1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * via686a.c - Part of lm_sensors, Linux kernel modules
4 * for hardware monitoring
6 * Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
7 * Kyösti Mälkki <kmalkki@cc.hut.fi>,
8 * Mark Studebaker <mdsxyz123@yahoo.com>,
9 * and Bob Dougherty <bobd@stanford.edu>
11 * (Some conversion-factor data were contributed by Jonathan Teh Soon Yew
12 * <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)
16 * Supports the Via VT82C686A, VT82C686B south bridges.
17 * Reports all as a 686A.
18 * Warning - only supports a single device.
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/pci.h>
26 #include <linux/jiffies.h>
27 #include <linux/platform_device.h>
28 #include <linux/hwmon.h>
29 #include <linux/hwmon-sysfs.h>
30 #include <linux/err.h>
31 #include <linux/init.h>
32 #include <linux/mutex.h>
33 #include <linux/sysfs.h>
34 #include <linux/acpi.h>
37 #define DRIVER_NAME "via686a"
40 * If force_addr is set to anything different from 0, we forcibly enable
41 * the device at the given address.
43 static unsigned short force_addr;
44 module_param(force_addr, ushort, 0);
45 MODULE_PARM_DESC(force_addr,
46 "Initialize the base address of the sensors");
48 static struct platform_device *pdev;
51 * The Via 686a southbridge has a LM78-like chip integrated on the same IC.
52 * This driver is a customized copy of lm78.c
55 /* Many VIA686A constants specified below */
57 /* Length of ISA address segment */
58 #define VIA686A_EXTENT 0x80
59 #define VIA686A_BASE_REG 0x70
60 #define VIA686A_ENABLE_REG 0x74
62 /* The VIA686A registers */
63 /* ins numbered 0-4 */
64 #define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2))
65 #define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2))
66 #define VIA686A_REG_IN(nr) (0x22 + (nr))
68 /* fans numbered 1-2 */
69 #define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr))
70 #define VIA686A_REG_FAN(nr) (0x28 + (nr))
72 /* temps numbered 1-3 */
73 static const u8 VIA686A_REG_TEMP[] = { 0x20, 0x21, 0x1f };
74 static const u8 VIA686A_REG_TEMP_OVER[] = { 0x39, 0x3d, 0x1d };
75 static const u8 VIA686A_REG_TEMP_HYST[] = { 0x3a, 0x3e, 0x1e };
77 #define VIA686A_REG_TEMP_LOW1 0x4b
78 /* 2 = bits 5-4, 3 = bits 7-6 */
79 #define VIA686A_REG_TEMP_LOW23 0x49
81 #define VIA686A_REG_ALARM1 0x41
82 #define VIA686A_REG_ALARM2 0x42
83 #define VIA686A_REG_FANDIV 0x47
84 #define VIA686A_REG_CONFIG 0x40
86 * The following register sets temp interrupt mode (bits 1-0 for temp1,
87 * 3-2 for temp2, 5-4 for temp3). Modes are:
88 * 00 interrupt stays as long as value is out-of-range
89 * 01 interrupt is cleared once register is read (default)
90 * 10 comparator mode- like 00, but ignores hysteresis
93 #define VIA686A_REG_TEMP_MODE 0x4b
94 /* We'll just assume that you want to set all 3 simultaneously: */
95 #define VIA686A_TEMP_MODE_MASK 0x3F
96 #define VIA686A_TEMP_MODE_CONTINUOUS 0x00
99 * Conversions. Limit checking is only done on the TO_REG
102 ******** VOLTAGE CONVERSIONS (Bob Dougherty) ********
103 * From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
104 * voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp
105 * voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V
106 * voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V
107 * voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V
108 * voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V
109 * in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
111 * volts = (25*regVal+133)*factor
112 * regVal = (volts/factor-133)/25
113 * (These conversions were contributed by Jonathan Teh Soon Yew
116 static inline u8 IN_TO_REG(long val, int in_num)
119 * To avoid floating point, we multiply constants by 10 (100 for +12V).
120 * Rounding is done (120500 is actually 133000 - 12500).
121 * Remember that val is expressed in 0.001V/bit, which is why we divide
122 * by an additional 10000 (100000 for +12V): 1000 for val and 10 (100)
126 return (u8) clamp_val((val * 21024 - 1205000) / 250000, 0, 255);
127 else if (in_num == 2)
128 return (u8) clamp_val((val * 15737 - 1205000) / 250000, 0, 255);
129 else if (in_num == 3)
130 return (u8) clamp_val((val * 10108 - 1205000) / 250000, 0, 255);
132 return (u8) clamp_val((val * 41714 - 12050000) / 2500000, 0,
136 static inline long IN_FROM_REG(u8 val, int in_num)
139 * To avoid floating point, we multiply constants by 10 (100 for +12V).
140 * We also multiply them by 1000 because we want 0.001V/bit for the
141 * output value. Rounding is done.
144 return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024);
145 else if (in_num == 2)
146 return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737);
147 else if (in_num == 3)
148 return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108);
150 return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714);
153 /********* FAN RPM CONVERSIONS ********/
155 * Higher register values = slower fans (the fan's strobe gates a counter).
156 * But this chip saturates back at 0, not at 255 like all the other chips.
159 static inline u8 FAN_TO_REG(long rpm, int div)
163 rpm = clamp_val(rpm, 1, 1000000);
164 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 255);
167 #define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : (val) == 255 ? 0 : 1350000 / \
170 /******** TEMP CONVERSIONS (Bob Dougherty) *********/
172 * linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
174 * return double(temp)*0.427-32.08;
175 * else if(temp>=169 && temp<=202)
176 * return double(temp)*0.582-58.16;
178 * return double(temp)*0.924-127.33;
180 * A fifth-order polynomial fits the unofficial data (provided by Alex van
181 * Kaam <darkside@chello.nl>) a bit better. It also give more reasonable
182 * numbers on my machine (ie. they agree with what my BIOS tells me).
183 * Here's the fifth-order fit to the 8-bit data:
184 * temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
185 * 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
187 * (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
188 * finding my typos in this formula!)
190 * Alas, none of the elegant function-fit solutions will work because we
191 * aren't allowed to use floating point in the kernel and doing it with
192 * integers doesn't provide enough precision. So we'll do boring old
193 * look-up table stuff. The unofficial data (see below) have effectively
194 * 7-bit resolution (they are rounded to the nearest degree). I'm assuming
195 * that the transfer function of the device is monotonic and smooth, so a
196 * smooth function fit to the data will allow us to get better precision.
197 * I used the 5th-order poly fit described above and solved for
198 * VIA register values 0-255. I *10 before rounding, so we get tenth-degree
199 * precision. (I could have done all 1024 values for our 10-bit readings,
200 * but the function is very linear in the useful range (0-80 deg C), so
201 * we'll just use linear interpolation for 10-bit readings.) So, temp_lut
202 * is the temp at via register values 0-255:
204 static const s16 temp_lut[] = {
205 -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
206 -503, -487, -471, -456, -442, -428, -414, -400, -387, -375,
207 -362, -350, -339, -327, -316, -305, -295, -285, -275, -265,
208 -255, -246, -237, -229, -220, -212, -204, -196, -188, -180,
209 -173, -166, -159, -152, -145, -139, -132, -126, -120, -114,
210 -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49,
211 -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16,
212 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84,
213 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138,
214 142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189,
215 193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241,
216 245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294,
217 299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348,
218 353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404,
219 409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464,
220 469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532,
221 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614,
222 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718,
223 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856,
224 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044,
225 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252,
226 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462
230 * the original LUT values from Alex van Kaam <darkside@chello.nl>
231 * (for via register values 12-240):
232 * {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
233 * -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
234 * -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
235 * -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
236 * 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
237 * 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
238 * 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
239 * 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
240 * 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
241 * 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
244 * Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed
245 * an extra term for a good fit to these inverse data!) and then
246 * solving for each temp value from -50 to 110 (the useable range for
247 * this chip). Here's the fit:
248 * viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
249 * - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
252 static const u8 via_lut[] = {
253 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
254 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40,
255 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66,
256 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100,
257 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129,
258 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156,
259 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180,
260 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199,
261 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213,
262 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224,
263 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232,
264 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239,
269 * Converting temps to (8-bit) hyst and over registers
270 * No interpolation here.
271 * The +50 is because the temps start at -50
273 static inline u8 TEMP_TO_REG(long val)
275 return via_lut[val <= -50000 ? 0 : val >= 110000 ? 160 :
276 (val < 0 ? val - 500 : val + 500) / 1000 + 50];
279 /* for 8-bit temperature hyst and over registers */
280 #define TEMP_FROM_REG(val) ((long)temp_lut[val] * 100)
282 /* for 10-bit temperature readings */
283 static inline long TEMP_FROM_REG10(u16 val)
285 u16 eight_bits = val >> 2;
286 u16 two_bits = val & 3;
288 /* no interpolation for these */
289 if (two_bits == 0 || eight_bits == 255)
290 return TEMP_FROM_REG(eight_bits);
292 /* do some linear interpolation */
293 return (temp_lut[eight_bits] * (4 - two_bits) +
294 temp_lut[eight_bits + 1] * two_bits) * 25;
297 #define DIV_FROM_REG(val) (1 << (val))
298 #define DIV_TO_REG(val) ((val) == 8 ? 3 : (val) == 4 ? 2 : (val) == 1 ? 0 : 1)
301 * For each registered chip, we need to keep some data in memory.
302 * The structure is dynamically allocated.
304 struct via686a_data {
307 struct device *hwmon_dev;
308 struct mutex update_lock;
309 bool valid; /* true if following fields are valid */
310 unsigned long last_updated; /* In jiffies */
312 u8 in[5]; /* Register value */
313 u8 in_max[5]; /* Register value */
314 u8 in_min[5]; /* Register value */
315 u8 fan[2]; /* Register value */
316 u8 fan_min[2]; /* Register value */
317 u16 temp[3]; /* Register value 10 bit */
318 u8 temp_over[3]; /* Register value */
319 u8 temp_hyst[3]; /* Register value */
320 u8 fan_div[2]; /* Register encoding, shifted right */
321 u16 alarms; /* Register encoding, combined */
324 static struct pci_dev *s_bridge; /* pointer to the (only) via686a */
326 static inline int via686a_read_value(struct via686a_data *data, u8 reg)
328 return inb_p(data->addr + reg);
331 static inline void via686a_write_value(struct via686a_data *data, u8 reg,
334 outb_p(value, data->addr + reg);
337 static void via686a_update_fan_div(struct via686a_data *data)
339 int reg = via686a_read_value(data, VIA686A_REG_FANDIV);
340 data->fan_div[0] = (reg >> 4) & 0x03;
341 data->fan_div[1] = reg >> 6;
344 static struct via686a_data *via686a_update_device(struct device *dev)
346 struct via686a_data *data = dev_get_drvdata(dev);
349 mutex_lock(&data->update_lock);
351 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
353 for (i = 0; i <= 4; i++) {
355 via686a_read_value(data, VIA686A_REG_IN(i));
356 data->in_min[i] = via686a_read_value(data,
360 via686a_read_value(data, VIA686A_REG_IN_MAX(i));
362 for (i = 1; i <= 2; i++) {
364 via686a_read_value(data, VIA686A_REG_FAN(i));
365 data->fan_min[i - 1] = via686a_read_value(data,
366 VIA686A_REG_FAN_MIN(i));
368 for (i = 0; i <= 2; i++) {
369 data->temp[i] = via686a_read_value(data,
370 VIA686A_REG_TEMP[i]) << 2;
372 via686a_read_value(data,
373 VIA686A_REG_TEMP_OVER[i]);
375 via686a_read_value(data,
376 VIA686A_REG_TEMP_HYST[i]);
379 * add in lower 2 bits
380 * temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
381 * temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
382 * temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
384 data->temp[0] |= (via686a_read_value(data,
385 VIA686A_REG_TEMP_LOW1)
388 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
391 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
394 via686a_update_fan_div(data);
396 via686a_read_value(data,
397 VIA686A_REG_ALARM1) |
398 (via686a_read_value(data, VIA686A_REG_ALARM2) << 8);
399 data->last_updated = jiffies;
403 mutex_unlock(&data->update_lock);
408 /* following are the sysfs callback functions */
410 /* 7 voltage sensors */
411 static ssize_t in_show(struct device *dev, struct device_attribute *da,
413 struct via686a_data *data = via686a_update_device(dev);
414 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
415 int nr = attr->index;
416 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr));
419 static ssize_t in_min_show(struct device *dev, struct device_attribute *da,
421 struct via686a_data *data = via686a_update_device(dev);
422 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
423 int nr = attr->index;
424 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr));
427 static ssize_t in_max_show(struct device *dev, struct device_attribute *da,
429 struct via686a_data *data = via686a_update_device(dev);
430 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
431 int nr = attr->index;
432 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr));
435 static ssize_t in_min_store(struct device *dev, struct device_attribute *da,
436 const char *buf, size_t count) {
437 struct via686a_data *data = dev_get_drvdata(dev);
438 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
439 int nr = attr->index;
443 err = kstrtoul(buf, 10, &val);
447 mutex_lock(&data->update_lock);
448 data->in_min[nr] = IN_TO_REG(val, nr);
449 via686a_write_value(data, VIA686A_REG_IN_MIN(nr),
451 mutex_unlock(&data->update_lock);
454 static ssize_t in_max_store(struct device *dev, struct device_attribute *da,
455 const char *buf, size_t count) {
456 struct via686a_data *data = dev_get_drvdata(dev);
457 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
458 int nr = attr->index;
462 err = kstrtoul(buf, 10, &val);
466 mutex_lock(&data->update_lock);
467 data->in_max[nr] = IN_TO_REG(val, nr);
468 via686a_write_value(data, VIA686A_REG_IN_MAX(nr),
470 mutex_unlock(&data->update_lock);
474 static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
475 static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
476 static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
477 static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
478 static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
479 static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
480 static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
481 static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
482 static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
483 static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
484 static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
485 static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
486 static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
487 static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
488 static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
491 static ssize_t temp_show(struct device *dev, struct device_attribute *da,
493 struct via686a_data *data = via686a_update_device(dev);
494 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
495 int nr = attr->index;
496 return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr]));
498 static ssize_t temp_over_show(struct device *dev, struct device_attribute *da,
500 struct via686a_data *data = via686a_update_device(dev);
501 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
502 int nr = attr->index;
503 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr]));
505 static ssize_t temp_hyst_show(struct device *dev, struct device_attribute *da,
507 struct via686a_data *data = via686a_update_device(dev);
508 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
509 int nr = attr->index;
510 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr]));
512 static ssize_t temp_over_store(struct device *dev,
513 struct device_attribute *da, const char *buf,
515 struct via686a_data *data = dev_get_drvdata(dev);
516 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
517 int nr = attr->index;
521 err = kstrtol(buf, 10, &val);
525 mutex_lock(&data->update_lock);
526 data->temp_over[nr] = TEMP_TO_REG(val);
527 via686a_write_value(data, VIA686A_REG_TEMP_OVER[nr],
528 data->temp_over[nr]);
529 mutex_unlock(&data->update_lock);
532 static ssize_t temp_hyst_store(struct device *dev,
533 struct device_attribute *da, const char *buf,
535 struct via686a_data *data = dev_get_drvdata(dev);
536 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
537 int nr = attr->index;
541 err = kstrtol(buf, 10, &val);
545 mutex_lock(&data->update_lock);
546 data->temp_hyst[nr] = TEMP_TO_REG(val);
547 via686a_write_value(data, VIA686A_REG_TEMP_HYST[nr],
548 data->temp_hyst[nr]);
549 mutex_unlock(&data->update_lock);
553 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
554 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_over, 0);
555 static SENSOR_DEVICE_ATTR_RW(temp1_max_hyst, temp_hyst, 0);
556 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
557 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_over, 1);
558 static SENSOR_DEVICE_ATTR_RW(temp2_max_hyst, temp_hyst, 1);
559 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
560 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_over, 2);
561 static SENSOR_DEVICE_ATTR_RW(temp3_max_hyst, temp_hyst, 2);
564 static ssize_t fan_show(struct device *dev, struct device_attribute *da,
566 struct via686a_data *data = via686a_update_device(dev);
567 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
568 int nr = attr->index;
569 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
570 DIV_FROM_REG(data->fan_div[nr])));
572 static ssize_t fan_min_show(struct device *dev, struct device_attribute *da,
574 struct via686a_data *data = via686a_update_device(dev);
575 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
576 int nr = attr->index;
577 return sprintf(buf, "%d\n",
578 FAN_FROM_REG(data->fan_min[nr],
579 DIV_FROM_REG(data->fan_div[nr])));
581 static ssize_t fan_div_show(struct device *dev, struct device_attribute *da,
583 struct via686a_data *data = via686a_update_device(dev);
584 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
585 int nr = attr->index;
586 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
588 static ssize_t fan_min_store(struct device *dev, struct device_attribute *da,
589 const char *buf, size_t count) {
590 struct via686a_data *data = dev_get_drvdata(dev);
591 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
592 int nr = attr->index;
596 err = kstrtoul(buf, 10, &val);
600 mutex_lock(&data->update_lock);
601 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
602 via686a_write_value(data, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]);
603 mutex_unlock(&data->update_lock);
606 static ssize_t fan_div_store(struct device *dev, struct device_attribute *da,
607 const char *buf, size_t count) {
608 struct via686a_data *data = dev_get_drvdata(dev);
609 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
610 int nr = attr->index;
615 err = kstrtoul(buf, 10, &val);
619 mutex_lock(&data->update_lock);
620 old = via686a_read_value(data, VIA686A_REG_FANDIV);
621 data->fan_div[nr] = DIV_TO_REG(val);
622 old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4);
623 via686a_write_value(data, VIA686A_REG_FANDIV, old);
624 mutex_unlock(&data->update_lock);
628 static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
629 static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
630 static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
631 static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
632 static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
633 static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
636 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
639 struct via686a_data *data = via686a_update_device(dev);
640 return sprintf(buf, "%u\n", data->alarms);
643 static DEVICE_ATTR_RO(alarms);
645 static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
648 int bitnr = to_sensor_dev_attr(attr)->index;
649 struct via686a_data *data = via686a_update_device(dev);
650 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
652 static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
653 static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
654 static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
655 static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
656 static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
657 static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
658 static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 11);
659 static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 15);
660 static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 6);
661 static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 7);
663 static ssize_t name_show(struct device *dev, struct device_attribute
666 struct via686a_data *data = dev_get_drvdata(dev);
667 return sprintf(buf, "%s\n", data->name);
669 static DEVICE_ATTR_RO(name);
671 static struct attribute *via686a_attributes[] = {
672 &sensor_dev_attr_in0_input.dev_attr.attr,
673 &sensor_dev_attr_in1_input.dev_attr.attr,
674 &sensor_dev_attr_in2_input.dev_attr.attr,
675 &sensor_dev_attr_in3_input.dev_attr.attr,
676 &sensor_dev_attr_in4_input.dev_attr.attr,
677 &sensor_dev_attr_in0_min.dev_attr.attr,
678 &sensor_dev_attr_in1_min.dev_attr.attr,
679 &sensor_dev_attr_in2_min.dev_attr.attr,
680 &sensor_dev_attr_in3_min.dev_attr.attr,
681 &sensor_dev_attr_in4_min.dev_attr.attr,
682 &sensor_dev_attr_in0_max.dev_attr.attr,
683 &sensor_dev_attr_in1_max.dev_attr.attr,
684 &sensor_dev_attr_in2_max.dev_attr.attr,
685 &sensor_dev_attr_in3_max.dev_attr.attr,
686 &sensor_dev_attr_in4_max.dev_attr.attr,
687 &sensor_dev_attr_in0_alarm.dev_attr.attr,
688 &sensor_dev_attr_in1_alarm.dev_attr.attr,
689 &sensor_dev_attr_in2_alarm.dev_attr.attr,
690 &sensor_dev_attr_in3_alarm.dev_attr.attr,
691 &sensor_dev_attr_in4_alarm.dev_attr.attr,
693 &sensor_dev_attr_temp1_input.dev_attr.attr,
694 &sensor_dev_attr_temp2_input.dev_attr.attr,
695 &sensor_dev_attr_temp3_input.dev_attr.attr,
696 &sensor_dev_attr_temp1_max.dev_attr.attr,
697 &sensor_dev_attr_temp2_max.dev_attr.attr,
698 &sensor_dev_attr_temp3_max.dev_attr.attr,
699 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
700 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
701 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
702 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
703 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
704 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
706 &sensor_dev_attr_fan1_input.dev_attr.attr,
707 &sensor_dev_attr_fan2_input.dev_attr.attr,
708 &sensor_dev_attr_fan1_min.dev_attr.attr,
709 &sensor_dev_attr_fan2_min.dev_attr.attr,
710 &sensor_dev_attr_fan1_div.dev_attr.attr,
711 &sensor_dev_attr_fan2_div.dev_attr.attr,
712 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
713 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
715 &dev_attr_alarms.attr,
720 static const struct attribute_group via686a_group = {
721 .attrs = via686a_attributes,
724 static void via686a_init_device(struct via686a_data *data)
728 /* Start monitoring */
729 reg = via686a_read_value(data, VIA686A_REG_CONFIG);
730 via686a_write_value(data, VIA686A_REG_CONFIG, (reg | 0x01) & 0x7F);
732 /* Configure temp interrupt mode for continuous-interrupt operation */
733 reg = via686a_read_value(data, VIA686A_REG_TEMP_MODE);
734 via686a_write_value(data, VIA686A_REG_TEMP_MODE,
735 (reg & ~VIA686A_TEMP_MODE_MASK)
736 | VIA686A_TEMP_MODE_CONTINUOUS);
738 /* Pre-read fan clock divisor values */
739 via686a_update_fan_div(data);
742 /* This is called when the module is loaded */
743 static int via686a_probe(struct platform_device *pdev)
745 struct via686a_data *data;
746 struct resource *res;
749 /* Reserve the ISA region */
750 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
751 if (!devm_request_region(&pdev->dev, res->start, VIA686A_EXTENT,
753 dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n",
754 (unsigned long)res->start, (unsigned long)res->end);
758 data = devm_kzalloc(&pdev->dev, sizeof(struct via686a_data),
763 platform_set_drvdata(pdev, data);
764 data->addr = res->start;
765 data->name = DRIVER_NAME;
766 mutex_init(&data->update_lock);
768 /* Initialize the VIA686A chip */
769 via686a_init_device(data);
771 /* Register sysfs hooks */
772 err = sysfs_create_group(&pdev->dev.kobj, &via686a_group);
776 data->hwmon_dev = hwmon_device_register(&pdev->dev);
777 if (IS_ERR(data->hwmon_dev)) {
778 err = PTR_ERR(data->hwmon_dev);
779 goto exit_remove_files;
785 sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
789 static int via686a_remove(struct platform_device *pdev)
791 struct via686a_data *data = platform_get_drvdata(pdev);
793 hwmon_device_unregister(data->hwmon_dev);
794 sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
799 static struct platform_driver via686a_driver = {
803 .probe = via686a_probe,
804 .remove = via686a_remove,
807 static const struct pci_device_id via686a_pci_ids[] = {
808 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) },
811 MODULE_DEVICE_TABLE(pci, via686a_pci_ids);
813 static int via686a_device_add(unsigned short address)
815 struct resource res = {
817 .end = address + VIA686A_EXTENT - 1,
819 .flags = IORESOURCE_IO,
823 err = acpi_check_resource_conflict(&res);
827 pdev = platform_device_alloc(DRIVER_NAME, address);
830 pr_err("Device allocation failed\n");
834 err = platform_device_add_resources(pdev, &res, 1);
836 pr_err("Device resource addition failed (%d)\n", err);
837 goto exit_device_put;
840 err = platform_device_add(pdev);
842 pr_err("Device addition failed (%d)\n", err);
843 goto exit_device_put;
849 platform_device_put(pdev);
854 static int via686a_pci_probe(struct pci_dev *dev,
855 const struct pci_device_id *id)
860 address = force_addr & ~(VIA686A_EXTENT - 1);
861 dev_warn(&dev->dev, "Forcing ISA address 0x%x\n", address);
862 if (PCIBIOS_SUCCESSFUL !=
863 pci_write_config_word(dev, VIA686A_BASE_REG, address | 1))
866 if (PCIBIOS_SUCCESSFUL !=
867 pci_read_config_word(dev, VIA686A_BASE_REG, &val))
870 address = val & ~(VIA686A_EXTENT - 1);
873 "base address not set - upgrade BIOS or use force_addr=0xaddr\n");
877 if (PCIBIOS_SUCCESSFUL !=
878 pci_read_config_word(dev, VIA686A_ENABLE_REG, &val))
880 if (!(val & 0x0001)) {
883 "Sensors disabled, enable with force_addr=0x%x\n",
888 dev_warn(&dev->dev, "Enabling sensors\n");
889 if (PCIBIOS_SUCCESSFUL !=
890 pci_write_config_word(dev, VIA686A_ENABLE_REG,
895 if (platform_driver_register(&via686a_driver))
898 /* Sets global pdev as a side effect */
899 if (via686a_device_add(address))
900 goto exit_unregister;
903 * Always return failure here. This is to allow other drivers to bind
904 * to this pci device. We don't really want to have control over the
905 * pci device, we only wanted to read as few register values from it.
907 s_bridge = pci_dev_get(dev);
911 platform_driver_unregister(&via686a_driver);
916 static struct pci_driver via686a_pci_driver = {
918 .id_table = via686a_pci_ids,
919 .probe = via686a_pci_probe,
922 static int __init sm_via686a_init(void)
924 return pci_register_driver(&via686a_pci_driver);
927 static void __exit sm_via686a_exit(void)
929 pci_unregister_driver(&via686a_pci_driver);
930 if (s_bridge != NULL) {
931 platform_device_unregister(pdev);
932 platform_driver_unregister(&via686a_driver);
933 pci_dev_put(s_bridge);
938 MODULE_AUTHOR("Kyösti Mälkki <kmalkki@cc.hut.fi>, "
939 "Mark Studebaker <mdsxyz123@yahoo.com> "
940 "and Bob Dougherty <bobd@stanford.edu>");
941 MODULE_DESCRIPTION("VIA 686A Sensor device");
942 MODULE_LICENSE("GPL");
944 module_init(sm_via686a_init);
945 module_exit(sm_via686a_exit);