ARM: 9148/1: handle CONFIG_CPU_ENDIAN_BE32 in arch/arm/kernel/head.S
[platform/kernel/linux-rpi.git] / drivers / hwmon / occ / common.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright IBM Corp 2019
3
4 #include <linux/device.h>
5 #include <linux/export.h>
6 #include <linux/hwmon.h>
7 #include <linux/hwmon-sysfs.h>
8 #include <linux/jiffies.h>
9 #include <linux/kernel.h>
10 #include <linux/math64.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/sysfs.h>
14 #include <asm/unaligned.h>
15
16 #include "common.h"
17
18 #define EXTN_FLAG_SENSOR_ID             BIT(7)
19
20 #define OCC_ERROR_COUNT_THRESHOLD       2       /* required by OCC spec */
21
22 #define OCC_STATE_SAFE                  4
23 #define OCC_SAFE_TIMEOUT                msecs_to_jiffies(60000) /* 1 min */
24
25 #define OCC_UPDATE_FREQUENCY            msecs_to_jiffies(1000)
26
27 #define OCC_TEMP_SENSOR_FAULT           0xFF
28
29 #define OCC_FRU_TYPE_VRM                3
30
31 /* OCC sensor type and version definitions */
32
33 struct temp_sensor_1 {
34         u16 sensor_id;
35         u16 value;
36 } __packed;
37
38 struct temp_sensor_2 {
39         u32 sensor_id;
40         u8 fru_type;
41         u8 value;
42 } __packed;
43
44 struct temp_sensor_10 {
45         u32 sensor_id;
46         u8 fru_type;
47         u8 value;
48         u8 throttle;
49         u8 reserved;
50 } __packed;
51
52 struct freq_sensor_1 {
53         u16 sensor_id;
54         u16 value;
55 } __packed;
56
57 struct freq_sensor_2 {
58         u32 sensor_id;
59         u16 value;
60 } __packed;
61
62 struct power_sensor_1 {
63         u16 sensor_id;
64         u32 update_tag;
65         u32 accumulator;
66         u16 value;
67 } __packed;
68
69 struct power_sensor_2 {
70         u32 sensor_id;
71         u8 function_id;
72         u8 apss_channel;
73         u16 reserved;
74         u32 update_tag;
75         u64 accumulator;
76         u16 value;
77 } __packed;
78
79 struct power_sensor_data {
80         u16 value;
81         u32 update_tag;
82         u64 accumulator;
83 } __packed;
84
85 struct power_sensor_data_and_time {
86         u16 update_time;
87         u16 value;
88         u32 update_tag;
89         u64 accumulator;
90 } __packed;
91
92 struct power_sensor_a0 {
93         u32 sensor_id;
94         struct power_sensor_data_and_time system;
95         u32 reserved;
96         struct power_sensor_data_and_time proc;
97         struct power_sensor_data vdd;
98         struct power_sensor_data vdn;
99 } __packed;
100
101 struct caps_sensor_2 {
102         u16 cap;
103         u16 system_power;
104         u16 n_cap;
105         u16 max;
106         u16 min;
107         u16 user;
108         u8 user_source;
109 } __packed;
110
111 struct caps_sensor_3 {
112         u16 cap;
113         u16 system_power;
114         u16 n_cap;
115         u16 max;
116         u16 hard_min;
117         u16 soft_min;
118         u16 user;
119         u8 user_source;
120 } __packed;
121
122 struct extended_sensor {
123         union {
124                 u8 name[4];
125                 u32 sensor_id;
126         };
127         u8 flags;
128         u8 reserved;
129         u8 data[6];
130 } __packed;
131
132 static int occ_poll(struct occ *occ)
133 {
134         int rc;
135         u16 checksum = occ->poll_cmd_data + occ->seq_no + 1;
136         u8 cmd[8];
137         struct occ_poll_response_header *header;
138
139         /* big endian */
140         cmd[0] = occ->seq_no++;         /* sequence number */
141         cmd[1] = 0;                     /* cmd type */
142         cmd[2] = 0;                     /* data length msb */
143         cmd[3] = 1;                     /* data length lsb */
144         cmd[4] = occ->poll_cmd_data;    /* data */
145         cmd[5] = checksum >> 8;         /* checksum msb */
146         cmd[6] = checksum & 0xFF;       /* checksum lsb */
147         cmd[7] = 0;
148
149         /* mutex should already be locked if necessary */
150         rc = occ->send_cmd(occ, cmd);
151         if (rc) {
152                 occ->last_error = rc;
153                 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
154                         occ->error = rc;
155
156                 goto done;
157         }
158
159         /* clear error since communication was successful */
160         occ->error_count = 0;
161         occ->last_error = 0;
162         occ->error = 0;
163
164         /* check for safe state */
165         header = (struct occ_poll_response_header *)occ->resp.data;
166         if (header->occ_state == OCC_STATE_SAFE) {
167                 if (occ->last_safe) {
168                         if (time_after(jiffies,
169                                        occ->last_safe + OCC_SAFE_TIMEOUT))
170                                 occ->error = -EHOSTDOWN;
171                 } else {
172                         occ->last_safe = jiffies;
173                 }
174         } else {
175                 occ->last_safe = 0;
176         }
177
178 done:
179         occ_sysfs_poll_done(occ);
180         return rc;
181 }
182
183 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
184 {
185         int rc;
186         u8 cmd[8];
187         u16 checksum = 0x24;
188         __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
189
190         cmd[0] = 0;
191         cmd[1] = 0x22;
192         cmd[2] = 0;
193         cmd[3] = 2;
194
195         memcpy(&cmd[4], &user_power_cap_be, 2);
196
197         checksum += cmd[4] + cmd[5];
198         cmd[6] = checksum >> 8;
199         cmd[7] = checksum & 0xFF;
200
201         rc = mutex_lock_interruptible(&occ->lock);
202         if (rc)
203                 return rc;
204
205         rc = occ->send_cmd(occ, cmd);
206
207         mutex_unlock(&occ->lock);
208
209         return rc;
210 }
211
212 int occ_update_response(struct occ *occ)
213 {
214         int rc = mutex_lock_interruptible(&occ->lock);
215
216         if (rc)
217                 return rc;
218
219         /* limit the maximum rate of polling the OCC */
220         if (time_after(jiffies, occ->next_update)) {
221                 rc = occ_poll(occ);
222                 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
223         } else {
224                 rc = occ->last_error;
225         }
226
227         mutex_unlock(&occ->lock);
228         return rc;
229 }
230
231 static ssize_t occ_show_temp_1(struct device *dev,
232                                struct device_attribute *attr, char *buf)
233 {
234         int rc;
235         u32 val = 0;
236         struct temp_sensor_1 *temp;
237         struct occ *occ = dev_get_drvdata(dev);
238         struct occ_sensors *sensors = &occ->sensors;
239         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
240
241         rc = occ_update_response(occ);
242         if (rc)
243                 return rc;
244
245         temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
246
247         switch (sattr->nr) {
248         case 0:
249                 val = get_unaligned_be16(&temp->sensor_id);
250                 break;
251         case 1:
252                 /*
253                  * If a sensor reading has expired and couldn't be refreshed,
254                  * OCC returns 0xFFFF for that sensor.
255                  */
256                 if (temp->value == 0xFFFF)
257                         return -EREMOTEIO;
258                 val = get_unaligned_be16(&temp->value) * 1000;
259                 break;
260         default:
261                 return -EINVAL;
262         }
263
264         return sysfs_emit(buf, "%u\n", val);
265 }
266
267 static ssize_t occ_show_temp_2(struct device *dev,
268                                struct device_attribute *attr, char *buf)
269 {
270         int rc;
271         u32 val = 0;
272         struct temp_sensor_2 *temp;
273         struct occ *occ = dev_get_drvdata(dev);
274         struct occ_sensors *sensors = &occ->sensors;
275         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
276
277         rc = occ_update_response(occ);
278         if (rc)
279                 return rc;
280
281         temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
282
283         switch (sattr->nr) {
284         case 0:
285                 val = get_unaligned_be32(&temp->sensor_id);
286                 break;
287         case 1:
288                 val = temp->value;
289                 if (val == OCC_TEMP_SENSOR_FAULT)
290                         return -EREMOTEIO;
291
292                 /*
293                  * VRM doesn't return temperature, only alarm bit. This
294                  * attribute maps to tempX_alarm instead of tempX_input for
295                  * VRM
296                  */
297                 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
298                         /* sensor not ready */
299                         if (val == 0)
300                                 return -EAGAIN;
301
302                         val *= 1000;
303                 }
304                 break;
305         case 2:
306                 val = temp->fru_type;
307                 break;
308         case 3:
309                 val = temp->value == OCC_TEMP_SENSOR_FAULT;
310                 break;
311         default:
312                 return -EINVAL;
313         }
314
315         return sysfs_emit(buf, "%u\n", val);
316 }
317
318 static ssize_t occ_show_temp_10(struct device *dev,
319                                 struct device_attribute *attr, char *buf)
320 {
321         int rc;
322         u32 val = 0;
323         struct temp_sensor_10 *temp;
324         struct occ *occ = dev_get_drvdata(dev);
325         struct occ_sensors *sensors = &occ->sensors;
326         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
327
328         rc = occ_update_response(occ);
329         if (rc)
330                 return rc;
331
332         temp = ((struct temp_sensor_10 *)sensors->temp.data) + sattr->index;
333
334         switch (sattr->nr) {
335         case 0:
336                 val = get_unaligned_be32(&temp->sensor_id);
337                 break;
338         case 1:
339                 val = temp->value;
340                 if (val == OCC_TEMP_SENSOR_FAULT)
341                         return -EREMOTEIO;
342
343                 /*
344                  * VRM doesn't return temperature, only alarm bit. This
345                  * attribute maps to tempX_alarm instead of tempX_input for
346                  * VRM
347                  */
348                 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
349                         /* sensor not ready */
350                         if (val == 0)
351                                 return -EAGAIN;
352
353                         val *= 1000;
354                 }
355                 break;
356         case 2:
357                 val = temp->fru_type;
358                 break;
359         case 3:
360                 val = temp->value == OCC_TEMP_SENSOR_FAULT;
361                 break;
362         case 4:
363                 val = temp->throttle * 1000;
364                 break;
365         default:
366                 return -EINVAL;
367         }
368
369         return sysfs_emit(buf, "%u\n", val);
370 }
371
372 static ssize_t occ_show_freq_1(struct device *dev,
373                                struct device_attribute *attr, char *buf)
374 {
375         int rc;
376         u16 val = 0;
377         struct freq_sensor_1 *freq;
378         struct occ *occ = dev_get_drvdata(dev);
379         struct occ_sensors *sensors = &occ->sensors;
380         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
381
382         rc = occ_update_response(occ);
383         if (rc)
384                 return rc;
385
386         freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
387
388         switch (sattr->nr) {
389         case 0:
390                 val = get_unaligned_be16(&freq->sensor_id);
391                 break;
392         case 1:
393                 val = get_unaligned_be16(&freq->value);
394                 break;
395         default:
396                 return -EINVAL;
397         }
398
399         return sysfs_emit(buf, "%u\n", val);
400 }
401
402 static ssize_t occ_show_freq_2(struct device *dev,
403                                struct device_attribute *attr, char *buf)
404 {
405         int rc;
406         u32 val = 0;
407         struct freq_sensor_2 *freq;
408         struct occ *occ = dev_get_drvdata(dev);
409         struct occ_sensors *sensors = &occ->sensors;
410         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
411
412         rc = occ_update_response(occ);
413         if (rc)
414                 return rc;
415
416         freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
417
418         switch (sattr->nr) {
419         case 0:
420                 val = get_unaligned_be32(&freq->sensor_id);
421                 break;
422         case 1:
423                 val = get_unaligned_be16(&freq->value);
424                 break;
425         default:
426                 return -EINVAL;
427         }
428
429         return sysfs_emit(buf, "%u\n", val);
430 }
431
432 static ssize_t occ_show_power_1(struct device *dev,
433                                 struct device_attribute *attr, char *buf)
434 {
435         int rc;
436         u64 val = 0;
437         struct power_sensor_1 *power;
438         struct occ *occ = dev_get_drvdata(dev);
439         struct occ_sensors *sensors = &occ->sensors;
440         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
441
442         rc = occ_update_response(occ);
443         if (rc)
444                 return rc;
445
446         power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
447
448         switch (sattr->nr) {
449         case 0:
450                 val = get_unaligned_be16(&power->sensor_id);
451                 break;
452         case 1:
453                 val = get_unaligned_be32(&power->accumulator) /
454                         get_unaligned_be32(&power->update_tag);
455                 val *= 1000000ULL;
456                 break;
457         case 2:
458                 val = (u64)get_unaligned_be32(&power->update_tag) *
459                            occ->powr_sample_time_us;
460                 break;
461         case 3:
462                 val = get_unaligned_be16(&power->value) * 1000000ULL;
463                 break;
464         default:
465                 return -EINVAL;
466         }
467
468         return sysfs_emit(buf, "%llu\n", val);
469 }
470
471 static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
472 {
473         u64 divisor = get_unaligned_be32(samples);
474
475         return (divisor == 0) ? 0 :
476                 div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
477 }
478
479 static ssize_t occ_show_power_2(struct device *dev,
480                                 struct device_attribute *attr, char *buf)
481 {
482         int rc;
483         u64 val = 0;
484         struct power_sensor_2 *power;
485         struct occ *occ = dev_get_drvdata(dev);
486         struct occ_sensors *sensors = &occ->sensors;
487         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
488
489         rc = occ_update_response(occ);
490         if (rc)
491                 return rc;
492
493         power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
494
495         switch (sattr->nr) {
496         case 0:
497                 return sysfs_emit(buf, "%u_%u_%u\n",
498                                   get_unaligned_be32(&power->sensor_id),
499                                   power->function_id, power->apss_channel);
500         case 1:
501                 val = occ_get_powr_avg(&power->accumulator,
502                                        &power->update_tag);
503                 break;
504         case 2:
505                 val = (u64)get_unaligned_be32(&power->update_tag) *
506                            occ->powr_sample_time_us;
507                 break;
508         case 3:
509                 val = get_unaligned_be16(&power->value) * 1000000ULL;
510                 break;
511         default:
512                 return -EINVAL;
513         }
514
515         return sysfs_emit(buf, "%llu\n", val);
516 }
517
518 static ssize_t occ_show_power_a0(struct device *dev,
519                                  struct device_attribute *attr, char *buf)
520 {
521         int rc;
522         u64 val = 0;
523         struct power_sensor_a0 *power;
524         struct occ *occ = dev_get_drvdata(dev);
525         struct occ_sensors *sensors = &occ->sensors;
526         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
527
528         rc = occ_update_response(occ);
529         if (rc)
530                 return rc;
531
532         power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
533
534         switch (sattr->nr) {
535         case 0:
536                 return sysfs_emit(buf, "%u_system\n",
537                                   get_unaligned_be32(&power->sensor_id));
538         case 1:
539                 val = occ_get_powr_avg(&power->system.accumulator,
540                                        &power->system.update_tag);
541                 break;
542         case 2:
543                 val = (u64)get_unaligned_be32(&power->system.update_tag) *
544                            occ->powr_sample_time_us;
545                 break;
546         case 3:
547                 val = get_unaligned_be16(&power->system.value) * 1000000ULL;
548                 break;
549         case 4:
550                 return sysfs_emit(buf, "%u_proc\n",
551                                   get_unaligned_be32(&power->sensor_id));
552         case 5:
553                 val = occ_get_powr_avg(&power->proc.accumulator,
554                                        &power->proc.update_tag);
555                 break;
556         case 6:
557                 val = (u64)get_unaligned_be32(&power->proc.update_tag) *
558                            occ->powr_sample_time_us;
559                 break;
560         case 7:
561                 val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
562                 break;
563         case 8:
564                 return sysfs_emit(buf, "%u_vdd\n",
565                                   get_unaligned_be32(&power->sensor_id));
566         case 9:
567                 val = occ_get_powr_avg(&power->vdd.accumulator,
568                                        &power->vdd.update_tag);
569                 break;
570         case 10:
571                 val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
572                            occ->powr_sample_time_us;
573                 break;
574         case 11:
575                 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
576                 break;
577         case 12:
578                 return sysfs_emit(buf, "%u_vdn\n",
579                                   get_unaligned_be32(&power->sensor_id));
580         case 13:
581                 val = occ_get_powr_avg(&power->vdn.accumulator,
582                                        &power->vdn.update_tag);
583                 break;
584         case 14:
585                 val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
586                            occ->powr_sample_time_us;
587                 break;
588         case 15:
589                 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
590                 break;
591         default:
592                 return -EINVAL;
593         }
594
595         return sysfs_emit(buf, "%llu\n", val);
596 }
597
598 static ssize_t occ_show_caps_1_2(struct device *dev,
599                                  struct device_attribute *attr, char *buf)
600 {
601         int rc;
602         u64 val = 0;
603         struct caps_sensor_2 *caps;
604         struct occ *occ = dev_get_drvdata(dev);
605         struct occ_sensors *sensors = &occ->sensors;
606         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
607
608         rc = occ_update_response(occ);
609         if (rc)
610                 return rc;
611
612         caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
613
614         switch (sattr->nr) {
615         case 0:
616                 return sysfs_emit(buf, "system\n");
617         case 1:
618                 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
619                 break;
620         case 2:
621                 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
622                 break;
623         case 3:
624                 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
625                 break;
626         case 4:
627                 val = get_unaligned_be16(&caps->max) * 1000000ULL;
628                 break;
629         case 5:
630                 val = get_unaligned_be16(&caps->min) * 1000000ULL;
631                 break;
632         case 6:
633                 val = get_unaligned_be16(&caps->user) * 1000000ULL;
634                 break;
635         case 7:
636                 if (occ->sensors.caps.version == 1)
637                         return -EINVAL;
638
639                 val = caps->user_source;
640                 break;
641         default:
642                 return -EINVAL;
643         }
644
645         return sysfs_emit(buf, "%llu\n", val);
646 }
647
648 static ssize_t occ_show_caps_3(struct device *dev,
649                                struct device_attribute *attr, char *buf)
650 {
651         int rc;
652         u64 val = 0;
653         struct caps_sensor_3 *caps;
654         struct occ *occ = dev_get_drvdata(dev);
655         struct occ_sensors *sensors = &occ->sensors;
656         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
657
658         rc = occ_update_response(occ);
659         if (rc)
660                 return rc;
661
662         caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
663
664         switch (sattr->nr) {
665         case 0:
666                 return sysfs_emit(buf, "system\n");
667         case 1:
668                 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
669                 break;
670         case 2:
671                 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
672                 break;
673         case 3:
674                 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
675                 break;
676         case 4:
677                 val = get_unaligned_be16(&caps->max) * 1000000ULL;
678                 break;
679         case 5:
680                 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
681                 break;
682         case 6:
683                 val = get_unaligned_be16(&caps->user) * 1000000ULL;
684                 break;
685         case 7:
686                 val = caps->user_source;
687                 break;
688         default:
689                 return -EINVAL;
690         }
691
692         return sysfs_emit(buf, "%llu\n", val);
693 }
694
695 static ssize_t occ_store_caps_user(struct device *dev,
696                                    struct device_attribute *attr,
697                                    const char *buf, size_t count)
698 {
699         int rc;
700         u16 user_power_cap;
701         unsigned long long value;
702         struct occ *occ = dev_get_drvdata(dev);
703
704         rc = kstrtoull(buf, 0, &value);
705         if (rc)
706                 return rc;
707
708         user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
709
710         rc = occ_set_user_power_cap(occ, user_power_cap);
711         if (rc)
712                 return rc;
713
714         return count;
715 }
716
717 static ssize_t occ_show_extended(struct device *dev,
718                                  struct device_attribute *attr, char *buf)
719 {
720         int rc;
721         struct extended_sensor *extn;
722         struct occ *occ = dev_get_drvdata(dev);
723         struct occ_sensors *sensors = &occ->sensors;
724         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
725
726         rc = occ_update_response(occ);
727         if (rc)
728                 return rc;
729
730         extn = ((struct extended_sensor *)sensors->extended.data) +
731                 sattr->index;
732
733         switch (sattr->nr) {
734         case 0:
735                 if (extn->flags & EXTN_FLAG_SENSOR_ID) {
736                         rc = sysfs_emit(buf, "%u",
737                                         get_unaligned_be32(&extn->sensor_id));
738                 } else {
739                         rc = sysfs_emit(buf, "%02x%02x%02x%02x\n",
740                                         extn->name[0], extn->name[1],
741                                         extn->name[2], extn->name[3]);
742                 }
743                 break;
744         case 1:
745                 rc = sysfs_emit(buf, "%02x\n", extn->flags);
746                 break;
747         case 2:
748                 rc = sysfs_emit(buf, "%02x%02x%02x%02x%02x%02x\n",
749                                 extn->data[0], extn->data[1], extn->data[2],
750                                 extn->data[3], extn->data[4], extn->data[5]);
751                 break;
752         default:
753                 return -EINVAL;
754         }
755
756         return rc;
757 }
758
759 /*
760  * Some helper macros to make it easier to define an occ_attribute. Since these
761  * are dynamically allocated, we shouldn't use the existing kernel macros which
762  * stringify the name argument.
763  */
764 #define ATTR_OCC(_name, _mode, _show, _store) {                         \
765         .attr   = {                                                     \
766                 .name = _name,                                          \
767                 .mode = VERIFY_OCTAL_PERMISSIONS(_mode),                \
768         },                                                              \
769         .show   = _show,                                                \
770         .store  = _store,                                               \
771 }
772
773 #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) {     \
774         .dev_attr       = ATTR_OCC(_name, _mode, _show, _store),        \
775         .index          = _index,                                       \
776         .nr             = _nr,                                          \
777 }
778
779 #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index)         \
780         ((struct sensor_device_attribute_2)                             \
781                 SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
782
783 /*
784  * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
785  * use our own instead of the built-in hwmon attribute types.
786  */
787 static int occ_setup_sensor_attrs(struct occ *occ)
788 {
789         unsigned int i, s, num_attrs = 0;
790         struct device *dev = occ->bus_dev;
791         struct occ_sensors *sensors = &occ->sensors;
792         struct occ_attribute *attr;
793         struct temp_sensor_2 *temp;
794         ssize_t (*show_temp)(struct device *, struct device_attribute *,
795                              char *) = occ_show_temp_1;
796         ssize_t (*show_freq)(struct device *, struct device_attribute *,
797                              char *) = occ_show_freq_1;
798         ssize_t (*show_power)(struct device *, struct device_attribute *,
799                               char *) = occ_show_power_1;
800         ssize_t (*show_caps)(struct device *, struct device_attribute *,
801                              char *) = occ_show_caps_1_2;
802
803         switch (sensors->temp.version) {
804         case 1:
805                 num_attrs += (sensors->temp.num_sensors * 2);
806                 break;
807         case 2:
808                 num_attrs += (sensors->temp.num_sensors * 4);
809                 show_temp = occ_show_temp_2;
810                 break;
811         case 0x10:
812                 num_attrs += (sensors->temp.num_sensors * 5);
813                 show_temp = occ_show_temp_10;
814                 break;
815         default:
816                 sensors->temp.num_sensors = 0;
817         }
818
819         switch (sensors->freq.version) {
820         case 2:
821                 show_freq = occ_show_freq_2;
822                 fallthrough;
823         case 1:
824                 num_attrs += (sensors->freq.num_sensors * 2);
825                 break;
826         default:
827                 sensors->freq.num_sensors = 0;
828         }
829
830         switch (sensors->power.version) {
831         case 2:
832                 show_power = occ_show_power_2;
833                 fallthrough;
834         case 1:
835                 num_attrs += (sensors->power.num_sensors * 4);
836                 break;
837         case 0xA0:
838                 num_attrs += (sensors->power.num_sensors * 16);
839                 show_power = occ_show_power_a0;
840                 break;
841         default:
842                 sensors->power.num_sensors = 0;
843         }
844
845         switch (sensors->caps.version) {
846         case 1:
847                 num_attrs += (sensors->caps.num_sensors * 7);
848                 break;
849         case 3:
850                 show_caps = occ_show_caps_3;
851                 fallthrough;
852         case 2:
853                 num_attrs += (sensors->caps.num_sensors * 8);
854                 break;
855         default:
856                 sensors->caps.num_sensors = 0;
857         }
858
859         switch (sensors->extended.version) {
860         case 1:
861                 num_attrs += (sensors->extended.num_sensors * 3);
862                 break;
863         default:
864                 sensors->extended.num_sensors = 0;
865         }
866
867         occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
868                                   GFP_KERNEL);
869         if (!occ->attrs)
870                 return -ENOMEM;
871
872         /* null-terminated list */
873         occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
874                                         num_attrs + 1, GFP_KERNEL);
875         if (!occ->group.attrs)
876                 return -ENOMEM;
877
878         attr = occ->attrs;
879
880         for (i = 0; i < sensors->temp.num_sensors; ++i) {
881                 s = i + 1;
882                 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
883
884                 snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
885                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
886                                              0, i);
887                 attr++;
888
889                 if (sensors->temp.version > 1 &&
890                     temp->fru_type == OCC_FRU_TYPE_VRM) {
891                         snprintf(attr->name, sizeof(attr->name),
892                                  "temp%d_alarm", s);
893                 } else {
894                         snprintf(attr->name, sizeof(attr->name),
895                                  "temp%d_input", s);
896                 }
897
898                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
899                                              1, i);
900                 attr++;
901
902                 if (sensors->temp.version > 1) {
903                         snprintf(attr->name, sizeof(attr->name),
904                                  "temp%d_fru_type", s);
905                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
906                                                      show_temp, NULL, 2, i);
907                         attr++;
908
909                         snprintf(attr->name, sizeof(attr->name),
910                                  "temp%d_fault", s);
911                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
912                                                      show_temp, NULL, 3, i);
913                         attr++;
914
915                         if (sensors->temp.version == 0x10) {
916                                 snprintf(attr->name, sizeof(attr->name),
917                                          "temp%d_max", s);
918                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
919                                                              show_temp, NULL,
920                                                              4, i);
921                                 attr++;
922                         }
923                 }
924         }
925
926         for (i = 0; i < sensors->freq.num_sensors; ++i) {
927                 s = i + 1;
928
929                 snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
930                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
931                                              0, i);
932                 attr++;
933
934                 snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
935                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
936                                              1, i);
937                 attr++;
938         }
939
940         if (sensors->power.version == 0xA0) {
941                 /*
942                  * Special case for many-attribute power sensor. Split it into
943                  * a sensor number per power type, emulating several sensors.
944                  */
945                 for (i = 0; i < sensors->power.num_sensors; ++i) {
946                         unsigned int j;
947                         unsigned int nr = 0;
948
949                         s = (i * 4) + 1;
950
951                         for (j = 0; j < 4; ++j) {
952                                 snprintf(attr->name, sizeof(attr->name),
953                                          "power%d_label", s);
954                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
955                                                              show_power, NULL,
956                                                              nr++, i);
957                                 attr++;
958
959                                 snprintf(attr->name, sizeof(attr->name),
960                                          "power%d_average", s);
961                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
962                                                              show_power, NULL,
963                                                              nr++, i);
964                                 attr++;
965
966                                 snprintf(attr->name, sizeof(attr->name),
967                                          "power%d_average_interval", s);
968                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
969                                                              show_power, NULL,
970                                                              nr++, i);
971                                 attr++;
972
973                                 snprintf(attr->name, sizeof(attr->name),
974                                          "power%d_input", s);
975                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
976                                                              show_power, NULL,
977                                                              nr++, i);
978                                 attr++;
979
980                                 s++;
981                         }
982                 }
983
984                 s = (sensors->power.num_sensors * 4) + 1;
985         } else {
986                 for (i = 0; i < sensors->power.num_sensors; ++i) {
987                         s = i + 1;
988
989                         snprintf(attr->name, sizeof(attr->name),
990                                  "power%d_label", s);
991                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
992                                                      show_power, NULL, 0, i);
993                         attr++;
994
995                         snprintf(attr->name, sizeof(attr->name),
996                                  "power%d_average", s);
997                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
998                                                      show_power, NULL, 1, i);
999                         attr++;
1000
1001                         snprintf(attr->name, sizeof(attr->name),
1002                                  "power%d_average_interval", s);
1003                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1004                                                      show_power, NULL, 2, i);
1005                         attr++;
1006
1007                         snprintf(attr->name, sizeof(attr->name),
1008                                  "power%d_input", s);
1009                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1010                                                      show_power, NULL, 3, i);
1011                         attr++;
1012                 }
1013
1014                 s = sensors->power.num_sensors + 1;
1015         }
1016
1017         if (sensors->caps.num_sensors >= 1) {
1018                 snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
1019                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1020                                              0, 0);
1021                 attr++;
1022
1023                 snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
1024                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1025                                              1, 0);
1026                 attr++;
1027
1028                 snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
1029                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1030                                              2, 0);
1031                 attr++;
1032
1033                 snprintf(attr->name, sizeof(attr->name),
1034                          "power%d_cap_not_redundant", s);
1035                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1036                                              3, 0);
1037                 attr++;
1038
1039                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
1040                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1041                                              4, 0);
1042                 attr++;
1043
1044                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
1045                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1046                                              5, 0);
1047                 attr++;
1048
1049                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
1050                          s);
1051                 attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
1052                                              occ_store_caps_user, 6, 0);
1053                 attr++;
1054
1055                 if (sensors->caps.version > 1) {
1056                         snprintf(attr->name, sizeof(attr->name),
1057                                  "power%d_cap_user_source", s);
1058                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1059                                                      show_caps, NULL, 7, 0);
1060                         attr++;
1061                 }
1062         }
1063
1064         for (i = 0; i < sensors->extended.num_sensors; ++i) {
1065                 s = i + 1;
1066
1067                 snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
1068                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1069                                              occ_show_extended, NULL, 0, i);
1070                 attr++;
1071
1072                 snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
1073                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1074                                              occ_show_extended, NULL, 1, i);
1075                 attr++;
1076
1077                 snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
1078                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1079                                              occ_show_extended, NULL, 2, i);
1080                 attr++;
1081         }
1082
1083         /* put the sensors in the group */
1084         for (i = 0; i < num_attrs; ++i) {
1085                 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1086                 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1087         }
1088
1089         return 0;
1090 }
1091
1092 /* only need to do this once at startup, as OCC won't change sensors on us */
1093 static void occ_parse_poll_response(struct occ *occ)
1094 {
1095         unsigned int i, old_offset, offset = 0, size = 0;
1096         struct occ_sensor *sensor;
1097         struct occ_sensors *sensors = &occ->sensors;
1098         struct occ_response *resp = &occ->resp;
1099         struct occ_poll_response *poll =
1100                 (struct occ_poll_response *)&resp->data[0];
1101         struct occ_poll_response_header *header = &poll->header;
1102         struct occ_sensor_data_block *block = &poll->block;
1103
1104         dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1105                  header->occ_code_level);
1106
1107         for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1108                 block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1109                 old_offset = offset;
1110                 offset = (block->header.num_sensors *
1111                           block->header.sensor_length) + sizeof(block->header);
1112                 size += offset;
1113
1114                 /* validate all the length/size fields */
1115                 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1116                         dev_warn(occ->bus_dev, "exceeded response buffer\n");
1117                         return;
1118                 }
1119
1120                 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1121                         old_offset, offset - 1, block->header.eye_catcher,
1122                         block->header.num_sensors);
1123
1124                 /* match sensor block type */
1125                 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1126                         sensor = &sensors->temp;
1127                 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1128                         sensor = &sensors->freq;
1129                 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1130                         sensor = &sensors->power;
1131                 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1132                         sensor = &sensors->caps;
1133                 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1134                         sensor = &sensors->extended;
1135                 else {
1136                         dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1137                                  block->header.eye_catcher);
1138                         continue;
1139                 }
1140
1141                 sensor->num_sensors = block->header.num_sensors;
1142                 sensor->version = block->header.sensor_format;
1143                 sensor->data = &block->data;
1144         }
1145
1146         dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1147                 sizeof(*header), size + sizeof(*header));
1148 }
1149
1150 int occ_setup(struct occ *occ, const char *name)
1151 {
1152         int rc;
1153
1154         /* start with 1 to avoid false match with zero-initialized SRAM buffer */
1155         occ->seq_no = 1;
1156         mutex_init(&occ->lock);
1157         occ->groups[0] = &occ->group;
1158
1159         /* no need to lock */
1160         rc = occ_poll(occ);
1161         if (rc == -ESHUTDOWN) {
1162                 dev_info(occ->bus_dev, "host is not ready\n");
1163                 return rc;
1164         } else if (rc < 0) {
1165                 dev_err(occ->bus_dev,
1166                         "failed to get OCC poll response=%02x: %d\n",
1167                         occ->resp.return_status, rc);
1168                 return rc;
1169         }
1170
1171         occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
1172         occ_parse_poll_response(occ);
1173
1174         rc = occ_setup_sensor_attrs(occ);
1175         if (rc) {
1176                 dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n",
1177                         rc);
1178                 return rc;
1179         }
1180
1181         occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name,
1182                                                             occ, occ->groups);
1183         if (IS_ERR(occ->hwmon)) {
1184                 rc = PTR_ERR(occ->hwmon);
1185                 dev_err(occ->bus_dev, "failed to register hwmon device: %d\n",
1186                         rc);
1187                 return rc;
1188         }
1189
1190         rc = occ_setup_sysfs(occ);
1191         if (rc)
1192                 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1193
1194         return rc;
1195 }
1196 EXPORT_SYMBOL_GPL(occ_setup);
1197
1198 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
1199 MODULE_DESCRIPTION("Common OCC hwmon code");
1200 MODULE_LICENSE("GPL");