Merge tag 's390-6.5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[platform/kernel/linux-starfive.git] / drivers / hwmon / emc1403.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * emc1403.c - SMSC Thermal Driver
4  *
5  * Copyright (C) 2008 Intel Corp
6  *
7  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/i2c.h>
16 #include <linux/hwmon.h>
17 #include <linux/hwmon-sysfs.h>
18 #include <linux/err.h>
19 #include <linux/sysfs.h>
20 #include <linux/mutex.h>
21 #include <linux/regmap.h>
22
23 #define THERMAL_PID_REG         0xfd
24 #define THERMAL_SMSC_ID_REG     0xfe
25 #define THERMAL_REVISION_REG    0xff
26
27 enum emc1403_chip { emc1402, emc1403, emc1404 };
28
29 struct thermal_data {
30         struct regmap *regmap;
31         struct mutex mutex;
32         const struct attribute_group *groups[4];
33 };
34
35 static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
36                          char *buf)
37 {
38         struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
39         struct thermal_data *data = dev_get_drvdata(dev);
40         unsigned int val;
41         int retval;
42
43         retval = regmap_read(data->regmap, sda->index, &val);
44         if (retval < 0)
45                 return retval;
46         return sprintf(buf, "%d000\n", val);
47 }
48
49 static ssize_t bit_show(struct device *dev, struct device_attribute *attr,
50                         char *buf)
51 {
52         struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
53         struct thermal_data *data = dev_get_drvdata(dev);
54         unsigned int val;
55         int retval;
56
57         retval = regmap_read(data->regmap, sda->nr, &val);
58         if (retval < 0)
59                 return retval;
60         return sprintf(buf, "%d\n", !!(val & sda->index));
61 }
62
63 static ssize_t temp_store(struct device *dev, struct device_attribute *attr,
64                           const char *buf, size_t count)
65 {
66         struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
67         struct thermal_data *data = dev_get_drvdata(dev);
68         unsigned long val;
69         int retval;
70
71         if (kstrtoul(buf, 10, &val))
72                 return -EINVAL;
73         retval = regmap_write(data->regmap, sda->index,
74                               DIV_ROUND_CLOSEST(val, 1000));
75         if (retval < 0)
76                 return retval;
77         return count;
78 }
79
80 static ssize_t bit_store(struct device *dev, struct device_attribute *attr,
81                          const char *buf, size_t count)
82 {
83         struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
84         struct thermal_data *data = dev_get_drvdata(dev);
85         unsigned long val;
86         int retval;
87
88         if (kstrtoul(buf, 10, &val))
89                 return -EINVAL;
90
91         retval = regmap_update_bits(data->regmap, sda->nr, sda->index,
92                                     val ? sda->index : 0);
93         if (retval < 0)
94                 return retval;
95         return count;
96 }
97
98 static ssize_t show_hyst_common(struct device *dev,
99                                 struct device_attribute *attr, char *buf,
100                                 bool is_min)
101 {
102         struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
103         struct thermal_data *data = dev_get_drvdata(dev);
104         struct regmap *regmap = data->regmap;
105         unsigned int limit;
106         unsigned int hyst;
107         int retval;
108
109         retval = regmap_read(regmap, sda->index, &limit);
110         if (retval < 0)
111                 return retval;
112
113         retval = regmap_read(regmap, 0x21, &hyst);
114         if (retval < 0)
115                 return retval;
116
117         return sprintf(buf, "%d000\n", is_min ? limit + hyst : limit - hyst);
118 }
119
120 static ssize_t hyst_show(struct device *dev, struct device_attribute *attr,
121                          char *buf)
122 {
123         return show_hyst_common(dev, attr, buf, false);
124 }
125
126 static ssize_t min_hyst_show(struct device *dev,
127                              struct device_attribute *attr, char *buf)
128 {
129         return show_hyst_common(dev, attr, buf, true);
130 }
131
132 static ssize_t hyst_store(struct device *dev, struct device_attribute *attr,
133                           const char *buf, size_t count)
134 {
135         struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
136         struct thermal_data *data = dev_get_drvdata(dev);
137         struct regmap *regmap = data->regmap;
138         unsigned int limit;
139         int retval;
140         int hyst;
141         unsigned long val;
142
143         if (kstrtoul(buf, 10, &val))
144                 return -EINVAL;
145
146         mutex_lock(&data->mutex);
147         retval = regmap_read(regmap, sda->index, &limit);
148         if (retval < 0)
149                 goto fail;
150
151         hyst = limit * 1000 - val;
152         hyst = clamp_val(DIV_ROUND_CLOSEST(hyst, 1000), 0, 255);
153         retval = regmap_write(regmap, 0x21, hyst);
154         if (retval == 0)
155                 retval = count;
156 fail:
157         mutex_unlock(&data->mutex);
158         return retval;
159 }
160
161 /*
162  *      Sensors. We pass the actual i2c register to the methods.
163  */
164
165 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp, 0x06);
166 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp, 0x05);
167 static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp, 0x20);
168 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0x00);
169 static SENSOR_DEVICE_ATTR_2_RO(temp1_min_alarm, bit, 0x36, 0x01);
170 static SENSOR_DEVICE_ATTR_2_RO(temp1_max_alarm, bit, 0x35, 0x01);
171 static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, bit, 0x37, 0x01);
172 static SENSOR_DEVICE_ATTR_RO(temp1_min_hyst, min_hyst, 0x06);
173 static SENSOR_DEVICE_ATTR_RO(temp1_max_hyst, hyst, 0x05);
174 static SENSOR_DEVICE_ATTR_RW(temp1_crit_hyst, hyst, 0x20);
175
176 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp, 0x08);
177 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp, 0x07);
178 static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp, 0x19);
179 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 0x01);
180 static SENSOR_DEVICE_ATTR_2_RO(temp2_fault, bit, 0x1b, 0x02);
181 static SENSOR_DEVICE_ATTR_2_RO(temp2_min_alarm, bit, 0x36, 0x02);
182 static SENSOR_DEVICE_ATTR_2_RO(temp2_max_alarm, bit, 0x35, 0x02);
183 static SENSOR_DEVICE_ATTR_2_RO(temp2_crit_alarm, bit, 0x37, 0x02);
184 static SENSOR_DEVICE_ATTR_RO(temp2_min_hyst, min_hyst, 0x08);
185 static SENSOR_DEVICE_ATTR_RO(temp2_max_hyst, hyst, 0x07);
186 static SENSOR_DEVICE_ATTR_RO(temp2_crit_hyst, hyst, 0x19);
187
188 static SENSOR_DEVICE_ATTR_RW(temp3_min, temp, 0x16);
189 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp, 0x15);
190 static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp, 0x1A);
191 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 0x23);
192 static SENSOR_DEVICE_ATTR_2_RO(temp3_fault, bit, 0x1b, 0x04);
193 static SENSOR_DEVICE_ATTR_2_RO(temp3_min_alarm, bit, 0x36, 0x04);
194 static SENSOR_DEVICE_ATTR_2_RO(temp3_max_alarm, bit, 0x35, 0x04);
195 static SENSOR_DEVICE_ATTR_2_RO(temp3_crit_alarm, bit, 0x37, 0x04);
196 static SENSOR_DEVICE_ATTR_RO(temp3_min_hyst, min_hyst, 0x16);
197 static SENSOR_DEVICE_ATTR_RO(temp3_max_hyst, hyst, 0x15);
198 static SENSOR_DEVICE_ATTR_RO(temp3_crit_hyst, hyst, 0x1A);
199
200 static SENSOR_DEVICE_ATTR_RW(temp4_min, temp, 0x2D);
201 static SENSOR_DEVICE_ATTR_RW(temp4_max, temp, 0x2C);
202 static SENSOR_DEVICE_ATTR_RW(temp4_crit, temp, 0x30);
203 static SENSOR_DEVICE_ATTR_RO(temp4_input, temp, 0x2A);
204 static SENSOR_DEVICE_ATTR_2_RO(temp4_fault, bit, 0x1b, 0x08);
205 static SENSOR_DEVICE_ATTR_2_RO(temp4_min_alarm, bit, 0x36, 0x08);
206 static SENSOR_DEVICE_ATTR_2_RO(temp4_max_alarm, bit, 0x35, 0x08);
207 static SENSOR_DEVICE_ATTR_2_RO(temp4_crit_alarm, bit, 0x37, 0x08);
208 static SENSOR_DEVICE_ATTR_RO(temp4_min_hyst, min_hyst, 0x2D);
209 static SENSOR_DEVICE_ATTR_RO(temp4_max_hyst, hyst, 0x2C);
210 static SENSOR_DEVICE_ATTR_RO(temp4_crit_hyst, hyst, 0x30);
211
212 static SENSOR_DEVICE_ATTR_2_RW(power_state, bit, 0x03, 0x40);
213
214 static struct attribute *emc1402_attrs[] = {
215         &sensor_dev_attr_temp1_min.dev_attr.attr,
216         &sensor_dev_attr_temp1_max.dev_attr.attr,
217         &sensor_dev_attr_temp1_crit.dev_attr.attr,
218         &sensor_dev_attr_temp1_input.dev_attr.attr,
219         &sensor_dev_attr_temp1_min_hyst.dev_attr.attr,
220         &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
221         &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
222
223         &sensor_dev_attr_temp2_min.dev_attr.attr,
224         &sensor_dev_attr_temp2_max.dev_attr.attr,
225         &sensor_dev_attr_temp2_crit.dev_attr.attr,
226         &sensor_dev_attr_temp2_input.dev_attr.attr,
227         &sensor_dev_attr_temp2_min_hyst.dev_attr.attr,
228         &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
229         &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
230
231         &sensor_dev_attr_power_state.dev_attr.attr,
232         NULL
233 };
234
235 static const struct attribute_group emc1402_group = {
236                 .attrs = emc1402_attrs,
237 };
238
239 static struct attribute *emc1403_attrs[] = {
240         &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
241         &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
242         &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
243
244         &sensor_dev_attr_temp2_fault.dev_attr.attr,
245         &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
246         &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
247         &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
248
249         &sensor_dev_attr_temp3_min.dev_attr.attr,
250         &sensor_dev_attr_temp3_max.dev_attr.attr,
251         &sensor_dev_attr_temp3_crit.dev_attr.attr,
252         &sensor_dev_attr_temp3_input.dev_attr.attr,
253         &sensor_dev_attr_temp3_fault.dev_attr.attr,
254         &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
255         &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
256         &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
257         &sensor_dev_attr_temp3_min_hyst.dev_attr.attr,
258         &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
259         &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
260         NULL
261 };
262
263 static const struct attribute_group emc1403_group = {
264         .attrs = emc1403_attrs,
265 };
266
267 static struct attribute *emc1404_attrs[] = {
268         &sensor_dev_attr_temp4_min.dev_attr.attr,
269         &sensor_dev_attr_temp4_max.dev_attr.attr,
270         &sensor_dev_attr_temp4_crit.dev_attr.attr,
271         &sensor_dev_attr_temp4_input.dev_attr.attr,
272         &sensor_dev_attr_temp4_fault.dev_attr.attr,
273         &sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
274         &sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
275         &sensor_dev_attr_temp4_crit_alarm.dev_attr.attr,
276         &sensor_dev_attr_temp4_min_hyst.dev_attr.attr,
277         &sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
278         &sensor_dev_attr_temp4_crit_hyst.dev_attr.attr,
279         NULL
280 };
281
282 static const struct attribute_group emc1404_group = {
283         .attrs = emc1404_attrs,
284 };
285
286 /*
287  * EMC14x2 uses a different register and different bits to report alarm and
288  * fault status. For simplicity, provide a separate attribute group for this
289  * chip series.
290  * Since we can not re-use the same attribute names, create a separate attribute
291  * array.
292  */
293 static struct sensor_device_attribute_2 emc1402_alarms[] = {
294         SENSOR_ATTR_2_RO(temp1_min_alarm, bit, 0x02, 0x20),
295         SENSOR_ATTR_2_RO(temp1_max_alarm, bit, 0x02, 0x40),
296         SENSOR_ATTR_2_RO(temp1_crit_alarm, bit, 0x02, 0x01),
297
298         SENSOR_ATTR_2_RO(temp2_fault, bit, 0x02, 0x04),
299         SENSOR_ATTR_2_RO(temp2_min_alarm, bit, 0x02, 0x08),
300         SENSOR_ATTR_2_RO(temp2_max_alarm, bit, 0x02, 0x10),
301         SENSOR_ATTR_2_RO(temp2_crit_alarm, bit, 0x02, 0x02),
302 };
303
304 static struct attribute *emc1402_alarm_attrs[] = {
305         &emc1402_alarms[0].dev_attr.attr,
306         &emc1402_alarms[1].dev_attr.attr,
307         &emc1402_alarms[2].dev_attr.attr,
308         &emc1402_alarms[3].dev_attr.attr,
309         &emc1402_alarms[4].dev_attr.attr,
310         &emc1402_alarms[5].dev_attr.attr,
311         &emc1402_alarms[6].dev_attr.attr,
312         NULL,
313 };
314
315 static const struct attribute_group emc1402_alarm_group = {
316         .attrs = emc1402_alarm_attrs,
317 };
318
319 static int emc1403_detect(struct i2c_client *client,
320                         struct i2c_board_info *info)
321 {
322         int id;
323         /* Check if thermal chip is SMSC and EMC1403 or EMC1423 */
324
325         id = i2c_smbus_read_byte_data(client, THERMAL_SMSC_ID_REG);
326         if (id != 0x5d)
327                 return -ENODEV;
328
329         id = i2c_smbus_read_byte_data(client, THERMAL_PID_REG);
330         switch (id) {
331         case 0x20:
332                 strscpy(info->type, "emc1402", I2C_NAME_SIZE);
333                 break;
334         case 0x21:
335                 strscpy(info->type, "emc1403", I2C_NAME_SIZE);
336                 break;
337         case 0x22:
338                 strscpy(info->type, "emc1422", I2C_NAME_SIZE);
339                 break;
340         case 0x23:
341                 strscpy(info->type, "emc1423", I2C_NAME_SIZE);
342                 break;
343         case 0x25:
344                 strscpy(info->type, "emc1404", I2C_NAME_SIZE);
345                 break;
346         case 0x27:
347                 strscpy(info->type, "emc1424", I2C_NAME_SIZE);
348                 break;
349         default:
350                 return -ENODEV;
351         }
352
353         id = i2c_smbus_read_byte_data(client, THERMAL_REVISION_REG);
354         if (id < 0x01 || id > 0x04)
355                 return -ENODEV;
356
357         return 0;
358 }
359
360 static bool emc1403_regmap_is_volatile(struct device *dev, unsigned int reg)
361 {
362         switch (reg) {
363         case 0x00:      /* internal diode high byte */
364         case 0x01:      /* external diode 1 high byte */
365         case 0x02:      /* status */
366         case 0x10:      /* external diode 1 low byte */
367         case 0x1b:      /* external diode fault */
368         case 0x23:      /* external diode 2 high byte */
369         case 0x24:      /* external diode 2 low byte */
370         case 0x29:      /* internal diode low byte */
371         case 0x2a:      /* externl diode 3 high byte */
372         case 0x2b:      /* external diode 3 low byte */
373         case 0x35:      /* high limit status */
374         case 0x36:      /* low limit status */
375         case 0x37:      /* therm limit status */
376                 return true;
377         default:
378                 return false;
379         }
380 }
381
382 static const struct regmap_config emc1403_regmap_config = {
383         .reg_bits = 8,
384         .val_bits = 8,
385         .cache_type = REGCACHE_RBTREE,
386         .volatile_reg = emc1403_regmap_is_volatile,
387 };
388
389 static const struct i2c_device_id emc1403_idtable[];
390
391 static int emc1403_probe(struct i2c_client *client)
392 {
393         struct thermal_data *data;
394         struct device *hwmon_dev;
395         const struct i2c_device_id *id = i2c_match_id(emc1403_idtable, client);
396
397         data = devm_kzalloc(&client->dev, sizeof(struct thermal_data),
398                             GFP_KERNEL);
399         if (data == NULL)
400                 return -ENOMEM;
401
402         data->regmap = devm_regmap_init_i2c(client, &emc1403_regmap_config);
403         if (IS_ERR(data->regmap))
404                 return PTR_ERR(data->regmap);
405
406         mutex_init(&data->mutex);
407
408         switch (id->driver_data) {
409         case emc1404:
410                 data->groups[2] = &emc1404_group;
411                 fallthrough;
412         case emc1403:
413                 data->groups[1] = &emc1403_group;
414                 fallthrough;
415         case emc1402:
416                 data->groups[0] = &emc1402_group;
417         }
418
419         if (id->driver_data == emc1402)
420                 data->groups[1] = &emc1402_alarm_group;
421
422         hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
423                                                            client->name, data,
424                                                            data->groups);
425         if (IS_ERR(hwmon_dev))
426                 return PTR_ERR(hwmon_dev);
427
428         dev_info(&client->dev, "%s Thermal chip found\n", id->name);
429         return 0;
430 }
431
432 static const unsigned short emc1403_address_list[] = {
433         0x18, 0x1c, 0x29, 0x4c, 0x4d, 0x5c, I2C_CLIENT_END
434 };
435
436 /* Last digit of chip name indicates number of channels */
437 static const struct i2c_device_id emc1403_idtable[] = {
438         { "emc1402", emc1402 },
439         { "emc1403", emc1403 },
440         { "emc1404", emc1404 },
441         { "emc1412", emc1402 },
442         { "emc1413", emc1403 },
443         { "emc1414", emc1404 },
444         { "emc1422", emc1402 },
445         { "emc1423", emc1403 },
446         { "emc1424", emc1404 },
447         { }
448 };
449 MODULE_DEVICE_TABLE(i2c, emc1403_idtable);
450
451 static struct i2c_driver sensor_emc1403 = {
452         .class = I2C_CLASS_HWMON,
453         .driver = {
454                 .name = "emc1403",
455         },
456         .detect = emc1403_detect,
457         .probe = emc1403_probe,
458         .id_table = emc1403_idtable,
459         .address_list = emc1403_address_list,
460 };
461
462 module_i2c_driver(sensor_emc1403);
463
464 MODULE_AUTHOR("Kalhan Trisal <kalhan.trisal@intel.com");
465 MODULE_DESCRIPTION("emc1403 Thermal Driver");
466 MODULE_LICENSE("GPL v2");