1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * asc7621.c - Part of lm_sensors, Linux kernel modules for hardware monitoring
4 * Copyright (c) 2007, 2010 George Joseph <george.joseph@fairview5.com>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/jiffies.h>
11 #include <linux/i2c.h>
12 #include <linux/hwmon.h>
13 #include <linux/hwmon-sysfs.h>
14 #include <linux/err.h>
15 #include <linux/mutex.h>
17 /* Addresses to scan */
18 static const unsigned short normal_i2c[] = {
19 0x2c, 0x2d, 0x2e, I2C_CLIENT_END
27 #define INTERVAL_HIGH (HZ + HZ / 2)
28 #define INTERVAL_LOW (1 * 60 * HZ)
32 #define FIRST_CHIP asc7621
33 #define LAST_CHIP asc7621a
37 enum asc7621_type chip_type;
42 const unsigned short *addresses;
45 static struct asc7621_chip asc7621_chips[] = {
53 .addresses = normal_i2c,
57 .chip_type = asc7621a,
62 .addresses = normal_i2c,
67 * Defines the highest register to be used, not the count.
68 * The actual count will probably be smaller because of gaps
69 * in the implementation (unused register locations).
70 * This define will safely set the array size of both the parameter
72 * This comes from the data sheet register description table.
74 #define LAST_REGISTER 0xff
77 struct i2c_client client;
78 struct device *class_dev;
79 struct mutex update_lock;
80 int valid; /* !=0 if following fields are valid */
81 unsigned long last_high_reading; /* In jiffies */
82 unsigned long last_low_reading; /* In jiffies */
84 * Registers we care about occupy the corresponding index
85 * in the array. Registers we don't care about are left
88 u8 reg[LAST_REGISTER + 1];
92 * Macro to get the parent asc7621_param structure
93 * from a sensor_device_attribute passed into the
94 * show/store functions.
96 #define to_asc7621_param(_sda) \
97 container_of(_sda, struct asc7621_param, sda)
100 * Each parameter to be retrieved needs an asc7621_param structure
101 * allocated. It contains the sensor_device_attribute structure
102 * and the control info needed to retrieve the value from the register map.
104 struct asc7621_param {
105 struct sensor_device_attribute sda;
114 * This is the map that ultimately indicates whether we'll be
115 * retrieving a register value or not, and at what frequency.
117 static u8 asc7621_register_priorities[255];
119 static struct asc7621_data *asc7621_update_device(struct device *dev);
121 static inline u8 read_byte(struct i2c_client *client, u8 reg)
123 int res = i2c_smbus_read_byte_data(client, reg);
125 dev_err(&client->dev,
126 "Unable to read from register 0x%02x.\n", reg);
132 static inline int write_byte(struct i2c_client *client, u8 reg, u8 data)
134 int res = i2c_smbus_write_byte_data(client, reg, data);
136 dev_err(&client->dev,
137 "Unable to write value 0x%02x to register 0x%02x.\n",
145 * Each function handles the formatting, storage
146 * and retrieval of like parameters.
149 #define SETUP_SHOW_DATA_PARAM(d, a) \
150 struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
151 struct asc7621_data *data = asc7621_update_device(d); \
152 struct asc7621_param *param = to_asc7621_param(sda)
154 #define SETUP_STORE_DATA_PARAM(d, a) \
155 struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
156 struct i2c_client *client = to_i2c_client(d); \
157 struct asc7621_data *data = i2c_get_clientdata(client); \
158 struct asc7621_param *param = to_asc7621_param(sda)
161 * u8 is just what it sounds like...an unsigned byte with no
162 * special formatting.
164 static ssize_t show_u8(struct device *dev, struct device_attribute *attr,
167 SETUP_SHOW_DATA_PARAM(dev, attr);
169 return sprintf(buf, "%u\n", data->reg[param->msb[0]]);
172 static ssize_t store_u8(struct device *dev, struct device_attribute *attr,
173 const char *buf, size_t count)
175 SETUP_STORE_DATA_PARAM(dev, attr);
178 if (kstrtol(buf, 10, &reqval))
181 reqval = clamp_val(reqval, 0, 255);
183 mutex_lock(&data->update_lock);
184 data->reg[param->msb[0]] = reqval;
185 write_byte(client, param->msb[0], reqval);
186 mutex_unlock(&data->update_lock);
191 * Many of the config values occupy only a few bits of a register.
193 static ssize_t show_bitmask(struct device *dev,
194 struct device_attribute *attr, char *buf)
196 SETUP_SHOW_DATA_PARAM(dev, attr);
198 return sprintf(buf, "%u\n",
199 (data->reg[param->msb[0]] >> param->
200 shift[0]) & param->mask[0]);
203 static ssize_t store_bitmask(struct device *dev,
204 struct device_attribute *attr,
205 const char *buf, size_t count)
207 SETUP_STORE_DATA_PARAM(dev, attr);
211 if (kstrtol(buf, 10, &reqval))
214 reqval = clamp_val(reqval, 0, param->mask[0]);
216 reqval = (reqval & param->mask[0]) << param->shift[0];
218 mutex_lock(&data->update_lock);
219 currval = read_byte(client, param->msb[0]);
220 reqval |= (currval & ~(param->mask[0] << param->shift[0]));
221 data->reg[param->msb[0]] = reqval;
222 write_byte(client, param->msb[0], reqval);
223 mutex_unlock(&data->update_lock);
228 * 16 bit fan rpm values
229 * reported by the device as the number of 11.111us periods (90khz)
230 * between full fan rotations. Therefore...
231 * RPM = (90000 * 60) / register value
233 static ssize_t show_fan16(struct device *dev,
234 struct device_attribute *attr, char *buf)
236 SETUP_SHOW_DATA_PARAM(dev, attr);
239 mutex_lock(&data->update_lock);
240 regval = (data->reg[param->msb[0]] << 8) | data->reg[param->lsb[0]];
241 mutex_unlock(&data->update_lock);
243 return sprintf(buf, "%u\n",
244 (regval == 0 ? -1 : (regval) ==
245 0xffff ? 0 : 5400000 / regval));
248 static ssize_t store_fan16(struct device *dev,
249 struct device_attribute *attr, const char *buf,
252 SETUP_STORE_DATA_PARAM(dev, attr);
255 if (kstrtol(buf, 10, &reqval))
259 * If a minimum RPM of zero is requested, then we set the register to
260 * 0xffff. This value allows the fan to be stopped completely without
261 * generating an alarm.
264 (reqval <= 0 ? 0xffff : clamp_val(5400000 / reqval, 0, 0xfffe));
266 mutex_lock(&data->update_lock);
267 data->reg[param->msb[0]] = (reqval >> 8) & 0xff;
268 data->reg[param->lsb[0]] = reqval & 0xff;
269 write_byte(client, param->msb[0], data->reg[param->msb[0]]);
270 write_byte(client, param->lsb[0], data->reg[param->lsb[0]]);
271 mutex_unlock(&data->update_lock);
277 * Voltages are scaled in the device so that the nominal voltage
278 * is 3/4ths of the 0-255 range (i.e. 192).
279 * If all voltages are 'normal' then all voltage registers will
282 * The data sheet provides us with the 3/4 scale value for each voltage
283 * which is stored in in_scaling. The sda->index parameter value provides
284 * the index into in_scaling.
286 * NOTE: The chip expects the first 2 inputs be 2.5 and 2.25 volts
287 * respectively. That doesn't mean that's what the motherboard provides. :)
290 static const int asc7621_in_scaling[] = {
291 2500, 2250, 3300, 5000, 12000
294 static ssize_t show_in10(struct device *dev, struct device_attribute *attr,
297 SETUP_SHOW_DATA_PARAM(dev, attr);
301 mutex_lock(&data->update_lock);
302 regval = (data->reg[param->msb[0]] << 8) | (data->reg[param->lsb[0]]);
303 mutex_unlock(&data->update_lock);
305 /* The LSB value is a 2-bit scaling of the MSB's LSbit value. */
306 regval = (regval >> 6) * asc7621_in_scaling[nr] / (0xc0 << 2);
308 return sprintf(buf, "%u\n", regval);
311 /* 8 bit voltage values (the mins and maxs) */
312 static ssize_t show_in8(struct device *dev, struct device_attribute *attr,
315 SETUP_SHOW_DATA_PARAM(dev, attr);
318 return sprintf(buf, "%u\n",
319 ((data->reg[param->msb[0]] *
320 asc7621_in_scaling[nr]) / 0xc0));
323 static ssize_t store_in8(struct device *dev, struct device_attribute *attr,
324 const char *buf, size_t count)
326 SETUP_STORE_DATA_PARAM(dev, attr);
330 if (kstrtol(buf, 10, &reqval))
333 reqval = clamp_val(reqval, 0, 0xffff);
335 reqval = reqval * 0xc0 / asc7621_in_scaling[nr];
337 reqval = clamp_val(reqval, 0, 0xff);
339 mutex_lock(&data->update_lock);
340 data->reg[param->msb[0]] = reqval;
341 write_byte(client, param->msb[0], reqval);
342 mutex_unlock(&data->update_lock);
347 static ssize_t show_temp8(struct device *dev,
348 struct device_attribute *attr, char *buf)
350 SETUP_SHOW_DATA_PARAM(dev, attr);
352 return sprintf(buf, "%d\n", ((s8) data->reg[param->msb[0]]) * 1000);
355 static ssize_t store_temp8(struct device *dev,
356 struct device_attribute *attr, const char *buf,
359 SETUP_STORE_DATA_PARAM(dev, attr);
363 if (kstrtol(buf, 10, &reqval))
366 reqval = clamp_val(reqval, -127000, 127000);
368 temp = reqval / 1000;
370 mutex_lock(&data->update_lock);
371 data->reg[param->msb[0]] = temp;
372 write_byte(client, param->msb[0], temp);
373 mutex_unlock(&data->update_lock);
378 * Temperatures that occupy 2 bytes always have the whole
379 * number of degrees in the MSB with some part of the LSB
380 * indicating fractional degrees.
383 /* mmmmmmmm.llxxxxxx */
384 static ssize_t show_temp10(struct device *dev,
385 struct device_attribute *attr, char *buf)
387 SETUP_SHOW_DATA_PARAM(dev, attr);
391 mutex_lock(&data->update_lock);
392 msb = data->reg[param->msb[0]];
393 lsb = (data->reg[param->lsb[0]] >> 6) & 0x03;
394 temp = (((s8) msb) * 1000) + (lsb * 250);
395 mutex_unlock(&data->update_lock);
397 return sprintf(buf, "%d\n", temp);
401 static ssize_t show_temp62(struct device *dev,
402 struct device_attribute *attr, char *buf)
404 SETUP_SHOW_DATA_PARAM(dev, attr);
405 u8 regval = data->reg[param->msb[0]];
406 int temp = ((s8) (regval & 0xfc) * 1000) + ((regval & 0x03) * 250);
408 return sprintf(buf, "%d\n", temp);
411 static ssize_t store_temp62(struct device *dev,
412 struct device_attribute *attr, const char *buf,
415 SETUP_STORE_DATA_PARAM(dev, attr);
419 if (kstrtol(buf, 10, &reqval))
422 reqval = clamp_val(reqval, -32000, 31750);
424 f = reqval - (i * 1000);
428 mutex_lock(&data->update_lock);
429 data->reg[param->msb[0]] = temp;
430 write_byte(client, param->msb[0], temp);
431 mutex_unlock(&data->update_lock);
436 * The aSC7621 doesn't provide an "auto_point2". Instead, you
437 * specify the auto_point1 and a range. To keep with the sysfs
438 * hwmon specs, we synthesize the auto_point_2 from them.
441 static const u32 asc7621_range_map[] = {
442 2000, 2500, 3330, 4000, 5000, 6670, 8000, 10000,
443 13330, 16000, 20000, 26670, 32000, 40000, 53330, 80000,
446 static ssize_t show_ap2_temp(struct device *dev,
447 struct device_attribute *attr, char *buf)
449 SETUP_SHOW_DATA_PARAM(dev, attr);
454 mutex_lock(&data->update_lock);
455 auto_point1 = ((s8) data->reg[param->msb[1]]) * 1000;
457 ((data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]);
458 temp = auto_point1 + asc7621_range_map[clamp_val(regval, 0, 15)];
459 mutex_unlock(&data->update_lock);
461 return sprintf(buf, "%d\n", temp);
465 static ssize_t store_ap2_temp(struct device *dev,
466 struct device_attribute *attr,
467 const char *buf, size_t count)
469 SETUP_STORE_DATA_PARAM(dev, attr);
470 long reqval, auto_point1;
472 u8 currval, newval = 0;
474 if (kstrtol(buf, 10, &reqval))
477 mutex_lock(&data->update_lock);
478 auto_point1 = data->reg[param->msb[1]] * 1000;
479 reqval = clamp_val(reqval, auto_point1 + 2000, auto_point1 + 80000);
481 for (i = ARRAY_SIZE(asc7621_range_map) - 1; i >= 0; i--) {
482 if (reqval >= auto_point1 + asc7621_range_map[i]) {
488 newval = (newval & param->mask[0]) << param->shift[0];
489 currval = read_byte(client, param->msb[0]);
490 newval |= (currval & ~(param->mask[0] << param->shift[0]));
491 data->reg[param->msb[0]] = newval;
492 write_byte(client, param->msb[0], newval);
493 mutex_unlock(&data->update_lock);
497 static ssize_t show_pwm_ac(struct device *dev,
498 struct device_attribute *attr, char *buf)
500 SETUP_SHOW_DATA_PARAM(dev, attr);
501 u8 config, altbit, regval;
502 static const u8 map[] = {
503 0x01, 0x02, 0x04, 0x1f, 0x00, 0x06, 0x07, 0x10,
504 0x08, 0x0f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f
507 mutex_lock(&data->update_lock);
508 config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
509 altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
510 regval = config | (altbit << 3);
511 mutex_unlock(&data->update_lock);
513 return sprintf(buf, "%u\n", map[clamp_val(regval, 0, 15)]);
516 static ssize_t store_pwm_ac(struct device *dev,
517 struct device_attribute *attr,
518 const char *buf, size_t count)
520 SETUP_STORE_DATA_PARAM(dev, attr);
521 unsigned long reqval;
522 u8 currval, config, altbit, newval;
523 static const u16 map[] = {
524 0x04, 0x00, 0x01, 0xff, 0x02, 0xff, 0x05, 0x06,
525 0x08, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f,
526 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
527 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03,
530 if (kstrtoul(buf, 10, &reqval))
536 reqval = map[reqval];
540 config = reqval & 0x07;
541 altbit = (reqval >> 3) & 0x01;
543 config = (config & param->mask[0]) << param->shift[0];
544 altbit = (altbit & param->mask[1]) << param->shift[1];
546 mutex_lock(&data->update_lock);
547 currval = read_byte(client, param->msb[0]);
548 newval = config | (currval & ~(param->mask[0] << param->shift[0]));
549 newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
550 data->reg[param->msb[0]] = newval;
551 write_byte(client, param->msb[0], newval);
552 mutex_unlock(&data->update_lock);
556 static ssize_t show_pwm_enable(struct device *dev,
557 struct device_attribute *attr, char *buf)
559 SETUP_SHOW_DATA_PARAM(dev, attr);
560 u8 config, altbit, minoff, val, newval;
562 mutex_lock(&data->update_lock);
563 config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
564 altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
565 minoff = (data->reg[param->msb[2]] >> param->shift[2]) & param->mask[2];
566 mutex_unlock(&data->update_lock);
568 val = config | (altbit << 3);
570 if (val == 3 || val >= 10)
576 else if (minoff == 1)
581 return sprintf(buf, "%u\n", newval);
584 static ssize_t store_pwm_enable(struct device *dev,
585 struct device_attribute *attr,
586 const char *buf, size_t count)
588 SETUP_STORE_DATA_PARAM(dev, attr);
590 u8 currval, config, altbit, newval, minoff = 255;
592 if (kstrtol(buf, 10, &reqval))
617 config = newval & 0x07;
618 altbit = (newval >> 3) & 0x01;
620 mutex_lock(&data->update_lock);
621 config = (config & param->mask[0]) << param->shift[0];
622 altbit = (altbit & param->mask[1]) << param->shift[1];
623 currval = read_byte(client, param->msb[0]);
624 newval = config | (currval & ~(param->mask[0] << param->shift[0]));
625 newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
626 data->reg[param->msb[0]] = newval;
627 write_byte(client, param->msb[0], newval);
629 minoff = (minoff & param->mask[2]) << param->shift[2];
630 currval = read_byte(client, param->msb[2]);
632 minoff | (currval & ~(param->mask[2] << param->shift[2]));
633 data->reg[param->msb[2]] = newval;
634 write_byte(client, param->msb[2], newval);
636 mutex_unlock(&data->update_lock);
640 static const u32 asc7621_pwm_freq_map[] = {
641 10, 15, 23, 30, 38, 47, 62, 94,
642 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000
645 static ssize_t show_pwm_freq(struct device *dev,
646 struct device_attribute *attr, char *buf)
648 SETUP_SHOW_DATA_PARAM(dev, attr);
650 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
652 regval = clamp_val(regval, 0, 15);
654 return sprintf(buf, "%u\n", asc7621_pwm_freq_map[regval]);
657 static ssize_t store_pwm_freq(struct device *dev,
658 struct device_attribute *attr,
659 const char *buf, size_t count)
661 SETUP_STORE_DATA_PARAM(dev, attr);
662 unsigned long reqval;
663 u8 currval, newval = 255;
666 if (kstrtoul(buf, 10, &reqval))
669 for (i = 0; i < ARRAY_SIZE(asc7621_pwm_freq_map); i++) {
670 if (reqval == asc7621_pwm_freq_map[i]) {
678 newval = (newval & param->mask[0]) << param->shift[0];
680 mutex_lock(&data->update_lock);
681 currval = read_byte(client, param->msb[0]);
682 newval |= (currval & ~(param->mask[0] << param->shift[0]));
683 data->reg[param->msb[0]] = newval;
684 write_byte(client, param->msb[0], newval);
685 mutex_unlock(&data->update_lock);
689 static const u32 asc7621_pwm_auto_spinup_map[] = {
690 0, 100, 250, 400, 700, 1000, 2000, 4000
693 static ssize_t show_pwm_ast(struct device *dev,
694 struct device_attribute *attr, char *buf)
696 SETUP_SHOW_DATA_PARAM(dev, attr);
698 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
700 regval = clamp_val(regval, 0, 7);
702 return sprintf(buf, "%u\n", asc7621_pwm_auto_spinup_map[regval]);
706 static ssize_t store_pwm_ast(struct device *dev,
707 struct device_attribute *attr,
708 const char *buf, size_t count)
710 SETUP_STORE_DATA_PARAM(dev, attr);
712 u8 currval, newval = 255;
715 if (kstrtol(buf, 10, &reqval))
718 for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) {
719 if (reqval == asc7621_pwm_auto_spinup_map[i]) {
727 newval = (newval & param->mask[0]) << param->shift[0];
729 mutex_lock(&data->update_lock);
730 currval = read_byte(client, param->msb[0]);
731 newval |= (currval & ~(param->mask[0] << param->shift[0]));
732 data->reg[param->msb[0]] = newval;
733 write_byte(client, param->msb[0], newval);
734 mutex_unlock(&data->update_lock);
738 static const u32 asc7621_temp_smoothing_time_map[] = {
739 35000, 17600, 11800, 7000, 4400, 3000, 1600, 800
742 static ssize_t show_temp_st(struct device *dev,
743 struct device_attribute *attr, char *buf)
745 SETUP_SHOW_DATA_PARAM(dev, attr);
747 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
748 regval = clamp_val(regval, 0, 7);
750 return sprintf(buf, "%u\n", asc7621_temp_smoothing_time_map[regval]);
753 static ssize_t store_temp_st(struct device *dev,
754 struct device_attribute *attr,
755 const char *buf, size_t count)
757 SETUP_STORE_DATA_PARAM(dev, attr);
759 u8 currval, newval = 255;
762 if (kstrtol(buf, 10, &reqval))
765 for (i = 0; i < ARRAY_SIZE(asc7621_temp_smoothing_time_map); i++) {
766 if (reqval == asc7621_temp_smoothing_time_map[i]) {
775 newval = (newval & param->mask[0]) << param->shift[0];
777 mutex_lock(&data->update_lock);
778 currval = read_byte(client, param->msb[0]);
779 newval |= (currval & ~(param->mask[0] << param->shift[0]));
780 data->reg[param->msb[0]] = newval;
781 write_byte(client, param->msb[0], newval);
782 mutex_unlock(&data->update_lock);
787 * End of data handlers
789 * These defines do nothing more than make the table easier
790 * to read when wrapped at column 80.
794 * Creates a variable length array inititalizer.
795 * VAA(1,3,5,7) would produce {1,3,5,7}
797 #define VAA(args...) {args}
799 #define PREAD(name, n, pri, rm, rl, m, s, r) \
800 {.sda = SENSOR_ATTR(name, S_IRUGO, show_##r, NULL, n), \
801 .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
804 #define PWRITE(name, n, pri, rm, rl, m, s, r) \
805 {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
806 .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
810 * PWRITEM assumes that the initializers for the .msb, .lsb, .mask and .shift
811 * were created using the VAA macro.
813 #define PWRITEM(name, n, pri, rm, rl, m, s, r) \
814 {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
815 .priority = pri, .msb = rm, .lsb = rl, .mask = m, .shift = s,}
817 static struct asc7621_param asc7621_params[] = {
818 PREAD(in0_input, 0, PRI_HIGH, 0x20, 0x13, 0, 0, in10),
819 PREAD(in1_input, 1, PRI_HIGH, 0x21, 0x18, 0, 0, in10),
820 PREAD(in2_input, 2, PRI_HIGH, 0x22, 0x11, 0, 0, in10),
821 PREAD(in3_input, 3, PRI_HIGH, 0x23, 0x12, 0, 0, in10),
822 PREAD(in4_input, 4, PRI_HIGH, 0x24, 0x14, 0, 0, in10),
824 PWRITE(in0_min, 0, PRI_LOW, 0x44, 0, 0, 0, in8),
825 PWRITE(in1_min, 1, PRI_LOW, 0x46, 0, 0, 0, in8),
826 PWRITE(in2_min, 2, PRI_LOW, 0x48, 0, 0, 0, in8),
827 PWRITE(in3_min, 3, PRI_LOW, 0x4a, 0, 0, 0, in8),
828 PWRITE(in4_min, 4, PRI_LOW, 0x4c, 0, 0, 0, in8),
830 PWRITE(in0_max, 0, PRI_LOW, 0x45, 0, 0, 0, in8),
831 PWRITE(in1_max, 1, PRI_LOW, 0x47, 0, 0, 0, in8),
832 PWRITE(in2_max, 2, PRI_LOW, 0x49, 0, 0, 0, in8),
833 PWRITE(in3_max, 3, PRI_LOW, 0x4b, 0, 0, 0, in8),
834 PWRITE(in4_max, 4, PRI_LOW, 0x4d, 0, 0, 0, in8),
836 PREAD(in0_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 0, bitmask),
837 PREAD(in1_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 1, bitmask),
838 PREAD(in2_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 2, bitmask),
839 PREAD(in3_alarm, 3, PRI_HIGH, 0x41, 0, 0x01, 3, bitmask),
840 PREAD(in4_alarm, 4, PRI_HIGH, 0x42, 0, 0x01, 0, bitmask),
842 PREAD(fan1_input, 0, PRI_HIGH, 0x29, 0x28, 0, 0, fan16),
843 PREAD(fan2_input, 1, PRI_HIGH, 0x2b, 0x2a, 0, 0, fan16),
844 PREAD(fan3_input, 2, PRI_HIGH, 0x2d, 0x2c, 0, 0, fan16),
845 PREAD(fan4_input, 3, PRI_HIGH, 0x2f, 0x2e, 0, 0, fan16),
847 PWRITE(fan1_min, 0, PRI_LOW, 0x55, 0x54, 0, 0, fan16),
848 PWRITE(fan2_min, 1, PRI_LOW, 0x57, 0x56, 0, 0, fan16),
849 PWRITE(fan3_min, 2, PRI_LOW, 0x59, 0x58, 0, 0, fan16),
850 PWRITE(fan4_min, 3, PRI_LOW, 0x5b, 0x5a, 0, 0, fan16),
852 PREAD(fan1_alarm, 0, PRI_HIGH, 0x42, 0, 0x01, 2, bitmask),
853 PREAD(fan2_alarm, 1, PRI_HIGH, 0x42, 0, 0x01, 3, bitmask),
854 PREAD(fan3_alarm, 2, PRI_HIGH, 0x42, 0, 0x01, 4, bitmask),
855 PREAD(fan4_alarm, 3, PRI_HIGH, 0x42, 0, 0x01, 5, bitmask),
857 PREAD(temp1_input, 0, PRI_HIGH, 0x25, 0x10, 0, 0, temp10),
858 PREAD(temp2_input, 1, PRI_HIGH, 0x26, 0x15, 0, 0, temp10),
859 PREAD(temp3_input, 2, PRI_HIGH, 0x27, 0x16, 0, 0, temp10),
860 PREAD(temp4_input, 3, PRI_HIGH, 0x33, 0x17, 0, 0, temp10),
861 PREAD(temp5_input, 4, PRI_HIGH, 0xf7, 0xf6, 0, 0, temp10),
862 PREAD(temp6_input, 5, PRI_HIGH, 0xf9, 0xf8, 0, 0, temp10),
863 PREAD(temp7_input, 6, PRI_HIGH, 0xfb, 0xfa, 0, 0, temp10),
864 PREAD(temp8_input, 7, PRI_HIGH, 0xfd, 0xfc, 0, 0, temp10),
866 PWRITE(temp1_min, 0, PRI_LOW, 0x4e, 0, 0, 0, temp8),
867 PWRITE(temp2_min, 1, PRI_LOW, 0x50, 0, 0, 0, temp8),
868 PWRITE(temp3_min, 2, PRI_LOW, 0x52, 0, 0, 0, temp8),
869 PWRITE(temp4_min, 3, PRI_LOW, 0x34, 0, 0, 0, temp8),
871 PWRITE(temp1_max, 0, PRI_LOW, 0x4f, 0, 0, 0, temp8),
872 PWRITE(temp2_max, 1, PRI_LOW, 0x51, 0, 0, 0, temp8),
873 PWRITE(temp3_max, 2, PRI_LOW, 0x53, 0, 0, 0, temp8),
874 PWRITE(temp4_max, 3, PRI_LOW, 0x35, 0, 0, 0, temp8),
876 PREAD(temp1_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 4, bitmask),
877 PREAD(temp2_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 5, bitmask),
878 PREAD(temp3_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 6, bitmask),
879 PREAD(temp4_alarm, 3, PRI_HIGH, 0x43, 0, 0x01, 0, bitmask),
881 PWRITE(temp1_source, 0, PRI_LOW, 0x02, 0, 0x07, 4, bitmask),
882 PWRITE(temp2_source, 1, PRI_LOW, 0x02, 0, 0x07, 0, bitmask),
883 PWRITE(temp3_source, 2, PRI_LOW, 0x03, 0, 0x07, 4, bitmask),
884 PWRITE(temp4_source, 3, PRI_LOW, 0x03, 0, 0x07, 0, bitmask),
886 PWRITE(temp1_smoothing_enable, 0, PRI_LOW, 0x62, 0, 0x01, 3, bitmask),
887 PWRITE(temp2_smoothing_enable, 1, PRI_LOW, 0x63, 0, 0x01, 7, bitmask),
888 PWRITE(temp3_smoothing_enable, 2, PRI_LOW, 0x63, 0, 0x01, 3, bitmask),
889 PWRITE(temp4_smoothing_enable, 3, PRI_LOW, 0x3c, 0, 0x01, 3, bitmask),
891 PWRITE(temp1_smoothing_time, 0, PRI_LOW, 0x62, 0, 0x07, 0, temp_st),
892 PWRITE(temp2_smoothing_time, 1, PRI_LOW, 0x63, 0, 0x07, 4, temp_st),
893 PWRITE(temp3_smoothing_time, 2, PRI_LOW, 0x63, 0, 0x07, 0, temp_st),
894 PWRITE(temp4_smoothing_time, 3, PRI_LOW, 0x3c, 0, 0x07, 0, temp_st),
896 PWRITE(temp1_auto_point1_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
898 PWRITE(temp2_auto_point1_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
900 PWRITE(temp3_auto_point1_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
902 PWRITE(temp4_auto_point1_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
905 PREAD(temp1_auto_point2_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
907 PREAD(temp2_auto_point2_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
909 PREAD(temp3_auto_point2_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
911 PREAD(temp4_auto_point2_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
914 PWRITE(temp1_auto_point1_temp, 0, PRI_LOW, 0x67, 0, 0, 0, temp8),
915 PWRITE(temp2_auto_point1_temp, 1, PRI_LOW, 0x68, 0, 0, 0, temp8),
916 PWRITE(temp3_auto_point1_temp, 2, PRI_LOW, 0x69, 0, 0, 0, temp8),
917 PWRITE(temp4_auto_point1_temp, 3, PRI_LOW, 0x3b, 0, 0, 0, temp8),
919 PWRITEM(temp1_auto_point2_temp, 0, PRI_LOW, VAA(0x5f, 0x67), VAA(0),
920 VAA(0x0f), VAA(4), ap2_temp),
921 PWRITEM(temp2_auto_point2_temp, 1, PRI_LOW, VAA(0x60, 0x68), VAA(0),
922 VAA(0x0f), VAA(4), ap2_temp),
923 PWRITEM(temp3_auto_point2_temp, 2, PRI_LOW, VAA(0x61, 0x69), VAA(0),
924 VAA(0x0f), VAA(4), ap2_temp),
925 PWRITEM(temp4_auto_point2_temp, 3, PRI_LOW, VAA(0x3c, 0x3b), VAA(0),
926 VAA(0x0f), VAA(4), ap2_temp),
928 PWRITE(temp1_crit, 0, PRI_LOW, 0x6a, 0, 0, 0, temp8),
929 PWRITE(temp2_crit, 1, PRI_LOW, 0x6b, 0, 0, 0, temp8),
930 PWRITE(temp3_crit, 2, PRI_LOW, 0x6c, 0, 0, 0, temp8),
931 PWRITE(temp4_crit, 3, PRI_LOW, 0x3d, 0, 0, 0, temp8),
933 PWRITE(temp5_enable, 4, PRI_LOW, 0x0e, 0, 0x01, 0, bitmask),
934 PWRITE(temp6_enable, 5, PRI_LOW, 0x0e, 0, 0x01, 1, bitmask),
935 PWRITE(temp7_enable, 6, PRI_LOW, 0x0e, 0, 0x01, 2, bitmask),
936 PWRITE(temp8_enable, 7, PRI_LOW, 0x0e, 0, 0x01, 3, bitmask),
938 PWRITE(remote1_offset, 0, PRI_LOW, 0x1c, 0, 0, 0, temp62),
939 PWRITE(remote2_offset, 1, PRI_LOW, 0x1d, 0, 0, 0, temp62),
941 PWRITE(pwm1, 0, PRI_HIGH, 0x30, 0, 0, 0, u8),
942 PWRITE(pwm2, 1, PRI_HIGH, 0x31, 0, 0, 0, u8),
943 PWRITE(pwm3, 2, PRI_HIGH, 0x32, 0, 0, 0, u8),
945 PWRITE(pwm1_invert, 0, PRI_LOW, 0x5c, 0, 0x01, 4, bitmask),
946 PWRITE(pwm2_invert, 1, PRI_LOW, 0x5d, 0, 0x01, 4, bitmask),
947 PWRITE(pwm3_invert, 2, PRI_LOW, 0x5e, 0, 0x01, 4, bitmask),
949 PWRITEM(pwm1_enable, 0, PRI_LOW, VAA(0x5c, 0x5c, 0x62), VAA(0, 0, 0),
950 VAA(0x07, 0x01, 0x01), VAA(5, 3, 5), pwm_enable),
951 PWRITEM(pwm2_enable, 1, PRI_LOW, VAA(0x5d, 0x5d, 0x62), VAA(0, 0, 0),
952 VAA(0x07, 0x01, 0x01), VAA(5, 3, 6), pwm_enable),
953 PWRITEM(pwm3_enable, 2, PRI_LOW, VAA(0x5e, 0x5e, 0x62), VAA(0, 0, 0),
954 VAA(0x07, 0x01, 0x01), VAA(5, 3, 7), pwm_enable),
956 PWRITEM(pwm1_auto_channels, 0, PRI_LOW, VAA(0x5c, 0x5c), VAA(0, 0),
957 VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
958 PWRITEM(pwm2_auto_channels, 1, PRI_LOW, VAA(0x5d, 0x5d), VAA(0, 0),
959 VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
960 PWRITEM(pwm3_auto_channels, 2, PRI_LOW, VAA(0x5e, 0x5e), VAA(0, 0),
961 VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
963 PWRITE(pwm1_auto_point1_pwm, 0, PRI_LOW, 0x64, 0, 0, 0, u8),
964 PWRITE(pwm2_auto_point1_pwm, 1, PRI_LOW, 0x65, 0, 0, 0, u8),
965 PWRITE(pwm3_auto_point1_pwm, 2, PRI_LOW, 0x66, 0, 0, 0, u8),
967 PWRITE(pwm1_auto_point2_pwm, 0, PRI_LOW, 0x38, 0, 0, 0, u8),
968 PWRITE(pwm2_auto_point2_pwm, 1, PRI_LOW, 0x39, 0, 0, 0, u8),
969 PWRITE(pwm3_auto_point2_pwm, 2, PRI_LOW, 0x3a, 0, 0, 0, u8),
971 PWRITE(pwm1_freq, 0, PRI_LOW, 0x5f, 0, 0x0f, 0, pwm_freq),
972 PWRITE(pwm2_freq, 1, PRI_LOW, 0x60, 0, 0x0f, 0, pwm_freq),
973 PWRITE(pwm3_freq, 2, PRI_LOW, 0x61, 0, 0x0f, 0, pwm_freq),
975 PREAD(pwm1_auto_zone_assigned, 0, PRI_LOW, 0, 0, 0x03, 2, bitmask),
976 PREAD(pwm2_auto_zone_assigned, 1, PRI_LOW, 0, 0, 0x03, 4, bitmask),
977 PREAD(pwm3_auto_zone_assigned, 2, PRI_LOW, 0, 0, 0x03, 6, bitmask),
979 PWRITE(pwm1_auto_spinup_time, 0, PRI_LOW, 0x5c, 0, 0x07, 0, pwm_ast),
980 PWRITE(pwm2_auto_spinup_time, 1, PRI_LOW, 0x5d, 0, 0x07, 0, pwm_ast),
981 PWRITE(pwm3_auto_spinup_time, 2, PRI_LOW, 0x5e, 0, 0x07, 0, pwm_ast),
983 PWRITE(peci_enable, 0, PRI_LOW, 0x40, 0, 0x01, 4, bitmask),
984 PWRITE(peci_avg, 0, PRI_LOW, 0x36, 0, 0x07, 0, bitmask),
985 PWRITE(peci_domain, 0, PRI_LOW, 0x36, 0, 0x01, 3, bitmask),
986 PWRITE(peci_legacy, 0, PRI_LOW, 0x36, 0, 0x01, 4, bitmask),
987 PWRITE(peci_diode, 0, PRI_LOW, 0x0e, 0, 0x07, 4, bitmask),
988 PWRITE(peci_4domain, 0, PRI_LOW, 0x0e, 0, 0x01, 4, bitmask),
992 static struct asc7621_data *asc7621_update_device(struct device *dev)
994 struct i2c_client *client = to_i2c_client(dev);
995 struct asc7621_data *data = i2c_get_clientdata(client);
999 * The asc7621 chips guarantee consistent reads of multi-byte values
1000 * regardless of the order of the reads. No special logic is needed
1001 * so we can just read the registers in whatever order they appear
1002 * in the asc7621_params array.
1005 mutex_lock(&data->update_lock);
1007 /* Read all the high priority registers */
1010 time_after(jiffies, data->last_high_reading + INTERVAL_HIGH)) {
1012 for (i = 0; i < ARRAY_SIZE(asc7621_register_priorities); i++) {
1013 if (asc7621_register_priorities[i] == PRI_HIGH) {
1015 i2c_smbus_read_byte_data(client, i) & 0xff;
1018 data->last_high_reading = jiffies;
1019 } /* last_reading */
1021 /* Read all the low priority registers. */
1024 time_after(jiffies, data->last_low_reading + INTERVAL_LOW)) {
1026 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1027 if (asc7621_register_priorities[i] == PRI_LOW) {
1029 i2c_smbus_read_byte_data(client, i) & 0xff;
1032 data->last_low_reading = jiffies;
1033 } /* last_reading */
1037 mutex_unlock(&data->update_lock);
1043 * Standard detection and initialization below
1045 * Helper function that checks if an address is valid
1046 * for a particular chip.
1049 static inline int valid_address_for_chip(int chip_type, int address)
1053 for (i = 0; asc7621_chips[chip_type].addresses[i] != I2C_CLIENT_END;
1055 if (asc7621_chips[chip_type].addresses[i] == address)
1061 static void asc7621_init_client(struct i2c_client *client)
1065 /* Warn if part was not "READY" */
1067 value = read_byte(client, 0x40);
1070 dev_err(&client->dev,
1071 "Client (%d,0x%02x) config is locked.\n",
1072 i2c_adapter_id(client->adapter), client->addr);
1074 if (!(value & 0x04)) {
1075 dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n",
1076 i2c_adapter_id(client->adapter), client->addr);
1082 * Try to clear LOCK, Set START, save everything else
1084 value = (value & ~0x02) | 0x01;
1085 write_byte(client, 0x40, value & 0xff);
1090 asc7621_probe(struct i2c_client *client)
1092 struct asc7621_data *data;
1095 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1098 data = devm_kzalloc(&client->dev, sizeof(struct asc7621_data),
1103 i2c_set_clientdata(client, data);
1104 mutex_init(&data->update_lock);
1106 /* Initialize the asc7621 chip */
1107 asc7621_init_client(client);
1109 /* Create the sysfs entries */
1110 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1112 device_create_file(&client->dev,
1113 &(asc7621_params[i].sda.dev_attr));
1118 data->class_dev = hwmon_device_register(&client->dev);
1119 if (IS_ERR(data->class_dev)) {
1120 err = PTR_ERR(data->class_dev);
1127 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1128 device_remove_file(&client->dev,
1129 &(asc7621_params[i].sda.dev_attr));
1135 static int asc7621_detect(struct i2c_client *client,
1136 struct i2c_board_info *info)
1138 struct i2c_adapter *adapter = client->adapter;
1139 int company, verstep, chip_index;
1141 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1144 for (chip_index = FIRST_CHIP; chip_index <= LAST_CHIP; chip_index++) {
1146 if (!valid_address_for_chip(chip_index, client->addr))
1149 company = read_byte(client,
1150 asc7621_chips[chip_index].company_reg);
1151 verstep = read_byte(client,
1152 asc7621_chips[chip_index].verstep_reg);
1154 if (company == asc7621_chips[chip_index].company_id &&
1155 verstep == asc7621_chips[chip_index].verstep_id) {
1156 strlcpy(info->type, asc7621_chips[chip_index].name,
1159 dev_info(&adapter->dev, "Matched %s at 0x%02x\n",
1160 asc7621_chips[chip_index].name, client->addr);
1168 static int asc7621_remove(struct i2c_client *client)
1170 struct asc7621_data *data = i2c_get_clientdata(client);
1173 hwmon_device_unregister(data->class_dev);
1175 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1176 device_remove_file(&client->dev,
1177 &(asc7621_params[i].sda.dev_attr));
1183 static const struct i2c_device_id asc7621_id[] = {
1184 {"asc7621", asc7621},
1185 {"asc7621a", asc7621a},
1189 MODULE_DEVICE_TABLE(i2c, asc7621_id);
1191 static struct i2c_driver asc7621_driver = {
1192 .class = I2C_CLASS_HWMON,
1196 .probe_new = asc7621_probe,
1197 .remove = asc7621_remove,
1198 .id_table = asc7621_id,
1199 .detect = asc7621_detect,
1200 .address_list = normal_i2c,
1203 static int __init sm_asc7621_init(void)
1207 * Collect all the registers needed into a single array.
1208 * This way, if a register isn't actually used for anything,
1209 * we don't retrieve it.
1212 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1213 for (j = 0; j < ARRAY_SIZE(asc7621_params[i].msb); j++)
1214 asc7621_register_priorities[asc7621_params[i].msb[j]] =
1215 asc7621_params[i].priority;
1216 for (j = 0; j < ARRAY_SIZE(asc7621_params[i].lsb); j++)
1217 asc7621_register_priorities[asc7621_params[i].lsb[j]] =
1218 asc7621_params[i].priority;
1220 return i2c_add_driver(&asc7621_driver);
1223 static void __exit sm_asc7621_exit(void)
1225 i2c_del_driver(&asc7621_driver);
1228 MODULE_LICENSE("GPL");
1229 MODULE_AUTHOR("George Joseph");
1230 MODULE_DESCRIPTION("Andigilog aSC7621 and aSC7621a driver");
1232 module_init(sm_asc7621_init);
1233 module_exit(sm_asc7621_exit);