2 * via686a.c - Part of lm_sensors, Linux kernel modules
3 * for hardware monitoring
5 * Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
6 * Kyösti Mälkki <kmalkki@cc.hut.fi>,
7 * Mark Studebaker <mdsxyz123@yahoo.com>,
8 * and Bob Dougherty <bobd@stanford.edu>
10 * (Some conversion-factor data were contributed by Jonathan Teh Soon Yew
11 * <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 * Supports the Via VT82C686A, VT82C686B south bridges.
30 * Reports all as a 686A.
31 * Warning - only supports a single device.
34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 #include <linux/module.h>
37 #include <linux/slab.h>
38 #include <linux/pci.h>
39 #include <linux/jiffies.h>
40 #include <linux/platform_device.h>
41 #include <linux/hwmon.h>
42 #include <linux/hwmon-sysfs.h>
43 #include <linux/err.h>
44 #include <linux/init.h>
45 #include <linux/mutex.h>
46 #include <linux/sysfs.h>
47 #include <linux/acpi.h>
52 * If force_addr is set to anything different from 0, we forcibly enable
53 * the device at the given address.
55 static unsigned short force_addr;
56 module_param(force_addr, ushort, 0);
57 MODULE_PARM_DESC(force_addr,
58 "Initialize the base address of the sensors");
60 static struct platform_device *pdev;
63 * The Via 686a southbridge has a LM78-like chip integrated on the same IC.
64 * This driver is a customized copy of lm78.c
67 /* Many VIA686A constants specified below */
69 /* Length of ISA address segment */
70 #define VIA686A_EXTENT 0x80
71 #define VIA686A_BASE_REG 0x70
72 #define VIA686A_ENABLE_REG 0x74
74 /* The VIA686A registers */
75 /* ins numbered 0-4 */
76 #define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2))
77 #define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2))
78 #define VIA686A_REG_IN(nr) (0x22 + (nr))
80 /* fans numbered 1-2 */
81 #define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr))
82 #define VIA686A_REG_FAN(nr) (0x28 + (nr))
84 /* temps numbered 1-3 */
85 static const u8 VIA686A_REG_TEMP[] = { 0x20, 0x21, 0x1f };
86 static const u8 VIA686A_REG_TEMP_OVER[] = { 0x39, 0x3d, 0x1d };
87 static const u8 VIA686A_REG_TEMP_HYST[] = { 0x3a, 0x3e, 0x1e };
89 #define VIA686A_REG_TEMP_LOW1 0x4b
90 /* 2 = bits 5-4, 3 = bits 7-6 */
91 #define VIA686A_REG_TEMP_LOW23 0x49
93 #define VIA686A_REG_ALARM1 0x41
94 #define VIA686A_REG_ALARM2 0x42
95 #define VIA686A_REG_FANDIV 0x47
96 #define VIA686A_REG_CONFIG 0x40
98 * The following register sets temp interrupt mode (bits 1-0 for temp1,
99 * 3-2 for temp2, 5-4 for temp3). Modes are:
100 * 00 interrupt stays as long as value is out-of-range
101 * 01 interrupt is cleared once register is read (default)
102 * 10 comparator mode- like 00, but ignores hysteresis
105 #define VIA686A_REG_TEMP_MODE 0x4b
106 /* We'll just assume that you want to set all 3 simultaneously: */
107 #define VIA686A_TEMP_MODE_MASK 0x3F
108 #define VIA686A_TEMP_MODE_CONTINUOUS 0x00
111 * Conversions. Limit checking is only done on the TO_REG
114 ******** VOLTAGE CONVERSIONS (Bob Dougherty) ********
115 * From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
116 * voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp
117 * voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V
118 * voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V
119 * voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V
120 * voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V
121 * in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
123 * volts = (25*regVal+133)*factor
124 * regVal = (volts/factor-133)/25
125 * (These conversions were contributed by Jonathan Teh Soon Yew
128 static inline u8 IN_TO_REG(long val, int in_num)
131 * To avoid floating point, we multiply constants by 10 (100 for +12V).
132 * Rounding is done (120500 is actually 133000 - 12500).
133 * Remember that val is expressed in 0.001V/bit, which is why we divide
134 * by an additional 10000 (100000 for +12V): 1000 for val and 10 (100)
138 return (u8) clamp_val((val * 21024 - 1205000) / 250000, 0, 255);
139 else if (in_num == 2)
140 return (u8) clamp_val((val * 15737 - 1205000) / 250000, 0, 255);
141 else if (in_num == 3)
142 return (u8) clamp_val((val * 10108 - 1205000) / 250000, 0, 255);
144 return (u8) clamp_val((val * 41714 - 12050000) / 2500000, 0,
148 static inline long IN_FROM_REG(u8 val, int in_num)
151 * To avoid floating point, we multiply constants by 10 (100 for +12V).
152 * We also multiply them by 1000 because we want 0.001V/bit for the
153 * output value. Rounding is done.
156 return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024);
157 else if (in_num == 2)
158 return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737);
159 else if (in_num == 3)
160 return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108);
162 return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714);
165 /********* FAN RPM CONVERSIONS ********/
167 * Higher register values = slower fans (the fan's strobe gates a counter).
168 * But this chip saturates back at 0, not at 255 like all the other chips.
171 static inline u8 FAN_TO_REG(long rpm, int div)
175 rpm = clamp_val(rpm, 1, 1000000);
176 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 255);
179 #define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : (val) == 255 ? 0 : 1350000 / \
182 /******** TEMP CONVERSIONS (Bob Dougherty) *********/
184 * linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
186 * return double(temp)*0.427-32.08;
187 * else if(temp>=169 && temp<=202)
188 * return double(temp)*0.582-58.16;
190 * return double(temp)*0.924-127.33;
192 * A fifth-order polynomial fits the unofficial data (provided by Alex van
193 * Kaam <darkside@chello.nl>) a bit better. It also give more reasonable
194 * numbers on my machine (ie. they agree with what my BIOS tells me).
195 * Here's the fifth-order fit to the 8-bit data:
196 * temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
197 * 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
199 * (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
200 * finding my typos in this formula!)
202 * Alas, none of the elegant function-fit solutions will work because we
203 * aren't allowed to use floating point in the kernel and doing it with
204 * integers doesn't provide enough precision. So we'll do boring old
205 * look-up table stuff. The unofficial data (see below) have effectively
206 * 7-bit resolution (they are rounded to the nearest degree). I'm assuming
207 * that the transfer function of the device is monotonic and smooth, so a
208 * smooth function fit to the data will allow us to get better precision.
209 * I used the 5th-order poly fit described above and solved for
210 * VIA register values 0-255. I *10 before rounding, so we get tenth-degree
211 * precision. (I could have done all 1024 values for our 10-bit readings,
212 * but the function is very linear in the useful range (0-80 deg C), so
213 * we'll just use linear interpolation for 10-bit readings.) So, temp_lut
214 * is the temp at via register values 0-255:
216 static const s16 temp_lut[] = {
217 -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
218 -503, -487, -471, -456, -442, -428, -414, -400, -387, -375,
219 -362, -350, -339, -327, -316, -305, -295, -285, -275, -265,
220 -255, -246, -237, -229, -220, -212, -204, -196, -188, -180,
221 -173, -166, -159, -152, -145, -139, -132, -126, -120, -114,
222 -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49,
223 -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16,
224 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84,
225 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138,
226 142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189,
227 193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241,
228 245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294,
229 299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348,
230 353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404,
231 409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464,
232 469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532,
233 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614,
234 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718,
235 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856,
236 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044,
237 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252,
238 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462
242 * the original LUT values from Alex van Kaam <darkside@chello.nl>
243 * (for via register values 12-240):
244 * {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
245 * -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
246 * -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
247 * -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
248 * 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
249 * 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
250 * 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
251 * 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
252 * 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
253 * 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
256 * Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed
257 * an extra term for a good fit to these inverse data!) and then
258 * solving for each temp value from -50 to 110 (the useable range for
259 * this chip). Here's the fit:
260 * viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
261 * - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
264 static const u8 via_lut[] = {
265 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
266 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40,
267 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66,
268 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100,
269 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129,
270 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156,
271 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180,
272 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199,
273 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213,
274 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224,
275 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232,
276 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239,
281 * Converting temps to (8-bit) hyst and over registers
282 * No interpolation here.
283 * The +50 is because the temps start at -50
285 static inline u8 TEMP_TO_REG(long val)
287 return via_lut[val <= -50000 ? 0 : val >= 110000 ? 160 :
288 (val < 0 ? val - 500 : val + 500) / 1000 + 50];
291 /* for 8-bit temperature hyst and over registers */
292 #define TEMP_FROM_REG(val) ((long)temp_lut[val] * 100)
294 /* for 10-bit temperature readings */
295 static inline long TEMP_FROM_REG10(u16 val)
297 u16 eight_bits = val >> 2;
298 u16 two_bits = val & 3;
300 /* no interpolation for these */
301 if (two_bits == 0 || eight_bits == 255)
302 return TEMP_FROM_REG(eight_bits);
304 /* do some linear interpolation */
305 return (temp_lut[eight_bits] * (4 - two_bits) +
306 temp_lut[eight_bits + 1] * two_bits) * 25;
309 #define DIV_FROM_REG(val) (1 << (val))
310 #define DIV_TO_REG(val) ((val) == 8 ? 3 : (val) == 4 ? 2 : (val) == 1 ? 0 : 1)
313 * For each registered chip, we need to keep some data in memory.
314 * The structure is dynamically allocated.
316 struct via686a_data {
319 struct device *hwmon_dev;
320 struct mutex update_lock;
321 char valid; /* !=0 if following fields are valid */
322 unsigned long last_updated; /* In jiffies */
324 u8 in[5]; /* Register value */
325 u8 in_max[5]; /* Register value */
326 u8 in_min[5]; /* Register value */
327 u8 fan[2]; /* Register value */
328 u8 fan_min[2]; /* Register value */
329 u16 temp[3]; /* Register value 10 bit */
330 u8 temp_over[3]; /* Register value */
331 u8 temp_hyst[3]; /* Register value */
332 u8 fan_div[2]; /* Register encoding, shifted right */
333 u16 alarms; /* Register encoding, combined */
336 static struct pci_dev *s_bridge; /* pointer to the (only) via686a */
338 static int via686a_probe(struct platform_device *pdev);
339 static int via686a_remove(struct platform_device *pdev);
341 static inline int via686a_read_value(struct via686a_data *data, u8 reg)
343 return inb_p(data->addr + reg);
346 static inline void via686a_write_value(struct via686a_data *data, u8 reg,
349 outb_p(value, data->addr + reg);
352 static struct via686a_data *via686a_update_device(struct device *dev);
353 static void via686a_init_device(struct via686a_data *data);
355 /* following are the sysfs callback functions */
357 /* 7 voltage sensors */
358 static ssize_t show_in(struct device *dev, struct device_attribute *da,
360 struct via686a_data *data = via686a_update_device(dev);
361 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
362 int nr = attr->index;
363 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr));
366 static ssize_t show_in_min(struct device *dev, struct device_attribute *da,
368 struct via686a_data *data = via686a_update_device(dev);
369 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
370 int nr = attr->index;
371 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr));
374 static ssize_t show_in_max(struct device *dev, struct device_attribute *da,
376 struct via686a_data *data = via686a_update_device(dev);
377 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
378 int nr = attr->index;
379 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr));
382 static ssize_t set_in_min(struct device *dev, struct device_attribute *da,
383 const char *buf, size_t count) {
384 struct via686a_data *data = dev_get_drvdata(dev);
385 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
386 int nr = attr->index;
390 err = kstrtoul(buf, 10, &val);
394 mutex_lock(&data->update_lock);
395 data->in_min[nr] = IN_TO_REG(val, nr);
396 via686a_write_value(data, VIA686A_REG_IN_MIN(nr),
398 mutex_unlock(&data->update_lock);
401 static ssize_t set_in_max(struct device *dev, struct device_attribute *da,
402 const char *buf, size_t count) {
403 struct via686a_data *data = dev_get_drvdata(dev);
404 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
405 int nr = attr->index;
409 err = kstrtoul(buf, 10, &val);
413 mutex_lock(&data->update_lock);
414 data->in_max[nr] = IN_TO_REG(val, nr);
415 via686a_write_value(data, VIA686A_REG_IN_MAX(nr),
417 mutex_unlock(&data->update_lock);
420 #define show_in_offset(offset) \
421 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
422 show_in, NULL, offset); \
423 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
424 show_in_min, set_in_min, offset); \
425 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
426 show_in_max, set_in_max, offset);
435 static ssize_t show_temp(struct device *dev, struct device_attribute *da,
437 struct via686a_data *data = via686a_update_device(dev);
438 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
439 int nr = attr->index;
440 return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr]));
442 static ssize_t show_temp_over(struct device *dev, struct device_attribute *da,
444 struct via686a_data *data = via686a_update_device(dev);
445 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
446 int nr = attr->index;
447 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr]));
449 static ssize_t show_temp_hyst(struct device *dev, struct device_attribute *da,
451 struct via686a_data *data = via686a_update_device(dev);
452 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
453 int nr = attr->index;
454 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr]));
456 static ssize_t set_temp_over(struct device *dev, struct device_attribute *da,
457 const char *buf, size_t count) {
458 struct via686a_data *data = dev_get_drvdata(dev);
459 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
460 int nr = attr->index;
464 err = kstrtol(buf, 10, &val);
468 mutex_lock(&data->update_lock);
469 data->temp_over[nr] = TEMP_TO_REG(val);
470 via686a_write_value(data, VIA686A_REG_TEMP_OVER[nr],
471 data->temp_over[nr]);
472 mutex_unlock(&data->update_lock);
475 static ssize_t set_temp_hyst(struct device *dev, struct device_attribute *da,
476 const char *buf, size_t count) {
477 struct via686a_data *data = dev_get_drvdata(dev);
478 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
479 int nr = attr->index;
483 err = kstrtol(buf, 10, &val);
487 mutex_lock(&data->update_lock);
488 data->temp_hyst[nr] = TEMP_TO_REG(val);
489 via686a_write_value(data, VIA686A_REG_TEMP_HYST[nr],
490 data->temp_hyst[nr]);
491 mutex_unlock(&data->update_lock);
494 #define show_temp_offset(offset) \
495 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
496 show_temp, NULL, offset - 1); \
497 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
498 show_temp_over, set_temp_over, offset - 1); \
499 static SENSOR_DEVICE_ATTR(temp##offset##_max_hyst, S_IRUGO | S_IWUSR, \
500 show_temp_hyst, set_temp_hyst, offset - 1);
507 static ssize_t show_fan(struct device *dev, struct device_attribute *da,
509 struct via686a_data *data = via686a_update_device(dev);
510 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
511 int nr = attr->index;
512 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
513 DIV_FROM_REG(data->fan_div[nr])));
515 static ssize_t show_fan_min(struct device *dev, struct device_attribute *da,
517 struct via686a_data *data = via686a_update_device(dev);
518 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
519 int nr = attr->index;
520 return sprintf(buf, "%d\n",
521 FAN_FROM_REG(data->fan_min[nr],
522 DIV_FROM_REG(data->fan_div[nr])));
524 static ssize_t show_fan_div(struct device *dev, struct device_attribute *da,
526 struct via686a_data *data = via686a_update_device(dev);
527 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
528 int nr = attr->index;
529 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
531 static ssize_t set_fan_min(struct device *dev, struct device_attribute *da,
532 const char *buf, size_t count) {
533 struct via686a_data *data = dev_get_drvdata(dev);
534 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
535 int nr = attr->index;
539 err = kstrtoul(buf, 10, &val);
543 mutex_lock(&data->update_lock);
544 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
545 via686a_write_value(data, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]);
546 mutex_unlock(&data->update_lock);
549 static ssize_t set_fan_div(struct device *dev, struct device_attribute *da,
550 const char *buf, size_t count) {
551 struct via686a_data *data = dev_get_drvdata(dev);
552 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
553 int nr = attr->index;
558 err = kstrtoul(buf, 10, &val);
562 mutex_lock(&data->update_lock);
563 old = via686a_read_value(data, VIA686A_REG_FANDIV);
564 data->fan_div[nr] = DIV_TO_REG(val);
565 old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4);
566 via686a_write_value(data, VIA686A_REG_FANDIV, old);
567 mutex_unlock(&data->update_lock);
571 #define show_fan_offset(offset) \
572 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
573 show_fan, NULL, offset - 1); \
574 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
575 show_fan_min, set_fan_min, offset - 1); \
576 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
577 show_fan_div, set_fan_div, offset - 1);
583 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
586 struct via686a_data *data = via686a_update_device(dev);
587 return sprintf(buf, "%u\n", data->alarms);
590 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
592 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
595 int bitnr = to_sensor_dev_attr(attr)->index;
596 struct via686a_data *data = via686a_update_device(dev);
597 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
599 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
600 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
601 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
602 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
603 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
604 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
605 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 11);
606 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 15);
607 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
608 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
610 static ssize_t show_name(struct device *dev, struct device_attribute
613 struct via686a_data *data = dev_get_drvdata(dev);
614 return sprintf(buf, "%s\n", data->name);
616 static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
618 static struct attribute *via686a_attributes[] = {
619 &sensor_dev_attr_in0_input.dev_attr.attr,
620 &sensor_dev_attr_in1_input.dev_attr.attr,
621 &sensor_dev_attr_in2_input.dev_attr.attr,
622 &sensor_dev_attr_in3_input.dev_attr.attr,
623 &sensor_dev_attr_in4_input.dev_attr.attr,
624 &sensor_dev_attr_in0_min.dev_attr.attr,
625 &sensor_dev_attr_in1_min.dev_attr.attr,
626 &sensor_dev_attr_in2_min.dev_attr.attr,
627 &sensor_dev_attr_in3_min.dev_attr.attr,
628 &sensor_dev_attr_in4_min.dev_attr.attr,
629 &sensor_dev_attr_in0_max.dev_attr.attr,
630 &sensor_dev_attr_in1_max.dev_attr.attr,
631 &sensor_dev_attr_in2_max.dev_attr.attr,
632 &sensor_dev_attr_in3_max.dev_attr.attr,
633 &sensor_dev_attr_in4_max.dev_attr.attr,
634 &sensor_dev_attr_in0_alarm.dev_attr.attr,
635 &sensor_dev_attr_in1_alarm.dev_attr.attr,
636 &sensor_dev_attr_in2_alarm.dev_attr.attr,
637 &sensor_dev_attr_in3_alarm.dev_attr.attr,
638 &sensor_dev_attr_in4_alarm.dev_attr.attr,
640 &sensor_dev_attr_temp1_input.dev_attr.attr,
641 &sensor_dev_attr_temp2_input.dev_attr.attr,
642 &sensor_dev_attr_temp3_input.dev_attr.attr,
643 &sensor_dev_attr_temp1_max.dev_attr.attr,
644 &sensor_dev_attr_temp2_max.dev_attr.attr,
645 &sensor_dev_attr_temp3_max.dev_attr.attr,
646 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
647 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
648 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
649 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
650 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
651 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
653 &sensor_dev_attr_fan1_input.dev_attr.attr,
654 &sensor_dev_attr_fan2_input.dev_attr.attr,
655 &sensor_dev_attr_fan1_min.dev_attr.attr,
656 &sensor_dev_attr_fan2_min.dev_attr.attr,
657 &sensor_dev_attr_fan1_div.dev_attr.attr,
658 &sensor_dev_attr_fan2_div.dev_attr.attr,
659 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
660 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
662 &dev_attr_alarms.attr,
667 static const struct attribute_group via686a_group = {
668 .attrs = via686a_attributes,
671 static struct platform_driver via686a_driver = {
673 .owner = THIS_MODULE,
676 .probe = via686a_probe,
677 .remove = via686a_remove,
681 /* This is called when the module is loaded */
682 static int via686a_probe(struct platform_device *pdev)
684 struct via686a_data *data;
685 struct resource *res;
688 /* Reserve the ISA region */
689 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
690 if (!devm_request_region(&pdev->dev, res->start, VIA686A_EXTENT,
691 via686a_driver.driver.name)) {
692 dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n",
693 (unsigned long)res->start, (unsigned long)res->end);
697 data = devm_kzalloc(&pdev->dev, sizeof(struct via686a_data),
702 platform_set_drvdata(pdev, data);
703 data->addr = res->start;
704 data->name = "via686a";
705 mutex_init(&data->update_lock);
707 /* Initialize the VIA686A chip */
708 via686a_init_device(data);
710 /* Register sysfs hooks */
711 err = sysfs_create_group(&pdev->dev.kobj, &via686a_group);
715 data->hwmon_dev = hwmon_device_register(&pdev->dev);
716 if (IS_ERR(data->hwmon_dev)) {
717 err = PTR_ERR(data->hwmon_dev);
718 goto exit_remove_files;
724 sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
728 static int via686a_remove(struct platform_device *pdev)
730 struct via686a_data *data = platform_get_drvdata(pdev);
732 hwmon_device_unregister(data->hwmon_dev);
733 sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
738 static void via686a_update_fan_div(struct via686a_data *data)
740 int reg = via686a_read_value(data, VIA686A_REG_FANDIV);
741 data->fan_div[0] = (reg >> 4) & 0x03;
742 data->fan_div[1] = reg >> 6;
745 static void via686a_init_device(struct via686a_data *data)
749 /* Start monitoring */
750 reg = via686a_read_value(data, VIA686A_REG_CONFIG);
751 via686a_write_value(data, VIA686A_REG_CONFIG, (reg | 0x01) & 0x7F);
753 /* Configure temp interrupt mode for continuous-interrupt operation */
754 reg = via686a_read_value(data, VIA686A_REG_TEMP_MODE);
755 via686a_write_value(data, VIA686A_REG_TEMP_MODE,
756 (reg & ~VIA686A_TEMP_MODE_MASK)
757 | VIA686A_TEMP_MODE_CONTINUOUS);
759 /* Pre-read fan clock divisor values */
760 via686a_update_fan_div(data);
763 static struct via686a_data *via686a_update_device(struct device *dev)
765 struct via686a_data *data = dev_get_drvdata(dev);
768 mutex_lock(&data->update_lock);
770 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
772 for (i = 0; i <= 4; i++) {
774 via686a_read_value(data, VIA686A_REG_IN(i));
775 data->in_min[i] = via686a_read_value(data,
779 via686a_read_value(data, VIA686A_REG_IN_MAX(i));
781 for (i = 1; i <= 2; i++) {
783 via686a_read_value(data, VIA686A_REG_FAN(i));
784 data->fan_min[i - 1] = via686a_read_value(data,
785 VIA686A_REG_FAN_MIN(i));
787 for (i = 0; i <= 2; i++) {
788 data->temp[i] = via686a_read_value(data,
789 VIA686A_REG_TEMP[i]) << 2;
791 via686a_read_value(data,
792 VIA686A_REG_TEMP_OVER[i]);
794 via686a_read_value(data,
795 VIA686A_REG_TEMP_HYST[i]);
798 * add in lower 2 bits
799 * temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
800 * temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
801 * temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
803 data->temp[0] |= (via686a_read_value(data,
804 VIA686A_REG_TEMP_LOW1)
807 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
810 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
813 via686a_update_fan_div(data);
815 via686a_read_value(data,
816 VIA686A_REG_ALARM1) |
817 (via686a_read_value(data, VIA686A_REG_ALARM2) << 8);
818 data->last_updated = jiffies;
822 mutex_unlock(&data->update_lock);
827 static const struct pci_device_id via686a_pci_ids[] = {
828 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) },
831 MODULE_DEVICE_TABLE(pci, via686a_pci_ids);
833 static int via686a_device_add(unsigned short address)
835 struct resource res = {
837 .end = address + VIA686A_EXTENT - 1,
839 .flags = IORESOURCE_IO,
843 err = acpi_check_resource_conflict(&res);
847 pdev = platform_device_alloc("via686a", address);
850 pr_err("Device allocation failed\n");
854 err = platform_device_add_resources(pdev, &res, 1);
856 pr_err("Device resource addition failed (%d)\n", err);
857 goto exit_device_put;
860 err = platform_device_add(pdev);
862 pr_err("Device addition failed (%d)\n", err);
863 goto exit_device_put;
869 platform_device_put(pdev);
874 static int via686a_pci_probe(struct pci_dev *dev,
875 const struct pci_device_id *id)
880 address = force_addr & ~(VIA686A_EXTENT - 1);
881 dev_warn(&dev->dev, "Forcing ISA address 0x%x\n", address);
882 if (PCIBIOS_SUCCESSFUL !=
883 pci_write_config_word(dev, VIA686A_BASE_REG, address | 1))
886 if (PCIBIOS_SUCCESSFUL !=
887 pci_read_config_word(dev, VIA686A_BASE_REG, &val))
890 address = val & ~(VIA686A_EXTENT - 1);
893 "base address not set - upgrade BIOS or use force_addr=0xaddr\n");
897 if (PCIBIOS_SUCCESSFUL !=
898 pci_read_config_word(dev, VIA686A_ENABLE_REG, &val))
900 if (!(val & 0x0001)) {
903 "Sensors disabled, enable with force_addr=0x%x\n",
908 dev_warn(&dev->dev, "Enabling sensors\n");
909 if (PCIBIOS_SUCCESSFUL !=
910 pci_write_config_word(dev, VIA686A_ENABLE_REG,
915 if (platform_driver_register(&via686a_driver))
918 /* Sets global pdev as a side effect */
919 if (via686a_device_add(address))
920 goto exit_unregister;
923 * Always return failure here. This is to allow other drivers to bind
924 * to this pci device. We don't really want to have control over the
925 * pci device, we only wanted to read as few register values from it.
927 s_bridge = pci_dev_get(dev);
931 platform_driver_unregister(&via686a_driver);
936 static struct pci_driver via686a_pci_driver = {
938 .id_table = via686a_pci_ids,
939 .probe = via686a_pci_probe,
942 static int __init sm_via686a_init(void)
944 return pci_register_driver(&via686a_pci_driver);
947 static void __exit sm_via686a_exit(void)
949 pci_unregister_driver(&via686a_pci_driver);
950 if (s_bridge != NULL) {
951 platform_device_unregister(pdev);
952 platform_driver_unregister(&via686a_driver);
953 pci_dev_put(s_bridge);
958 MODULE_AUTHOR("Kyösti Mälkki <kmalkki@cc.hut.fi>, "
959 "Mark Studebaker <mdsxyz123@yahoo.com> "
960 "and Bob Dougherty <bobd@stanford.edu>");
961 MODULE_DESCRIPTION("VIA 686A Sensor device");
962 MODULE_LICENSE("GPL");
964 module_init(sm_via686a_init);
965 module_exit(sm_via686a_exit);