Merge tag 'ceph-for-6.5-rc1' of https://github.com/ceph/ceph-client
[platform/kernel/linux-starfive.git] / drivers / hwmon / emc2103.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * emc2103.c - Support for SMSC EMC2103
4  * Copyright (c) 2010 SMSC
5  */
6
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/jiffies.h>
11 #include <linux/i2c.h>
12 #include <linux/hwmon.h>
13 #include <linux/hwmon-sysfs.h>
14 #include <linux/err.h>
15 #include <linux/mutex.h>
16
17 /* Addresses scanned */
18 static const unsigned short normal_i2c[] = { 0x2E, I2C_CLIENT_END };
19
20 static const u8 REG_TEMP[4] = { 0x00, 0x02, 0x04, 0x06 };
21 static const u8 REG_TEMP_MIN[4] = { 0x3c, 0x38, 0x39, 0x3a };
22 static const u8 REG_TEMP_MAX[4] = { 0x34, 0x30, 0x31, 0x32 };
23
24 #define REG_CONF1               0x20
25 #define REG_TEMP_MAX_ALARM      0x24
26 #define REG_TEMP_MIN_ALARM      0x25
27 #define REG_FAN_CONF1           0x42
28 #define REG_FAN_TARGET_LO       0x4c
29 #define REG_FAN_TARGET_HI       0x4d
30 #define REG_FAN_TACH_HI         0x4e
31 #define REG_FAN_TACH_LO         0x4f
32 #define REG_PRODUCT_ID          0xfd
33 #define REG_MFG_ID              0xfe
34
35 /* equation 4 from datasheet: rpm = (3932160 * multipler) / count */
36 #define FAN_RPM_FACTOR          3932160
37
38 /*
39  * 2103-2 and 2103-4's 3rd temperature sensor can be connected to two diodes
40  * in anti-parallel mode, and in this configuration both can be read
41  * independently (so we have 4 temperature inputs).  The device can't
42  * detect if it's connected in this mode, so we have to manually enable
43  * it.  Default is to leave the device in the state it's already in (-1).
44  * This parameter allows APD mode to be optionally forced on or off
45  */
46 static int apd = -1;
47 module_param(apd, bint, 0);
48 MODULE_PARM_DESC(apd, "Set to zero to disable anti-parallel diode mode");
49
50 struct temperature {
51         s8      degrees;
52         u8      fraction;       /* 0-7 multiples of 0.125 */
53 };
54
55 struct emc2103_data {
56         struct i2c_client       *client;
57         const struct            attribute_group *groups[4];
58         struct mutex            update_lock;
59         bool                    valid;          /* registers are valid */
60         bool                    fan_rpm_control;
61         int                     temp_count;     /* num of temp sensors */
62         unsigned long           last_updated;   /* in jiffies */
63         struct temperature      temp[4];        /* internal + 3 external */
64         s8                      temp_min[4];    /* no fractional part */
65         s8                      temp_max[4];    /* no fractional part */
66         u8                      temp_min_alarm;
67         u8                      temp_max_alarm;
68         u8                      fan_multiplier;
69         u16                     fan_tach;
70         u16                     fan_target;
71 };
72
73 static int read_u8_from_i2c(struct i2c_client *client, u8 i2c_reg, u8 *output)
74 {
75         int status = i2c_smbus_read_byte_data(client, i2c_reg);
76         if (status < 0) {
77                 dev_warn(&client->dev, "reg 0x%02x, err %d\n",
78                         i2c_reg, status);
79         } else {
80                 *output = status;
81         }
82         return status;
83 }
84
85 static void read_temp_from_i2c(struct i2c_client *client, u8 i2c_reg,
86                                struct temperature *temp)
87 {
88         u8 degrees, fractional;
89
90         if (read_u8_from_i2c(client, i2c_reg, &degrees) < 0)
91                 return;
92
93         if (read_u8_from_i2c(client, i2c_reg + 1, &fractional) < 0)
94                 return;
95
96         temp->degrees = degrees;
97         temp->fraction = (fractional & 0xe0) >> 5;
98 }
99
100 static void read_fan_from_i2c(struct i2c_client *client, u16 *output,
101                               u8 hi_addr, u8 lo_addr)
102 {
103         u8 high_byte, lo_byte;
104
105         if (read_u8_from_i2c(client, hi_addr, &high_byte) < 0)
106                 return;
107
108         if (read_u8_from_i2c(client, lo_addr, &lo_byte) < 0)
109                 return;
110
111         *output = ((u16)high_byte << 5) | (lo_byte >> 3);
112 }
113
114 static void write_fan_target_to_i2c(struct i2c_client *client, u16 new_target)
115 {
116         u8 high_byte = (new_target & 0x1fe0) >> 5;
117         u8 low_byte = (new_target & 0x001f) << 3;
118         i2c_smbus_write_byte_data(client, REG_FAN_TARGET_LO, low_byte);
119         i2c_smbus_write_byte_data(client, REG_FAN_TARGET_HI, high_byte);
120 }
121
122 static void read_fan_config_from_i2c(struct i2c_client *client)
123
124 {
125         struct emc2103_data *data = i2c_get_clientdata(client);
126         u8 conf1;
127
128         if (read_u8_from_i2c(client, REG_FAN_CONF1, &conf1) < 0)
129                 return;
130
131         data->fan_multiplier = 1 << ((conf1 & 0x60) >> 5);
132         data->fan_rpm_control = (conf1 & 0x80) != 0;
133 }
134
135 static struct emc2103_data *emc2103_update_device(struct device *dev)
136 {
137         struct emc2103_data *data = dev_get_drvdata(dev);
138         struct i2c_client *client = data->client;
139
140         mutex_lock(&data->update_lock);
141
142         if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
143             || !data->valid) {
144                 int i;
145
146                 for (i = 0; i < data->temp_count; i++) {
147                         read_temp_from_i2c(client, REG_TEMP[i], &data->temp[i]);
148                         read_u8_from_i2c(client, REG_TEMP_MIN[i],
149                                 &data->temp_min[i]);
150                         read_u8_from_i2c(client, REG_TEMP_MAX[i],
151                                 &data->temp_max[i]);
152                 }
153
154                 read_u8_from_i2c(client, REG_TEMP_MIN_ALARM,
155                         &data->temp_min_alarm);
156                 read_u8_from_i2c(client, REG_TEMP_MAX_ALARM,
157                         &data->temp_max_alarm);
158
159                 read_fan_from_i2c(client, &data->fan_tach,
160                         REG_FAN_TACH_HI, REG_FAN_TACH_LO);
161                 read_fan_from_i2c(client, &data->fan_target,
162                         REG_FAN_TARGET_HI, REG_FAN_TARGET_LO);
163                 read_fan_config_from_i2c(client);
164
165                 data->last_updated = jiffies;
166                 data->valid = true;
167         }
168
169         mutex_unlock(&data->update_lock);
170
171         return data;
172 }
173
174 static ssize_t
175 temp_show(struct device *dev, struct device_attribute *da, char *buf)
176 {
177         int nr = to_sensor_dev_attr(da)->index;
178         struct emc2103_data *data = emc2103_update_device(dev);
179         int millidegrees = data->temp[nr].degrees * 1000
180                 + data->temp[nr].fraction * 125;
181         return sprintf(buf, "%d\n", millidegrees);
182 }
183
184 static ssize_t
185 temp_min_show(struct device *dev, struct device_attribute *da, char *buf)
186 {
187         int nr = to_sensor_dev_attr(da)->index;
188         struct emc2103_data *data = emc2103_update_device(dev);
189         int millidegrees = data->temp_min[nr] * 1000;
190         return sprintf(buf, "%d\n", millidegrees);
191 }
192
193 static ssize_t
194 temp_max_show(struct device *dev, struct device_attribute *da, char *buf)
195 {
196         int nr = to_sensor_dev_attr(da)->index;
197         struct emc2103_data *data = emc2103_update_device(dev);
198         int millidegrees = data->temp_max[nr] * 1000;
199         return sprintf(buf, "%d\n", millidegrees);
200 }
201
202 static ssize_t
203 temp_fault_show(struct device *dev, struct device_attribute *da, char *buf)
204 {
205         int nr = to_sensor_dev_attr(da)->index;
206         struct emc2103_data *data = emc2103_update_device(dev);
207         bool fault = (data->temp[nr].degrees == -128);
208         return sprintf(buf, "%d\n", fault ? 1 : 0);
209 }
210
211 static ssize_t
212 temp_min_alarm_show(struct device *dev, struct device_attribute *da,
213                     char *buf)
214 {
215         int nr = to_sensor_dev_attr(da)->index;
216         struct emc2103_data *data = emc2103_update_device(dev);
217         bool alarm = data->temp_min_alarm & (1 << nr);
218         return sprintf(buf, "%d\n", alarm ? 1 : 0);
219 }
220
221 static ssize_t
222 temp_max_alarm_show(struct device *dev, struct device_attribute *da,
223                     char *buf)
224 {
225         int nr = to_sensor_dev_attr(da)->index;
226         struct emc2103_data *data = emc2103_update_device(dev);
227         bool alarm = data->temp_max_alarm & (1 << nr);
228         return sprintf(buf, "%d\n", alarm ? 1 : 0);
229 }
230
231 static ssize_t temp_min_store(struct device *dev, struct device_attribute *da,
232                               const char *buf, size_t count)
233 {
234         int nr = to_sensor_dev_attr(da)->index;
235         struct emc2103_data *data = dev_get_drvdata(dev);
236         struct i2c_client *client = data->client;
237         long val;
238
239         int result = kstrtol(buf, 10, &val);
240         if (result < 0)
241                 return result;
242
243         val = DIV_ROUND_CLOSEST(clamp_val(val, -63000, 127000), 1000);
244
245         mutex_lock(&data->update_lock);
246         data->temp_min[nr] = val;
247         i2c_smbus_write_byte_data(client, REG_TEMP_MIN[nr], val);
248         mutex_unlock(&data->update_lock);
249
250         return count;
251 }
252
253 static ssize_t temp_max_store(struct device *dev, struct device_attribute *da,
254                               const char *buf, size_t count)
255 {
256         int nr = to_sensor_dev_attr(da)->index;
257         struct emc2103_data *data = dev_get_drvdata(dev);
258         struct i2c_client *client = data->client;
259         long val;
260
261         int result = kstrtol(buf, 10, &val);
262         if (result < 0)
263                 return result;
264
265         val = DIV_ROUND_CLOSEST(clamp_val(val, -63000, 127000), 1000);
266
267         mutex_lock(&data->update_lock);
268         data->temp_max[nr] = val;
269         i2c_smbus_write_byte_data(client, REG_TEMP_MAX[nr], val);
270         mutex_unlock(&data->update_lock);
271
272         return count;
273 }
274
275 static ssize_t
276 fan1_input_show(struct device *dev, struct device_attribute *da, char *buf)
277 {
278         struct emc2103_data *data = emc2103_update_device(dev);
279         int rpm = 0;
280         if (data->fan_tach != 0)
281                 rpm = (FAN_RPM_FACTOR * data->fan_multiplier) / data->fan_tach;
282         return sprintf(buf, "%d\n", rpm);
283 }
284
285 static ssize_t
286 fan1_div_show(struct device *dev, struct device_attribute *da, char *buf)
287 {
288         struct emc2103_data *data = emc2103_update_device(dev);
289         int fan_div = 8 / data->fan_multiplier;
290         return sprintf(buf, "%d\n", fan_div);
291 }
292
293 /*
294  * Note: we also update the fan target here, because its value is
295  * determined in part by the fan clock divider.  This follows the principle
296  * of least surprise; the user doesn't expect the fan target to change just
297  * because the divider changed.
298  */
299 static ssize_t fan1_div_store(struct device *dev, struct device_attribute *da,
300                               const char *buf, size_t count)
301 {
302         struct emc2103_data *data = emc2103_update_device(dev);
303         struct i2c_client *client = data->client;
304         int new_range_bits, old_div = 8 / data->fan_multiplier;
305         long new_div;
306
307         int status = kstrtol(buf, 10, &new_div);
308         if (status < 0)
309                 return status;
310
311         if (new_div == old_div) /* No change */
312                 return count;
313
314         switch (new_div) {
315         case 1:
316                 new_range_bits = 3;
317                 break;
318         case 2:
319                 new_range_bits = 2;
320                 break;
321         case 4:
322                 new_range_bits = 1;
323                 break;
324         case 8:
325                 new_range_bits = 0;
326                 break;
327         default:
328                 return -EINVAL;
329         }
330
331         mutex_lock(&data->update_lock);
332
333         status = i2c_smbus_read_byte_data(client, REG_FAN_CONF1);
334         if (status < 0) {
335                 dev_dbg(&client->dev, "reg 0x%02x, err %d\n",
336                         REG_FAN_CONF1, status);
337                 mutex_unlock(&data->update_lock);
338                 return status;
339         }
340         status &= 0x9F;
341         status |= (new_range_bits << 5);
342         i2c_smbus_write_byte_data(client, REG_FAN_CONF1, status);
343
344         data->fan_multiplier = 8 / new_div;
345
346         /* update fan target if high byte is not disabled */
347         if ((data->fan_target & 0x1fe0) != 0x1fe0) {
348                 u16 new_target = (data->fan_target * old_div) / new_div;
349                 data->fan_target = min(new_target, (u16)0x1fff);
350                 write_fan_target_to_i2c(client, data->fan_target);
351         }
352
353         /* invalidate data to force re-read from hardware */
354         data->valid = false;
355
356         mutex_unlock(&data->update_lock);
357         return count;
358 }
359
360 static ssize_t
361 fan1_target_show(struct device *dev, struct device_attribute *da, char *buf)
362 {
363         struct emc2103_data *data = emc2103_update_device(dev);
364         int rpm = 0;
365
366         /* high byte of 0xff indicates disabled so return 0 */
367         if ((data->fan_target != 0) && ((data->fan_target & 0x1fe0) != 0x1fe0))
368                 rpm = (FAN_RPM_FACTOR * data->fan_multiplier)
369                         / data->fan_target;
370
371         return sprintf(buf, "%d\n", rpm);
372 }
373
374 static ssize_t fan1_target_store(struct device *dev,
375                                  struct device_attribute *da, const char *buf,
376                                  size_t count)
377 {
378         struct emc2103_data *data = emc2103_update_device(dev);
379         struct i2c_client *client = data->client;
380         unsigned long rpm_target;
381
382         int result = kstrtoul(buf, 10, &rpm_target);
383         if (result < 0)
384                 return result;
385
386         /* Datasheet states 16384 as maximum RPM target (table 3.2) */
387         rpm_target = clamp_val(rpm_target, 0, 16384);
388
389         mutex_lock(&data->update_lock);
390
391         if (rpm_target == 0)
392                 data->fan_target = 0x1fff;
393         else
394                 data->fan_target = clamp_val(
395                         (FAN_RPM_FACTOR * data->fan_multiplier) / rpm_target,
396                         0, 0x1fff);
397
398         write_fan_target_to_i2c(client, data->fan_target);
399
400         mutex_unlock(&data->update_lock);
401         return count;
402 }
403
404 static ssize_t
405 fan1_fault_show(struct device *dev, struct device_attribute *da, char *buf)
406 {
407         struct emc2103_data *data = emc2103_update_device(dev);
408         bool fault = ((data->fan_tach & 0x1fe0) == 0x1fe0);
409         return sprintf(buf, "%d\n", fault ? 1 : 0);
410 }
411
412 static ssize_t
413 pwm1_enable_show(struct device *dev, struct device_attribute *da, char *buf)
414 {
415         struct emc2103_data *data = emc2103_update_device(dev);
416         return sprintf(buf, "%d\n", data->fan_rpm_control ? 3 : 0);
417 }
418
419 static ssize_t pwm1_enable_store(struct device *dev,
420                                  struct device_attribute *da, const char *buf,
421                                  size_t count)
422 {
423         struct emc2103_data *data = dev_get_drvdata(dev);
424         struct i2c_client *client = data->client;
425         long new_value;
426         u8 conf_reg;
427
428         int result = kstrtol(buf, 10, &new_value);
429         if (result < 0)
430                 return result;
431
432         mutex_lock(&data->update_lock);
433         switch (new_value) {
434         case 0:
435                 data->fan_rpm_control = false;
436                 break;
437         case 3:
438                 data->fan_rpm_control = true;
439                 break;
440         default:
441                 count = -EINVAL;
442                 goto err;
443         }
444
445         result = read_u8_from_i2c(client, REG_FAN_CONF1, &conf_reg);
446         if (result < 0) {
447                 count = result;
448                 goto err;
449         }
450
451         if (data->fan_rpm_control)
452                 conf_reg |= 0x80;
453         else
454                 conf_reg &= ~0x80;
455
456         i2c_smbus_write_byte_data(client, REG_FAN_CONF1, conf_reg);
457 err:
458         mutex_unlock(&data->update_lock);
459         return count;
460 }
461
462 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
463 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
464 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
465 static SENSOR_DEVICE_ATTR_RO(temp1_fault, temp_fault, 0);
466 static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, temp_min_alarm, 0);
467 static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, temp_max_alarm, 0);
468
469 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
470 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
471 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
472 static SENSOR_DEVICE_ATTR_RO(temp2_fault, temp_fault, 1);
473 static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, temp_min_alarm, 1);
474 static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, temp_max_alarm, 1);
475
476 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
477 static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
478 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
479 static SENSOR_DEVICE_ATTR_RO(temp3_fault, temp_fault, 2);
480 static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, temp_min_alarm, 2);
481 static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, temp_max_alarm, 2);
482
483 static SENSOR_DEVICE_ATTR_RO(temp4_input, temp, 3);
484 static SENSOR_DEVICE_ATTR_RW(temp4_min, temp_min, 3);
485 static SENSOR_DEVICE_ATTR_RW(temp4_max, temp_max, 3);
486 static SENSOR_DEVICE_ATTR_RO(temp4_fault, temp_fault, 3);
487 static SENSOR_DEVICE_ATTR_RO(temp4_min_alarm, temp_min_alarm, 3);
488 static SENSOR_DEVICE_ATTR_RO(temp4_max_alarm, temp_max_alarm, 3);
489
490 static DEVICE_ATTR_RO(fan1_input);
491 static DEVICE_ATTR_RW(fan1_div);
492 static DEVICE_ATTR_RW(fan1_target);
493 static DEVICE_ATTR_RO(fan1_fault);
494
495 static DEVICE_ATTR_RW(pwm1_enable);
496
497 /* sensors present on all models */
498 static struct attribute *emc2103_attributes[] = {
499         &sensor_dev_attr_temp1_input.dev_attr.attr,
500         &sensor_dev_attr_temp1_min.dev_attr.attr,
501         &sensor_dev_attr_temp1_max.dev_attr.attr,
502         &sensor_dev_attr_temp1_fault.dev_attr.attr,
503         &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
504         &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
505         &sensor_dev_attr_temp2_input.dev_attr.attr,
506         &sensor_dev_attr_temp2_min.dev_attr.attr,
507         &sensor_dev_attr_temp2_max.dev_attr.attr,
508         &sensor_dev_attr_temp2_fault.dev_attr.attr,
509         &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
510         &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
511         &dev_attr_fan1_input.attr,
512         &dev_attr_fan1_div.attr,
513         &dev_attr_fan1_target.attr,
514         &dev_attr_fan1_fault.attr,
515         &dev_attr_pwm1_enable.attr,
516         NULL
517 };
518
519 /* extra temperature sensors only present on 2103-2 and 2103-4 */
520 static struct attribute *emc2103_attributes_temp3[] = {
521         &sensor_dev_attr_temp3_input.dev_attr.attr,
522         &sensor_dev_attr_temp3_min.dev_attr.attr,
523         &sensor_dev_attr_temp3_max.dev_attr.attr,
524         &sensor_dev_attr_temp3_fault.dev_attr.attr,
525         &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
526         &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
527         NULL
528 };
529
530 /* extra temperature sensors only present on 2103-2 and 2103-4 in APD mode */
531 static struct attribute *emc2103_attributes_temp4[] = {
532         &sensor_dev_attr_temp4_input.dev_attr.attr,
533         &sensor_dev_attr_temp4_min.dev_attr.attr,
534         &sensor_dev_attr_temp4_max.dev_attr.attr,
535         &sensor_dev_attr_temp4_fault.dev_attr.attr,
536         &sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
537         &sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
538         NULL
539 };
540
541 static const struct attribute_group emc2103_group = {
542         .attrs = emc2103_attributes,
543 };
544
545 static const struct attribute_group emc2103_temp3_group = {
546         .attrs = emc2103_attributes_temp3,
547 };
548
549 static const struct attribute_group emc2103_temp4_group = {
550         .attrs = emc2103_attributes_temp4,
551 };
552
553 static int
554 emc2103_probe(struct i2c_client *client)
555 {
556         struct emc2103_data *data;
557         struct device *hwmon_dev;
558         int status, idx = 0;
559
560         if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
561                 return -EIO;
562
563         data = devm_kzalloc(&client->dev, sizeof(struct emc2103_data),
564                             GFP_KERNEL);
565         if (!data)
566                 return -ENOMEM;
567
568         i2c_set_clientdata(client, data);
569         data->client = client;
570         mutex_init(&data->update_lock);
571
572         /* 2103-2 and 2103-4 have 3 external diodes, 2103-1 has 1 */
573         status = i2c_smbus_read_byte_data(client, REG_PRODUCT_ID);
574         if (status == 0x24) {
575                 /* 2103-1 only has 1 external diode */
576                 data->temp_count = 2;
577         } else {
578                 /* 2103-2 and 2103-4 have 3 or 4 external diodes */
579                 status = i2c_smbus_read_byte_data(client, REG_CONF1);
580                 if (status < 0) {
581                         dev_dbg(&client->dev, "reg 0x%02x, err %d\n", REG_CONF1,
582                                 status);
583                         return status;
584                 }
585
586                 /* detect current state of hardware */
587                 data->temp_count = (status & 0x01) ? 4 : 3;
588
589                 /* force APD state if module parameter is set */
590                 if (apd == 0) {
591                         /* force APD mode off */
592                         data->temp_count = 3;
593                         status &= ~(0x01);
594                         i2c_smbus_write_byte_data(client, REG_CONF1, status);
595                 } else if (apd == 1) {
596                         /* force APD mode on */
597                         data->temp_count = 4;
598                         status |= 0x01;
599                         i2c_smbus_write_byte_data(client, REG_CONF1, status);
600                 }
601         }
602
603         /* sysfs hooks */
604         data->groups[idx++] = &emc2103_group;
605         if (data->temp_count >= 3)
606                 data->groups[idx++] = &emc2103_temp3_group;
607         if (data->temp_count == 4)
608                 data->groups[idx++] = &emc2103_temp4_group;
609
610         hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
611                                                            client->name, data,
612                                                            data->groups);
613         if (IS_ERR(hwmon_dev))
614                 return PTR_ERR(hwmon_dev);
615
616         dev_info(&client->dev, "%s: sensor '%s'\n",
617                  dev_name(hwmon_dev), client->name);
618
619         return 0;
620 }
621
622 static const struct i2c_device_id emc2103_ids[] = {
623         { "emc2103", 0, },
624         { /* LIST END */ }
625 };
626 MODULE_DEVICE_TABLE(i2c, emc2103_ids);
627
628 /* Return 0 if detection is successful, -ENODEV otherwise */
629 static int
630 emc2103_detect(struct i2c_client *new_client, struct i2c_board_info *info)
631 {
632         struct i2c_adapter *adapter = new_client->adapter;
633         int manufacturer, product;
634
635         if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
636                 return -ENODEV;
637
638         manufacturer = i2c_smbus_read_byte_data(new_client, REG_MFG_ID);
639         if (manufacturer != 0x5D)
640                 return -ENODEV;
641
642         product = i2c_smbus_read_byte_data(new_client, REG_PRODUCT_ID);
643         if ((product != 0x24) && (product != 0x26))
644                 return -ENODEV;
645
646         strscpy(info->type, "emc2103", I2C_NAME_SIZE);
647
648         return 0;
649 }
650
651 static struct i2c_driver emc2103_driver = {
652         .class          = I2C_CLASS_HWMON,
653         .driver = {
654                 .name   = "emc2103",
655         },
656         .probe          = emc2103_probe,
657         .id_table       = emc2103_ids,
658         .detect         = emc2103_detect,
659         .address_list   = normal_i2c,
660 };
661
662 module_i2c_driver(emc2103_driver);
663
664 MODULE_AUTHOR("Steve Glendinning <steve.glendinning@shawell.net>");
665 MODULE_DESCRIPTION("SMSC EMC2103 hwmon driver");
666 MODULE_LICENSE("GPL");