w83627ehf_write_temp(data, data->addr[channel], data->reg[channel]); \
796         mutex_unlock(&data->update_lock); \
797         return 0; \
798 }
799 store_temp_reg(reg_temp_over, temp_max);
800 store_temp_reg(reg_temp_hyst, temp_max_hyst);
801
802 static int
803 store_temp_offset(struct device *dev, struct w83627ehf_data *data, int channel,
804                   long val)
805 {
806         val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), -128, 127);
807
808         mutex_lock(&data->update_lock);
809         data->temp_offset[channel] = val;
810         w83627ehf_write_value(data, W83627EHF_REG_TEMP_OFFSET[channel], val);
811         mutex_unlock(&data->update_lock);
812         return 0;
813 }
814
815 static int
816 store_pwm_mode(struct device *dev, struct w83627ehf_data *data, int channel,
817                long val)
818 {
819         u16 reg;
820
821         if (val < 0 || val > 1)
822                 return -EINVAL;
823
824         mutex_lock(&data->update_lock);
825         reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[channel]);
826         data->pwm_mode[channel] = val;
827         reg &= ~(1 << W83627EHF_PWM_MODE_SHIFT[channel]);
828         if (!val)
829                 reg |= 1 << W83627EHF_PWM_MODE_SHIFT[channel];
830         w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel], reg);
831         mutex_unlock(&data->update_lock);
832         return 0;
833 }
834
835 static int
836 store_pwm(struct device *dev, struct w83627ehf_data *data, int channel,
837           long val)
838 {
839         val = clamp_val(val, 0, 255);
840
841         mutex_lock(&data->update_lock);
842         data->pwm[channel] = val;
843         w83627ehf_write_value(data, W83627EHF_REG_PWM[channel], val);
844         mutex_unlock(&data->update_lock);
845         return 0;
846 }
847
848 static int
849 store_pwm_enable(struct device *dev, struct w83627ehf_data *data, int channel,
850                  long val)
851 {
852         u16 reg;
853
854         if (!val || val < 0 ||
855             (val > 4 && val != data->pwm_enable_orig[channel]))
856                 return -EINVAL;
857
858         mutex_lock(&data->update_lock);
859         data->pwm_enable[channel] = val;
860         reg = w83627ehf_read_value(data,
861                                    W83627EHF_REG_PWM_ENABLE[channel]);
862         reg &= ~(0x03 << W83627EHF_PWM_ENABLE_SHIFT[channel]);
863         reg |= (val - 1) << W83627EHF_PWM_ENABLE_SHIFT[channel];
864         w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel],
865                               reg);
866         mutex_unlock(&data->update_lock);
867         return 0;
868 }
869
870 #define show_tol_temp(reg) \
871 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
872                                 char *buf) \
873 { \
874         struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
875         struct sensor_device_attribute *sensor_attr = \
876                 to_sensor_dev_attr(attr); \
877         int nr = sensor_attr->index; \
878         return sprintf(buf, "%d\n", data->reg[nr] * 1000); \
879 }
880
881 show_tol_temp(tolerance)
882 show_tol_temp(target_temp)
883
884 static ssize_t
885 store_target_temp(struct device *dev, struct device_attribute *attr,
886                         const char *buf, size_t count)
887 {
888         struct w83627ehf_data *data = dev_get_drvdata(dev);
889         struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
890         int nr = sensor_attr->index;
891         long val;
892         int err;
893
894         err = kstrtol(buf, 10, &val);
895         if (err < 0)
896                 return err;
897
898         val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 0, 127);
899
900         mutex_lock(&data->update_lock);
901         data->target_temp[nr] = val;
902         w83627ehf_write_value(data, W83627EHF_REG_TARGET[nr], val);
903         mutex_unlock(&data->update_lock);
904         return count;
905 }
906
907 static ssize_t
908 store_tolerance(struct device *dev, struct device_attribute *attr,
909                         const char *buf, size_t count)
910 {
911         struct w83627ehf_data *data = dev_get_drvdata(dev);
912         struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
913         int nr = sensor_attr->index;
914         u16 reg;
915         long val;
916         int err;
917
918         err = kstrtol(buf, 10, &val);
919         if (err < 0)
920                 return err;
921
922         /* Limit the temp to 0C - 15C */
923         val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 0, 15);
924
925         mutex_lock(&data->update_lock);
926         reg = w83627ehf_read_value(data, W83627EHF_REG_TOLERANCE[nr]);
927         if (nr == 1)
928                 reg = (reg & 0x0f) | (val << 4);
929         else
930                 reg = (reg & 0xf0) | val;
931         w83627ehf_write_value(data, W83627EHF_REG_TOLERANCE[nr], reg);
932         data->tolerance[nr] = val;
933         mutex_unlock(&data->update_lock);
934         return count;
935 }
936
937 static SENSOR_DEVICE_ATTR(pwm1_target, 0644, show_target_temp,
938             store_target_temp, 0);
939 static SENSOR_DEVICE_ATTR(pwm2_target, 0644, show_target_temp,
940             store_target_temp, 1);
941 static SENSOR_DEVICE_ATTR(pwm3_target, 0644, show_target_temp,
942             store_target_temp, 2);
943 static SENSOR_DEVICE_ATTR(pwm4_target, 0644, show_target_temp,
944             store_target_temp, 3);
945
946 static SENSOR_DEVICE_ATTR(pwm1_tolerance, 0644, show_tolerance,
947             store_tolerance, 0);
948 static SENSOR_DEVICE_ATTR(pwm2_tolerance, 0644, show_tolerance,
949             store_tolerance, 1);
950 static SENSOR_DEVICE_ATTR(pwm3_tolerance, 0644, show_tolerance,
951             store_tolerance, 2);
952 static SENSOR_DEVICE_ATTR(pwm4_tolerance, 0644, show_tolerance,
953             store_tolerance, 3);
954
955 /* Smart Fan registers */
956
957 #define fan_functions(reg, REG) \
958 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
959                        char *buf) \
960 { \
961         struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
962         struct sensor_device_attribute *sensor_attr = \
963                 to_sensor_dev_attr(attr); \
964         int nr = sensor_attr->index; \
965         return sprintf(buf, "%d\n", data->reg[nr]); \
966 } \
967 static ssize_t \
968 store_##reg(struct device *dev, struct device_attribute *attr, \
969                             const char *buf, size_t count) \
970 { \
971         struct w83627ehf_data *data = dev_get_drvdata(dev); \
972         struct sensor_device_attribute *sensor_attr = \
973                 to_sensor_dev_attr(attr); \
974         int nr = sensor_attr->index; \
975         unsigned long val; \
976         int err; \
977         err = kstrtoul(buf, 10, &val); \
978         if (err < 0) \
979                 return err; \
980         val = clamp_val(val, 1, 255); \
981         mutex_lock(&data->update_lock); \
982         data->reg[nr] = val; \
983         w83627ehf_write_value(data, REG[nr], val); \
984         mutex_unlock(&data->update_lock); \
985         return count; \
986 }
987
988 fan_functions(fan_start_output, W83627EHF_REG_FAN_START_OUTPUT)
989 fan_functions(fan_stop_output, W83627EHF_REG_FAN_STOP_OUTPUT)
990 fan_functions(fan_max_output, data->REG_FAN_MAX_OUTPUT)
991 fan_functions(fan_step_output, data->REG_FAN_STEP_OUTPUT)
992
993 #define fan_time_functions(reg, REG) \
994 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
995                                 char *buf) \
996 { \
997         struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
998         struct sensor_device_attribute *sensor_attr = \
999                 to_sensor_dev_attr(attr); \
1000         int nr = sensor_attr->index; \
1001         return sprintf(buf, "%d\n", \
1002                         step_time_from_reg(data->reg[nr], \
1003                                            data->pwm_mode[nr])); \
1004 } \
1005 \
1006 static ssize_t \
1007 store_##reg(struct device *dev, struct device_attribute *attr, \
1008                         const char *buf, size_t count) \
1009 { \
1010         struct w83627ehf_data *data = dev_get_drvdata(dev); \
1011         struct sensor_device_attribute *sensor_attr = \
1012                 to_sensor_dev_attr(attr); \
1013         int nr = sensor_attr->index; \
1014         unsigned long val; \
1015         int err; \
1016         err = kstrtoul(buf, 10, &val); \
1017         if (err < 0) \
1018                 return err; \
1019         val = step_time_to_reg(val, data->pwm_mode[nr]); \
1020         mutex_lock(&data->update_lock); \
1021         data->reg[nr] = val; \
1022         w83627ehf_write_value(data, REG[nr], val); \
1023         mutex_unlock(&data->update_lock); \
1024         return count; \
1025 } \
1026
1027 fan_time_functions(fan_stop_time, W83627EHF_REG_FAN_STOP_TIME)
1028
1029 static SENSOR_DEVICE_ATTR(pwm4_stop_time, 0644, show_fan_stop_time,
1030             store_fan_stop_time, 3);
1031 static SENSOR_DEVICE_ATTR(pwm4_start_output, 0644, show_fan_start_output,
1032             store_fan_start_output, 3);
1033 static SENSOR_DEVICE_ATTR(pwm4_stop_output, 0644, show_fan_stop_output,
1034             store_fan_stop_output, 3);
1035 static SENSOR_DEVICE_ATTR(pwm4_max_output, 0644, show_fan_max_output,
1036             store_fan_max_output, 3);
1037 static SENSOR_DEVICE_ATTR(pwm4_step_output, 0644, show_fan_step_output,
1038             store_fan_step_output, 3);
1039
1040 static SENSOR_DEVICE_ATTR(pwm3_stop_time, 0644, show_fan_stop_time,
1041             store_fan_stop_time, 2);
1042 static SENSOR_DEVICE_ATTR(pwm3_start_output, 0644, show_fan_start_output,
1043             store_fan_start_output, 2);
1044 static SENSOR_DEVICE_ATTR(pwm3_stop_output, 0644, show_fan_stop_output,
1045                     store_fan_stop_output, 2);
1046
1047 static SENSOR_DEVICE_ATTR(pwm1_stop_time, 0644, show_fan_stop_time,
1048             store_fan_stop_time, 0);
1049 static SENSOR_DEVICE_ATTR(pwm2_stop_time, 0644, show_fan_stop_time,
1050             store_fan_stop_time, 1);
1051 static SENSOR_DEVICE_ATTR(pwm1_start_output, 0644, show_fan_start_output,
1052             store_fan_start_output, 0);
1053 static SENSOR_DEVICE_ATTR(pwm2_start_output, 0644, show_fan_start_output,
1054             store_fan_start_output, 1);
1055 static SENSOR_DEVICE_ATTR(pwm1_stop_output, 0644, show_fan_stop_output,
1056             store_fan_stop_output, 0);
1057 static SENSOR_DEVICE_ATTR(pwm2_stop_output, 0644, show_fan_stop_output,
1058             store_fan_stop_output, 1);
1059
1060
1061 /*
1062  * pwm1 and pwm3 don't support max and step settings on all chips.
1063  * Need to check support while generating/removing attribute files.
1064  */
1065 static SENSOR_DEVICE_ATTR(pwm1_max_output, 0644, show_fan_max_output,
1066             store_fan_max_output, 0);
1067 static SENSOR_DEVICE_ATTR(pwm1_step_output, 0644, show_fan_step_output,
1068             store_fan_step_output, 0);
1069 static SENSOR_DEVICE_ATTR(pwm2_max_output, 0644, show_fan_max_output,
1070             store_fan_max_output, 1);
1071 static SENSOR_DEVICE_ATTR(pwm2_step_output, 0644, show_fan_step_output,
1072             store_fan_step_output, 1);
1073 static SENSOR_DEVICE_ATTR(pwm3_max_output, 0644, show_fan_max_output,
1074             store_fan_max_output, 2);
1075 static SENSOR_DEVICE_ATTR(pwm3_step_output, 0644, show_fan_step_output,
1076             store_fan_step_output, 2);
1077
1078 static ssize_t
1079 cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf)
1080 {
1081         struct w83627ehf_data *data = dev_get_drvdata(dev);
1082         return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1083 }
1084 static DEVICE_ATTR_RO(cpu0_vid);
1085
1086
1087 /* Case open detection */
1088 static int
1089 clear_caseopen(struct device *dev, struct w83627ehf_data *data, int channel,
1090                long val)
1091 {
1092         const u16 mask = 0x80;
1093         u16 reg;
1094
1095         if (val != 0 || channel != 0)
1096                 return -EINVAL;
1097
1098         mutex_lock(&data->update_lock);
1099         reg = w83627ehf_read_value(data, W83627EHF_REG_CASEOPEN_CLR);
1100         w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg | mask);
1101         w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg & ~mask);
1102         data->valid = false;    /* Force cache refresh */
1103         mutex_unlock(&data->update_lock);
1104
1105         return 0;
1106 }
1107
1108 static umode_t w83627ehf_attrs_visible(struct kobject *kobj,
1109                                        struct attribute *a, int n)
1110 {
1111         struct device *dev = kobj_to_dev(kobj);
1112         struct w83627ehf_data *data = dev_get_drvdata(dev);
1113         struct device_attribute *devattr;
1114         struct sensor_device_attribute *sda;
1115
1116         devattr = container_of(a, struct device_attribute, attr);
1117
1118         /* Not sensor */
1119         if (devattr->show == cpu0_vid_show && data->have_vid)
1120                 return a->mode;
1121
1122         sda = (struct sensor_device_attribute *)devattr;
1123
1124         if (sda->index < 2 &&
1125                 (devattr->show == show_fan_stop_time ||
1126                  devattr->show == show_fan_start_output ||
1127                  devattr->show == show_fan_stop_output))
1128                 return a->mode;
1129
1130         if (sda->index < 3 &&
1131                 (devattr->show == show_fan_max_output ||
1132                  devattr->show == show_fan_step_output) &&
1133                 data->REG_FAN_STEP_OUTPUT &&
1134                 data->REG_FAN_STEP_OUTPUT[sda->index] != 0xff)
1135                 return a->mode;
1136
1137         /* if fan3 and fan4 are enabled create the files for them */
1138         if (sda->index == 2 &&
1139                 (data->has_fan & (1 << 2)) && data->pwm_num >= 3 &&
1140                 (devattr->show == show_fan_stop_time ||
1141                  devattr->show == show_fan_start_output ||
1142                  devattr->show == show_fan_stop_output))
1143                 return a->mode;
1144
1145         if (sda->index == 3 &&
1146                 (data->has_fan & (1 << 3)) && data->pwm_num >= 4 &&
1147                 (devattr->show == show_fan_stop_time ||
1148                  devattr->show == show_fan_start_output ||
1149                  devattr->show == show_fan_stop_output ||
1150                  devattr->show == show_fan_max_output ||
1151                  devattr->show == show_fan_step_output))
1152                 return a->mode;
1153
1154         if ((devattr->show == show_target_temp ||
1155             devattr->show == show_tolerance) &&
1156             (data->has_fan & (1 << sda->index)) &&
1157             sda->index < data->pwm_num)
1158                 return a->mode;
1159
1160         return 0;
1161 }
1162
1163 /* These groups handle non-standard attributes used in this device */
1164 static struct attribute *w83627ehf_attrs[] = {
1165
1166         &sensor_dev_attr_pwm1_stop_time.dev_attr.attr,
1167         &sensor_dev_attr_pwm1_start_output.dev_attr.attr,
1168         &sensor_dev_attr_pwm1_stop_output.dev_attr.attr,
1169         &sensor_dev_attr_pwm1_max_output.dev_attr.attr,
1170         &sensor_dev_attr_pwm1_step_output.dev_attr.attr,
1171         &sensor_dev_attr_pwm1_target.dev_attr.attr,
1172         &sensor_dev_attr_pwm1_tolerance.dev_attr.attr,
1173
1174         &sensor_dev_attr_pwm2_stop_time.dev_attr.attr,
1175         &sensor_dev_attr_pwm2_start_output.dev_attr.attr,
1176         &sensor_dev_attr_pwm2_stop_output.dev_attr.attr,
1177         &sensor_dev_attr_pwm2_max_output.dev_attr.attr,
1178         &sensor_dev_attr_pwm2_step_output.dev_attr.attr,
1179         &sensor_dev_attr_pwm2_target.dev_attr.attr,
1180         &sensor_dev_attr_pwm2_tolerance.dev_attr.attr,
1181
1182         &sensor_dev_attr_pwm3_stop_time.dev_attr.attr,
1183         &sensor_dev_attr_pwm3_start_output.dev_attr.attr,
1184         &sensor_dev_attr_pwm3_stop_output.dev_attr.attr,
1185         &sensor_dev_attr_pwm3_max_output.dev_attr.attr,
1186         &sensor_dev_attr_pwm3_step_output.dev_attr.attr,
1187         &sensor_dev_attr_pwm3_target.dev_attr.attr,
1188         &sensor_dev_attr_pwm3_tolerance.dev_attr.attr,
1189
1190         &sensor_dev_attr_pwm4_stop_time.dev_attr.attr,
1191         &sensor_dev_attr_pwm4_start_output.dev_attr.attr,
1192         &sensor_dev_attr_pwm4_stop_output.dev_attr.attr,
1193         &sensor_dev_attr_pwm4_max_output.dev_attr.attr,
1194         &sensor_dev_attr_pwm4_step_output.dev_attr.attr,
1195         &sensor_dev_attr_pwm4_target.dev_attr.attr,
1196         &sensor_dev_attr_pwm4_tolerance.dev_attr.attr,
1197
1198         &dev_attr_cpu0_vid.attr,
1199         NULL
1200 };
1201
1202 static const struct attribute_group w83627ehf_group = {
1203         .attrs = w83627ehf_attrs,
1204         .is_visible = w83627ehf_attrs_visible,
1205 };
1206
1207 static const struct attribute_group *w83627ehf_groups[] = {
1208         &w83627ehf_group,
1209         NULL
1210 };
1211
1212 /*
1213  * Driver and device management
1214  */
1215
1216 /* Get the monitoring functions started */
1217 static inline void w83627ehf_init_device(struct w83627ehf_data *data,
1218                                                    enum kinds kind)
1219 {
1220         int i;
1221         u8 tmp, diode;
1222
1223         /* Start monitoring is needed */
1224         tmp = w83627ehf_read_value(data, W83627EHF_REG_CONFIG);
1225         if (!(tmp & 0x01))
1226                 w83627ehf_write_value(data, W83627EHF_REG_CONFIG,
1227                                       tmp | 0x01);
1228
1229         /* Enable temperature sensors if needed */
1230         for (i = 0; i < NUM_REG_TEMP; i++) {
1231                 if (!(data->have_temp & (1 << i)))
1232                         continue;
1233                 if (!data->reg_temp_config[i])
1234                         continue;
1235                 tmp = w83627ehf_read_value(data,
1236                                            data->reg_temp_config[i]);
1237                 if (tmp & 0x01)
1238                         w83627ehf_write_value(data,
1239                                               data->reg_temp_config[i],
1240                                               tmp & 0xfe);
1241         }
1242
1243         /* Enable VBAT monitoring if needed */
1244         tmp = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
1245         if (!(tmp & 0x01))
1246                 w83627ehf_write_value(data, W83627EHF_REG_VBAT, tmp | 0x01);
1247
1248         /* Get thermal sensor types */
1249         switch (kind) {
1250         case w83627ehf:
1251                 diode = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
1252                 break;
1253         case w83627uhg:
1254                 diode = 0x00;
1255                 break;
1256         default:
1257                 diode = 0x70;
1258         }
1259         for (i = 0; i < 3; i++) {
1260                 const char *label = NULL;
1261
1262                 if (data->temp_label)
1263                         label = data->temp_label[data->temp_src[i]];
1264
1265                 /* Digital source overrides analog type */
1266                 if (label && strncmp(label, "PECI", 4) == 0)
1267                         data->temp_type[i] = 6;
1268                 else if (label && strncmp(label, "AMD", 3) == 0)
1269                         data->temp_type[i] = 5;
1270                 else if ((tmp & (0x02 << i)))
1271                         data->temp_type[i] = (diode & (0x10 << i)) ? 1 : 3;
1272                 else
1273                         data->temp_type[i] = 4; /* thermistor */
1274         }
1275 }
1276
1277 static void
1278 w83627ehf_set_temp_reg_ehf(struct w83627ehf_data *data, int n_temp)
1279 {
1280         int i;
1281
1282         for (i = 0; i < n_temp; i++) {
1283                 data->reg_temp[i] = W83627EHF_REG_TEMP[i];
1284                 data->reg_temp_over[i] = W83627EHF_REG_TEMP_OVER[i];
1285                 data->reg_temp_hyst[i] = W83627EHF_REG_TEMP_HYST[i];
1286                 data->reg_temp_config[i] = W83627EHF_REG_TEMP_CONFIG[i];
1287         }
1288 }
1289
1290 static void
1291 w83627ehf_check_fan_inputs(const struct w83627ehf_sio_data *sio_data,
1292                            struct w83627ehf_data *data)
1293 {
1294         int fan3pin, fan4pin, fan5pin, regval;
1295
1296         /* The W83627UHG is simple, only two fan inputs, no config */
1297         if (sio_data->kind == w83627uhg) {
1298                 data->has_fan = 0x03; /* fan1 and fan2 */
1299                 data->has_fan_min = 0x03;
1300                 return;
1301         }
1302
1303         /* fan4 and fan5 share some pins with the GPIO and serial flash */
1304         if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
1305                 fan3pin = 1;
1306                 fan4pin = superio_inb(sio_data->sioreg, 0x27) & 0x40;
1307                 fan5pin = superio_inb(sio_data->sioreg, 0x27) & 0x20;
1308         } else {
1309                 fan3pin = 1;
1310                 fan4pin = !(superio_inb(sio_data->sioreg, 0x29) & 0x06);
1311                 fan5pin = !(superio_inb(sio_data->sioreg, 0x24) & 0x02);
1312         }
1313
1314         data->has_fan = data->has_fan_min = 0x03; /* fan1 and fan2 */
1315         data->has_fan |= (fan3pin << 2);
1316         data->has_fan_min |= (fan3pin << 2);
1317
1318         /*
1319          * It looks like fan4 and fan5 pins can be alternatively used
1320          * as fan on/off switches, but fan5 control is write only :/
1321          * We assume that if the serial interface is disabled, designers
1322          * connected fan5 as input unless they are emitting log 1, which
1323          * is not the default.
1324          */
1325         regval = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
1326         if ((regval & (1 << 2)) && fan4pin) {
1327                 data->has_fan |= (1 << 3);
1328                 data->has_fan_min |= (1 << 3);
1329         }
1330         if (!(regval & (1 << 1)) && fan5pin) {
1331                 data->has_fan |= (1 << 4);
1332                 data->has_fan_min |= (1 << 4);
1333         }
1334 }
1335
1336 static umode_t
1337 w83627ehf_is_visible(const void *drvdata, enum hwmon_sensor_types type,
1338                      u32 attr, int channel)
1339 {
1340         const struct w83627ehf_data *data = drvdata;
1341
1342         switch (type) {
1343         case hwmon_temp:
1344                 /* channel 0.., name 1.. */
1345                 if (!(data->have_temp & (1 << channel)))
1346                         return 0;
1347                 if (attr == hwmon_temp_input)
1348                         return 0444;
1349                 if (attr == hwmon_temp_label) {
1350                         if (data->temp_label)
1351                                 return 0444;
1352                         return 0;
1353                 }
1354                 if (channel == 2 && data->temp3_val_only)
1355                         return 0;
1356                 if (attr == hwmon_temp_max) {
1357                         if (data->reg_temp_over[channel])
1358                                 return 0644;
1359                         else
1360                                 return 0;
1361                 }
1362                 if (attr == hwmon_temp_max_hyst) {
1363                         if (data->reg_temp_hyst[channel])
1364                                 return 0644;
1365                         else
1366                                 return 0;
1367                 }
1368                 if (channel > 2)
1369                         return 0;
1370                 if (attr == hwmon_temp_alarm || attr == hwmon_temp_type)
1371                         return 0444;
1372                 if (attr == hwmon_temp_offset) {
1373                         if (data->have_temp_offset & (1 << channel))
1374                                 return 0644;
1375                         else
1376                                 return 0;
1377                 }
1378                 break;
1379
1380         case hwmon_fan:
1381                 /* channel 0.., name 1.. */
1382                 if (!(data->has_fan & (1 << channel)))
1383                         return 0;
1384                 if (attr == hwmon_fan_input || attr == hwmon_fan_alarm)
1385                         return 0444;
1386                 if (attr == hwmon_fan_div) {
1387                         return 0444;
1388                 }
1389                 if (attr == hwmon_fan_min) {
1390                         if (data->has_fan_min & (1 << channel))
1391                                 return 0644;
1392                         else
1393                                 return 0;
1394                 }
1395                 break;
1396
1397         case hwmon_in:
1398                 /* channel 0.., name 0.. */
1399                 if (channel >= data->in_num)
1400                         return 0;
1401                 if (channel == 6 && data->in6_skip)
1402                         return 0;
1403                 if (attr == hwmon_in_alarm || attr == hwmon_in_input)
1404                         return 0444;
1405                 if (attr == hwmon_in_min || attr == hwmon_in_max)
1406                         return 0644;
1407                 break;
1408
1409         case hwmon_pwm:
1410                 /* channel 0.., name 1.. */
1411                 if (!(data->has_fan & (1 << channel)) ||
1412                     channel >= data->pwm_num)
1413                         return 0;
1414                 if (attr == hwmon_pwm_mode || attr == hwmon_pwm_enable ||
1415                     attr == hwmon_pwm_input)
1416                         return 0644;
1417                 break;
1418
1419         case hwmon_intrusion:
1420                 return 0644;
1421
1422         default: /* Shouldn't happen */
1423                 return 0;
1424         }
1425
1426         return 0; /* Shouldn't happen */
1427 }
1428
1429 static int
1430 w83627ehf_do_read_temp(struct w83627ehf_data *data, u32 attr,
1431                        int channel, long *val)
1432 {
1433         switch (attr) {
1434         case hwmon_temp_input:
1435                 *val = LM75_TEMP_FROM_REG(data->temp[channel]);
1436                 return 0;
1437         case hwmon_temp_max:
1438                 *val = LM75_TEMP_FROM_REG(data->temp_max[channel]);
1439                 return 0;
1440         case hwmon_temp_max_hyst:
1441                 *val = LM75_TEMP_FROM_REG(data->temp_max_hyst[channel]);
1442                 return 0;
1443         case hwmon_temp_offset:
1444                 *val = data->temp_offset[channel] * 1000;
1445                 return 0;
1446         case hwmon_temp_type:
1447                 *val = (int)data->temp_type[channel];
1448                 return 0;
1449         case hwmon_temp_alarm:
1450                 if (channel < 3) {
1451                         int bit[] = { 4, 5, 13 };
1452                         *val = (data->alarms >> bit[channel]) & 1;
1453                         return 0;
1454                 }
1455                 break;
1456
1457         default:
1458                 break;
1459         }
1460
1461         return -EOPNOTSUPP;
1462 }
1463
1464 static int
1465 w83627ehf_do_read_in(struct w83627ehf_data *data, u32 attr,
1466                      int channel, long *val)
1467 {
1468         switch (attr) {
1469         case hwmon_in_input:
1470                 *val = in_from_reg(data->in[channel], channel, data->scale_in);
1471                 return 0;
1472         case hwmon_in_min:
1473                 *val = in_from_reg(data->in_min[channel], channel,
1474                                    data->scale_in);
1475                 return 0;
1476         case hwmon_in_max:
1477                 *val = in_from_reg(data->in_max[channel], channel,
1478                                    data->scale_in);
1479                 return 0;
1480         case hwmon_in_alarm:
1481                 if (channel < 10) {
1482                         int bit[] = { 0, 1, 2, 3, 8, 21, 20, 16, 17, 19 };
1483                         *val = (data->alarms >> bit[channel]) & 1;
1484                         return 0;
1485                 }
1486                 break;
1487         default:
1488                 break;
1489         }
1490         return -EOPNOTSUPP;
1491 }
1492
1493 static int
1494 w83627ehf_do_read_fan(struct w83627ehf_data *data, u32 attr,
1495                       int channel, long *val)
1496 {
1497         switch (attr) {
1498         case hwmon_fan_input:
1499                 *val = data->rpm[channel];
1500                 return 0;
1501         case hwmon_fan_min:
1502                 *val = fan_from_reg8(data->fan_min[channel],
1503                                      data->fan_div[channel]);
1504                 return 0;
1505         case hwmon_fan_div:
1506                 *val = div_from_reg(data->fan_div[channel]);
1507                 return 0;
1508         case hwmon_fan_alarm:
1509                 if (channel < 5) {
1510                         int bit[] = { 6, 7, 11, 10, 23 };
1511                         *val = (data->alarms >> bit[channel]) & 1;
1512                         return 0;
1513                 }
1514                 break;
1515         default:
1516                 break;
1517         }
1518         return -EOPNOTSUPP;
1519 }
1520
1521 static int
1522 w83627ehf_do_read_pwm(struct w83627ehf_data *data, u32 attr,
1523                       int channel, long *val)
1524 {
1525         switch (attr) {
1526         case hwmon_pwm_input:
1527                 *val = data->pwm[channel];
1528                 return 0;
1529         case hwmon_pwm_enable:
1530                 *val = data->pwm_enable[channel];
1531                 return 0;
1532         case hwmon_pwm_mode:
1533                 *val = data->pwm_enable[channel];
1534                 return 0;
1535         default:
1536                 break;
1537         }
1538         return -EOPNOTSUPP;
1539 }
1540
1541 static int
1542 w83627ehf_do_read_intrusion(struct w83627ehf_data *data, u32 attr,
1543                             int channel, long *val)
1544 {
1545         if (attr != hwmon_intrusion_alarm || channel != 0)
1546                 return -EOPNOTSUPP; /* shouldn't happen */
1547
1548         *val = !!(data->caseopen & 0x10);
1549         return 0;
1550 }
1551
1552 static int
1553 w83627ehf_read(struct device *dev, enum hwmon_sensor_types type,
1554                         u32 attr, int channel, long *val)
1555 {
1556         struct w83627ehf_data *data = w83627ehf_update_device(dev->parent);
1557
1558         switch (type) {
1559         case hwmon_fan:
1560                 return w83627ehf_do_read_fan(data, attr, channel, val);
1561
1562         case hwmon_in:
1563                 return w83627ehf_do_read_in(data, attr, channel, val);
1564
1565         case hwmon_pwm:
1566                 return w83627ehf_do_read_pwm(data, attr, channel, val);
1567
1568         case hwmon_temp:
1569                 return w83627ehf_do_read_temp(data, attr, channel, val);
1570
1571         case hwmon_intrusion:
1572                 return w83627ehf_do_read_intrusion(data, attr, channel, val);
1573
1574         default:
1575                 break;
1576         }
1577
1578         return -EOPNOTSUPP;
1579 }
1580
1581 static int
1582 w83627ehf_read_string(struct device *dev, enum hwmon_sensor_types type,
1583                       u32 attr, int channel, const char **str)
1584 {
1585         struct w83627ehf_data *data = dev_get_drvdata(dev);
1586
1587         switch (type) {
1588         case hwmon_temp:
1589                 if (attr == hwmon_temp_label) {
1590                         *str = data->temp_label[data->temp_src[channel]];
1591                         return 0;
1592                 }
1593                 break;
1594
1595         default:
1596                 break;
1597         }
1598         /* Nothing else should be read as a string */
1599         return -EOPNOTSUPP;
1600 }
1601
1602 static int
1603 w83627ehf_write(struct device *dev, enum hwmon_sensor_types type,
1604                         u32 attr, int channel, long val)
1605 {
1606         struct w83627ehf_data *data = dev_get_drvdata(dev);
1607
1608         if (type == hwmon_in && attr == hwmon_in_min)
1609                 return store_in_min(dev, data, channel, val);
1610         if (type == hwmon_in && attr == hwmon_in_max)
1611                 return store_in_max(dev, data, channel, val);
1612
1613         if (type == hwmon_fan && attr == hwmon_fan_min)
1614                 return store_fan_min(dev, data, channel, val);
1615
1616         if (type == hwmon_temp && attr == hwmon_temp_max)
1617                 return store_temp_max(dev, data, channel, val);
1618         if (type == hwmon_temp && attr == hwmon_temp_max_hyst)
1619                 return store_temp_max_hyst(dev, data, channel, val);
1620         if (type == hwmon_temp && attr == hwmon_temp_offset)
1621                 return store_temp_offset(dev, data, channel, val);
1622
1623         if (type == hwmon_pwm && attr == hwmon_pwm_mode)
1624                 return store_pwm_mode(dev, data, channel, val);
1625         if (type == hwmon_pwm && attr == hwmon_pwm_enable)
1626                 return store_pwm_enable(dev, data, channel, val);
1627         if (type == hwmon_pwm && attr == hwmon_pwm_input)
1628                 return store_pwm(dev, data, channel, val);
1629
1630         if (type == hwmon_intrusion && attr == hwmon_intrusion_alarm)
1631                 return clear_caseopen(dev, data, channel, val);
1632
1633         return -EOPNOTSUPP;
1634 }
1635
1636 static const struct hwmon_ops w83627ehf_ops = {
1637         .is_visible = w83627ehf_is_visible,
1638         .read = w83627ehf_read,
1639         .read_string = w83627ehf_read_string,
1640         .write = w83627ehf_write,
1641 };
1642
1643 static const struct hwmon_channel_info * const w83627ehf_info[] = {
1644         HWMON_CHANNEL_INFO(fan,
1645                 HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1646                 HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1647                 HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1648                 HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1649                 HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN),
1650         HWMON_CHANNEL_INFO(in,
1651                 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1652                 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1653                 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1654                 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1655                 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1656                 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1657                 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1658                 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1659                 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1660                 HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN),
1661         HWMON_CHANNEL_INFO(pwm,
1662                 HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1663                 HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1664                 HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1665                 HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE),
1666         HWMON_CHANNEL_INFO(temp,
1667                 HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1668                         HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1669                 HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1670                         HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1671                 HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1672                         HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1673                 HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1674                         HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1675                 HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1676                         HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1677                 HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1678                         HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1679                 HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1680                         HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1681                 HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1682                         HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1683                 HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1684                         HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE),
1685         HWMON_CHANNEL_INFO(intrusion,
1686                 HWMON_INTRUSION_ALARM),
1687         NULL
1688 };
1689
1690 static const struct hwmon_chip_info w83627ehf_chip_info = {
1691         .ops = &w83627ehf_ops,
1692         .info = w83627ehf_info,
1693 };
1694
1695 static int __init w83627ehf_probe(struct platform_device *pdev)
1696 {
1697         struct device *dev = &pdev->dev;
1698         struct w83627ehf_sio_data *sio_data = dev_get_platdata(dev);
1699         struct w83627ehf_data *data;
1700         struct resource *res;
1701         u8 en_vrm10;
1702         int i, err = 0;
1703         struct device *hwmon_dev;
1704
1705         res = platform_get_resource(pdev, IORESOURCE_IO, 0);
1706         if (!devm_request_region(dev, res->start, IOREGION_LENGTH, DRVNAME))
1707                 return -EBUSY;
1708
1709         data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
1710         if (!data)
1711                 return -ENOMEM;
1712
1713         data->addr = res->start;
1714         mutex_init(&data->lock);
1715         mutex_init(&data->update_lock);
1716         data->name = w83627ehf_device_names[sio_data->kind];
1717         data->bank = 0xff;              /* Force initial bank selection */
1718         platform_set_drvdata(pdev, data);
1719
1720         /* 627EHG and 627EHF have 10 voltage inputs; 627DHG and 667HG have 9 */
1721         data->in_num = (sio_data->kind == w83627ehf) ? 10 : 9;
1722         /* 667HG has 3 pwms, and 627UHG has only 2 */
1723         switch (sio_data->kind) {
1724         default:
1725                 data->pwm_num = 4;
1726                 break;
1727         case w83667hg:
1728         case w83667hg_b:
1729                 data->pwm_num = 3;
1730                 break;
1731         case w83627uhg:
1732                 data->pwm_num = 2;
1733                 break;
1734         }
1735
1736         /* Default to 3 temperature inputs, code below will adjust as needed */
1737         data->have_temp = 0x07;
1738
1739         /* Deal with temperature register setup first. */
1740         if (sio_data->kind == w83667hg_b) {
1741                 u8 reg;
1742
1743                 w83627ehf_set_temp_reg_ehf(data, 4);
1744
1745                 /*
1746                  * Temperature sources are selected with bank 0, registers 0x49
1747                  * and 0x4a.
1748                  */
1749                 reg = w83627ehf_read_value(data, 0x4a);
1750                 data->temp_src[0] = reg >> 5;
1751                 reg = w83627ehf_read_value(data, 0x49);
1752                 data->temp_src[1] = reg & 0x07;
1753                 data->temp_src[2] = (reg >> 4) & 0x07;
1754
1755                 /*
1756                  * W83667HG-B has another temperature register at 0x7e.
1757                  * The temperature source is selected with register 0x7d.
1758                  * Support it if the source differs from already reported
1759                  * sources.
1760                  */
1761                 reg = w83627ehf_read_value(data, 0x7d);
1762                 reg &= 0x07;
1763                 if (reg != data->temp_src[0] && reg != data->temp_src[1]
1764                     && reg != data->temp_src[2]) {
1765                         data->temp_src[3] = reg;
1766                         data->have_temp |= 1 << 3;
1767                 }
1768
1769                 /*
1770                  * Chip supports either AUXTIN or VIN3. Try to find out which
1771                  * one.
1772                  */
1773                 reg = w83627ehf_read_value(data, W83627EHF_REG_TEMP_CONFIG[2]);
1774                 if (data->temp_src[2] == 2 && (reg & 0x01))
1775                         data->have_temp &= ~(1 << 2);
1776
1777                 if ((data->temp_src[2] == 2 && (data->have_temp & (1 << 2)))
1778                     || (data->temp_src[3] == 2 && (data->have_temp & (1 << 3))))
1779                         data->in6_skip = 1;
1780
1781                 data->temp_label = w83667hg_b_temp_label;
1782                 data->have_temp_offset = data->have_temp & 0x07;
1783                 for (i = 0; i < 3; i++) {
1784                         if (data->temp_src[i] > 2)
1785                                 data->have_temp_offset &= ~(1 << i);
1786                 }
1787         } else if (sio_data->kind == w83627uhg) {
1788                 u8 reg;
1789
1790                 w83627ehf_set_temp_reg_ehf(data, 3);
1791
1792                 /*
1793                  * Temperature sources for temp2 and temp3 are selected with
1794                  * bank 0, registers 0x49 and 0x4a.
1795                  */
1796                 data->temp_src[0] = 0;  /* SYSTIN */
1797                 reg = w83627ehf_read_value(data, 0x49) & 0x07;
1798                 /* Adjust to have the same mapping as other source registers */
1799                 if (reg == 0)
1800                         data->temp_src[1] = 1;
1801                 else if (reg >= 2 && reg <= 5)
1802                         data->temp_src[1] = reg + 2;
1803                 else    /* should never happen */
1804                         data->have_temp &= ~(1 << 1);
1805                 reg = w83627ehf_read_value(data, 0x4a);
1806                 data->temp_src[2] = reg >> 5;
1807
1808                 /*
1809                  * Skip temp3 if source is invalid or the same as temp1
1810                  * or temp2.
1811                  */
1812                 if (data->temp_src[2] == 2 || data->temp_src[2] == 3 ||
1813                     data->temp_src[2] == data->temp_src[0] ||
1814                     ((data->have_temp & (1 << 1)) &&
1815                      data->temp_src[2] == data->temp_src[1]))
1816                         data->have_temp &= ~(1 << 2);
1817                 else
1818                         data->temp3_val_only = 1;       /* No limit regs */
1819
1820                 data->in6_skip = 1;                     /* No VIN3 */
1821
1822                 data->temp_label = w83667hg_b_temp_label;
1823                 data->have_temp_offset = data->have_temp & 0x03;
1824                 for (i = 0; i < 3; i++) {
1825                         if (data->temp_src[i] > 1)
1826                                 data->have_temp_offset &= ~(1 << i);
1827                 }
1828         } else {
1829                 w83627ehf_set_temp_reg_ehf(data, 3);
1830
1831                 /* Temperature sources are fixed */
1832
1833                 if (sio_data->kind == w83667hg) {
1834                         u8 reg;
1835
1836                         /*
1837                          * Chip supports either AUXTIN or VIN3. Try to find
1838                          * out which one.
1839                          */
1840                         reg = w83627ehf_read_value(data,
1841                                                 W83627EHF_REG_TEMP_CONFIG[2]);
1842                         if (reg & 0x01)
1843                                 data->have_temp &= ~(1 << 2);
1844                         else
1845                                 data->in6_skip = 1;
1846                 }
1847                 data->have_temp_offset = data->have_temp & 0x07;
1848         }
1849
1850         if (sio_data->kind == w83667hg_b) {
1851                 data->REG_FAN_MAX_OUTPUT =
1852                   W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B;
1853                 data->REG_FAN_STEP_OUTPUT =
1854                   W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B;
1855         } else {
1856                 data->REG_FAN_MAX_OUTPUT =
1857                   W83627EHF_REG_FAN_MAX_OUTPUT_COMMON;
1858                 data->REG_FAN_STEP_OUTPUT =
1859                   W83627EHF_REG_FAN_STEP_OUTPUT_COMMON;
1860         }
1861
1862         /* Setup input voltage scaling factors */
1863         if (sio_data->kind == w83627uhg)
1864                 data->scale_in = scale_in_w83627uhg;
1865         else
1866                 data->scale_in = scale_in_common;
1867
1868         /* Initialize the chip */
1869         w83627ehf_init_device(data, sio_data->kind);
1870
1871         data->vrm = vid_which_vrm();
1872
1873         err = superio_enter(sio_data->sioreg);
1874         if (err)
1875                 return err;
1876
1877         /* Read VID value */
1878         if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
1879                 /*
1880                  * W83667HG has different pins for VID input and output, so
1881                  * we can get the VID input values directly at logical device D
1882                  * 0xe3.
1883                  */
1884                 superio_select(sio_data->sioreg, W83667HG_LD_VID);
1885                 data->vid = superio_inb(sio_data->sioreg, 0xe3);
1886                 data->have_vid = true;
1887         } else if (sio_data->kind != w83627uhg) {
1888                 superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
1889                 if (superio_inb(sio_data->sioreg, SIO_REG_VID_CTRL) & 0x80) {
1890                         /*
1891                          * Set VID input sensibility if needed. In theory the
1892                          * BIOS should have set it, but in practice it's not
1893                          * always the case. We only do it for the W83627EHF/EHG
1894                          * because the W83627DHG is more complex in this
1895                          * respect.
1896                          */
1897                         if (sio_data->kind == w83627ehf) {
1898                                 en_vrm10 = superio_inb(sio_data->sioreg,
1899                                                        SIO_REG_EN_VRM10);
1900                                 if ((en_vrm10 & 0x08) && data->vrm == 90) {
1901                                         dev_warn(dev,
1902                                                  "Setting VID input voltage to TTL\n");
1903                                         superio_outb(sio_data->sioreg,
1904                                                      SIO_REG_EN_VRM10,
1905                                                      en_vrm10 & ~0x08);
1906                                 } else if (!(en_vrm10 & 0x08)
1907                                            && data->vrm == 100) {
1908                                         dev_warn(dev,
1909                                                  "Setting VID input voltage to VRM10\n");
1910                                         superio_outb(sio_data->sioreg,
1911                                                      SIO_REG_EN_VRM10,
1912                                                      en_vrm10 | 0x08);
1913                                 }
1914                         }
1915
1916                         data->vid = superio_inb(sio_data->sioreg,
1917                                                 SIO_REG_VID_DATA);
1918                         if (sio_data->kind == w83627ehf) /* 6 VID pins only */
1919                                 data->vid &= 0x3f;
1920                         data->have_vid = true;
1921                 } else {
1922                         dev_info(dev,
1923                                  "VID pins in output mode, CPU VID not available\n");
1924                 }
1925         }
1926
1927         w83627ehf_check_fan_inputs(sio_data, data);
1928
1929         superio_exit(sio_data->sioreg);
1930
1931         /* Read fan clock dividers immediately */
1932         w83627ehf_update_fan_div(data);
1933
1934         /* Read pwm data to save original values */
1935         w83627ehf_update_pwm(data);
1936         for (i = 0; i < data->pwm_num; i++)
1937                 data->pwm_enable_orig[i] = data->pwm_enable[i];
1938
1939         hwmon_dev = devm_hwmon_device_register_with_info(&pdev->dev,
1940                                                          data->name,
1941                                                          data,
1942                                                          &w83627ehf_chip_info,
1943                                                          w83627ehf_groups);
1944         return PTR_ERR_OR_ZERO(hwmon_dev);
1945 }
1946
1947 static int w83627ehf_suspend(struct device *dev)
1948 {
1949         struct w83627ehf_data *data = w83627ehf_update_device(dev);
1950
1951         mutex_lock(&data->update_lock);
1952         data->vbat = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
1953         mutex_unlock(&data->update_lock);
1954
1955         return 0;
1956 }
1957
1958 static int w83627ehf_resume(struct device *dev)
1959 {
1960         struct w83627ehf_data *data = dev_get_drvdata(dev);
1961         int i;
1962
1963         mutex_lock(&data->update_lock);
1964         data->bank = 0xff;              /* Force initial bank selection */
1965
1966         /* Restore limits */
1967         for (i = 0; i < data->in_num; i++) {
1968                 if ((i == 6) && data->in6_skip)
1969                         continue;
1970
1971                 w83627ehf_write_value(data, W83627EHF_REG_IN_MIN(i),
1972                                       data->in_min[i]);
1973                 w83627ehf_write_value(data, W83627EHF_REG_IN_MAX(i),
1974                                       data->in_max[i]);
1975         }
1976
1977         for (i = 0; i < 5; i++) {
1978                 if (!(data->has_fan_min & (1 << i)))
1979                         continue;
1980
1981                 w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[i],
1982                                       data->fan_min[i]);
1983         }
1984
1985         for (i = 0; i < NUM_REG_TEMP; i++) {
1986                 if (!(data->have_temp & (1 << i)))
1987                         continue;
1988
1989                 if (data->reg_temp_over[i])
1990                         w83627ehf_write_temp(data, data->reg_temp_over[i],
1991                                              data->temp_max[i]);
1992                 if (data->reg_temp_hyst[i])
1993                         w83627ehf_write_temp(data, data->reg_temp_hyst[i],
1994                                              data->temp_max_hyst[i]);
1995                 if (i > 2)
1996                         continue;
1997                 if (data->have_temp_offset & (1 << i))
1998                         w83627ehf_write_value(data,
1999                                               W83627EHF_REG_TEMP_OFFSET[i],
2000                                               data->temp_offset[i]);
2001         }
2002
2003         /* Restore other settings */
2004         w83627ehf_write_value(data, W83627EHF_REG_VBAT, data->vbat);
2005
2006         /* Force re-reading all values */
2007         data->valid = false;
2008         mutex_unlock(&data->update_lock);
2009
2010         return 0;
2011 }
2012
2013 static DEFINE_SIMPLE_DEV_PM_OPS(w83627ehf_dev_pm_ops, w83627ehf_suspend, w83627ehf_resume);
2014
2015 static struct platform_driver w83627ehf_driver = {
2016         .driver = {
2017                 .name   = DRVNAME,
2018                 .pm     = pm_sleep_ptr(&w83627ehf_dev_pm_ops),
2019         },
2020 };
2021
2022 /* w83627ehf_find() looks for a '627 in the Super-I/O config space */
2023 static int __init w83627ehf_find(int sioaddr, unsigned short *addr,
2024                                  struct w83627ehf_sio_data *sio_data)
2025 {
2026         static const char sio_name_W83627EHF[] __initconst = "W83627EHF";
2027         static const char sio_name_W83627EHG[] __initconst = "W83627EHG";
2028         static const char sio_name_W83627DHG[] __initconst = "W83627DHG";
2029         static const char sio_name_W83627DHG_P[] __initconst = "W83627DHG-P";
2030         static const char sio_name_W83627UHG[] __initconst = "W83627UHG";
2031         static const char sio_name_W83667HG[] __initconst = "W83667HG";
2032         static const char sio_name_W83667HG_B[] __initconst = "W83667HG-B";
2033
2034         u16 val;
2035         const char *sio_name;
2036         int err;
2037
2038         err = superio_enter(sioaddr);
2039         if (err)
2040                 return err;
2041
2042         if (force_id)
2043                 val = force_id;
2044         else
2045                 val = (superio_inb(sioaddr, SIO_REG_DEVID) << 8)
2046                     | superio_inb(sioaddr, SIO_REG_DEVID + 1);
2047         switch (val & SIO_ID_MASK) {
2048         case SIO_W83627EHF_ID:
2049                 sio_data->kind = w83627ehf;
2050                 sio_name = sio_name_W83627EHF;
2051                 break;
2052         case SIO_W83627EHG_ID:
2053                 sio_data->kind = w83627ehf;
2054                 sio_name = sio_name_W83627EHG;
2055                 break;
2056         case SIO_W83627DHG_ID:
2057                 sio_data->kind = w83627dhg;
2058                 sio_name = sio_name_W83627DHG;
2059                 break;
2060         case SIO_W83627DHG_P_ID:
2061                 sio_data->kind = w83627dhg_p;
2062                 sio_name = sio_name_W83627DHG_P;
2063                 break;
2064         case SIO_W83627UHG_ID:
2065                 sio_data->kind = w83627uhg;
2066                 sio_name = sio_name_W83627UHG;
2067                 break;
2068         case SIO_W83667HG_ID:
2069                 sio_data->kind = w83667hg;
2070                 sio_name = sio_name_W83667HG;
2071                 break;
2072         case SIO_W83667HG_B_ID:
2073                 sio_data->kind = w83667hg_b;
2074                 sio_name = sio_name_W83667HG_B;
2075                 break;
2076         default:
2077                 if (val != 0xffff)
2078                         pr_debug("unsupported chip ID: 0x%04x\n", val);
2079                 superio_exit(sioaddr);
2080                 return -ENODEV;
2081         }
2082
2083         /* We have a known chip, find the HWM I/O address */
2084         superio_select(sioaddr, W83627EHF_LD_HWM);
2085         val = (superio_inb(sioaddr, SIO_REG_ADDR) << 8)
2086             | superio_inb(sioaddr, SIO_REG_ADDR + 1);
2087         *addr = val & IOREGION_ALIGNMENT;
2088         if (*addr == 0) {
2089                 pr_err("Refusing to enable a Super-I/O device with a base I/O port 0\n");
2090                 superio_exit(sioaddr);
2091                 return -ENODEV;
2092         }
2093
2094         /* Activate logical device if needed */
2095         val = superio_inb(sioaddr, SIO_REG_ENABLE);
2096         if (!(val & 0x01)) {
2097                 pr_warn("Forcibly enabling Super-I/O. Sensor is probably unusable.\n");
2098                 superio_outb(sioaddr, SIO_REG_ENABLE, val | 0x01);
2099         }
2100
2101         superio_exit(sioaddr);
2102         pr_info("Found %s chip at %#x\n", sio_name, *addr);
2103         sio_data->sioreg = sioaddr;
2104
2105         return 0;
2106 }
2107
2108 /*
2109  * when Super-I/O functions move to a separate file, the Super-I/O
2110  * bus will manage the lifetime of the device and this module will only keep
2111  * track of the w83627ehf driver.
2112  */
2113 static struct platform_device *pdev;
2114
2115 static int __init sensors_w83627ehf_init(void)
2116 {
2117         int err;
2118         unsigned short address;
2119         struct resource res = {
2120                 .name   = DRVNAME,
2121                 .flags  = IORESOURCE_IO,
2122         };
2123         struct w83627ehf_sio_data sio_data;
2124
2125         /*
2126          * initialize sio_data->kind and sio_data->sioreg.
2127          *
2128          * when Super-I/O functions move to a separate file, the Super-I/O
2129          * driver will probe 0x2e and 0x4e and auto-detect the presence of a
2130          * w83627ehf hardware monitor, and call probe()
2131          */
2132         if (w83627ehf_find(0x2e, &address, &sio_data) &&
2133             w83627ehf_find(0x4e, &address, &sio_data))
2134                 return -ENODEV;
2135
2136         res.start = address + IOREGION_OFFSET;
2137         res.end = address + IOREGION_OFFSET + IOREGION_LENGTH - 1;
2138
2139         err = acpi_check_resource_conflict(&res);
2140         if (err)
2141                 return err;
2142
2143         pdev = platform_create_bundle(&w83627ehf_driver, w83627ehf_probe, &res, 1, &sio_data,
2144                                       sizeof(struct w83627ehf_sio_data));
2145
2146         return PTR_ERR_OR_ZERO(pdev);
2147 }
2148
2149 static void __exit sensors_w83627ehf_exit(void)
2150 {
2151         platform_device_unregister(pdev);
2152         platform_driver_unregister(&w83627ehf_driver);
2153 }
2154
2155 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
2156 MODULE_DESCRIPTION("W83627EHF driver");
2157 MODULE_LICENSE("GPL");
2158
2159 module_init(sensors_w83627ehf_init);
2160 module_exit(sensors_w83627ehf_exit);