1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
5 * Copyright (C) 2003-2010 Jean Delvare <jdelvare@suse.de>
7 * Based on the lm83 driver. The LM90 is a sensor chip made by National
8 * Semiconductor. It reports up to two temperatures (its own plus up to
9 * one external one) with a 0.125 deg resolution (1 deg for local
10 * temperature) and a 3-4 deg accuracy.
12 * This driver also supports the LM89 and LM99, two other sensor chips
13 * made by National Semiconductor. Both have an increased remote
14 * temperature measurement accuracy (1 degree), and the LM99
15 * additionally shifts remote temperatures (measured and limits) by 16
16 * degrees, which allows for higher temperatures measurement.
17 * Note that there is no way to differentiate between both chips.
18 * When device is auto-detected, the driver will assume an LM99.
20 * This driver also supports the LM86, another sensor chip made by
21 * National Semiconductor. It is exactly similar to the LM90 except it
22 * has a higher accuracy.
24 * This driver also supports the ADM1032, a sensor chip made by Analog
25 * Devices. That chip is similar to the LM90, with a few differences
26 * that are not handled by this driver. Among others, it has a higher
27 * accuracy than the LM90, much like the LM86 does.
29 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
30 * chips made by Maxim. These chips are similar to the LM86.
31 * Note that there is no easy way to differentiate between the three
32 * variants. We use the device address to detect MAX6659, which will result
33 * in a detection as max6657 if it is on address 0x4c. The extra address
34 * and features of the MAX6659 are only supported if the chip is configured
35 * explicitly as max6659, or if its address is not 0x4c.
36 * These chips lack the remote temperature offset feature.
38 * This driver also supports the MAX6654 chip made by Maxim. This chip can be
39 * at 9 different addresses, similar to MAX6680/MAX6681. The MAX6654 is similar
40 * to MAX6657/MAX6658/MAX6659, but does not support critical temperature
41 * limits. Extended range is available by setting the configuration register
42 * accordingly, and is done during initialization. Extended precision is only
43 * available at conversion rates of 1 Hz and slower. Note that extended
44 * precision is not enabled by default, as this driver initializes all chips
45 * to 2 Hz by design. The driver also supports MAX6690, which is practically
46 * identical to MAX6654.
48 * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
49 * MAX6692 chips made by Maxim. These are again similar to the LM86,
50 * but they use unsigned temperature values and can report temperatures
51 * from 0 to 145 degrees.
53 * This driver also supports the MAX6680 and MAX6681, two other sensor
54 * chips made by Maxim. These are quite similar to the other Maxim
55 * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
56 * be treated identically.
58 * This driver also supports the MAX6695 and MAX6696, two other sensor
59 * chips made by Maxim. These are also quite similar to other Maxim
60 * chips, but support three temperature sensors instead of two. MAX6695
61 * and MAX6696 only differ in the pinout so they can be treated identically.
63 * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
64 * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
65 * and extended mode. They are mostly compatible with LM90 except for a data
66 * format difference for the temperature value registers.
68 * This driver also supports ADT7481, ADT7482, and ADT7483 from Analog Devices
69 * / ON Semiconductor. The chips are similar to ADT7461 but support two external
70 * temperature sensors.
72 * This driver also supports NCT72, NCT214, and NCT218 from ON Semiconductor.
73 * The chips are similar to ADT7461/ADT7461A but have full PEC support
76 * This driver also supports the SA56004 from Philips. This device is
77 * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
79 * This driver also supports the G781 from GMT. This device is compatible
82 * This driver also supports TMP451 and TMP461 from Texas Instruments.
83 * Those devices are supported in both compatibility and extended mode.
84 * They are mostly compatible with ADT7461 except for local temperature
85 * low byte register and max conversion rate.
87 * This driver also supports MAX1617 and various clones such as G767
88 * and NE1617. Such clones will be detected as MAX1617.
90 * This driver also supports NE1618 from Philips. It is similar to NE1617
91 * but supports 11 bit external temperature values.
93 * Since the LM90 was the first chipset supported by this driver, most
94 * comments will refer to this chipset, but are actually general and
95 * concern all supported chipsets, unless mentioned otherwise.
98 #include <linux/bits.h>
99 #include <linux/device.h>
100 #include <linux/err.h>
101 #include <linux/i2c.h>
102 #include <linux/init.h>
103 #include <linux/interrupt.h>
104 #include <linux/jiffies.h>
105 #include <linux/hwmon.h>
106 #include <linux/module.h>
107 #include <linux/mutex.h>
108 #include <linux/of_device.h>
109 #include <linux/regulator/consumer.h>
110 #include <linux/slab.h>
111 #include <linux/workqueue.h>
113 /* The maximum number of channels currently supported */
114 #define MAX_CHANNELS 3
118 * Address is fully defined internally and cannot be changed except for
119 * MAX6659, MAX6680 and MAX6681.
120 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
121 * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
122 * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
124 * MAX6647 has address 0x4e.
125 * MAX6659 can have address 0x4c, 0x4d or 0x4e.
126 * MAX6654, MAX6680, and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29,
127 * 0x2a, 0x2b, 0x4c, 0x4d or 0x4e.
128 * SA56004 can have address 0x48 through 0x4F.
131 static const unsigned short normal_i2c[] = {
132 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
133 0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
135 enum chips { adm1023, adm1032, adt7461, adt7461a, adt7481,
136 g781, lm84, lm90, lm99,
137 max1617, max6642, max6646, max6648, max6654, max6657, max6659, max6680, max6696,
138 nct210, nct72, ne1618, sa56004, tmp451, tmp461, w83l771,
145 #define LM90_REG_MAN_ID 0xFE
146 #define LM90_REG_CHIP_ID 0xFF
147 #define LM90_REG_CONFIG1 0x03
148 #define LM90_REG_CONFIG2 0xBF
149 #define LM90_REG_CONVRATE 0x04
150 #define LM90_REG_STATUS 0x02
151 #define LM90_REG_LOCAL_TEMP 0x00
152 #define LM90_REG_LOCAL_HIGH 0x05
153 #define LM90_REG_LOCAL_LOW 0x06
154 #define LM90_REG_LOCAL_CRIT 0x20
155 #define LM90_REG_REMOTE_TEMPH 0x01
156 #define LM90_REG_REMOTE_TEMPL 0x10
157 #define LM90_REG_REMOTE_OFFSH 0x11
158 #define LM90_REG_REMOTE_OFFSL 0x12
159 #define LM90_REG_REMOTE_HIGHH 0x07
160 #define LM90_REG_REMOTE_HIGHL 0x13
161 #define LM90_REG_REMOTE_LOWH 0x08
162 #define LM90_REG_REMOTE_LOWL 0x14
163 #define LM90_REG_REMOTE_CRIT 0x19
164 #define LM90_REG_TCRIT_HYST 0x21
166 /* MAX6646/6647/6649/6654/6657/6658/6659/6695/6696 registers */
168 #define MAX6657_REG_LOCAL_TEMPL 0x11
169 #define MAX6696_REG_STATUS2 0x12
170 #define MAX6659_REG_REMOTE_EMERG 0x16
171 #define MAX6659_REG_LOCAL_EMERG 0x17
173 /* SA56004 registers */
175 #define SA56004_REG_LOCAL_TEMPL 0x22
177 #define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */
179 /* TMP451/TMP461 registers */
180 #define TMP451_REG_LOCAL_TEMPL 0x15
181 #define TMP451_REG_CONALERT 0x22
183 #define TMP461_REG_CHEN 0x16
184 #define TMP461_REG_DFC 0x24
186 /* ADT7481 registers */
187 #define ADT7481_REG_STATUS2 0x23
188 #define ADT7481_REG_CONFIG2 0x24
190 #define ADT7481_REG_MAN_ID 0x3e
191 #define ADT7481_REG_CHIP_ID 0x3d
193 /* Device features */
194 #define LM90_HAVE_EXTENDED_TEMP BIT(0) /* extended temperature support */
195 #define LM90_HAVE_OFFSET BIT(1) /* temperature offset register */
196 #define LM90_HAVE_UNSIGNED_TEMP BIT(2) /* temperatures are unsigned */
197 #define LM90_HAVE_REM_LIMIT_EXT BIT(3) /* extended remote limit */
198 #define LM90_HAVE_EMERGENCY BIT(4) /* 3rd upper (emergency) limit */
199 #define LM90_HAVE_EMERGENCY_ALARM BIT(5)/* emergency alarm */
200 #define LM90_HAVE_TEMP3 BIT(6) /* 3rd temperature sensor */
201 #define LM90_HAVE_BROKEN_ALERT BIT(7) /* Broken alert */
202 #define LM90_PAUSE_FOR_CONFIG BIT(8) /* Pause conversion for config */
203 #define LM90_HAVE_CRIT BIT(9) /* Chip supports CRIT/OVERT register */
204 #define LM90_HAVE_CRIT_ALRM_SWP BIT(10) /* critical alarm bits swapped */
205 #define LM90_HAVE_PEC BIT(11) /* Chip supports PEC */
206 #define LM90_HAVE_PARTIAL_PEC BIT(12) /* Partial PEC support (adm1032)*/
207 #define LM90_HAVE_ALARMS BIT(13) /* Create 'alarms' attribute */
208 #define LM90_HAVE_EXT_UNSIGNED BIT(14) /* extended unsigned temperature*/
209 #define LM90_HAVE_LOW BIT(15) /* low limits */
210 #define LM90_HAVE_CONVRATE BIT(16) /* conversion rate */
211 #define LM90_HAVE_REMOTE_EXT BIT(17) /* extended remote temperature */
212 #define LM90_HAVE_FAULTQUEUE BIT(18) /* configurable samples count */
215 #define LM90_STATUS_LTHRM BIT(0) /* local THERM limit tripped */
216 #define LM90_STATUS_RTHRM BIT(1) /* remote THERM limit tripped */
217 #define LM90_STATUS_ROPEN BIT(2) /* remote is an open circuit */
218 #define LM90_STATUS_RLOW BIT(3) /* remote low temp limit tripped */
219 #define LM90_STATUS_RHIGH BIT(4) /* remote high temp limit tripped */
220 #define LM90_STATUS_LLOW BIT(5) /* local low temp limit tripped */
221 #define LM90_STATUS_LHIGH BIT(6) /* local high temp limit tripped */
222 #define LM90_STATUS_BUSY BIT(7) /* conversion is ongoing */
224 /* MAX6695/6696 and ADT7481 2nd status register */
225 #define MAX6696_STATUS2_R2THRM BIT(1) /* remote2 THERM limit tripped */
226 #define MAX6696_STATUS2_R2OPEN BIT(2) /* remote2 is an open circuit */
227 #define MAX6696_STATUS2_R2LOW BIT(3) /* remote2 low temp limit tripped */
228 #define MAX6696_STATUS2_R2HIGH BIT(4) /* remote2 high temp limit tripped */
229 #define MAX6696_STATUS2_ROT2 BIT(5) /* remote emergency limit tripped */
230 #define MAX6696_STATUS2_R2OT2 BIT(6) /* remote2 emergency limit tripped */
231 #define MAX6696_STATUS2_LOT2 BIT(7) /* local emergency limit tripped */
234 * Driver data (common to all clients)
237 static const struct i2c_device_id lm90_id[] = {
238 { "adm1020", max1617 },
239 { "adm1021", max1617 },
240 { "adm1023", adm1023 },
241 { "adm1032", adm1032 },
242 { "adt7421", adt7461a },
243 { "adt7461", adt7461 },
244 { "adt7461a", adt7461a },
245 { "adt7481", adt7481 },
246 { "adt7482", adt7481 },
247 { "adt7483a", adt7481 },
249 { "gl523sm", max1617 },
255 { "max1617", max1617 },
256 { "max6642", max6642 },
257 { "max6646", max6646 },
258 { "max6647", max6646 },
259 { "max6648", max6648 },
260 { "max6649", max6646 },
261 { "max6654", max6654 },
262 { "max6657", max6657 },
263 { "max6658", max6657 },
264 { "max6659", max6659 },
265 { "max6680", max6680 },
266 { "max6681", max6680 },
267 { "max6690", max6654 },
268 { "max6692", max6648 },
269 { "max6695", max6696 },
270 { "max6696", max6696 },
271 { "mc1066", max1617 },
272 { "nct1008", adt7461a },
273 { "nct210", nct210 },
277 { "ne1618", ne1618 },
278 { "w83l771", w83l771 },
279 { "sa56004", sa56004 },
280 { "thmc10", max1617 },
281 { "tmp451", tmp451 },
282 { "tmp461", tmp461 },
285 MODULE_DEVICE_TABLE(i2c, lm90_id);
287 static const struct of_device_id __maybe_unused lm90_of_match[] = {
289 .compatible = "adi,adm1032",
290 .data = (void *)adm1032
293 .compatible = "adi,adt7461",
294 .data = (void *)adt7461
297 .compatible = "adi,adt7461a",
298 .data = (void *)adt7461a
301 .compatible = "adi,adt7481",
302 .data = (void *)adt7481
305 .compatible = "gmt,g781",
309 .compatible = "national,lm90",
313 .compatible = "national,lm86",
317 .compatible = "national,lm89",
321 .compatible = "national,lm99",
325 .compatible = "dallas,max6646",
326 .data = (void *)max6646
329 .compatible = "dallas,max6647",
330 .data = (void *)max6646
333 .compatible = "dallas,max6649",
334 .data = (void *)max6646
337 .compatible = "dallas,max6654",
338 .data = (void *)max6654
341 .compatible = "dallas,max6657",
342 .data = (void *)max6657
345 .compatible = "dallas,max6658",
346 .data = (void *)max6657
349 .compatible = "dallas,max6659",
350 .data = (void *)max6659
353 .compatible = "dallas,max6680",
354 .data = (void *)max6680
357 .compatible = "dallas,max6681",
358 .data = (void *)max6680
361 .compatible = "dallas,max6695",
362 .data = (void *)max6696
365 .compatible = "dallas,max6696",
366 .data = (void *)max6696
369 .compatible = "onnn,nct1008",
370 .data = (void *)adt7461a
373 .compatible = "onnn,nct214",
374 .data = (void *)nct72
377 .compatible = "onnn,nct218",
378 .data = (void *)nct72
381 .compatible = "onnn,nct72",
382 .data = (void *)nct72
385 .compatible = "winbond,w83l771",
386 .data = (void *)w83l771
389 .compatible = "nxp,sa56004",
390 .data = (void *)sa56004
393 .compatible = "ti,tmp451",
394 .data = (void *)tmp451
397 .compatible = "ti,tmp461",
398 .data = (void *)tmp461
402 MODULE_DEVICE_TABLE(of, lm90_of_match);
405 * chip type specific parameters
408 u32 flags; /* Capabilities */
409 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
410 /* Upper 8 bits for max6695/96 */
411 u8 max_convrate; /* Maximum conversion rate register value */
412 u8 resolution; /* 16-bit resolution (default 11 bit) */
413 u8 reg_status2; /* 2nd status register (optional) */
414 u8 reg_local_ext; /* Extended local temp register (optional) */
415 u8 faultqueue_mask; /* fault queue bit mask */
416 u8 faultqueue_depth; /* fault queue depth if mask is used */
419 static const struct lm90_params lm90_params[] = {
421 .flags = LM90_HAVE_ALARMS | LM90_HAVE_OFFSET | LM90_HAVE_BROKEN_ALERT
422 | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
423 | LM90_HAVE_REMOTE_EXT,
424 .alert_alarms = 0x7c,
429 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
430 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
431 | LM90_HAVE_PARTIAL_PEC | LM90_HAVE_ALARMS
432 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
433 | LM90_HAVE_FAULTQUEUE,
434 .alert_alarms = 0x7c,
439 * Standard temperature range is supposed to be unsigned,
440 * but that does not match reality. Negative temperatures
441 * are always reported.
443 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
444 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
445 | LM90_HAVE_CRIT | LM90_HAVE_PARTIAL_PEC
446 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
447 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
448 .alert_alarms = 0x7c,
453 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
454 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
455 | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_ALARMS
456 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
457 | LM90_HAVE_FAULTQUEUE,
458 .alert_alarms = 0x7c,
462 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
463 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
464 | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_PEC
465 | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT | LM90_HAVE_LOW
466 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
467 | LM90_HAVE_FAULTQUEUE,
468 .alert_alarms = 0x1c7c,
471 .reg_status2 = ADT7481_REG_STATUS2,
474 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
475 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
476 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
477 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
478 .alert_alarms = 0x7c,
482 .flags = LM90_HAVE_ALARMS,
486 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
487 | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
488 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
489 | LM90_HAVE_FAULTQUEUE,
490 .alert_alarms = 0x7b,
492 .faultqueue_mask = BIT(0),
493 .faultqueue_depth = 3,
496 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
497 | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
498 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
499 | LM90_HAVE_FAULTQUEUE,
500 .alert_alarms = 0x7b,
502 .faultqueue_mask = BIT(0),
503 .faultqueue_depth = 3,
506 .flags = LM90_HAVE_CONVRATE | LM90_HAVE_BROKEN_ALERT |
507 LM90_HAVE_LOW | LM90_HAVE_ALARMS,
508 .alert_alarms = 0x78,
513 .flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXT_UNSIGNED
514 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
515 .alert_alarms = 0x50,
517 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
518 .faultqueue_mask = BIT(4),
519 .faultqueue_depth = 2,
522 .flags = LM90_HAVE_CRIT | LM90_HAVE_BROKEN_ALERT
523 | LM90_HAVE_EXT_UNSIGNED | LM90_HAVE_ALARMS | LM90_HAVE_LOW
524 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
525 .alert_alarms = 0x7c,
527 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
530 .flags = LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_CRIT
531 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_LOW
532 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
533 .alert_alarms = 0x7c,
535 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
538 .flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
539 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
540 .alert_alarms = 0x7c,
542 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
545 .flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_CRIT
546 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
547 | LM90_HAVE_REMOTE_EXT,
548 .alert_alarms = 0x7c,
550 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
553 .flags = LM90_HAVE_EMERGENCY | LM90_HAVE_CRIT
554 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
555 | LM90_HAVE_REMOTE_EXT,
556 .alert_alarms = 0x7c,
558 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
562 * Apparent temperatures of 128 degrees C or higher are reported
563 * and treated as negative temperatures (meaning min_alarm will
566 .flags = LM90_HAVE_OFFSET | LM90_HAVE_CRIT
567 | LM90_HAVE_CRIT_ALRM_SWP | LM90_HAVE_BROKEN_ALERT
568 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
569 | LM90_HAVE_REMOTE_EXT,
570 .alert_alarms = 0x7c,
574 .flags = LM90_HAVE_EMERGENCY
575 | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT
576 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
577 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
578 .alert_alarms = 0x1c7c,
580 .reg_status2 = MAX6696_REG_STATUS2,
581 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
582 .faultqueue_mask = BIT(5),
583 .faultqueue_depth = 4,
586 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
587 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
588 | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_UNSIGNED_TEMP
589 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
590 | LM90_HAVE_FAULTQUEUE,
591 .alert_alarms = 0x7c,
596 .flags = LM90_HAVE_ALARMS | LM90_HAVE_BROKEN_ALERT
597 | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
598 | LM90_HAVE_REMOTE_EXT,
599 .alert_alarms = 0x7c,
604 .flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_BROKEN_ALERT
605 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
606 .alert_alarms = 0x7c,
611 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
612 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
613 | LM90_HAVE_REMOTE_EXT,
614 .alert_alarms = 0x7c,
619 * Apparent temperatures of 128 degrees C or higher are reported
620 * and treated as negative temperatures (meaning min_alarm will
623 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
624 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
625 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
626 .alert_alarms = 0x7b,
628 .reg_local_ext = SA56004_REG_LOCAL_TEMPL,
629 .faultqueue_mask = BIT(0),
630 .faultqueue_depth = 3,
633 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
634 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
635 | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_ALARMS | LM90_HAVE_LOW
636 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
637 .alert_alarms = 0x7c,
640 .reg_local_ext = TMP451_REG_LOCAL_TEMPL,
643 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
644 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
645 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
646 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
647 .alert_alarms = 0x7c,
650 .reg_local_ext = TMP451_REG_LOCAL_TEMPL,
655 * temperature register index
657 enum lm90_temp_reg_index {
662 LOCAL_EMERG, /* max6659 and max6695/96 */
663 REMOTE_EMERG, /* max6659 and max6695/96 */
664 REMOTE2_CRIT, /* max6695/96 only */
665 REMOTE2_EMERG, /* max6695/96 only */
670 REMOTE_OFFSET, /* except max6646, max6657/58/59, and max6695/96 */
672 REMOTE2_TEMP, /* max6695/96 only */
673 REMOTE2_LOW, /* max6695/96 only */
674 REMOTE2_HIGH, /* max6695/96 only */
681 * Client data (each client gets its own)
685 struct i2c_client *client;
686 struct device *hwmon_dev;
688 u32 channel_config[MAX_CHANNELS + 1];
689 const char *channel_label[MAX_CHANNELS];
690 struct hwmon_channel_info chip_info;
691 struct hwmon_channel_info temp_info;
692 const struct hwmon_channel_info *info[3];
693 struct hwmon_chip_info chip;
694 struct mutex update_lock;
695 struct delayed_work alert_work;
696 struct work_struct report_work;
697 bool valid; /* true if register values are valid */
698 bool alarms_valid; /* true if status register values are valid */
699 unsigned long last_updated; /* in jiffies */
700 unsigned long alarms_updated; /* in jiffies */
704 unsigned int update_interval; /* in milliseconds */
706 u8 config; /* Current configuration register value */
707 u8 config_orig; /* Original configuration register value */
708 u8 convrate_orig; /* Original conversion rate register value */
709 u8 resolution; /* temperature resolution in bit */
710 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
711 /* Upper 8 bits for max6695/96 */
712 u8 max_convrate; /* Maximum conversion rate */
713 u8 reg_status2; /* 2nd status register (optional) */
714 u8 reg_local_ext; /* local extension register offset */
715 u8 reg_remote_ext; /* remote temperature low byte */
716 u8 faultqueue_mask; /* fault queue mask */
717 u8 faultqueue_depth; /* fault queue mask */
719 /* registers values */
720 u16 temp[TEMP_REG_NUM];
723 u16 reported_alarms; /* alarms reported as sysfs/udev events */
724 u16 current_alarms; /* current alarms, reported by chip */
725 u16 alarms; /* alarms not yet reported to user */
733 * If the chip supports PEC but not on write byte transactions, we need
734 * to explicitly ask for a transaction without PEC.
736 static inline s32 lm90_write_no_pec(struct i2c_client *client, u8 value)
738 return i2c_smbus_xfer(client->adapter, client->addr,
739 client->flags & ~I2C_CLIENT_PEC,
740 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
744 * It is assumed that client->update_lock is held (unless we are in
745 * detection or initialization steps). This matters when PEC is enabled
746 * for chips with partial PEC support, because we don't want the address
747 * pointer to change between the write byte and the read byte transactions.
749 static int lm90_read_reg(struct i2c_client *client, u8 reg)
751 struct lm90_data *data = i2c_get_clientdata(client);
752 bool partial_pec = (client->flags & I2C_CLIENT_PEC) &&
753 (data->flags & LM90_HAVE_PARTIAL_PEC);
757 err = lm90_write_no_pec(client, reg);
760 return i2c_smbus_read_byte(client);
762 return i2c_smbus_read_byte_data(client, reg);
766 * Return register write address
768 * The write address for registers 0x03 .. 0x08 is the read address plus 6.
769 * For other registers the write address matches the read address.
771 static u8 lm90_write_reg_addr(u8 reg)
773 if (reg >= LM90_REG_CONFIG1 && reg <= LM90_REG_REMOTE_LOWH)
779 * Write into LM90 register.
780 * Convert register address to write address if needed, then execute the
783 static int lm90_write_reg(struct i2c_client *client, u8 reg, u8 val)
785 return i2c_smbus_write_byte_data(client, lm90_write_reg_addr(reg), val);
789 * Write into 16-bit LM90 register.
790 * Convert register addresses to write address if needed, then execute the
793 static int lm90_write16(struct i2c_client *client, u8 regh, u8 regl, u16 val)
797 ret = lm90_write_reg(client, regh, val >> 8);
798 if (ret < 0 || !regl)
800 return lm90_write_reg(client, regl, val & 0xff);
803 static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl,
808 oldh = lm90_read_reg(client, regh);
815 l = lm90_read_reg(client, regl);
820 return (oldh << 8) | l;
823 * For volatile registers we have to use a trick.
824 * We have to read two registers to have the sensor temperature,
825 * but we have to beware a conversion could occur between the
826 * readings. The datasheet says we should either use
827 * the one-shot conversion register, which we don't want to do
828 * (disables hardware monitoring) or monitor the busy bit, which is
829 * impossible (we can't read the values and monitor that bit at the
830 * exact same time). So the solution used here is to read the high
831 * the high byte again. If the new high byte matches the old one,
832 * then we have a valid reading. Otherwise we have to read the low
833 * byte again, and now we believe we have a correct reading.
835 newh = lm90_read_reg(client, regh);
839 l = lm90_read_reg(client, regl);
843 return (newh << 8) | l;
846 static int lm90_update_confreg(struct lm90_data *data, u8 config)
848 if (data->config != config) {
851 err = lm90_write_reg(data->client, LM90_REG_CONFIG1, config);
854 data->config = config;
860 * client->update_lock must be held when calling this function (unless we are
861 * in detection or initialization steps), and while a remote channel other
862 * than channel 0 is selected. Also, calling code must make sure to re-select
863 * external channel 0 before releasing the lock. This is necessary because
864 * various registers have different meanings as a result of selecting a
865 * non-default remote channel.
867 static int lm90_select_remote_channel(struct lm90_data *data, bool second)
869 u8 config = data->config & ~0x08;
874 return lm90_update_confreg(data, config);
877 static int lm90_write_convrate(struct lm90_data *data, int val)
879 u8 config = data->config;
882 /* Save config and pause conversion */
883 if (data->flags & LM90_PAUSE_FOR_CONFIG) {
884 err = lm90_update_confreg(data, config | 0x40);
890 err = lm90_write_reg(data->client, LM90_REG_CONVRATE, val);
892 /* Revert change to config */
893 lm90_update_confreg(data, config);
899 * Set conversion rate.
900 * client->update_lock must be held when calling this function (unless we are
901 * in detection or initialization steps).
903 static int lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
904 unsigned int interval)
906 unsigned int update_interval;
909 /* Shift calculations to avoid rounding errors */
912 /* find the nearest update rate */
913 for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
914 i < data->max_convrate; i++, update_interval >>= 1)
915 if (interval >= update_interval * 3 / 4)
918 err = lm90_write_convrate(data, i);
919 data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
923 static int lm90_set_faultqueue(struct i2c_client *client,
924 struct lm90_data *data, int val)
928 if (data->faultqueue_mask) {
929 err = lm90_update_confreg(data, val <= data->faultqueue_depth / 2 ?
930 data->config & ~data->faultqueue_mask :
931 data->config | data->faultqueue_mask);
933 static const u8 values[4] = {0, 2, 6, 0x0e};
935 data->conalert = (data->conalert & 0xf1) | values[val - 1];
936 err = lm90_write_reg(data->client, TMP451_REG_CONALERT,
943 static int lm90_update_limits(struct device *dev)
945 struct lm90_data *data = dev_get_drvdata(dev);
946 struct i2c_client *client = data->client;
949 if (data->flags & LM90_HAVE_CRIT) {
950 val = lm90_read_reg(client, LM90_REG_LOCAL_CRIT);
953 data->temp[LOCAL_CRIT] = val << 8;
955 val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
958 data->temp[REMOTE_CRIT] = val << 8;
960 val = lm90_read_reg(client, LM90_REG_TCRIT_HYST);
963 data->temp_hyst = val;
965 if ((data->flags & LM90_HAVE_FAULTQUEUE) && !data->faultqueue_mask) {
966 val = lm90_read_reg(client, TMP451_REG_CONALERT);
969 data->conalert = val;
972 val = lm90_read16(client, LM90_REG_REMOTE_LOWH,
973 (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_LOWL : 0,
977 data->temp[REMOTE_LOW] = val;
979 val = lm90_read16(client, LM90_REG_REMOTE_HIGHH,
980 (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_HIGHL : 0,
984 data->temp[REMOTE_HIGH] = val;
986 if (data->flags & LM90_HAVE_OFFSET) {
987 val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
988 LM90_REG_REMOTE_OFFSL, false);
991 data->temp[REMOTE_OFFSET] = val;
994 if (data->flags & LM90_HAVE_EMERGENCY) {
995 val = lm90_read_reg(client, MAX6659_REG_LOCAL_EMERG);
998 data->temp[LOCAL_EMERG] = val << 8;
1000 val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
1003 data->temp[REMOTE_EMERG] = val << 8;
1006 if (data->flags & LM90_HAVE_TEMP3) {
1007 val = lm90_select_remote_channel(data, true);
1011 val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
1014 data->temp[REMOTE2_CRIT] = val << 8;
1016 if (data->flags & LM90_HAVE_EMERGENCY) {
1017 val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
1020 data->temp[REMOTE2_EMERG] = val << 8;
1023 val = lm90_read_reg(client, LM90_REG_REMOTE_LOWH);
1026 data->temp[REMOTE2_LOW] = val << 8;
1028 val = lm90_read_reg(client, LM90_REG_REMOTE_HIGHH);
1031 data->temp[REMOTE2_HIGH] = val << 8;
1033 if (data->flags & LM90_HAVE_OFFSET) {
1034 val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
1035 LM90_REG_REMOTE_OFFSL, false);
1038 data->temp[REMOTE2_OFFSET] = val;
1041 lm90_select_remote_channel(data, false);
1047 static void lm90_report_alarms(struct work_struct *work)
1049 struct lm90_data *data = container_of(work, struct lm90_data, report_work);
1050 u16 cleared_alarms, new_alarms, current_alarms;
1051 struct device *hwmon_dev = data->hwmon_dev;
1052 struct device *dev = &data->client->dev;
1055 current_alarms = data->current_alarms;
1056 cleared_alarms = data->reported_alarms & ~current_alarms;
1057 new_alarms = current_alarms & ~data->reported_alarms;
1059 if (!cleared_alarms && !new_alarms)
1062 st = new_alarms & 0xff;
1063 st2 = new_alarms >> 8;
1065 if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
1066 (st2 & MAX6696_STATUS2_LOT2))
1067 dev_dbg(dev, "temp%d out of range, please check!\n", 1);
1068 if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
1069 (st2 & MAX6696_STATUS2_ROT2))
1070 dev_dbg(dev, "temp%d out of range, please check!\n", 2);
1071 if (st & LM90_STATUS_ROPEN)
1072 dev_dbg(dev, "temp%d diode open, please check!\n", 2);
1073 if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
1074 MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
1075 dev_dbg(dev, "temp%d out of range, please check!\n", 3);
1076 if (st2 & MAX6696_STATUS2_R2OPEN)
1077 dev_dbg(dev, "temp%d diode open, please check!\n", 3);
1079 st |= cleared_alarms & 0xff;
1080 st2 |= cleared_alarms >> 8;
1082 if (st & LM90_STATUS_LLOW)
1083 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 0);
1084 if (st & LM90_STATUS_RLOW)
1085 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 1);
1086 if (st2 & MAX6696_STATUS2_R2LOW)
1087 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 2);
1089 if (st & LM90_STATUS_LHIGH)
1090 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 0);
1091 if (st & LM90_STATUS_RHIGH)
1092 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 1);
1093 if (st2 & MAX6696_STATUS2_R2HIGH)
1094 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 2);
1096 if (st & LM90_STATUS_LTHRM)
1097 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 0);
1098 if (st & LM90_STATUS_RTHRM)
1099 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 1);
1100 if (st2 & MAX6696_STATUS2_R2THRM)
1101 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 2);
1103 if (st2 & MAX6696_STATUS2_LOT2)
1104 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 0);
1105 if (st2 & MAX6696_STATUS2_ROT2)
1106 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 1);
1107 if (st2 & MAX6696_STATUS2_R2OT2)
1108 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 2);
1110 data->reported_alarms = current_alarms;
1113 static int lm90_update_alarms_locked(struct lm90_data *data, bool force)
1115 if (force || !data->alarms_valid ||
1116 time_after(jiffies, data->alarms_updated + msecs_to_jiffies(data->update_interval))) {
1117 struct i2c_client *client = data->client;
1122 data->alarms_valid = false;
1124 val = lm90_read_reg(client, LM90_REG_STATUS);
1127 alarms = val & ~LM90_STATUS_BUSY;
1129 if (data->reg_status2) {
1130 val = lm90_read_reg(client, data->reg_status2);
1136 * If the update is forced (called from interrupt or alert
1137 * handler) and alarm data is valid, the alarms may have been
1138 * updated after the last update interval, and the status
1139 * register may still be cleared. Only add additional alarms
1140 * in this case. Alarms will be cleared later if appropriate.
1142 if (force && data->alarms_valid)
1143 data->current_alarms |= alarms;
1145 data->current_alarms = alarms;
1146 data->alarms |= alarms;
1148 check_enable = (client->irq || !(data->config_orig & 0x80)) &&
1149 (data->config & 0x80);
1151 if (force || check_enable)
1152 schedule_work(&data->report_work);
1155 * Re-enable ALERT# output if it was originally enabled, relevant
1156 * alarms are all clear, and alerts are currently disabled.
1157 * Otherwise (re)schedule worker if needed.
1160 if (!(data->current_alarms & data->alert_alarms)) {
1161 dev_dbg(&client->dev, "Re-enabling ALERT#\n");
1162 lm90_update_confreg(data, data->config & ~0x80);
1164 * We may have been called from the update handler.
1165 * If so, the worker, if scheduled, is no longer
1166 * needed. Cancel it. Don't synchronize because
1167 * it may already be running.
1169 cancel_delayed_work(&data->alert_work);
1171 schedule_delayed_work(&data->alert_work,
1172 max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
1175 data->alarms_updated = jiffies;
1176 data->alarms_valid = true;
1181 static int lm90_update_alarms(struct lm90_data *data, bool force)
1185 mutex_lock(&data->update_lock);
1186 err = lm90_update_alarms_locked(data, force);
1187 mutex_unlock(&data->update_lock);
1192 static void lm90_alert_work(struct work_struct *__work)
1194 struct delayed_work *delayed_work = container_of(__work, struct delayed_work, work);
1195 struct lm90_data *data = container_of(delayed_work, struct lm90_data, alert_work);
1197 /* Nothing to do if alerts are enabled */
1198 if (!(data->config & 0x80))
1201 lm90_update_alarms(data, true);
1204 static int lm90_update_device(struct device *dev)
1206 struct lm90_data *data = dev_get_drvdata(dev);
1207 struct i2c_client *client = data->client;
1208 unsigned long next_update;
1212 val = lm90_update_limits(dev);
1217 next_update = data->last_updated +
1218 msecs_to_jiffies(data->update_interval);
1219 if (time_after(jiffies, next_update) || !data->valid) {
1220 dev_dbg(&client->dev, "Updating lm90 data.\n");
1222 data->valid = false;
1224 val = lm90_read_reg(client, LM90_REG_LOCAL_LOW);
1227 data->temp[LOCAL_LOW] = val << 8;
1229 val = lm90_read_reg(client, LM90_REG_LOCAL_HIGH);
1232 data->temp[LOCAL_HIGH] = val << 8;
1234 val = lm90_read16(client, LM90_REG_LOCAL_TEMP,
1235 data->reg_local_ext, true);
1238 data->temp[LOCAL_TEMP] = val;
1239 val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
1240 data->reg_remote_ext, true);
1243 data->temp[REMOTE_TEMP] = val;
1245 if (data->flags & LM90_HAVE_TEMP3) {
1246 val = lm90_select_remote_channel(data, true);
1250 val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
1251 data->reg_remote_ext, true);
1253 lm90_select_remote_channel(data, false);
1256 data->temp[REMOTE2_TEMP] = val;
1258 lm90_select_remote_channel(data, false);
1261 val = lm90_update_alarms_locked(data, false);
1265 data->last_updated = jiffies;
1272 /* pec used for devices with PEC support */
1273 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
1276 struct i2c_client *client = to_i2c_client(dev);
1278 return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
1281 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
1282 const char *buf, size_t count)
1284 struct i2c_client *client = to_i2c_client(dev);
1288 err = kstrtol(buf, 10, &val);
1294 client->flags &= ~I2C_CLIENT_PEC;
1297 client->flags |= I2C_CLIENT_PEC;
1306 static DEVICE_ATTR_RW(pec);
1308 static int lm90_temp_get_resolution(struct lm90_data *data, int index)
1312 if (data->reg_remote_ext)
1313 return data->resolution;
1316 case REMOTE2_OFFSET:
1318 return data->resolution;
1320 if (data->reg_local_ext)
1321 return data->resolution;
1327 if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
1328 return data->resolution;
1335 static int lm90_temp_from_reg(u32 flags, u16 regval, u8 resolution)
1339 if (flags & LM90_HAVE_EXTENDED_TEMP)
1340 val = regval - 0x4000;
1341 else if (flags & (LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_EXT_UNSIGNED))
1346 return ((val >> (16 - resolution)) * 1000) >> (resolution - 8);
1349 static int lm90_get_temp(struct lm90_data *data, int index, int channel)
1351 int temp = lm90_temp_from_reg(data->flags, data->temp[index],
1352 lm90_temp_get_resolution(data, index));
1354 /* +16 degrees offset for remote temperature on LM99 */
1355 if (data->kind == lm99 && channel)
1361 static u16 lm90_temp_to_reg(u32 flags, long val, u8 resolution)
1363 int fraction = resolution > 8 ?
1364 1000 - DIV_ROUND_CLOSEST(1000, BIT(resolution - 8)) : 0;
1366 if (flags & LM90_HAVE_EXTENDED_TEMP) {
1367 val = clamp_val(val, -64000, 191000 + fraction);
1369 } else if (flags & LM90_HAVE_EXT_UNSIGNED) {
1370 val = clamp_val(val, 0, 255000 + fraction);
1371 } else if (flags & LM90_HAVE_UNSIGNED_TEMP) {
1372 val = clamp_val(val, 0, 127000 + fraction);
1374 val = clamp_val(val, -128000, 127000 + fraction);
1377 return DIV_ROUND_CLOSEST(val << (resolution - 8), 1000) << (16 - resolution);
1380 static int lm90_set_temp(struct lm90_data *data, int index, int channel, long val)
1382 static const u8 regs[] = {
1383 [LOCAL_LOW] = LM90_REG_LOCAL_LOW,
1384 [LOCAL_HIGH] = LM90_REG_LOCAL_HIGH,
1385 [LOCAL_CRIT] = LM90_REG_LOCAL_CRIT,
1386 [REMOTE_CRIT] = LM90_REG_REMOTE_CRIT,
1387 [LOCAL_EMERG] = MAX6659_REG_LOCAL_EMERG,
1388 [REMOTE_EMERG] = MAX6659_REG_REMOTE_EMERG,
1389 [REMOTE2_CRIT] = LM90_REG_REMOTE_CRIT,
1390 [REMOTE2_EMERG] = MAX6659_REG_REMOTE_EMERG,
1391 [REMOTE_LOW] = LM90_REG_REMOTE_LOWH,
1392 [REMOTE_HIGH] = LM90_REG_REMOTE_HIGHH,
1393 [REMOTE2_LOW] = LM90_REG_REMOTE_LOWH,
1394 [REMOTE2_HIGH] = LM90_REG_REMOTE_HIGHH,
1396 struct i2c_client *client = data->client;
1397 u8 regh = regs[index];
1401 if (channel && (data->flags & LM90_HAVE_REM_LIMIT_EXT)) {
1402 if (index == REMOTE_LOW || index == REMOTE2_LOW)
1403 regl = LM90_REG_REMOTE_LOWL;
1404 else if (index == REMOTE_HIGH || index == REMOTE2_HIGH)
1405 regl = LM90_REG_REMOTE_HIGHL;
1408 /* +16 degrees offset for remote temperature on LM99 */
1409 if (data->kind == lm99 && channel) {
1410 /* prevent integer underflow */
1411 val = max(val, -128000l);
1415 data->temp[index] = lm90_temp_to_reg(data->flags, val,
1416 lm90_temp_get_resolution(data, index));
1419 lm90_select_remote_channel(data, true);
1421 err = lm90_write16(client, regh, regl, data->temp[index]);
1424 lm90_select_remote_channel(data, false);
1429 static int lm90_get_temphyst(struct lm90_data *data, int index, int channel)
1431 int temp = lm90_get_temp(data, index, channel);
1433 return temp - data->temp_hyst * 1000;
1436 static int lm90_set_temphyst(struct lm90_data *data, long val)
1438 int temp = lm90_get_temp(data, LOCAL_CRIT, 0);
1440 /* prevent integer overflow/underflow */
1441 val = clamp_val(val, -128000l, 255000l);
1442 data->temp_hyst = clamp_val(DIV_ROUND_CLOSEST(temp - val, 1000), 0, 31);
1444 return lm90_write_reg(data->client, LM90_REG_TCRIT_HYST, data->temp_hyst);
1447 static int lm90_get_temp_offset(struct lm90_data *data, int index)
1449 int res = lm90_temp_get_resolution(data, index);
1451 return lm90_temp_from_reg(0, data->temp[index], res);
1454 static int lm90_set_temp_offset(struct lm90_data *data, int index, int channel, long val)
1458 val = lm90_temp_to_reg(0, val, lm90_temp_get_resolution(data, index));
1460 /* For ADT7481 we can use the same registers for remote channel 1 and 2 */
1462 lm90_select_remote_channel(data, true);
1464 err = lm90_write16(data->client, LM90_REG_REMOTE_OFFSH, LM90_REG_REMOTE_OFFSL, val);
1467 lm90_select_remote_channel(data, false);
1472 data->temp[index] = val;
1477 static const u8 lm90_temp_index[MAX_CHANNELS] = {
1478 LOCAL_TEMP, REMOTE_TEMP, REMOTE2_TEMP
1481 static const u8 lm90_temp_min_index[MAX_CHANNELS] = {
1482 LOCAL_LOW, REMOTE_LOW, REMOTE2_LOW
1485 static const u8 lm90_temp_max_index[MAX_CHANNELS] = {
1486 LOCAL_HIGH, REMOTE_HIGH, REMOTE2_HIGH
1489 static const u8 lm90_temp_crit_index[MAX_CHANNELS] = {
1490 LOCAL_CRIT, REMOTE_CRIT, REMOTE2_CRIT
1493 static const u8 lm90_temp_emerg_index[MAX_CHANNELS] = {
1494 LOCAL_EMERG, REMOTE_EMERG, REMOTE2_EMERG
1497 static const s8 lm90_temp_offset_index[MAX_CHANNELS] = {
1498 -1, REMOTE_OFFSET, REMOTE2_OFFSET
1501 static const u16 lm90_min_alarm_bits[MAX_CHANNELS] = { BIT(5), BIT(3), BIT(11) };
1502 static const u16 lm90_max_alarm_bits[MAX_CHANNELS] = { BIT(6), BIT(4), BIT(12) };
1503 static const u16 lm90_crit_alarm_bits[MAX_CHANNELS] = { BIT(0), BIT(1), BIT(9) };
1504 static const u16 lm90_crit_alarm_bits_swapped[MAX_CHANNELS] = { BIT(1), BIT(0), BIT(9) };
1505 static const u16 lm90_emergency_alarm_bits[MAX_CHANNELS] = { BIT(15), BIT(13), BIT(14) };
1506 static const u16 lm90_fault_bits[MAX_CHANNELS] = { BIT(0), BIT(2), BIT(10) };
1508 static int lm90_temp_read(struct device *dev, u32 attr, int channel, long *val)
1510 struct lm90_data *data = dev_get_drvdata(dev);
1514 mutex_lock(&data->update_lock);
1515 err = lm90_update_device(dev);
1516 mutex_unlock(&data->update_lock);
1521 case hwmon_temp_input:
1522 *val = lm90_get_temp(data, lm90_temp_index[channel], channel);
1524 case hwmon_temp_min_alarm:
1525 case hwmon_temp_max_alarm:
1526 case hwmon_temp_crit_alarm:
1527 case hwmon_temp_emergency_alarm:
1528 case hwmon_temp_fault:
1530 case hwmon_temp_min_alarm:
1531 bit = lm90_min_alarm_bits[channel];
1533 case hwmon_temp_max_alarm:
1534 bit = lm90_max_alarm_bits[channel];
1536 case hwmon_temp_crit_alarm:
1537 if (data->flags & LM90_HAVE_CRIT_ALRM_SWP)
1538 bit = lm90_crit_alarm_bits_swapped[channel];
1540 bit = lm90_crit_alarm_bits[channel];
1542 case hwmon_temp_emergency_alarm:
1543 bit = lm90_emergency_alarm_bits[channel];
1545 case hwmon_temp_fault:
1546 bit = lm90_fault_bits[channel];
1549 *val = !!(data->alarms & bit);
1550 data->alarms &= ~bit;
1551 data->alarms |= data->current_alarms;
1553 case hwmon_temp_min:
1554 *val = lm90_get_temp(data, lm90_temp_min_index[channel], channel);
1556 case hwmon_temp_max:
1557 *val = lm90_get_temp(data, lm90_temp_max_index[channel], channel);
1559 case hwmon_temp_crit:
1560 *val = lm90_get_temp(data, lm90_temp_crit_index[channel], channel);
1562 case hwmon_temp_crit_hyst:
1563 *val = lm90_get_temphyst(data, lm90_temp_crit_index[channel], channel);
1565 case hwmon_temp_emergency:
1566 *val = lm90_get_temp(data, lm90_temp_emerg_index[channel], channel);
1568 case hwmon_temp_emergency_hyst:
1569 *val = lm90_get_temphyst(data, lm90_temp_emerg_index[channel], channel);
1571 case hwmon_temp_offset:
1572 *val = lm90_get_temp_offset(data, lm90_temp_offset_index[channel]);
1580 static int lm90_temp_write(struct device *dev, u32 attr, int channel, long val)
1582 struct lm90_data *data = dev_get_drvdata(dev);
1585 mutex_lock(&data->update_lock);
1587 err = lm90_update_device(dev);
1592 case hwmon_temp_min:
1593 err = lm90_set_temp(data, lm90_temp_min_index[channel],
1596 case hwmon_temp_max:
1597 err = lm90_set_temp(data, lm90_temp_max_index[channel],
1600 case hwmon_temp_crit:
1601 err = lm90_set_temp(data, lm90_temp_crit_index[channel],
1604 case hwmon_temp_crit_hyst:
1605 err = lm90_set_temphyst(data, val);
1607 case hwmon_temp_emergency:
1608 err = lm90_set_temp(data, lm90_temp_emerg_index[channel],
1611 case hwmon_temp_offset:
1612 err = lm90_set_temp_offset(data, lm90_temp_offset_index[channel],
1620 mutex_unlock(&data->update_lock);
1625 static umode_t lm90_temp_is_visible(const void *data, u32 attr, int channel)
1628 case hwmon_temp_input:
1629 case hwmon_temp_min_alarm:
1630 case hwmon_temp_max_alarm:
1631 case hwmon_temp_crit_alarm:
1632 case hwmon_temp_emergency_alarm:
1633 case hwmon_temp_emergency_hyst:
1634 case hwmon_temp_fault:
1635 case hwmon_temp_label:
1637 case hwmon_temp_min:
1638 case hwmon_temp_max:
1639 case hwmon_temp_crit:
1640 case hwmon_temp_emergency:
1641 case hwmon_temp_offset:
1643 case hwmon_temp_crit_hyst:
1652 static int lm90_chip_read(struct device *dev, u32 attr, int channel, long *val)
1654 struct lm90_data *data = dev_get_drvdata(dev);
1657 mutex_lock(&data->update_lock);
1658 err = lm90_update_device(dev);
1659 mutex_unlock(&data->update_lock);
1664 case hwmon_chip_update_interval:
1665 *val = data->update_interval;
1667 case hwmon_chip_alarms:
1668 *val = data->alarms;
1670 case hwmon_chip_temp_samples:
1671 if (data->faultqueue_mask) {
1672 *val = (data->config & data->faultqueue_mask) ?
1673 data->faultqueue_depth : 1;
1675 switch (data->conalert & 0x0e) {
1699 static int lm90_chip_write(struct device *dev, u32 attr, int channel, long val)
1701 struct lm90_data *data = dev_get_drvdata(dev);
1702 struct i2c_client *client = data->client;
1705 mutex_lock(&data->update_lock);
1707 err = lm90_update_device(dev);
1712 case hwmon_chip_update_interval:
1713 err = lm90_set_convrate(client, data,
1714 clamp_val(val, 0, 100000));
1716 case hwmon_chip_temp_samples:
1717 err = lm90_set_faultqueue(client, data, clamp_val(val, 1, 4));
1724 mutex_unlock(&data->update_lock);
1729 static umode_t lm90_chip_is_visible(const void *data, u32 attr, int channel)
1732 case hwmon_chip_update_interval:
1733 case hwmon_chip_temp_samples:
1735 case hwmon_chip_alarms:
1742 static int lm90_read(struct device *dev, enum hwmon_sensor_types type,
1743 u32 attr, int channel, long *val)
1747 return lm90_chip_read(dev, attr, channel, val);
1749 return lm90_temp_read(dev, attr, channel, val);
1755 static int lm90_read_string(struct device *dev, enum hwmon_sensor_types type,
1756 u32 attr, int channel, const char **str)
1758 struct lm90_data *data = dev_get_drvdata(dev);
1760 *str = data->channel_label[channel];
1765 static int lm90_write(struct device *dev, enum hwmon_sensor_types type,
1766 u32 attr, int channel, long val)
1770 return lm90_chip_write(dev, attr, channel, val);
1772 return lm90_temp_write(dev, attr, channel, val);
1778 static umode_t lm90_is_visible(const void *data, enum hwmon_sensor_types type,
1779 u32 attr, int channel)
1783 return lm90_chip_is_visible(data, attr, channel);
1785 return lm90_temp_is_visible(data, attr, channel);
1791 static const char *lm90_detect_lm84(struct i2c_client *client)
1793 static const u8 regs[] = {
1794 LM90_REG_STATUS, LM90_REG_LOCAL_TEMP, LM90_REG_LOCAL_HIGH,
1795 LM90_REG_REMOTE_TEMPH, LM90_REG_REMOTE_HIGHH
1797 int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1798 int reg1, reg2, reg3, reg4;
1799 bool nonzero = false;
1803 if (status < 0 || (status & 0xab))
1807 * For LM84, undefined registers return the most recent value.
1808 * Repeat several times, each time checking against a different
1809 * (presumably) existing register.
1811 for (i = 0; i < ARRAY_SIZE(regs); i++) {
1812 reg1 = i2c_smbus_read_byte_data(client, regs[i]);
1813 reg2 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL);
1814 reg3 = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
1815 reg4 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
1820 /* If any register has a different value, this is not an LM84 */
1821 if (reg2 != reg1 || reg3 != reg1 || reg4 != reg1)
1824 nonzero |= reg1 || reg2 || reg3 || reg4;
1828 * If all registers always returned 0 or 0xff, all bets are off,
1829 * and we can not make any predictions about the chip type.
1831 return nonzero && ff != 0xff ? "lm84" : NULL;
1834 static const char *lm90_detect_max1617(struct i2c_client *client, int config1)
1836 int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1837 int llo, rlo, lhi, rhi;
1839 if (status < 0 || (status & 0x03))
1846 * Fail if unsupported registers return anything but 0xff.
1847 * The calling code already checked man_id and chip_id.
1848 * A byte read operation repeats the most recent read operation
1849 * and should also return 0xff.
1851 if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) != 0xff ||
1852 i2c_smbus_read_byte_data(client, MAX6657_REG_LOCAL_TEMPL) != 0xff ||
1853 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWL) != 0xff ||
1854 i2c_smbus_read_byte(client) != 0xff)
1857 llo = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
1858 rlo = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
1860 lhi = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
1861 rhi = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_HIGHH);
1863 if (llo < 0 || rlo < 0)
1867 * A byte read operation repeats the most recent read and should
1868 * return the same value.
1870 if (i2c_smbus_read_byte(client) != rhi)
1874 * The following two checks are marginal since the checked values
1875 * are strictly speaking valid.
1878 /* fail for negative high limits; this also catches read errors */
1879 if ((s8)lhi < 0 || (s8)rhi < 0)
1882 /* fail if low limits are larger than or equal to high limits */
1883 if ((s8)llo >= lhi || (s8)rlo >= rhi)
1886 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WORD_DATA)) {
1888 * Word read operations return 0xff in second byte
1890 if (i2c_smbus_read_word_data(client, LM90_REG_REMOTE_TEMPL) !=
1893 if (i2c_smbus_read_word_data(client, LM90_REG_CONFIG1) !=
1896 if (i2c_smbus_read_word_data(client, LM90_REG_LOCAL_HIGH) !=
1904 static const char *lm90_detect_national(struct i2c_client *client, int chip_id,
1905 int config1, int convrate)
1907 int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
1908 int address = client->addr;
1909 const char *name = NULL;
1914 if ((config1 & 0x2a) || (config2 & 0xf8) || convrate > 0x09)
1917 if (address != 0x4c && address != 0x4d)
1920 switch (chip_id & 0xf0) {
1921 case 0x10: /* LM86 */
1922 if (address == 0x4c)
1925 case 0x20: /* LM90 */
1926 if (address == 0x4c)
1929 case 0x30: /* LM89/LM99 */
1930 name = "lm99"; /* detect LM89 as LM99 */
1939 static const char *lm90_detect_on(struct i2c_client *client, int chip_id, int config1,
1942 int address = client->addr;
1943 const char *name = NULL;
1946 case 0xca: /* NCT218 */
1947 if ((address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
1957 static const char *lm90_detect_analog(struct i2c_client *client, bool common_address,
1958 int chip_id, int config1, int convrate)
1960 int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1961 int config2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CONFIG2);
1962 int man_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_MAN_ID);
1963 int chip_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CHIP_ID);
1964 int address = client->addr;
1965 const char *name = NULL;
1967 if (status < 0 || config2 < 0 || man_id2 < 0 || chip_id2 < 0)
1971 * The following chips should be detected by this function. Known
1972 * register values are listed. Registers 0x3d .. 0x3e are undocumented
1973 * for most of the chips, yet appear to return a well defined value.
1974 * Register 0xff is undocumented for some of the chips. Register 0x3f
1975 * is undocumented for all chips, but also returns a well defined value.
1976 * Values are as reported from real chips unless mentioned otherwise.
1977 * The code below checks values for registers 0x3d, 0x3e, and 0xff,
1978 * but not for register 0x3f.
1981 * 3d 3e 3f fe ff Notes
1982 * ----------------------------------------------------------
1983 * adm1020 00 00 00 41 39
1984 * adm1021 00 00 00 41 03
1985 * adm1021a 00 00 00 41 3c
1986 * adm1023 00 00 00 41 3c same as adm1021a
1987 * adm1032 00 00 00 41 42
1989 * adt7421 21 41 04 41 04
1990 * adt7461 00 00 00 41 51
1991 * adt7461a 61 41 05 41 57
1992 * adt7481 81 41 02 41 62
1993 * adt7482 - - - 41 65 datasheet
1994 * 82 41 05 41 75 real chip
1995 * adt7483 83 41 04 41 94
1997 * nct72 61 41 07 41 55
1998 * nct210 00 00 00 41 3f
1999 * nct214 61 41 08 41 5a
2000 * nct1008 - - - 41 57 datasheet rev. 3
2001 * 61 41 06 41 54 real chip
2003 * nvt210 - - - 41 - datasheet
2004 * nvt211 - - - 41 - datasheet
2007 case 0x00 ... 0x03: /* ADM1021 */
2009 if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2010 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2013 case 0x04: /* ADT7421 (undocumented) */
2014 if (man_id2 == 0x41 && chip_id2 == 0x21 &&
2015 (address == 0x4c || address == 0x4d) &&
2016 (config1 & 0x0b) == 0x08 && convrate <= 0x0a)
2019 case 0x30 ... 0x38: /* ADM1021A, ADM1023 */
2022 * ADM1021A and compatible chips will be mis-detected as
2023 * ADM1023. Chips labeled 'ADM1021A' and 'ADM1023' were both
2024 * found to have a Chip ID of 0x3c.
2025 * ADM1021A does not officially support low byte registers
2026 * (0x12 .. 0x14), but a chip labeled ADM1021A does support it.
2027 * Official support for the temperature offset high byte
2028 * register (0x11) was added to revision F of the ADM1021A
2030 * It is currently unknown if there is a means to distinguish
2031 * ADM1021A from ADM1023, and/or if revisions of ADM1021A exist
2032 * which differ in functionality from ADM1023.
2034 if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2035 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2038 case 0x39: /* ADM1020 (undocumented) */
2039 if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2040 (address == 0x4c || address == 0x4d || address == 0x4e) &&
2041 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2044 case 0x3f: /* NCT210 */
2045 if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2046 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2049 case 0x40 ... 0x4f: /* ADM1032 */
2050 if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2051 (address == 0x4c || address == 0x4d) && !(config1 & 0x3f) &&
2055 case 0x51: /* ADT7461 */
2056 if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2057 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2061 case 0x54: /* NCT1008 */
2062 if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2063 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2067 case 0x55: /* NCT72 */
2068 if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2069 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2073 case 0x57: /* ADT7461A, NCT1008 (datasheet rev. 3) */
2074 if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2075 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2079 case 0x5a: /* NCT214 */
2080 if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2081 common_address && !(config1 & 0x1b) && convrate <= 0x0a)
2084 case 0x62: /* ADT7481, undocumented */
2085 if (man_id2 == 0x41 && chip_id2 == 0x81 &&
2086 (address == 0x4b || address == 0x4c) && !(config1 & 0x10) &&
2087 !(config2 & 0x7f) && (convrate & 0x0f) <= 0x0b) {
2091 case 0x65: /* ADT7482, datasheet */
2092 case 0x75: /* ADT7482, real chip */
2093 if (man_id2 == 0x41 && chip_id2 == 0x82 &&
2094 address == 0x4c && !(config1 & 0x10) && !(config2 & 0x7f) &&
2098 case 0x94: /* ADT7483 */
2099 if (man_id2 == 0x41 && chip_id2 == 0x83 &&
2101 ((address >= 0x18 && address <= 0x1a) ||
2102 (address >= 0x29 && address <= 0x2b) ||
2103 (address >= 0x4c && address <= 0x4e)) &&
2104 !(config1 & 0x10) && !(config2 & 0x7f) && convrate <= 0x0a)
2114 static const char *lm90_detect_maxim(struct i2c_client *client, bool common_address,
2115 int chip_id, int config1, int convrate)
2117 int man_id, emerg, emerg2, status2;
2118 int address = client->addr;
2119 const char *name = NULL;
2123 if (!common_address)
2127 * We read MAX6659_REG_REMOTE_EMERG twice, and re-read
2128 * LM90_REG_MAN_ID in between. If MAX6659_REG_REMOTE_EMERG
2129 * exists, both readings will reflect the same value. Otherwise,
2130 * the readings will be different.
2132 emerg = i2c_smbus_read_byte_data(client,
2133 MAX6659_REG_REMOTE_EMERG);
2134 man_id = i2c_smbus_read_byte_data(client,
2136 emerg2 = i2c_smbus_read_byte_data(client,
2137 MAX6659_REG_REMOTE_EMERG);
2138 status2 = i2c_smbus_read_byte_data(client,
2139 MAX6696_REG_STATUS2);
2140 if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
2144 * Even though MAX6695 and MAX6696 do not have a chip ID
2145 * register, reading it returns 0x01. Bit 4 of the config1
2146 * register is unused and should return zero when read. Bit 0 of
2147 * the status2 register is unused and should return zero when
2150 * MAX6695 and MAX6696 have an additional set of temperature
2151 * limit registers. We can detect those chips by checking if
2152 * one of those registers exists.
2154 if (!(config1 & 0x10) && !(status2 & 0x01) && emerg == emerg2 &&
2158 * The chip_id register of the MAX6680 and MAX6681 holds the
2159 * revision of the chip. The lowest bit of the config1 register
2160 * is unused and should return zero when read, so should the
2161 * second to last bit of config1 (software reset). Register
2162 * address 0x12 (LM90_REG_REMOTE_OFFSL) exists for this chip and
2163 * should differ from emerg2, and emerg2 should match man_id
2164 * since it does not exist.
2166 else if (!(config1 & 0x03) && convrate <= 0x07 &&
2167 emerg2 == man_id && emerg2 != status2)
2170 * MAX1617A does not have any extended registers (register
2171 * address 0x10 or higher) except for manufacturer and
2172 * device ID registers. Unlike other chips of this series,
2173 * unsupported registers were observed to return a fixed value
2175 * Note: Multiple chips with different markings labeled as
2176 * "MAX1617" (no "A") were observed to report manufacturer ID
2177 * 0x4d and device ID 0x01. It is unknown if other variants of
2178 * MAX1617/MAX617A with different behavior exist. The detection
2179 * code below works for those chips.
2181 else if (!(config1 & 0x03f) && convrate <= 0x07 &&
2182 emerg == 0x01 && emerg2 == 0x01 && status2 == 0x01)
2187 * The chip_id of the MAX6654 holds the revision of the chip.
2188 * The lowest 3 bits of the config1 register are unused and
2189 * should return zero when read.
2191 if (common_address && !(config1 & 0x07) && convrate <= 0x07)
2196 * The chip_id of the MAX6690 holds the revision of the chip.
2197 * The lowest 3 bits of the config1 register are unused and
2198 * should return zero when read.
2199 * Note that MAX6654 and MAX6690 are practically the same chips.
2200 * The only diference is the rated accuracy. Rev. 1 of the
2201 * MAX6690 datasheet lists a chip ID of 0x08, and a chip labeled
2202 * MAX6654 was observed to have a chip ID of 0x09.
2204 if (common_address && !(config1 & 0x07) && convrate <= 0x07)
2209 * MAX6642, MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
2210 * register. Reading from that address will return the last
2211 * read value, which in our case is those of the man_id
2212 * register, or 0x4d.
2213 * MAX6642 does not have a conversion rate register, nor low
2214 * limit registers. Reading from those registers returns the
2217 * For MAX6657, MAX6658 and MAX6659, the config1 register lacks
2218 * a low nibble, so the value will be those of the previous
2219 * read, so in our case again those of the man_id register.
2220 * MAX6659 has a third set of upper temperature limit registers.
2221 * Those registers also return values on MAX6657 and MAX6658,
2222 * thus the only way to detect MAX6659 is by its address.
2223 * For this reason it will be mis-detected as MAX6657 if its
2226 if (address >= 0x48 && address <= 0x4f && config1 == convrate &&
2227 !(config1 & 0x0f)) {
2231 * We know that this is not a MAX6657/58/59 because its
2232 * configuration register has the wrong value and it does
2233 * not appear to have a conversion rate register.
2236 /* re-read manufacturer ID to have a good baseline */
2237 if (i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID) != 0x4d)
2240 /* check various non-existing registers */
2241 if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != 0x4d ||
2242 i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != 0x4d ||
2243 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != 0x4d)
2246 /* check for unused status register bits */
2247 regval = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
2248 if (regval < 0 || (regval & 0x2b))
2251 /* re-check unsupported registers */
2252 if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != regval ||
2253 i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != regval ||
2254 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != regval)
2258 } else if ((address == 0x4c || address == 0x4d || address == 0x4e) &&
2259 (config1 & 0x1f) == 0x0d && convrate <= 0x09) {
2260 if (address == 0x4c)
2268 * The chip_id register of the MAX6646/6647/6649 holds the
2269 * revision of the chip. The lowest 6 bits of the config1
2270 * register are unused and should return zero when read.
2271 * The I2C address of MAX6648/6692 is fixed at 0x4c.
2272 * MAX6646 is at address 0x4d, MAX6647 is at address 0x4e,
2273 * and MAX6649 is at address 0x4c. A slight difference between
2274 * the two sets of chips is that the remote temperature register
2275 * reports different values if the DXP pin is open or shorted.
2276 * We can use that information to help distinguish between the
2277 * chips. MAX6648 will be mis-detected as MAX6649 if the remote
2278 * diode is connected, but there isn't really anything we can
2281 if (!(config1 & 0x3f) && convrate <= 0x07) {
2287 * MAX6649 reports an external temperature
2288 * value of 0xff if DXP is open or shorted.
2289 * MAX6648 reports 0x80 in that case.
2291 temp = i2c_smbus_read_byte_data(client,
2292 LM90_REG_REMOTE_TEMPH);
2316 static const char *lm90_detect_nuvoton(struct i2c_client *client, int chip_id,
2317 int config1, int convrate)
2319 int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2320 int address = client->addr;
2321 const char *name = NULL;
2326 if (address == 0x4c && !(config1 & 0x2a) && !(config2 & 0xf8)) {
2327 if (chip_id == 0x01 && convrate <= 0x09) {
2330 } else if ((chip_id & 0xfe) == 0x10 && convrate <= 0x08) {
2331 /* W83L771AWG/ASG */
2338 static const char *lm90_detect_nxp(struct i2c_client *client, bool common_address,
2339 int chip_id, int config1, int convrate)
2341 int address = client->addr;
2342 const char *name = NULL;
2347 config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2350 if (address >= 0x48 && address <= 0x4f &&
2351 !(config1 & 0x2a) && !(config2 & 0xfe) && convrate <= 0x09)
2355 if (common_address && !(config1 & 0x3f) && convrate <= 0x07)
2364 static const char *lm90_detect_gmt(struct i2c_client *client, int chip_id,
2365 int config1, int convrate)
2367 int address = client->addr;
2370 * According to the datasheet, G781 is supposed to be at I2C Address
2371 * 0x4c and have a chip ID of 0x01. G781-1 is supposed to be at I2C
2372 * address 0x4d and have a chip ID of 0x03. However, when support
2373 * for G781 was added, chips at 0x4c and 0x4d were found to have a
2374 * chip ID of 0x01. A G781-1 at I2C address 0x4d was now found with
2376 * To avoid detection failures, accept chip ID 0x01 and 0x03 at both
2378 * G784 reports manufacturer ID 0x47 and chip ID 0x01. A public
2379 * datasheet is not available. Extensive testing suggests that
2380 * the chip appears to be fully compatible with G781.
2381 * Available register dumps show that G751 also reports manufacturer
2382 * ID 0x47 and chip ID 0x01 even though that chip does not officially
2383 * support those registers. This makes chip detection somewhat
2384 * vulnerable. To improve detection quality, read the offset low byte
2385 * and alert fault queue registers and verify that only expected bits
2388 if ((chip_id == 0x01 || chip_id == 0x03) &&
2389 (address == 0x4c || address == 0x4d) &&
2390 !(config1 & 0x3f) && convrate <= 0x08) {
2393 reg = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_OFFSL);
2394 if (reg < 0 || reg & 0x1f)
2396 reg = i2c_smbus_read_byte_data(client, TMP451_REG_CONALERT);
2397 if (reg < 0 || reg & 0xf1)
2406 static const char *lm90_detect_ti49(struct i2c_client *client, bool common_address,
2407 int chip_id, int config1, int convrate)
2409 if (common_address && chip_id == 0x00 && !(config1 & 0x3f) && !(convrate & 0xf8)) {
2410 /* THMC10: Unsupported registers return 0xff */
2411 if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) == 0xff &&
2412 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_CRIT) == 0xff)
2418 static const char *lm90_detect_ti(struct i2c_client *client, int chip_id,
2419 int config1, int convrate)
2421 int address = client->addr;
2422 const char *name = NULL;
2424 if (chip_id == 0x00 && !(config1 & 0x1b) && convrate <= 0x09) {
2425 int local_ext, conalert, chen, dfc;
2427 local_ext = i2c_smbus_read_byte_data(client,
2428 TMP451_REG_LOCAL_TEMPL);
2429 conalert = i2c_smbus_read_byte_data(client,
2430 TMP451_REG_CONALERT);
2431 chen = i2c_smbus_read_byte_data(client, TMP461_REG_CHEN);
2432 dfc = i2c_smbus_read_byte_data(client, TMP461_REG_DFC);
2434 if (!(local_ext & 0x0f) && (conalert & 0xf1) == 0x01 &&
2435 (chen & 0xfc) == 0x00 && (dfc & 0xfc) == 0x00) {
2436 if (address == 0x4c && !(chen & 0x03))
2438 else if (address >= 0x48 && address <= 0x4f)
2446 /* Return 0 if detection is successful, -ENODEV otherwise */
2447 static int lm90_detect(struct i2c_client *client, struct i2c_board_info *info)
2449 struct i2c_adapter *adapter = client->adapter;
2450 int man_id, chip_id, config1, convrate, lhigh;
2451 const char *name = NULL;
2452 int address = client->addr;
2453 bool common_address =
2454 (address >= 0x18 && address <= 0x1a) ||
2455 (address >= 0x29 && address <= 0x2b) ||
2456 (address >= 0x4c && address <= 0x4e);
2458 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
2462 * Get well defined register value for chips with neither man_id nor
2463 * chip_id registers.
2465 lhigh = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
2467 /* detection and identification */
2468 man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
2469 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
2470 config1 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG1);
2471 convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
2472 if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0 || lhigh < 0)
2475 /* Bail out immediately if all register report the same value */
2476 if (lhigh == man_id && lhigh == chip_id && lhigh == config1 && lhigh == convrate)
2480 * If reading man_id and chip_id both return the same value as lhigh,
2481 * the chip may not support those registers and return the most recent read
2482 * value. Check again with a different register and handle accordingly.
2484 if (man_id == lhigh && chip_id == lhigh) {
2485 convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
2486 man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
2487 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
2488 if (convrate < 0 || man_id < 0 || chip_id < 0)
2490 if (man_id == convrate && chip_id == convrate)
2494 case -1: /* Chip does not support man_id / chip_id */
2495 if (common_address && !convrate && !(config1 & 0x7f))
2496 name = lm90_detect_lm84(client);
2498 case 0x01: /* National Semiconductor */
2499 name = lm90_detect_national(client, chip_id, config1, convrate);
2502 name = lm90_detect_on(client, chip_id, config1, convrate);
2504 case 0x23: /* Genesys Logic */
2505 if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
2508 case 0x41: /* Analog Devices */
2509 name = lm90_detect_analog(client, common_address, chip_id, config1,
2512 case 0x47: /* GMT */
2513 name = lm90_detect_gmt(client, chip_id, config1, convrate);
2516 name = lm90_detect_ti49(client, common_address, chip_id, config1, convrate);
2518 case 0x4d: /* Maxim Integrated */
2519 name = lm90_detect_maxim(client, common_address, chip_id,
2522 case 0x54: /* ON MC1066, Microchip TC1068, TCM1617 (originally TelCom) */
2523 if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
2527 name = lm90_detect_ti(client, chip_id, config1, convrate);
2529 case 0x5c: /* Winbond/Nuvoton */
2530 name = lm90_detect_nuvoton(client, chip_id, config1, convrate);
2532 case 0xa1: /* NXP Semiconductor/Philips */
2533 name = lm90_detect_nxp(client, common_address, chip_id, config1, convrate);
2535 case 0xff: /* MAX1617, G767, NE1617 */
2536 if (common_address && chip_id == 0xff && convrate < 8)
2537 name = lm90_detect_max1617(client, config1);
2543 if (!name) { /* identification failed */
2544 dev_dbg(&adapter->dev,
2545 "Unsupported chip at 0x%02x (man_id=0x%02X, chip_id=0x%02X)\n",
2546 client->addr, man_id, chip_id);
2550 strscpy(info->type, name, I2C_NAME_SIZE);
2555 static void lm90_restore_conf(void *_data)
2557 struct lm90_data *data = _data;
2558 struct i2c_client *client = data->client;
2560 cancel_delayed_work_sync(&data->alert_work);
2561 cancel_work_sync(&data->report_work);
2563 /* Restore initial configuration */
2564 if (data->flags & LM90_HAVE_CONVRATE)
2565 lm90_write_convrate(data, data->convrate_orig);
2566 lm90_write_reg(client, LM90_REG_CONFIG1, data->config_orig);
2569 static int lm90_init_client(struct i2c_client *client, struct lm90_data *data)
2571 struct device_node *np = client->dev.of_node;
2572 int config, convrate;
2574 if (data->flags & LM90_HAVE_CONVRATE) {
2575 convrate = lm90_read_reg(client, LM90_REG_CONVRATE);
2578 data->convrate_orig = convrate;
2579 lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */
2581 data->update_interval = 500;
2585 * Start the conversions.
2587 config = lm90_read_reg(client, LM90_REG_CONFIG1);
2590 data->config_orig = config;
2591 data->config = config;
2593 /* Check Temperature Range Select */
2594 if (data->flags & LM90_HAVE_EXTENDED_TEMP) {
2595 if (of_property_read_bool(np, "ti,extended-range-enable"))
2597 if (!(config & 0x04))
2598 data->flags &= ~LM90_HAVE_EXTENDED_TEMP;
2602 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
2603 * 0.125 degree resolution) and range (0x08, extend range
2604 * to -64 degree) mode for the remote temperature sensor.
2605 * Note that expeciments with an actual chip do not show a difference
2606 * if bit 3 is set or not.
2608 if (data->kind == max6680)
2612 * Put MAX6654 into extended range (0x20, extend minimum range from
2613 * 0 degrees to -64 degrees). Note that extended resolution is not
2614 * possible on the MAX6654 unless conversion rate is set to 1 Hz or
2615 * slower, which is intentionally not done by default.
2617 if (data->kind == max6654)
2621 * Select external channel 0 for devices with three sensors
2623 if (data->flags & LM90_HAVE_TEMP3)
2627 * Interrupt is enabled by default on reset, but it may be disabled
2628 * by bootloader, unmask it.
2633 config &= 0xBF; /* run */
2634 lm90_update_confreg(data, config);
2636 return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data);
2639 static bool lm90_is_tripped(struct i2c_client *client)
2641 struct lm90_data *data = i2c_get_clientdata(client);
2644 ret = lm90_update_alarms(data, true);
2648 return !!data->current_alarms;
2651 static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
2653 struct i2c_client *client = dev_id;
2655 if (lm90_is_tripped(client))
2661 static void lm90_remove_pec(void *dev)
2663 device_remove_file(dev, &dev_attr_pec);
2666 static void lm90_regulator_disable(void *regulator)
2668 regulator_disable(regulator);
2671 static int lm90_probe_channel_from_dt(struct i2c_client *client,
2672 struct device_node *child,
2673 struct lm90_data *data)
2678 struct device *dev = &client->dev;
2680 err = of_property_read_u32(child, "reg", &id);
2682 dev_err(dev, "missing reg property of %pOFn\n", child);
2686 if (id >= MAX_CHANNELS) {
2687 dev_err(dev, "invalid reg property value %d in %pOFn\n", id, child);
2691 err = of_property_read_string(child, "label", &data->channel_label[id]);
2692 if (err == -ENODATA || err == -EILSEQ) {
2693 dev_err(dev, "invalid label property in %pOFn\n", child);
2697 if (data->channel_label[id])
2698 data->channel_config[id] |= HWMON_T_LABEL;
2700 err = of_property_read_s32(child, "temperature-offset-millicelsius", &val);
2703 dev_err(dev, "temperature-offset-millicelsius can't be set for internal channel\n");
2707 err = lm90_set_temp_offset(data, lm90_temp_offset_index[id], id, val);
2709 dev_err(dev, "can't set temperature offset %d for channel %d (%d)\n",
2718 static int lm90_parse_dt_channel_info(struct i2c_client *client,
2719 struct lm90_data *data)
2722 struct device_node *child;
2723 struct device *dev = &client->dev;
2724 const struct device_node *np = dev->of_node;
2726 for_each_child_of_node(np, child) {
2727 if (strcmp(child->name, "channel"))
2730 err = lm90_probe_channel_from_dt(client, child, data);
2740 static const struct hwmon_ops lm90_ops = {
2741 .is_visible = lm90_is_visible,
2743 .read_string = lm90_read_string,
2744 .write = lm90_write,
2747 static int lm90_probe(struct i2c_client *client)
2749 struct device *dev = &client->dev;
2750 struct i2c_adapter *adapter = client->adapter;
2751 struct hwmon_channel_info *info;
2752 struct regulator *regulator;
2753 struct device *hwmon_dev;
2754 struct lm90_data *data;
2757 regulator = devm_regulator_get(dev, "vcc");
2758 if (IS_ERR(regulator))
2759 return PTR_ERR(regulator);
2761 err = regulator_enable(regulator);
2763 dev_err(dev, "Failed to enable regulator: %d\n", err);
2767 err = devm_add_action_or_reset(dev, lm90_regulator_disable, regulator);
2771 data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL);
2775 data->client = client;
2776 i2c_set_clientdata(client, data);
2777 mutex_init(&data->update_lock);
2778 INIT_DELAYED_WORK(&data->alert_work, lm90_alert_work);
2779 INIT_WORK(&data->report_work, lm90_report_alarms);
2781 /* Set the device type */
2782 if (client->dev.of_node)
2783 data->kind = (enum chips)of_device_get_match_data(&client->dev);
2785 data->kind = i2c_match_id(lm90_id, client)->driver_data;
2788 * Different devices have different alarm bits triggering the
2791 data->alert_alarms = lm90_params[data->kind].alert_alarms;
2792 data->resolution = lm90_params[data->kind].resolution ? : 11;
2794 /* Set chip capabilities */
2795 data->flags = lm90_params[data->kind].flags;
2797 if ((data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) &&
2798 !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_PEC))
2799 data->flags &= ~(LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC);
2801 if ((data->flags & LM90_HAVE_PARTIAL_PEC) &&
2802 !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
2803 data->flags &= ~LM90_HAVE_PARTIAL_PEC;
2805 data->chip.ops = &lm90_ops;
2806 data->chip.info = data->info;
2808 data->info[0] = &data->chip_info;
2809 info = &data->chip_info;
2810 info->type = hwmon_chip;
2811 info->config = data->chip_config;
2813 data->chip_config[0] = HWMON_C_REGISTER_TZ;
2814 if (data->flags & LM90_HAVE_ALARMS)
2815 data->chip_config[0] |= HWMON_C_ALARMS;
2816 if (data->flags & LM90_HAVE_CONVRATE)
2817 data->chip_config[0] |= HWMON_C_UPDATE_INTERVAL;
2818 if (data->flags & LM90_HAVE_FAULTQUEUE)
2819 data->chip_config[0] |= HWMON_C_TEMP_SAMPLES;
2820 data->info[1] = &data->temp_info;
2822 info = &data->temp_info;
2823 info->type = hwmon_temp;
2824 info->config = data->channel_config;
2826 data->channel_config[0] = HWMON_T_INPUT | HWMON_T_MAX |
2828 data->channel_config[1] = HWMON_T_INPUT | HWMON_T_MAX |
2829 HWMON_T_MAX_ALARM | HWMON_T_FAULT;
2831 if (data->flags & LM90_HAVE_LOW) {
2832 data->channel_config[0] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
2833 data->channel_config[1] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
2836 if (data->flags & LM90_HAVE_CRIT) {
2837 data->channel_config[0] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
2838 data->channel_config[1] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
2841 if (data->flags & LM90_HAVE_OFFSET)
2842 data->channel_config[1] |= HWMON_T_OFFSET;
2844 if (data->flags & LM90_HAVE_EMERGENCY) {
2845 data->channel_config[0] |= HWMON_T_EMERGENCY |
2846 HWMON_T_EMERGENCY_HYST;
2847 data->channel_config[1] |= HWMON_T_EMERGENCY |
2848 HWMON_T_EMERGENCY_HYST;
2851 if (data->flags & LM90_HAVE_EMERGENCY_ALARM) {
2852 data->channel_config[0] |= HWMON_T_EMERGENCY_ALARM;
2853 data->channel_config[1] |= HWMON_T_EMERGENCY_ALARM;
2856 if (data->flags & LM90_HAVE_TEMP3) {
2857 data->channel_config[2] = HWMON_T_INPUT |
2858 HWMON_T_MIN | HWMON_T_MAX |
2859 HWMON_T_CRIT | HWMON_T_CRIT_HYST |
2860 HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM |
2861 HWMON_T_CRIT_ALARM | HWMON_T_FAULT;
2862 if (data->flags & LM90_HAVE_EMERGENCY) {
2863 data->channel_config[2] |= HWMON_T_EMERGENCY |
2864 HWMON_T_EMERGENCY_HYST;
2866 if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
2867 data->channel_config[2] |= HWMON_T_EMERGENCY_ALARM;
2868 if (data->flags & LM90_HAVE_OFFSET)
2869 data->channel_config[2] |= HWMON_T_OFFSET;
2872 data->faultqueue_mask = lm90_params[data->kind].faultqueue_mask;
2873 data->faultqueue_depth = lm90_params[data->kind].faultqueue_depth;
2874 data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
2875 if (data->flags & LM90_HAVE_REMOTE_EXT)
2876 data->reg_remote_ext = LM90_REG_REMOTE_TEMPL;
2877 data->reg_status2 = lm90_params[data->kind].reg_status2;
2879 /* Set maximum conversion rate */
2880 data->max_convrate = lm90_params[data->kind].max_convrate;
2882 /* Parse device-tree channel information */
2883 if (client->dev.of_node) {
2884 err = lm90_parse_dt_channel_info(client, data);
2889 /* Initialize the LM90 chip */
2890 err = lm90_init_client(client, data);
2892 dev_err(dev, "Failed to initialize device\n");
2897 * The 'pec' attribute is attached to the i2c device and thus created
2900 if (data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) {
2901 err = device_create_file(dev, &dev_attr_pec);
2904 err = devm_add_action_or_reset(dev, lm90_remove_pec, dev);
2909 hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
2912 if (IS_ERR(hwmon_dev))
2913 return PTR_ERR(hwmon_dev);
2915 data->hwmon_dev = hwmon_dev;
2918 dev_dbg(dev, "IRQ: %d\n", client->irq);
2919 err = devm_request_threaded_irq(dev, client->irq,
2920 NULL, lm90_irq_thread,
2921 IRQF_ONESHOT, "lm90", client);
2923 dev_err(dev, "cannot request IRQ %d\n", client->irq);
2931 static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type,
2934 if (type != I2C_PROTOCOL_SMBUS_ALERT)
2937 if (lm90_is_tripped(client)) {
2939 * Disable ALERT# output, because these chips don't implement
2940 * SMBus alert correctly; they should only hold the alert line
2943 struct lm90_data *data = i2c_get_clientdata(client);
2945 if ((data->flags & LM90_HAVE_BROKEN_ALERT) &&
2946 (data->current_alarms & data->alert_alarms)) {
2947 if (!(data->config & 0x80)) {
2948 dev_dbg(&client->dev, "Disabling ALERT#\n");
2949 lm90_update_confreg(data, data->config | 0x80);
2951 schedule_delayed_work(&data->alert_work,
2952 max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
2955 dev_dbg(&client->dev, "Everything OK\n");
2959 static int lm90_suspend(struct device *dev)
2961 struct lm90_data *data = dev_get_drvdata(dev);
2962 struct i2c_client *client = data->client;
2965 disable_irq(client->irq);
2970 static int lm90_resume(struct device *dev)
2972 struct lm90_data *data = dev_get_drvdata(dev);
2973 struct i2c_client *client = data->client;
2976 enable_irq(client->irq);
2981 static DEFINE_SIMPLE_DEV_PM_OPS(lm90_pm_ops, lm90_suspend, lm90_resume);
2983 static struct i2c_driver lm90_driver = {
2984 .class = I2C_CLASS_HWMON,
2987 .of_match_table = of_match_ptr(lm90_of_match),
2988 .pm = pm_sleep_ptr(&lm90_pm_ops),
2990 .probe_new = lm90_probe,
2991 .alert = lm90_alert,
2992 .id_table = lm90_id,
2993 .detect = lm90_detect,
2994 .address_list = normal_i2c,
2997 module_i2c_driver(lm90_driver);
2999 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
3000 MODULE_DESCRIPTION("LM90/ADM1032 driver");
3001 MODULE_LICENSE("GPL");