Merge tag 'mm-hotfixes-stable-2023-07-08-10-43' of git://git.kernel.org/pub/scm/linux...
[platform/kernel/linux-starfive.git] / drivers / hwmon / mr75203.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2020 MaxLinear, Inc.
4  *
5  * This driver is a hardware monitoring driver for PVT controller
6  * (MR75203) which is used to configure & control Moortec embedded
7  * analog IP to enable multiple embedded temperature sensor(TS),
8  * voltage monitor(VM) & process detector(PD) modules.
9  */
10 #include <linux/bits.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/hwmon.h>
14 #include <linux/kstrtox.h>
15 #include <linux/module.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/mutex.h>
18 #include <linux/platform_device.h>
19 #include <linux/property.h>
20 #include <linux/regmap.h>
21 #include <linux/reset.h>
22 #include <linux/slab.h>
23 #include <linux/units.h>
24
25 /* PVT Common register */
26 #define PVT_IP_CONFIG   0x04
27 #define TS_NUM_MSK      GENMASK(4, 0)
28 #define TS_NUM_SFT      0
29 #define PD_NUM_MSK      GENMASK(12, 8)
30 #define PD_NUM_SFT      8
31 #define VM_NUM_MSK      GENMASK(20, 16)
32 #define VM_NUM_SFT      16
33 #define CH_NUM_MSK      GENMASK(31, 24)
34 #define CH_NUM_SFT      24
35
36 #define VM_NUM_MAX      (VM_NUM_MSK >> VM_NUM_SFT)
37
38 /* Macro Common Register */
39 #define CLK_SYNTH               0x00
40 #define CLK_SYNTH_LO_SFT        0
41 #define CLK_SYNTH_HI_SFT        8
42 #define CLK_SYNTH_HOLD_SFT      16
43 #define CLK_SYNTH_EN            BIT(24)
44 #define CLK_SYS_CYCLES_MAX      514
45 #define CLK_SYS_CYCLES_MIN      2
46
47 #define SDIF_DISABLE    0x04
48
49 #define SDIF_STAT       0x08
50 #define SDIF_BUSY       BIT(0)
51 #define SDIF_LOCK       BIT(1)
52
53 #define SDIF_W          0x0c
54 #define SDIF_PROG       BIT(31)
55 #define SDIF_WRN_W      BIT(27)
56 #define SDIF_WRN_R      0x00
57 #define SDIF_ADDR_SFT   24
58
59 #define SDIF_HALT       0x10
60 #define SDIF_CTRL       0x14
61 #define SDIF_SMPL_CTRL  0x20
62
63 /* TS & PD Individual Macro Register */
64 #define COM_REG_SIZE    0x40
65
66 #define SDIF_DONE(n)    (COM_REG_SIZE + 0x14 + 0x40 * (n))
67 #define SDIF_SMPL_DONE  BIT(0)
68
69 #define SDIF_DATA(n)    (COM_REG_SIZE + 0x18 + 0x40 * (n))
70 #define SAMPLE_DATA_MSK GENMASK(15, 0)
71
72 #define HILO_RESET(n)   (COM_REG_SIZE + 0x2c + 0x40 * (n))
73
74 /* VM Individual Macro Register */
75 #define VM_COM_REG_SIZE 0x200
76 #define VM_SDIF_DONE(vm)        (VM_COM_REG_SIZE + 0x34 + 0x200 * (vm))
77 #define VM_SDIF_DATA(vm, ch)    \
78         (VM_COM_REG_SIZE + 0x40 + 0x200 * (vm) + 0x4 * (ch))
79
80 /* SDA Slave Register */
81 #define IP_CTRL                 0x00
82 #define IP_RST_REL              BIT(1)
83 #define IP_RUN_CONT             BIT(3)
84 #define IP_AUTO                 BIT(8)
85 #define IP_VM_MODE              BIT(10)
86
87 #define IP_CFG                  0x01
88 #define CFG0_MODE_2             BIT(0)
89 #define CFG0_PARALLEL_OUT       0
90 #define CFG0_12_BIT             0
91 #define CFG1_VOL_MEAS_MODE      0
92 #define CFG1_PARALLEL_OUT       0
93 #define CFG1_14_BIT             0
94
95 #define IP_DATA         0x03
96
97 #define IP_POLL         0x04
98 #define VM_CH_INIT      BIT(20)
99 #define VM_CH_REQ       BIT(21)
100
101 #define IP_TMR                  0x05
102 #define POWER_DELAY_CYCLE_256   0x100
103 #define POWER_DELAY_CYCLE_64    0x40
104
105 #define PVT_POLL_DELAY_US       20
106 #define PVT_POLL_TIMEOUT_US     20000
107 #define PVT_CONV_BITS           10
108 #define PVT_N_CONST             90
109 #define PVT_R_CONST             245805
110
111 #define PVT_TEMP_MIN_mC         -40000
112 #define PVT_TEMP_MAX_mC         125000
113
114 /* Temperature coefficients for series 5 */
115 #define PVT_SERIES5_H_CONST     200000
116 #define PVT_SERIES5_G_CONST     60000
117 #define PVT_SERIES5_J_CONST     -100
118 #define PVT_SERIES5_CAL5_CONST  4094
119
120 /* Temperature coefficients for series 6 */
121 #define PVT_SERIES6_H_CONST     249400
122 #define PVT_SERIES6_G_CONST     57400
123 #define PVT_SERIES6_J_CONST     0
124 #define PVT_SERIES6_CAL5_CONST  4096
125
126 #define TEMPERATURE_SENSOR_SERIES_5     5
127 #define TEMPERATURE_SENSOR_SERIES_6     6
128
129 #define PRE_SCALER_X1   1
130 #define PRE_SCALER_X2   2
131
132 /**
133  * struct voltage_device - VM single input parameters.
134  * @vm_map: Map channel number to VM index.
135  * @ch_map: Map channel number to channel index.
136  * @pre_scaler: Pre scaler value (1 or 2) used to normalize the voltage output
137  *              result.
138  *
139  * The structure provides mapping between channel-number (0..N-1) to VM-index
140  * (0..num_vm-1) and channel-index (0..ch_num-1) where N = num_vm * ch_num.
141  * It also provides normalization factor for the VM equation.
142  */
143 struct voltage_device {
144         u32 vm_map;
145         u32 ch_map;
146         u32 pre_scaler;
147 };
148
149 /**
150  * struct voltage_channels - VM channel count.
151  * @total: Total number of channels in all VMs.
152  * @max: Maximum number of channels among all VMs.
153  *
154  * The structure provides channel count information across all VMs.
155  */
156 struct voltage_channels {
157         u32 total;
158         u8 max;
159 };
160
161 struct temp_coeff {
162         u32 h;
163         u32 g;
164         u32 cal5;
165         s32 j;
166 };
167
168 struct pvt_device {
169         struct regmap           *c_map;
170         struct regmap           *t_map;
171         struct regmap           *p_map;
172         struct regmap           *v_map;
173         struct clk              *clk;
174         struct reset_control    *rst;
175         struct dentry           *dbgfs_dir;
176         struct voltage_device   *vd;
177         struct voltage_channels vm_channels;
178         struct temp_coeff       ts_coeff;
179         u32                     t_num;
180         u32                     p_num;
181         u32                     v_num;
182         u32                     ip_freq;
183 };
184
185 static ssize_t pvt_ts_coeff_j_read(struct file *file, char __user *user_buf,
186                                    size_t count, loff_t *ppos)
187 {
188         struct pvt_device *pvt = file->private_data;
189         unsigned int len;
190         char buf[13];
191
192         len = scnprintf(buf, sizeof(buf), "%d\n", pvt->ts_coeff.j);
193
194         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
195 }
196
197 static ssize_t pvt_ts_coeff_j_write(struct file *file,
198                                     const char __user *user_buf,
199                                     size_t count, loff_t *ppos)
200 {
201         struct pvt_device *pvt = file->private_data;
202         int ret;
203
204         ret = kstrtos32_from_user(user_buf, count, 0, &pvt->ts_coeff.j);
205         if (ret)
206                 return ret;
207
208         return count;
209 }
210
211 static const struct file_operations pvt_ts_coeff_j_fops = {
212         .read = pvt_ts_coeff_j_read,
213         .write = pvt_ts_coeff_j_write,
214         .open = simple_open,
215         .owner = THIS_MODULE,
216         .llseek = default_llseek,
217 };
218
219 static void devm_pvt_ts_dbgfs_remove(void *data)
220 {
221         struct pvt_device *pvt = (struct pvt_device *)data;
222
223         debugfs_remove_recursive(pvt->dbgfs_dir);
224         pvt->dbgfs_dir = NULL;
225 }
226
227 static int pvt_ts_dbgfs_create(struct pvt_device *pvt, struct device *dev)
228 {
229         pvt->dbgfs_dir = debugfs_create_dir(dev_name(dev), NULL);
230
231         debugfs_create_u32("ts_coeff_h", 0644, pvt->dbgfs_dir,
232                            &pvt->ts_coeff.h);
233         debugfs_create_u32("ts_coeff_g", 0644, pvt->dbgfs_dir,
234                            &pvt->ts_coeff.g);
235         debugfs_create_u32("ts_coeff_cal5", 0644, pvt->dbgfs_dir,
236                            &pvt->ts_coeff.cal5);
237         debugfs_create_file("ts_coeff_j", 0644, pvt->dbgfs_dir, pvt,
238                             &pvt_ts_coeff_j_fops);
239
240         return devm_add_action_or_reset(dev, devm_pvt_ts_dbgfs_remove, pvt);
241 }
242
243 static umode_t pvt_is_visible(const void *data, enum hwmon_sensor_types type,
244                               u32 attr, int channel)
245 {
246         switch (type) {
247         case hwmon_temp:
248                 if (attr == hwmon_temp_input)
249                         return 0444;
250                 break;
251         case hwmon_in:
252                 if (attr == hwmon_in_input)
253                         return 0444;
254                 break;
255         default:
256                 break;
257         }
258         return 0;
259 }
260
261 static long pvt_calc_temp(struct pvt_device *pvt, u32 nbs)
262 {
263         /*
264          * Convert the register value to degrees centigrade temperature:
265          * T = G + H * (n / cal5 - 0.5) + J * F
266          */
267         struct temp_coeff *ts_coeff = &pvt->ts_coeff;
268
269         s64 tmp = ts_coeff->g +
270                 div_s64(ts_coeff->h * (s64)nbs, ts_coeff->cal5) -
271                 ts_coeff->h / 2 +
272                 div_s64(ts_coeff->j * (s64)pvt->ip_freq, HZ_PER_MHZ);
273
274         return clamp_val(tmp, PVT_TEMP_MIN_mC, PVT_TEMP_MAX_mC);
275 }
276
277 static int pvt_read_temp(struct device *dev, u32 attr, int channel, long *val)
278 {
279         struct pvt_device *pvt = dev_get_drvdata(dev);
280         struct regmap *t_map = pvt->t_map;
281         u32 stat, nbs;
282         int ret;
283
284         switch (attr) {
285         case hwmon_temp_input:
286                 ret = regmap_read_poll_timeout(t_map, SDIF_DONE(channel),
287                                                stat, stat & SDIF_SMPL_DONE,
288                                                PVT_POLL_DELAY_US,
289                                                PVT_POLL_TIMEOUT_US);
290                 if (ret)
291                         return ret;
292
293                 ret = regmap_read(t_map, SDIF_DATA(channel), &nbs);
294                 if (ret < 0)
295                         return ret;
296
297                 nbs &= SAMPLE_DATA_MSK;
298
299                 /*
300                  * Convert the register value to
301                  * degrees centigrade temperature
302                  */
303                 *val = pvt_calc_temp(pvt, nbs);
304
305                 return 0;
306         default:
307                 return -EOPNOTSUPP;
308         }
309 }
310
311 static int pvt_read_in(struct device *dev, u32 attr, int channel, long *val)
312 {
313         struct pvt_device *pvt = dev_get_drvdata(dev);
314         struct regmap *v_map = pvt->v_map;
315         u32 n, stat, pre_scaler;
316         u8 vm_idx, ch_idx;
317         int ret;
318
319         if (channel >= pvt->vm_channels.total)
320                 return -EINVAL;
321
322         vm_idx = pvt->vd[channel].vm_map;
323         ch_idx = pvt->vd[channel].ch_map;
324
325         switch (attr) {
326         case hwmon_in_input:
327                 ret = regmap_read_poll_timeout(v_map, VM_SDIF_DONE(vm_idx),
328                                                stat, stat & SDIF_SMPL_DONE,
329                                                PVT_POLL_DELAY_US,
330                                                PVT_POLL_TIMEOUT_US);
331                 if (ret)
332                         return ret;
333
334                 ret = regmap_read(v_map, VM_SDIF_DATA(vm_idx, ch_idx), &n);
335                 if (ret < 0)
336                         return ret;
337
338                 n &= SAMPLE_DATA_MSK;
339                 pre_scaler = pvt->vd[channel].pre_scaler;
340                 /*
341                  * Convert the N bitstream count into voltage.
342                  * To support negative voltage calculation for 64bit machines
343                  * n must be cast to long, since n and *val differ both in
344                  * signedness and in size.
345                  * Division is used instead of right shift, because for signed
346                  * numbers, the sign bit is used to fill the vacated bit
347                  * positions, and if the number is negative, 1 is used.
348                  * BIT(x) may not be used instead of (1 << x) because it's
349                  * unsigned.
350                  */
351                 *val = pre_scaler * (PVT_N_CONST * (long)n - PVT_R_CONST) /
352                         (1 << PVT_CONV_BITS);
353
354                 return 0;
355         default:
356                 return -EOPNOTSUPP;
357         }
358 }
359
360 static int pvt_read(struct device *dev, enum hwmon_sensor_types type,
361                     u32 attr, int channel, long *val)
362 {
363         switch (type) {
364         case hwmon_temp:
365                 return pvt_read_temp(dev, attr, channel, val);
366         case hwmon_in:
367                 return pvt_read_in(dev, attr, channel, val);
368         default:
369                 return -EOPNOTSUPP;
370         }
371 }
372
373 static struct hwmon_channel_info pvt_temp = {
374         .type = hwmon_temp,
375 };
376
377 static struct hwmon_channel_info pvt_in = {
378         .type = hwmon_in,
379 };
380
381 static const struct hwmon_ops pvt_hwmon_ops = {
382         .is_visible = pvt_is_visible,
383         .read = pvt_read,
384 };
385
386 static struct hwmon_chip_info pvt_chip_info = {
387         .ops = &pvt_hwmon_ops,
388 };
389
390 static int pvt_init(struct pvt_device *pvt)
391 {
392         u16 sys_freq, key, middle, low = 4, high = 8;
393         struct regmap *t_map = pvt->t_map;
394         struct regmap *p_map = pvt->p_map;
395         struct regmap *v_map = pvt->v_map;
396         u32 t_num = pvt->t_num;
397         u32 p_num = pvt->p_num;
398         u32 v_num = pvt->v_num;
399         u32 clk_synth, val;
400         int ret;
401
402         sys_freq = clk_get_rate(pvt->clk) / HZ_PER_MHZ;
403         while (high >= low) {
404                 middle = (low + high + 1) / 2;
405                 key = DIV_ROUND_CLOSEST(sys_freq, middle);
406                 if (key > CLK_SYS_CYCLES_MAX) {
407                         low = middle + 1;
408                         continue;
409                 } else if (key < CLK_SYS_CYCLES_MIN) {
410                         high = middle - 1;
411                         continue;
412                 } else {
413                         break;
414                 }
415         }
416
417         /*
418          * The system supports 'clk_sys' to 'clk_ip' frequency ratios
419          * from 2:1 to 512:1
420          */
421         key = clamp_val(key, CLK_SYS_CYCLES_MIN, CLK_SYS_CYCLES_MAX) - 2;
422
423         clk_synth = ((key + 1) >> 1) << CLK_SYNTH_LO_SFT |
424                     (key >> 1) << CLK_SYNTH_HI_SFT |
425                     (key >> 1) << CLK_SYNTH_HOLD_SFT | CLK_SYNTH_EN;
426
427         pvt->ip_freq = clk_get_rate(pvt->clk) / (key + 2);
428
429         if (t_num) {
430                 ret = regmap_write(t_map, SDIF_SMPL_CTRL, 0x0);
431                 if (ret < 0)
432                         return ret;
433
434                 ret = regmap_write(t_map, SDIF_HALT, 0x0);
435                 if (ret < 0)
436                         return ret;
437
438                 ret = regmap_write(t_map, CLK_SYNTH, clk_synth);
439                 if (ret < 0)
440                         return ret;
441
442                 ret = regmap_write(t_map, SDIF_DISABLE, 0x0);
443                 if (ret < 0)
444                         return ret;
445
446                 ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
447                                                val, !(val & SDIF_BUSY),
448                                                PVT_POLL_DELAY_US,
449                                                PVT_POLL_TIMEOUT_US);
450                 if (ret)
451                         return ret;
452
453                 val = CFG0_MODE_2 | CFG0_PARALLEL_OUT | CFG0_12_BIT |
454                       IP_CFG << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
455                 ret = regmap_write(t_map, SDIF_W, val);
456                 if (ret < 0)
457                         return ret;
458
459                 ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
460                                                val, !(val & SDIF_BUSY),
461                                                PVT_POLL_DELAY_US,
462                                                PVT_POLL_TIMEOUT_US);
463                 if (ret)
464                         return ret;
465
466                 val = POWER_DELAY_CYCLE_256 | IP_TMR << SDIF_ADDR_SFT |
467                               SDIF_WRN_W | SDIF_PROG;
468                 ret = regmap_write(t_map, SDIF_W, val);
469                 if (ret < 0)
470                         return ret;
471
472                 ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
473                                                val, !(val & SDIF_BUSY),
474                                                PVT_POLL_DELAY_US,
475                                                PVT_POLL_TIMEOUT_US);
476                 if (ret)
477                         return ret;
478
479                 val = IP_RST_REL | IP_RUN_CONT | IP_AUTO |
480                       IP_CTRL << SDIF_ADDR_SFT |
481                       SDIF_WRN_W | SDIF_PROG;
482                 ret = regmap_write(t_map, SDIF_W, val);
483                 if (ret < 0)
484                         return ret;
485         }
486
487         if (p_num) {
488                 ret = regmap_write(p_map, SDIF_HALT, 0x0);
489                 if (ret < 0)
490                         return ret;
491
492                 ret = regmap_write(p_map, SDIF_DISABLE, BIT(p_num) - 1);
493                 if (ret < 0)
494                         return ret;
495
496                 ret = regmap_write(p_map, CLK_SYNTH, clk_synth);
497                 if (ret < 0)
498                         return ret;
499         }
500
501         if (v_num) {
502                 ret = regmap_write(v_map, SDIF_SMPL_CTRL, 0x0);
503                 if (ret < 0)
504                         return ret;
505
506                 ret = regmap_write(v_map, SDIF_HALT, 0x0);
507                 if (ret < 0)
508                         return ret;
509
510                 ret = regmap_write(v_map, CLK_SYNTH, clk_synth);
511                 if (ret < 0)
512                         return ret;
513
514                 ret = regmap_write(v_map, SDIF_DISABLE, 0x0);
515                 if (ret < 0)
516                         return ret;
517
518                 ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
519                                                val, !(val & SDIF_BUSY),
520                                                PVT_POLL_DELAY_US,
521                                                PVT_POLL_TIMEOUT_US);
522                 if (ret)
523                         return ret;
524
525                 val = (BIT(pvt->vm_channels.max) - 1) | VM_CH_INIT |
526                       IP_POLL << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
527                 ret = regmap_write(v_map, SDIF_W, val);
528                 if (ret < 0)
529                         return ret;
530
531                 ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
532                                                val, !(val & SDIF_BUSY),
533                                                PVT_POLL_DELAY_US,
534                                                PVT_POLL_TIMEOUT_US);
535                 if (ret)
536                         return ret;
537
538                 val = CFG1_VOL_MEAS_MODE | CFG1_PARALLEL_OUT |
539                       CFG1_14_BIT | IP_CFG << SDIF_ADDR_SFT |
540                       SDIF_WRN_W | SDIF_PROG;
541                 ret = regmap_write(v_map, SDIF_W, val);
542                 if (ret < 0)
543                         return ret;
544
545                 ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
546                                                val, !(val & SDIF_BUSY),
547                                                PVT_POLL_DELAY_US,
548                                                PVT_POLL_TIMEOUT_US);
549                 if (ret)
550                         return ret;
551
552                 val = POWER_DELAY_CYCLE_64 | IP_TMR << SDIF_ADDR_SFT |
553                       SDIF_WRN_W | SDIF_PROG;
554                 ret = regmap_write(v_map, SDIF_W, val);
555                 if (ret < 0)
556                         return ret;
557
558                 ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
559                                                val, !(val & SDIF_BUSY),
560                                                PVT_POLL_DELAY_US,
561                                                PVT_POLL_TIMEOUT_US);
562                 if (ret)
563                         return ret;
564
565                 val = IP_RST_REL | IP_RUN_CONT | IP_AUTO | IP_VM_MODE |
566                       IP_CTRL << SDIF_ADDR_SFT |
567                       SDIF_WRN_W | SDIF_PROG;
568                 ret = regmap_write(v_map, SDIF_W, val);
569                 if (ret < 0)
570                         return ret;
571         }
572
573         return 0;
574 }
575
576 static struct regmap_config pvt_regmap_config = {
577         .reg_bits = 32,
578         .reg_stride = 4,
579         .val_bits = 32,
580 };
581
582 static int pvt_get_regmap(struct platform_device *pdev, char *reg_name,
583                           struct pvt_device *pvt)
584 {
585         struct device *dev = &pdev->dev;
586         struct regmap **reg_map;
587         void __iomem *io_base;
588
589         if (!strcmp(reg_name, "common"))
590                 reg_map = &pvt->c_map;
591         else if (!strcmp(reg_name, "ts"))
592                 reg_map = &pvt->t_map;
593         else if (!strcmp(reg_name, "pd"))
594                 reg_map = &pvt->p_map;
595         else if (!strcmp(reg_name, "vm"))
596                 reg_map = &pvt->v_map;
597         else
598                 return -EINVAL;
599
600         io_base = devm_platform_ioremap_resource_byname(pdev, reg_name);
601         if (IS_ERR(io_base))
602                 return PTR_ERR(io_base);
603
604         pvt_regmap_config.name = reg_name;
605         *reg_map = devm_regmap_init_mmio(dev, io_base, &pvt_regmap_config);
606         if (IS_ERR(*reg_map)) {
607                 dev_err(dev, "failed to init register map\n");
608                 return PTR_ERR(*reg_map);
609         }
610
611         return 0;
612 }
613
614 static void pvt_reset_control_assert(void *data)
615 {
616         struct pvt_device *pvt = data;
617
618         reset_control_assert(pvt->rst);
619 }
620
621 static int pvt_reset_control_deassert(struct device *dev, struct pvt_device *pvt)
622 {
623         int ret;
624
625         ret = reset_control_deassert(pvt->rst);
626         if (ret)
627                 return ret;
628
629         return devm_add_action_or_reset(dev, pvt_reset_control_assert, pvt);
630 }
631
632 static int pvt_get_active_channel(struct device *dev, struct pvt_device *pvt,
633                                   u32 vm_num, u32 ch_num, u8 *vm_idx)
634 {
635         u8 vm_active_ch[VM_NUM_MAX];
636         int ret, i, j, k;
637
638         ret = device_property_read_u8_array(dev, "moortec,vm-active-channels",
639                                             vm_active_ch, vm_num);
640         if (ret) {
641                 /*
642                  * Incase "moortec,vm-active-channels" property is not defined,
643                  * we assume each VM sensor has all of its channels active.
644                  */
645                 memset(vm_active_ch, ch_num, vm_num);
646                 pvt->vm_channels.max = ch_num;
647                 pvt->vm_channels.total = ch_num * vm_num;
648         } else {
649                 for (i = 0; i < vm_num; i++) {
650                         if (vm_active_ch[i] > ch_num) {
651                                 dev_err(dev, "invalid active channels: %u\n",
652                                         vm_active_ch[i]);
653                                 return -EINVAL;
654                         }
655
656                         pvt->vm_channels.total += vm_active_ch[i];
657
658                         if (vm_active_ch[i] > pvt->vm_channels.max)
659                                 pvt->vm_channels.max = vm_active_ch[i];
660                 }
661         }
662
663         /*
664          * Map between the channel-number to VM-index and channel-index.
665          * Example - 3 VMs, "moortec,vm_active_ch" = <5 2 4>:
666          * vm_map = [0 0 0 0 0 1 1 2 2 2 2]
667          * ch_map = [0 1 2 3 4 0 1 0 1 2 3]
668          */
669         pvt->vd = devm_kcalloc(dev, pvt->vm_channels.total, sizeof(*pvt->vd),
670                                GFP_KERNEL);
671         if (!pvt->vd)
672                 return -ENOMEM;
673
674         k = 0;
675         for (i = 0; i < vm_num; i++) {
676                 for (j = 0; j < vm_active_ch[i]; j++) {
677                         pvt->vd[k].vm_map = vm_idx[i];
678                         pvt->vd[k].ch_map = j;
679                         k++;
680                 }
681         }
682
683         return 0;
684 }
685
686 static int pvt_get_pre_scaler(struct device *dev, struct pvt_device *pvt)
687 {
688         u8 *pre_scaler_ch_list;
689         int i, ret, num_ch;
690         u32 channel;
691
692         /* Set default pre-scaler value to be 1. */
693         for (i = 0; i < pvt->vm_channels.total; i++)
694                 pvt->vd[i].pre_scaler = PRE_SCALER_X1;
695
696         /* Get number of channels configured in "moortec,vm-pre-scaler-x2". */
697         num_ch = device_property_count_u8(dev, "moortec,vm-pre-scaler-x2");
698         if (num_ch <= 0)
699                 return 0;
700
701         pre_scaler_ch_list = kcalloc(num_ch, sizeof(*pre_scaler_ch_list),
702                                      GFP_KERNEL);
703         if (!pre_scaler_ch_list)
704                 return -ENOMEM;
705
706         /* Get list of all channels that have pre-scaler of 2. */
707         ret = device_property_read_u8_array(dev, "moortec,vm-pre-scaler-x2",
708                                             pre_scaler_ch_list, num_ch);
709         if (ret)
710                 goto out;
711
712         for (i = 0; i < num_ch; i++) {
713                 channel = pre_scaler_ch_list[i];
714                 pvt->vd[channel].pre_scaler = PRE_SCALER_X2;
715         }
716
717 out:
718         kfree(pre_scaler_ch_list);
719
720         return ret;
721 }
722
723 static int pvt_set_temp_coeff(struct device *dev, struct pvt_device *pvt)
724 {
725         struct temp_coeff *ts_coeff = &pvt->ts_coeff;
726         u32 series;
727         int ret;
728
729         /* Incase ts-series property is not defined, use default 5. */
730         ret = device_property_read_u32(dev, "moortec,ts-series", &series);
731         if (ret)
732                 series = TEMPERATURE_SENSOR_SERIES_5;
733
734         switch (series) {
735         case TEMPERATURE_SENSOR_SERIES_5:
736                 ts_coeff->h = PVT_SERIES5_H_CONST;
737                 ts_coeff->g = PVT_SERIES5_G_CONST;
738                 ts_coeff->j = PVT_SERIES5_J_CONST;
739                 ts_coeff->cal5 = PVT_SERIES5_CAL5_CONST;
740                 break;
741         case TEMPERATURE_SENSOR_SERIES_6:
742                 ts_coeff->h = PVT_SERIES6_H_CONST;
743                 ts_coeff->g = PVT_SERIES6_G_CONST;
744                 ts_coeff->j = PVT_SERIES6_J_CONST;
745                 ts_coeff->cal5 = PVT_SERIES6_CAL5_CONST;
746                 break;
747         default:
748                 dev_err(dev, "invalid temperature sensor series (%u)\n",
749                         series);
750                 return -EINVAL;
751         }
752
753         dev_dbg(dev, "temperature sensor series = %u\n", series);
754
755         /* Override ts-coeff-h/g/j/cal5 if they are defined. */
756         device_property_read_u32(dev, "moortec,ts-coeff-h", &ts_coeff->h);
757         device_property_read_u32(dev, "moortec,ts-coeff-g", &ts_coeff->g);
758         device_property_read_u32(dev, "moortec,ts-coeff-j", &ts_coeff->j);
759         device_property_read_u32(dev, "moortec,ts-coeff-cal5", &ts_coeff->cal5);
760
761         dev_dbg(dev, "ts-coeff: h = %u, g = %u, j = %d, cal5 = %u\n",
762                 ts_coeff->h, ts_coeff->g, ts_coeff->j, ts_coeff->cal5);
763
764         return 0;
765 }
766
767 static int mr75203_probe(struct platform_device *pdev)
768 {
769         u32 ts_num, vm_num, pd_num, ch_num, val, index, i;
770         const struct hwmon_channel_info **pvt_info;
771         struct device *dev = &pdev->dev;
772         u32 *temp_config, *in_config;
773         struct device *hwmon_dev;
774         struct pvt_device *pvt;
775         int ret;
776
777         pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
778         if (!pvt)
779                 return -ENOMEM;
780
781         ret = pvt_get_regmap(pdev, "common", pvt);
782         if (ret)
783                 return ret;
784
785         pvt->clk = devm_clk_get_enabled(dev, NULL);
786         if (IS_ERR(pvt->clk))
787                 return dev_err_probe(dev, PTR_ERR(pvt->clk), "failed to get clock\n");
788
789         pvt->rst = devm_reset_control_get_optional_exclusive(dev, NULL);
790         if (IS_ERR(pvt->rst))
791                 return dev_err_probe(dev, PTR_ERR(pvt->rst),
792                                      "failed to get reset control\n");
793
794         if (pvt->rst) {
795                 ret = pvt_reset_control_deassert(dev, pvt);
796                 if (ret)
797                         return dev_err_probe(dev, ret,
798                                              "cannot deassert reset control\n");
799         }
800
801         ret = regmap_read(pvt->c_map, PVT_IP_CONFIG, &val);
802         if (ret < 0)
803                 return ret;
804
805         ts_num = (val & TS_NUM_MSK) >> TS_NUM_SFT;
806         pd_num = (val & PD_NUM_MSK) >> PD_NUM_SFT;
807         vm_num = (val & VM_NUM_MSK) >> VM_NUM_SFT;
808         ch_num = (val & CH_NUM_MSK) >> CH_NUM_SFT;
809         pvt->t_num = ts_num;
810         pvt->p_num = pd_num;
811         pvt->v_num = vm_num;
812         val = 0;
813         if (ts_num)
814                 val++;
815         if (vm_num)
816                 val++;
817         if (!val)
818                 return -ENODEV;
819
820         pvt_info = devm_kcalloc(dev, val + 2, sizeof(*pvt_info), GFP_KERNEL);
821         if (!pvt_info)
822                 return -ENOMEM;
823         pvt_info[0] = HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ);
824         index = 1;
825
826         if (ts_num) {
827                 ret = pvt_get_regmap(pdev, "ts", pvt);
828                 if (ret)
829                         return ret;
830
831                 ret = pvt_set_temp_coeff(dev, pvt);
832                 if (ret)
833                         return ret;
834
835                 temp_config = devm_kcalloc(dev, ts_num + 1,
836                                            sizeof(*temp_config), GFP_KERNEL);
837                 if (!temp_config)
838                         return -ENOMEM;
839
840                 memset32(temp_config, HWMON_T_INPUT, ts_num);
841                 pvt_temp.config = temp_config;
842                 pvt_info[index++] = &pvt_temp;
843
844                 pvt_ts_dbgfs_create(pvt, dev);
845         }
846
847         if (pd_num) {
848                 ret = pvt_get_regmap(pdev, "pd", pvt);
849                 if (ret)
850                         return ret;
851         }
852
853         if (vm_num) {
854                 u8 vm_idx[VM_NUM_MAX];
855
856                 ret = pvt_get_regmap(pdev, "vm", pvt);
857                 if (ret)
858                         return ret;
859
860                 ret = device_property_read_u8_array(dev, "intel,vm-map", vm_idx,
861                                                     vm_num);
862                 if (ret) {
863                         /*
864                          * Incase intel,vm-map property is not defined, we
865                          * assume incremental channel numbers.
866                          */
867                         for (i = 0; i < vm_num; i++)
868                                 vm_idx[i] = i;
869                 } else {
870                         for (i = 0; i < vm_num; i++)
871                                 if (vm_idx[i] >= vm_num || vm_idx[i] == 0xff) {
872                                         pvt->v_num = i;
873                                         vm_num = i;
874                                         break;
875                                 }
876                 }
877
878                 ret = pvt_get_active_channel(dev, pvt, vm_num, ch_num, vm_idx);
879                 if (ret)
880                         return ret;
881
882                 ret = pvt_get_pre_scaler(dev, pvt);
883                 if (ret)
884                         return ret;
885
886                 in_config = devm_kcalloc(dev, pvt->vm_channels.total + 1,
887                                          sizeof(*in_config), GFP_KERNEL);
888                 if (!in_config)
889                         return -ENOMEM;
890
891                 memset32(in_config, HWMON_I_INPUT, pvt->vm_channels.total);
892                 in_config[pvt->vm_channels.total] = 0;
893                 pvt_in.config = in_config;
894
895                 pvt_info[index++] = &pvt_in;
896         }
897
898         ret = pvt_init(pvt);
899         if (ret) {
900                 dev_err(dev, "failed to init pvt: %d\n", ret);
901                 return ret;
902         }
903
904         pvt_chip_info.info = pvt_info;
905         hwmon_dev = devm_hwmon_device_register_with_info(dev, "pvt",
906                                                          pvt,
907                                                          &pvt_chip_info,
908                                                          NULL);
909
910         return PTR_ERR_OR_ZERO(hwmon_dev);
911 }
912
913 static const struct of_device_id moortec_pvt_of_match[] = {
914         { .compatible = "moortec,mr75203" },
915         { }
916 };
917 MODULE_DEVICE_TABLE(of, moortec_pvt_of_match);
918
919 static struct platform_driver moortec_pvt_driver = {
920         .driver = {
921                 .name = "moortec-pvt",
922                 .of_match_table = moortec_pvt_of_match,
923         },
924         .probe = mr75203_probe,
925 };
926 module_platform_driver(moortec_pvt_driver);
927
928 MODULE_LICENSE("GPL v2");