1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2009, Microsoft Corporation.
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 * K. Y. Srinivasan <kys@microsoft.com>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/task_stack.h>
26 #include <linux/delay.h>
27 #include <linux/notifier.h>
28 #include <linux/panic_notifier.h>
29 #include <linux/ptrace.h>
30 #include <linux/screen_info.h>
31 #include <linux/kdebug.h>
32 #include <linux/efi.h>
33 #include <linux/random.h>
34 #include <linux/kernel.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/dma-map-ops.h>
37 #include <clocksource/hyperv_timer.h>
38 #include "hyperv_vmbus.h"
41 struct list_head node;
42 struct hv_vmbus_device_id id;
45 static struct acpi_device *hv_acpi_dev;
47 static struct completion probe_event;
49 static int hyperv_cpuhp_online;
51 static void *hv_panic_page;
53 static long __percpu *vmbus_evt;
55 /* Values parsed from ACPI DSDT */
60 * Boolean to control whether to report panic messages over Hyper-V.
62 * It can be set via /proc/sys/kernel/hyperv_record_panic_msg
64 static int sysctl_record_panic_msg = 1;
66 static int hyperv_report_reg(void)
68 return !sysctl_record_panic_msg || !hv_panic_page;
71 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
76 vmbus_initiate_unload(true);
79 * Hyper-V should be notified only once about a panic. If we will be
80 * doing hv_kmsg_dump() with kmsg data later, don't do the notification
83 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
84 && hyperv_report_reg()) {
85 regs = current_pt_regs();
86 hyperv_report_panic(regs, val, false);
91 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
94 struct die_args *die = args;
95 struct pt_regs *regs = die->regs;
97 /* Don't notify Hyper-V if the die event is other than oops */
102 * Hyper-V should be notified only once about a panic. If we will be
103 * doing hv_kmsg_dump() with kmsg data later, don't do the notification
106 if (hyperv_report_reg())
107 hyperv_report_panic(regs, val, true);
111 static struct notifier_block hyperv_die_block = {
112 .notifier_call = hyperv_die_event,
114 static struct notifier_block hyperv_panic_block = {
115 .notifier_call = hyperv_panic_event,
118 static const char *fb_mmio_name = "fb_range";
119 static struct resource *fb_mmio;
120 static struct resource *hyperv_mmio;
121 static DEFINE_MUTEX(hyperv_mmio_lock);
123 static int vmbus_exists(void)
125 if (hv_acpi_dev == NULL)
131 static u8 channel_monitor_group(const struct vmbus_channel *channel)
133 return (u8)channel->offermsg.monitorid / 32;
136 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
138 return (u8)channel->offermsg.monitorid % 32;
141 static u32 channel_pending(const struct vmbus_channel *channel,
142 const struct hv_monitor_page *monitor_page)
144 u8 monitor_group = channel_monitor_group(channel);
146 return monitor_page->trigger_group[monitor_group].pending;
149 static u32 channel_latency(const struct vmbus_channel *channel,
150 const struct hv_monitor_page *monitor_page)
152 u8 monitor_group = channel_monitor_group(channel);
153 u8 monitor_offset = channel_monitor_offset(channel);
155 return monitor_page->latency[monitor_group][monitor_offset];
158 static u32 channel_conn_id(struct vmbus_channel *channel,
159 struct hv_monitor_page *monitor_page)
161 u8 monitor_group = channel_monitor_group(channel);
162 u8 monitor_offset = channel_monitor_offset(channel);
164 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
167 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
170 struct hv_device *hv_dev = device_to_hv_device(dev);
172 if (!hv_dev->channel)
174 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
176 static DEVICE_ATTR_RO(id);
178 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
181 struct hv_device *hv_dev = device_to_hv_device(dev);
183 if (!hv_dev->channel)
185 return sprintf(buf, "%d\n", hv_dev->channel->state);
187 static DEVICE_ATTR_RO(state);
189 static ssize_t monitor_id_show(struct device *dev,
190 struct device_attribute *dev_attr, char *buf)
192 struct hv_device *hv_dev = device_to_hv_device(dev);
194 if (!hv_dev->channel)
196 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
198 static DEVICE_ATTR_RO(monitor_id);
200 static ssize_t class_id_show(struct device *dev,
201 struct device_attribute *dev_attr, char *buf)
203 struct hv_device *hv_dev = device_to_hv_device(dev);
205 if (!hv_dev->channel)
207 return sprintf(buf, "{%pUl}\n",
208 &hv_dev->channel->offermsg.offer.if_type);
210 static DEVICE_ATTR_RO(class_id);
212 static ssize_t device_id_show(struct device *dev,
213 struct device_attribute *dev_attr, char *buf)
215 struct hv_device *hv_dev = device_to_hv_device(dev);
217 if (!hv_dev->channel)
219 return sprintf(buf, "{%pUl}\n",
220 &hv_dev->channel->offermsg.offer.if_instance);
222 static DEVICE_ATTR_RO(device_id);
224 static ssize_t modalias_show(struct device *dev,
225 struct device_attribute *dev_attr, char *buf)
227 struct hv_device *hv_dev = device_to_hv_device(dev);
229 return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
231 static DEVICE_ATTR_RO(modalias);
234 static ssize_t numa_node_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
237 struct hv_device *hv_dev = device_to_hv_device(dev);
239 if (!hv_dev->channel)
242 return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
244 static DEVICE_ATTR_RO(numa_node);
247 static ssize_t server_monitor_pending_show(struct device *dev,
248 struct device_attribute *dev_attr,
251 struct hv_device *hv_dev = device_to_hv_device(dev);
253 if (!hv_dev->channel)
255 return sprintf(buf, "%d\n",
256 channel_pending(hv_dev->channel,
257 vmbus_connection.monitor_pages[0]));
259 static DEVICE_ATTR_RO(server_monitor_pending);
261 static ssize_t client_monitor_pending_show(struct device *dev,
262 struct device_attribute *dev_attr,
265 struct hv_device *hv_dev = device_to_hv_device(dev);
267 if (!hv_dev->channel)
269 return sprintf(buf, "%d\n",
270 channel_pending(hv_dev->channel,
271 vmbus_connection.monitor_pages[1]));
273 static DEVICE_ATTR_RO(client_monitor_pending);
275 static ssize_t server_monitor_latency_show(struct device *dev,
276 struct device_attribute *dev_attr,
279 struct hv_device *hv_dev = device_to_hv_device(dev);
281 if (!hv_dev->channel)
283 return sprintf(buf, "%d\n",
284 channel_latency(hv_dev->channel,
285 vmbus_connection.monitor_pages[0]));
287 static DEVICE_ATTR_RO(server_monitor_latency);
289 static ssize_t client_monitor_latency_show(struct device *dev,
290 struct device_attribute *dev_attr,
293 struct hv_device *hv_dev = device_to_hv_device(dev);
295 if (!hv_dev->channel)
297 return sprintf(buf, "%d\n",
298 channel_latency(hv_dev->channel,
299 vmbus_connection.monitor_pages[1]));
301 static DEVICE_ATTR_RO(client_monitor_latency);
303 static ssize_t server_monitor_conn_id_show(struct device *dev,
304 struct device_attribute *dev_attr,
307 struct hv_device *hv_dev = device_to_hv_device(dev);
309 if (!hv_dev->channel)
311 return sprintf(buf, "%d\n",
312 channel_conn_id(hv_dev->channel,
313 vmbus_connection.monitor_pages[0]));
315 static DEVICE_ATTR_RO(server_monitor_conn_id);
317 static ssize_t client_monitor_conn_id_show(struct device *dev,
318 struct device_attribute *dev_attr,
321 struct hv_device *hv_dev = device_to_hv_device(dev);
323 if (!hv_dev->channel)
325 return sprintf(buf, "%d\n",
326 channel_conn_id(hv_dev->channel,
327 vmbus_connection.monitor_pages[1]));
329 static DEVICE_ATTR_RO(client_monitor_conn_id);
331 static ssize_t out_intr_mask_show(struct device *dev,
332 struct device_attribute *dev_attr, char *buf)
334 struct hv_device *hv_dev = device_to_hv_device(dev);
335 struct hv_ring_buffer_debug_info outbound;
338 if (!hv_dev->channel)
341 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
346 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
348 static DEVICE_ATTR_RO(out_intr_mask);
350 static ssize_t out_read_index_show(struct device *dev,
351 struct device_attribute *dev_attr, char *buf)
353 struct hv_device *hv_dev = device_to_hv_device(dev);
354 struct hv_ring_buffer_debug_info outbound;
357 if (!hv_dev->channel)
360 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
364 return sprintf(buf, "%d\n", outbound.current_read_index);
366 static DEVICE_ATTR_RO(out_read_index);
368 static ssize_t out_write_index_show(struct device *dev,
369 struct device_attribute *dev_attr,
372 struct hv_device *hv_dev = device_to_hv_device(dev);
373 struct hv_ring_buffer_debug_info outbound;
376 if (!hv_dev->channel)
379 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
383 return sprintf(buf, "%d\n", outbound.current_write_index);
385 static DEVICE_ATTR_RO(out_write_index);
387 static ssize_t out_read_bytes_avail_show(struct device *dev,
388 struct device_attribute *dev_attr,
391 struct hv_device *hv_dev = device_to_hv_device(dev);
392 struct hv_ring_buffer_debug_info outbound;
395 if (!hv_dev->channel)
398 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
402 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
404 static DEVICE_ATTR_RO(out_read_bytes_avail);
406 static ssize_t out_write_bytes_avail_show(struct device *dev,
407 struct device_attribute *dev_attr,
410 struct hv_device *hv_dev = device_to_hv_device(dev);
411 struct hv_ring_buffer_debug_info outbound;
414 if (!hv_dev->channel)
417 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
421 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
423 static DEVICE_ATTR_RO(out_write_bytes_avail);
425 static ssize_t in_intr_mask_show(struct device *dev,
426 struct device_attribute *dev_attr, char *buf)
428 struct hv_device *hv_dev = device_to_hv_device(dev);
429 struct hv_ring_buffer_debug_info inbound;
432 if (!hv_dev->channel)
435 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
439 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
441 static DEVICE_ATTR_RO(in_intr_mask);
443 static ssize_t in_read_index_show(struct device *dev,
444 struct device_attribute *dev_attr, char *buf)
446 struct hv_device *hv_dev = device_to_hv_device(dev);
447 struct hv_ring_buffer_debug_info inbound;
450 if (!hv_dev->channel)
453 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
457 return sprintf(buf, "%d\n", inbound.current_read_index);
459 static DEVICE_ATTR_RO(in_read_index);
461 static ssize_t in_write_index_show(struct device *dev,
462 struct device_attribute *dev_attr, char *buf)
464 struct hv_device *hv_dev = device_to_hv_device(dev);
465 struct hv_ring_buffer_debug_info inbound;
468 if (!hv_dev->channel)
471 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
475 return sprintf(buf, "%d\n", inbound.current_write_index);
477 static DEVICE_ATTR_RO(in_write_index);
479 static ssize_t in_read_bytes_avail_show(struct device *dev,
480 struct device_attribute *dev_attr,
483 struct hv_device *hv_dev = device_to_hv_device(dev);
484 struct hv_ring_buffer_debug_info inbound;
487 if (!hv_dev->channel)
490 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
494 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
496 static DEVICE_ATTR_RO(in_read_bytes_avail);
498 static ssize_t in_write_bytes_avail_show(struct device *dev,
499 struct device_attribute *dev_attr,
502 struct hv_device *hv_dev = device_to_hv_device(dev);
503 struct hv_ring_buffer_debug_info inbound;
506 if (!hv_dev->channel)
509 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
513 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
515 static DEVICE_ATTR_RO(in_write_bytes_avail);
517 static ssize_t channel_vp_mapping_show(struct device *dev,
518 struct device_attribute *dev_attr,
521 struct hv_device *hv_dev = device_to_hv_device(dev);
522 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
523 int buf_size = PAGE_SIZE, n_written, tot_written;
524 struct list_head *cur;
529 mutex_lock(&vmbus_connection.channel_mutex);
531 tot_written = snprintf(buf, buf_size, "%u:%u\n",
532 channel->offermsg.child_relid, channel->target_cpu);
534 list_for_each(cur, &channel->sc_list) {
535 if (tot_written >= buf_size - 1)
538 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
539 n_written = scnprintf(buf + tot_written,
540 buf_size - tot_written,
542 cur_sc->offermsg.child_relid,
544 tot_written += n_written;
547 mutex_unlock(&vmbus_connection.channel_mutex);
551 static DEVICE_ATTR_RO(channel_vp_mapping);
553 static ssize_t vendor_show(struct device *dev,
554 struct device_attribute *dev_attr,
557 struct hv_device *hv_dev = device_to_hv_device(dev);
559 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
561 static DEVICE_ATTR_RO(vendor);
563 static ssize_t device_show(struct device *dev,
564 struct device_attribute *dev_attr,
567 struct hv_device *hv_dev = device_to_hv_device(dev);
569 return sprintf(buf, "0x%x\n", hv_dev->device_id);
571 static DEVICE_ATTR_RO(device);
573 static ssize_t driver_override_store(struct device *dev,
574 struct device_attribute *attr,
575 const char *buf, size_t count)
577 struct hv_device *hv_dev = device_to_hv_device(dev);
580 ret = driver_set_override(dev, &hv_dev->driver_override, buf, count);
587 static ssize_t driver_override_show(struct device *dev,
588 struct device_attribute *attr, char *buf)
590 struct hv_device *hv_dev = device_to_hv_device(dev);
594 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
599 static DEVICE_ATTR_RW(driver_override);
601 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
602 static struct attribute *vmbus_dev_attrs[] = {
604 &dev_attr_state.attr,
605 &dev_attr_monitor_id.attr,
606 &dev_attr_class_id.attr,
607 &dev_attr_device_id.attr,
608 &dev_attr_modalias.attr,
610 &dev_attr_numa_node.attr,
612 &dev_attr_server_monitor_pending.attr,
613 &dev_attr_client_monitor_pending.attr,
614 &dev_attr_server_monitor_latency.attr,
615 &dev_attr_client_monitor_latency.attr,
616 &dev_attr_server_monitor_conn_id.attr,
617 &dev_attr_client_monitor_conn_id.attr,
618 &dev_attr_out_intr_mask.attr,
619 &dev_attr_out_read_index.attr,
620 &dev_attr_out_write_index.attr,
621 &dev_attr_out_read_bytes_avail.attr,
622 &dev_attr_out_write_bytes_avail.attr,
623 &dev_attr_in_intr_mask.attr,
624 &dev_attr_in_read_index.attr,
625 &dev_attr_in_write_index.attr,
626 &dev_attr_in_read_bytes_avail.attr,
627 &dev_attr_in_write_bytes_avail.attr,
628 &dev_attr_channel_vp_mapping.attr,
629 &dev_attr_vendor.attr,
630 &dev_attr_device.attr,
631 &dev_attr_driver_override.attr,
636 * Device-level attribute_group callback function. Returns the permission for
637 * each attribute, and returns 0 if an attribute is not visible.
639 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
640 struct attribute *attr, int idx)
642 struct device *dev = kobj_to_dev(kobj);
643 const struct hv_device *hv_dev = device_to_hv_device(dev);
645 /* Hide the monitor attributes if the monitor mechanism is not used. */
646 if (!hv_dev->channel->offermsg.monitor_allocated &&
647 (attr == &dev_attr_monitor_id.attr ||
648 attr == &dev_attr_server_monitor_pending.attr ||
649 attr == &dev_attr_client_monitor_pending.attr ||
650 attr == &dev_attr_server_monitor_latency.attr ||
651 attr == &dev_attr_client_monitor_latency.attr ||
652 attr == &dev_attr_server_monitor_conn_id.attr ||
653 attr == &dev_attr_client_monitor_conn_id.attr))
659 static const struct attribute_group vmbus_dev_group = {
660 .attrs = vmbus_dev_attrs,
661 .is_visible = vmbus_dev_attr_is_visible
663 __ATTRIBUTE_GROUPS(vmbus_dev);
665 /* Set up the attribute for /sys/bus/vmbus/hibernation */
666 static ssize_t hibernation_show(struct bus_type *bus, char *buf)
668 return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
671 static BUS_ATTR_RO(hibernation);
673 static struct attribute *vmbus_bus_attrs[] = {
674 &bus_attr_hibernation.attr,
677 static const struct attribute_group vmbus_bus_group = {
678 .attrs = vmbus_bus_attrs,
680 __ATTRIBUTE_GROUPS(vmbus_bus);
683 * vmbus_uevent - add uevent for our device
685 * This routine is invoked when a device is added or removed on the vmbus to
686 * generate a uevent to udev in the userspace. The udev will then look at its
687 * rule and the uevent generated here to load the appropriate driver
689 * The alias string will be of the form vmbus:guid where guid is the string
690 * representation of the device guid (each byte of the guid will be
691 * represented with two hex characters.
693 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
695 struct hv_device *dev = device_to_hv_device(device);
696 const char *format = "MODALIAS=vmbus:%*phN";
698 return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
701 static const struct hv_vmbus_device_id *
702 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
705 return NULL; /* empty device table */
707 for (; !guid_is_null(&id->guid); id++)
708 if (guid_equal(&id->guid, guid))
714 static const struct hv_vmbus_device_id *
715 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
717 const struct hv_vmbus_device_id *id = NULL;
718 struct vmbus_dynid *dynid;
720 spin_lock(&drv->dynids.lock);
721 list_for_each_entry(dynid, &drv->dynids.list, node) {
722 if (guid_equal(&dynid->id.guid, guid)) {
727 spin_unlock(&drv->dynids.lock);
732 static const struct hv_vmbus_device_id vmbus_device_null;
735 * Return a matching hv_vmbus_device_id pointer.
736 * If there is no match, return NULL.
738 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
739 struct hv_device *dev)
741 const guid_t *guid = &dev->dev_type;
742 const struct hv_vmbus_device_id *id;
744 /* When driver_override is set, only bind to the matching driver */
745 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
748 /* Look at the dynamic ids first, before the static ones */
749 id = hv_vmbus_dynid_match(drv, guid);
751 id = hv_vmbus_dev_match(drv->id_table, guid);
753 /* driver_override will always match, send a dummy id */
754 if (!id && dev->driver_override)
755 id = &vmbus_device_null;
760 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
761 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
763 struct vmbus_dynid *dynid;
765 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
769 dynid->id.guid = *guid;
771 spin_lock(&drv->dynids.lock);
772 list_add_tail(&dynid->node, &drv->dynids.list);
773 spin_unlock(&drv->dynids.lock);
775 return driver_attach(&drv->driver);
778 static void vmbus_free_dynids(struct hv_driver *drv)
780 struct vmbus_dynid *dynid, *n;
782 spin_lock(&drv->dynids.lock);
783 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
784 list_del(&dynid->node);
787 spin_unlock(&drv->dynids.lock);
791 * store_new_id - sysfs frontend to vmbus_add_dynid()
793 * Allow GUIDs to be added to an existing driver via sysfs.
795 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
798 struct hv_driver *drv = drv_to_hv_drv(driver);
802 retval = guid_parse(buf, &guid);
806 if (hv_vmbus_dynid_match(drv, &guid))
809 retval = vmbus_add_dynid(drv, &guid);
814 static DRIVER_ATTR_WO(new_id);
817 * store_remove_id - remove a PCI device ID from this driver
819 * Removes a dynamic pci device ID to this driver.
821 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
824 struct hv_driver *drv = drv_to_hv_drv(driver);
825 struct vmbus_dynid *dynid, *n;
829 retval = guid_parse(buf, &guid);
834 spin_lock(&drv->dynids.lock);
835 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
836 struct hv_vmbus_device_id *id = &dynid->id;
838 if (guid_equal(&id->guid, &guid)) {
839 list_del(&dynid->node);
845 spin_unlock(&drv->dynids.lock);
849 static DRIVER_ATTR_WO(remove_id);
851 static struct attribute *vmbus_drv_attrs[] = {
852 &driver_attr_new_id.attr,
853 &driver_attr_remove_id.attr,
856 ATTRIBUTE_GROUPS(vmbus_drv);
860 * vmbus_match - Attempt to match the specified device to the specified driver
862 static int vmbus_match(struct device *device, struct device_driver *driver)
864 struct hv_driver *drv = drv_to_hv_drv(driver);
865 struct hv_device *hv_dev = device_to_hv_device(device);
867 /* The hv_sock driver handles all hv_sock offers. */
868 if (is_hvsock_channel(hv_dev->channel))
871 if (hv_vmbus_get_id(drv, hv_dev))
878 * vmbus_probe - Add the new vmbus's child device
880 static int vmbus_probe(struct device *child_device)
883 struct hv_driver *drv =
884 drv_to_hv_drv(child_device->driver);
885 struct hv_device *dev = device_to_hv_device(child_device);
886 const struct hv_vmbus_device_id *dev_id;
888 dev_id = hv_vmbus_get_id(drv, dev);
890 ret = drv->probe(dev, dev_id);
892 pr_err("probe failed for device %s (%d)\n",
893 dev_name(child_device), ret);
896 pr_err("probe not set for driver %s\n",
897 dev_name(child_device));
904 * vmbus_dma_configure -- Configure DMA coherence for VMbus device
906 static int vmbus_dma_configure(struct device *child_device)
909 * On ARM64, propagate the DMA coherence setting from the top level
910 * VMbus ACPI device to the child VMbus device being added here.
911 * On x86/x64 coherence is assumed and these calls have no effect.
913 hv_setup_dma_ops(child_device,
914 device_get_dma_attr(&hv_acpi_dev->dev) == DEV_DMA_COHERENT);
919 * vmbus_remove - Remove a vmbus device
921 static void vmbus_remove(struct device *child_device)
923 struct hv_driver *drv;
924 struct hv_device *dev = device_to_hv_device(child_device);
926 if (child_device->driver) {
927 drv = drv_to_hv_drv(child_device->driver);
934 * vmbus_shutdown - Shutdown a vmbus device
936 static void vmbus_shutdown(struct device *child_device)
938 struct hv_driver *drv;
939 struct hv_device *dev = device_to_hv_device(child_device);
942 /* The device may not be attached yet */
943 if (!child_device->driver)
946 drv = drv_to_hv_drv(child_device->driver);
952 #ifdef CONFIG_PM_SLEEP
954 * vmbus_suspend - Suspend a vmbus device
956 static int vmbus_suspend(struct device *child_device)
958 struct hv_driver *drv;
959 struct hv_device *dev = device_to_hv_device(child_device);
961 /* The device may not be attached yet */
962 if (!child_device->driver)
965 drv = drv_to_hv_drv(child_device->driver);
969 return drv->suspend(dev);
973 * vmbus_resume - Resume a vmbus device
975 static int vmbus_resume(struct device *child_device)
977 struct hv_driver *drv;
978 struct hv_device *dev = device_to_hv_device(child_device);
980 /* The device may not be attached yet */
981 if (!child_device->driver)
984 drv = drv_to_hv_drv(child_device->driver);
988 return drv->resume(dev);
991 #define vmbus_suspend NULL
992 #define vmbus_resume NULL
993 #endif /* CONFIG_PM_SLEEP */
996 * vmbus_device_release - Final callback release of the vmbus child device
998 static void vmbus_device_release(struct device *device)
1000 struct hv_device *hv_dev = device_to_hv_device(device);
1001 struct vmbus_channel *channel = hv_dev->channel;
1003 hv_debug_rm_dev_dir(hv_dev);
1005 mutex_lock(&vmbus_connection.channel_mutex);
1006 hv_process_channel_removal(channel);
1007 mutex_unlock(&vmbus_connection.channel_mutex);
1012 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
1014 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
1015 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
1016 * is no way to wake up a Generation-2 VM.
1018 * The other 4 ops are for hibernation.
1021 static const struct dev_pm_ops vmbus_pm = {
1022 .suspend_noirq = NULL,
1023 .resume_noirq = NULL,
1024 .freeze_noirq = vmbus_suspend,
1025 .thaw_noirq = vmbus_resume,
1026 .poweroff_noirq = vmbus_suspend,
1027 .restore_noirq = vmbus_resume,
1030 /* The one and only one */
1031 static struct bus_type hv_bus = {
1033 .match = vmbus_match,
1034 .shutdown = vmbus_shutdown,
1035 .remove = vmbus_remove,
1036 .probe = vmbus_probe,
1037 .uevent = vmbus_uevent,
1038 .dma_configure = vmbus_dma_configure,
1039 .dev_groups = vmbus_dev_groups,
1040 .drv_groups = vmbus_drv_groups,
1041 .bus_groups = vmbus_bus_groups,
1045 struct onmessage_work_context {
1046 struct work_struct work;
1048 struct hv_message_header header;
1053 static void vmbus_onmessage_work(struct work_struct *work)
1055 struct onmessage_work_context *ctx;
1057 /* Do not process messages if we're in DISCONNECTED state */
1058 if (vmbus_connection.conn_state == DISCONNECTED)
1061 ctx = container_of(work, struct onmessage_work_context,
1063 vmbus_onmessage((struct vmbus_channel_message_header *)
1068 void vmbus_on_msg_dpc(unsigned long data)
1070 struct hv_per_cpu_context *hv_cpu = (void *)data;
1071 void *page_addr = hv_cpu->synic_message_page;
1072 struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1074 struct vmbus_channel_message_header *hdr;
1075 enum vmbus_channel_message_type msgtype;
1076 const struct vmbus_channel_message_table_entry *entry;
1077 struct onmessage_work_context *ctx;
1082 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1083 * it is being used in 'struct vmbus_channel_message_header' definition
1084 * which is supposed to match hypervisor ABI.
1086 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1089 * Since the message is in memory shared with the host, an erroneous or
1090 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1091 * or individual message handlers are executing; to prevent this, copy
1092 * the message into private memory.
1094 memcpy(&msg_copy, msg, sizeof(struct hv_message));
1096 message_type = msg_copy.header.message_type;
1097 if (message_type == HVMSG_NONE)
1101 hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1102 msgtype = hdr->msgtype;
1104 trace_vmbus_on_msg_dpc(hdr);
1106 if (msgtype >= CHANNELMSG_COUNT) {
1107 WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1111 payload_size = msg_copy.header.payload_size;
1112 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1113 WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1117 entry = &channel_message_table[msgtype];
1119 if (!entry->message_handler)
1122 if (payload_size < entry->min_payload_len) {
1123 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1127 if (entry->handler_type == VMHT_BLOCKING) {
1128 ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC);
1132 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1133 memcpy(&ctx->msg, &msg_copy, sizeof(msg->header) + payload_size);
1136 * The host can generate a rescind message while we
1137 * may still be handling the original offer. We deal with
1138 * this condition by relying on the synchronization provided
1139 * by offer_in_progress and by channel_mutex. See also the
1140 * inline comments in vmbus_onoffer_rescind().
1143 case CHANNELMSG_RESCIND_CHANNELOFFER:
1145 * If we are handling the rescind message;
1146 * schedule the work on the global work queue.
1148 * The OFFER message and the RESCIND message should
1149 * not be handled by the same serialized work queue,
1150 * because the OFFER handler may call vmbus_open(),
1151 * which tries to open the channel by sending an
1152 * OPEN_CHANNEL message to the host and waits for
1153 * the host's response; however, if the host has
1154 * rescinded the channel before it receives the
1155 * OPEN_CHANNEL message, the host just silently
1156 * ignores the OPEN_CHANNEL message; as a result,
1157 * the guest's OFFER handler hangs for ever, if we
1158 * handle the RESCIND message in the same serialized
1159 * work queue: the RESCIND handler can not start to
1160 * run before the OFFER handler finishes.
1162 schedule_work(&ctx->work);
1165 case CHANNELMSG_OFFERCHANNEL:
1167 * The host sends the offer message of a given channel
1168 * before sending the rescind message of the same
1169 * channel. These messages are sent to the guest's
1170 * connect CPU; the guest then starts processing them
1171 * in the tasklet handler on this CPU:
1175 * [vmbus_on_msg_dpc()]
1176 * atomic_inc() // CHANNELMSG_OFFERCHANNEL
1179 * [vmbus_on_msg_dpc()]
1180 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER
1182 * We rely on the memory-ordering properties of the
1183 * queue_work() and schedule_work() primitives, which
1184 * guarantee that the atomic increment will be visible
1185 * to the CPUs which will execute the offer & rescind
1186 * works by the time these works will start execution.
1188 atomic_inc(&vmbus_connection.offer_in_progress);
1192 queue_work(vmbus_connection.work_queue, &ctx->work);
1195 entry->message_handler(hdr);
1198 vmbus_signal_eom(msg, message_type);
1201 #ifdef CONFIG_PM_SLEEP
1203 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1204 * hibernation, because hv_sock connections can not persist across hibernation.
1206 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1208 struct onmessage_work_context *ctx;
1209 struct vmbus_channel_rescind_offer *rescind;
1211 WARN_ON(!is_hvsock_channel(channel));
1214 * Allocation size is small and the allocation should really not fail,
1215 * otherwise the state of the hv_sock connections ends up in limbo.
1217 ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1218 GFP_KERNEL | __GFP_NOFAIL);
1221 * So far, these are not really used by Linux. Just set them to the
1222 * reasonable values conforming to the definitions of the fields.
1224 ctx->msg.header.message_type = 1;
1225 ctx->msg.header.payload_size = sizeof(*rescind);
1227 /* These values are actually used by Linux. */
1228 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1229 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1230 rescind->child_relid = channel->offermsg.child_relid;
1232 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1234 queue_work(vmbus_connection.work_queue, &ctx->work);
1236 #endif /* CONFIG_PM_SLEEP */
1239 * Schedule all channels with events pending
1241 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1243 unsigned long *recv_int_page;
1247 * The event page can be directly checked to get the id of
1248 * the channel that has the interrupt pending.
1250 void *page_addr = hv_cpu->synic_event_page;
1251 union hv_synic_event_flags *event
1252 = (union hv_synic_event_flags *)page_addr +
1255 maxbits = HV_EVENT_FLAGS_COUNT;
1256 recv_int_page = event->flags;
1258 if (unlikely(!recv_int_page))
1261 for_each_set_bit(relid, recv_int_page, maxbits) {
1262 void (*callback_fn)(void *context);
1263 struct vmbus_channel *channel;
1265 if (!sync_test_and_clear_bit(relid, recv_int_page))
1268 /* Special case - vmbus channel protocol msg */
1273 * Pairs with the kfree_rcu() in vmbus_chan_release().
1274 * Guarantees that the channel data structure doesn't
1275 * get freed while the channel pointer below is being
1280 /* Find channel based on relid */
1281 channel = relid2channel(relid);
1282 if (channel == NULL)
1283 goto sched_unlock_rcu;
1285 if (channel->rescind)
1286 goto sched_unlock_rcu;
1289 * Make sure that the ring buffer data structure doesn't get
1290 * freed while we dereference the ring buffer pointer. Test
1291 * for the channel's onchannel_callback being NULL within a
1292 * sched_lock critical section. See also the inline comments
1293 * in vmbus_reset_channel_cb().
1295 spin_lock(&channel->sched_lock);
1297 callback_fn = channel->onchannel_callback;
1298 if (unlikely(callback_fn == NULL))
1301 trace_vmbus_chan_sched(channel);
1303 ++channel->interrupts;
1305 switch (channel->callback_mode) {
1307 (*callback_fn)(channel->channel_callback_context);
1310 case HV_CALL_BATCHED:
1311 hv_begin_read(&channel->inbound);
1313 case HV_CALL_DIRECT:
1314 tasklet_schedule(&channel->callback_event);
1318 spin_unlock(&channel->sched_lock);
1324 static void vmbus_isr(void)
1326 struct hv_per_cpu_context *hv_cpu
1327 = this_cpu_ptr(hv_context.cpu_context);
1329 struct hv_message *msg;
1331 vmbus_chan_sched(hv_cpu);
1333 page_addr = hv_cpu->synic_message_page;
1334 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1336 /* Check if there are actual msgs to be processed */
1337 if (msg->header.message_type != HVMSG_NONE) {
1338 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1340 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1342 tasklet_schedule(&hv_cpu->msg_dpc);
1345 add_interrupt_randomness(vmbus_interrupt);
1348 static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1355 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1356 * buffer and call into Hyper-V to transfer the data.
1358 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1359 enum kmsg_dump_reason reason)
1361 struct kmsg_dump_iter iter;
1362 size_t bytes_written;
1364 /* We are only interested in panics. */
1365 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1369 * Write dump contents to the page. No need to synchronize; panic should
1370 * be single-threaded.
1372 kmsg_dump_rewind(&iter);
1373 kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE,
1378 * P3 to contain the physical address of the panic page & P4 to
1379 * contain the size of the panic data in that page. Rest of the
1380 * registers are no-op when the NOTIFY_MSG flag is set.
1382 hv_set_register(HV_REGISTER_CRASH_P0, 0);
1383 hv_set_register(HV_REGISTER_CRASH_P1, 0);
1384 hv_set_register(HV_REGISTER_CRASH_P2, 0);
1385 hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page));
1386 hv_set_register(HV_REGISTER_CRASH_P4, bytes_written);
1389 * Let Hyper-V know there is crash data available along with
1390 * the panic message.
1392 hv_set_register(HV_REGISTER_CRASH_CTL,
1393 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
1396 static struct kmsg_dumper hv_kmsg_dumper = {
1397 .dump = hv_kmsg_dump,
1400 static void hv_kmsg_dump_register(void)
1404 hv_panic_page = hv_alloc_hyperv_zeroed_page();
1405 if (!hv_panic_page) {
1406 pr_err("Hyper-V: panic message page memory allocation failed\n");
1410 ret = kmsg_dump_register(&hv_kmsg_dumper);
1412 pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret);
1413 hv_free_hyperv_page((unsigned long)hv_panic_page);
1414 hv_panic_page = NULL;
1418 static struct ctl_table_header *hv_ctl_table_hdr;
1421 * sysctl option to allow the user to control whether kmsg data should be
1422 * reported to Hyper-V on panic.
1424 static struct ctl_table hv_ctl_table[] = {
1426 .procname = "hyperv_record_panic_msg",
1427 .data = &sysctl_record_panic_msg,
1428 .maxlen = sizeof(int),
1430 .proc_handler = proc_dointvec_minmax,
1431 .extra1 = SYSCTL_ZERO,
1432 .extra2 = SYSCTL_ONE
1437 static struct ctl_table hv_root_table[] = {
1439 .procname = "kernel",
1441 .child = hv_ctl_table
1447 * vmbus_bus_init -Main vmbus driver initialization routine.
1450 * - initialize the vmbus driver context
1451 * - invoke the vmbus hv main init routine
1452 * - retrieve the channel offers
1454 static int vmbus_bus_init(void)
1460 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1464 ret = bus_register(&hv_bus);
1469 * VMbus interrupts are best modeled as per-cpu interrupts. If
1470 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1471 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1472 * If not on such an architecture (e.g., x86/x64), then rely on
1473 * code in the arch-specific portion of the code tree to connect
1474 * the VMbus interrupt handler.
1477 if (vmbus_irq == -1) {
1478 hv_setup_vmbus_handler(vmbus_isr);
1480 vmbus_evt = alloc_percpu(long);
1481 ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1482 "Hyper-V VMbus", vmbus_evt);
1484 pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1486 free_percpu(vmbus_evt);
1491 ret = hv_synic_alloc();
1496 * Initialize the per-cpu interrupt state and stimer state.
1497 * Then connect to the host.
1499 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1500 hv_synic_init, hv_synic_cleanup);
1503 hyperv_cpuhp_online = ret;
1505 ret = vmbus_connect();
1509 if (hv_is_isolation_supported())
1510 sysctl_record_panic_msg = 0;
1513 * Only register if the crash MSRs are available
1515 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1516 u64 hyperv_crash_ctl;
1518 * Panic message recording (sysctl_record_panic_msg)
1519 * is enabled by default in non-isolated guests and
1520 * disabled by default in isolated guests; the panic
1521 * message recording won't be available in isolated
1522 * guests should the following registration fail.
1524 hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1525 if (!hv_ctl_table_hdr)
1526 pr_err("Hyper-V: sysctl table register error");
1529 * Register for panic kmsg callback only if the right
1530 * capability is supported by the hypervisor.
1532 hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL);
1533 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG)
1534 hv_kmsg_dump_register();
1536 register_die_notifier(&hyperv_die_block);
1540 * Always register the panic notifier because we need to unload
1541 * the VMbus channel connection to prevent any VMbus
1542 * activity after the VM panics.
1544 atomic_notifier_chain_register(&panic_notifier_list,
1545 &hyperv_panic_block);
1547 vmbus_request_offers();
1552 cpuhp_remove_state(hyperv_cpuhp_online);
1556 if (vmbus_irq == -1) {
1557 hv_remove_vmbus_handler();
1559 free_percpu_irq(vmbus_irq, vmbus_evt);
1560 free_percpu(vmbus_evt);
1563 bus_unregister(&hv_bus);
1564 unregister_sysctl_table(hv_ctl_table_hdr);
1565 hv_ctl_table_hdr = NULL;
1570 * __vmbus_child_driver_register() - Register a vmbus's driver
1571 * @hv_driver: Pointer to driver structure you want to register
1572 * @owner: owner module of the drv
1573 * @mod_name: module name string
1575 * Registers the given driver with Linux through the 'driver_register()' call
1576 * and sets up the hyper-v vmbus handling for this driver.
1577 * It will return the state of the 'driver_register()' call.
1580 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1584 pr_info("registering driver %s\n", hv_driver->name);
1586 ret = vmbus_exists();
1590 hv_driver->driver.name = hv_driver->name;
1591 hv_driver->driver.owner = owner;
1592 hv_driver->driver.mod_name = mod_name;
1593 hv_driver->driver.bus = &hv_bus;
1595 spin_lock_init(&hv_driver->dynids.lock);
1596 INIT_LIST_HEAD(&hv_driver->dynids.list);
1598 ret = driver_register(&hv_driver->driver);
1602 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1605 * vmbus_driver_unregister() - Unregister a vmbus's driver
1606 * @hv_driver: Pointer to driver structure you want to
1609 * Un-register the given driver that was previous registered with a call to
1610 * vmbus_driver_register()
1612 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1614 pr_info("unregistering driver %s\n", hv_driver->name);
1616 if (!vmbus_exists()) {
1617 driver_unregister(&hv_driver->driver);
1618 vmbus_free_dynids(hv_driver);
1621 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1625 * Called when last reference to channel is gone.
1627 static void vmbus_chan_release(struct kobject *kobj)
1629 struct vmbus_channel *channel
1630 = container_of(kobj, struct vmbus_channel, kobj);
1632 kfree_rcu(channel, rcu);
1635 struct vmbus_chan_attribute {
1636 struct attribute attr;
1637 ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1638 ssize_t (*store)(struct vmbus_channel *chan,
1639 const char *buf, size_t count);
1641 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1642 struct vmbus_chan_attribute chan_attr_##_name \
1643 = __ATTR(_name, _mode, _show, _store)
1644 #define VMBUS_CHAN_ATTR_RW(_name) \
1645 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1646 #define VMBUS_CHAN_ATTR_RO(_name) \
1647 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1648 #define VMBUS_CHAN_ATTR_WO(_name) \
1649 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1651 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1652 struct attribute *attr, char *buf)
1654 const struct vmbus_chan_attribute *attribute
1655 = container_of(attr, struct vmbus_chan_attribute, attr);
1656 struct vmbus_channel *chan
1657 = container_of(kobj, struct vmbus_channel, kobj);
1659 if (!attribute->show)
1662 return attribute->show(chan, buf);
1665 static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1666 struct attribute *attr, const char *buf,
1669 const struct vmbus_chan_attribute *attribute
1670 = container_of(attr, struct vmbus_chan_attribute, attr);
1671 struct vmbus_channel *chan
1672 = container_of(kobj, struct vmbus_channel, kobj);
1674 if (!attribute->store)
1677 return attribute->store(chan, buf, count);
1680 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1681 .show = vmbus_chan_attr_show,
1682 .store = vmbus_chan_attr_store,
1685 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1687 struct hv_ring_buffer_info *rbi = &channel->outbound;
1690 mutex_lock(&rbi->ring_buffer_mutex);
1691 if (!rbi->ring_buffer) {
1692 mutex_unlock(&rbi->ring_buffer_mutex);
1696 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1697 mutex_unlock(&rbi->ring_buffer_mutex);
1700 static VMBUS_CHAN_ATTR_RO(out_mask);
1702 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1704 struct hv_ring_buffer_info *rbi = &channel->inbound;
1707 mutex_lock(&rbi->ring_buffer_mutex);
1708 if (!rbi->ring_buffer) {
1709 mutex_unlock(&rbi->ring_buffer_mutex);
1713 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1714 mutex_unlock(&rbi->ring_buffer_mutex);
1717 static VMBUS_CHAN_ATTR_RO(in_mask);
1719 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1721 struct hv_ring_buffer_info *rbi = &channel->inbound;
1724 mutex_lock(&rbi->ring_buffer_mutex);
1725 if (!rbi->ring_buffer) {
1726 mutex_unlock(&rbi->ring_buffer_mutex);
1730 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1731 mutex_unlock(&rbi->ring_buffer_mutex);
1734 static VMBUS_CHAN_ATTR_RO(read_avail);
1736 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1738 struct hv_ring_buffer_info *rbi = &channel->outbound;
1741 mutex_lock(&rbi->ring_buffer_mutex);
1742 if (!rbi->ring_buffer) {
1743 mutex_unlock(&rbi->ring_buffer_mutex);
1747 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1748 mutex_unlock(&rbi->ring_buffer_mutex);
1751 static VMBUS_CHAN_ATTR_RO(write_avail);
1753 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1755 return sprintf(buf, "%u\n", channel->target_cpu);
1757 static ssize_t target_cpu_store(struct vmbus_channel *channel,
1758 const char *buf, size_t count)
1760 u32 target_cpu, origin_cpu;
1761 ssize_t ret = count;
1763 if (vmbus_proto_version < VERSION_WIN10_V4_1)
1766 if (sscanf(buf, "%uu", &target_cpu) != 1)
1769 /* Validate target_cpu for the cpumask_test_cpu() operation below. */
1770 if (target_cpu >= nr_cpumask_bits)
1773 /* No CPUs should come up or down during this. */
1776 if (!cpu_online(target_cpu)) {
1782 * Synchronizes target_cpu_store() and channel closure:
1784 * { Initially: state = CHANNEL_OPENED }
1788 * [target_cpu_store()] [vmbus_disconnect_ring()]
1790 * LOCK channel_mutex LOCK channel_mutex
1791 * LOAD r1 = state LOAD r2 = state
1792 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED)
1793 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN
1794 * [...] SEND CLOSECHANNEL
1795 * UNLOCK channel_mutex UNLOCK channel_mutex
1797 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1798 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1800 * Note. The host processes the channel messages "sequentially", in
1801 * the order in which they are received on a per-partition basis.
1803 mutex_lock(&vmbus_connection.channel_mutex);
1806 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1807 * avoid sending the message and fail here for such channels.
1809 if (channel->state != CHANNEL_OPENED_STATE) {
1811 goto cpu_store_unlock;
1814 origin_cpu = channel->target_cpu;
1815 if (target_cpu == origin_cpu)
1816 goto cpu_store_unlock;
1818 if (vmbus_send_modifychannel(channel,
1819 hv_cpu_number_to_vp_number(target_cpu))) {
1821 goto cpu_store_unlock;
1825 * For version before VERSION_WIN10_V5_3, the following warning holds:
1827 * Warning. At this point, there is *no* guarantee that the host will
1828 * have successfully processed the vmbus_send_modifychannel() request.
1829 * See the header comment of vmbus_send_modifychannel() for more info.
1831 * Lags in the processing of the above vmbus_send_modifychannel() can
1832 * result in missed interrupts if the "old" target CPU is taken offline
1833 * before Hyper-V starts sending interrupts to the "new" target CPU.
1834 * But apart from this offlining scenario, the code tolerates such
1835 * lags. It will function correctly even if a channel interrupt comes
1836 * in on a CPU that is different from the channel target_cpu value.
1839 channel->target_cpu = target_cpu;
1841 /* See init_vp_index(). */
1842 if (hv_is_perf_channel(channel))
1843 hv_update_allocated_cpus(origin_cpu, target_cpu);
1845 /* Currently set only for storvsc channels. */
1846 if (channel->change_target_cpu_callback) {
1847 (*channel->change_target_cpu_callback)(channel,
1848 origin_cpu, target_cpu);
1852 mutex_unlock(&vmbus_connection.channel_mutex);
1856 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1858 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1861 return sprintf(buf, "%d\n",
1862 channel_pending(channel,
1863 vmbus_connection.monitor_pages[1]));
1865 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1867 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1870 return sprintf(buf, "%d\n",
1871 channel_latency(channel,
1872 vmbus_connection.monitor_pages[1]));
1874 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1876 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1878 return sprintf(buf, "%llu\n", channel->interrupts);
1880 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1882 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1884 return sprintf(buf, "%llu\n", channel->sig_events);
1886 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1888 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1891 return sprintf(buf, "%llu\n",
1892 (unsigned long long)channel->intr_in_full);
1894 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1896 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1899 return sprintf(buf, "%llu\n",
1900 (unsigned long long)channel->intr_out_empty);
1902 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1904 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1907 return sprintf(buf, "%llu\n",
1908 (unsigned long long)channel->out_full_first);
1910 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1912 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1915 return sprintf(buf, "%llu\n",
1916 (unsigned long long)channel->out_full_total);
1918 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1920 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1923 return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1925 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1927 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1930 return sprintf(buf, "%u\n",
1931 channel->offermsg.offer.sub_channel_index);
1933 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1935 static struct attribute *vmbus_chan_attrs[] = {
1936 &chan_attr_out_mask.attr,
1937 &chan_attr_in_mask.attr,
1938 &chan_attr_read_avail.attr,
1939 &chan_attr_write_avail.attr,
1940 &chan_attr_cpu.attr,
1941 &chan_attr_pending.attr,
1942 &chan_attr_latency.attr,
1943 &chan_attr_interrupts.attr,
1944 &chan_attr_events.attr,
1945 &chan_attr_intr_in_full.attr,
1946 &chan_attr_intr_out_empty.attr,
1947 &chan_attr_out_full_first.attr,
1948 &chan_attr_out_full_total.attr,
1949 &chan_attr_monitor_id.attr,
1950 &chan_attr_subchannel_id.attr,
1955 * Channel-level attribute_group callback function. Returns the permission for
1956 * each attribute, and returns 0 if an attribute is not visible.
1958 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1959 struct attribute *attr, int idx)
1961 const struct vmbus_channel *channel =
1962 container_of(kobj, struct vmbus_channel, kobj);
1964 /* Hide the monitor attributes if the monitor mechanism is not used. */
1965 if (!channel->offermsg.monitor_allocated &&
1966 (attr == &chan_attr_pending.attr ||
1967 attr == &chan_attr_latency.attr ||
1968 attr == &chan_attr_monitor_id.attr))
1974 static struct attribute_group vmbus_chan_group = {
1975 .attrs = vmbus_chan_attrs,
1976 .is_visible = vmbus_chan_attr_is_visible
1979 static struct kobj_type vmbus_chan_ktype = {
1980 .sysfs_ops = &vmbus_chan_sysfs_ops,
1981 .release = vmbus_chan_release,
1985 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1987 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1989 const struct device *device = &dev->device;
1990 struct kobject *kobj = &channel->kobj;
1991 u32 relid = channel->offermsg.child_relid;
1994 kobj->kset = dev->channels_kset;
1995 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
2002 ret = sysfs_create_group(kobj, &vmbus_chan_group);
2006 * The calling functions' error handling paths will cleanup the
2007 * empty channel directory.
2010 dev_err(device, "Unable to set up channel sysfs files\n");
2014 kobject_uevent(kobj, KOBJ_ADD);
2020 * vmbus_remove_channel_attr_group - remove the channel's attribute group
2022 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
2024 sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
2028 * vmbus_device_create - Creates and registers a new child device
2031 struct hv_device *vmbus_device_create(const guid_t *type,
2032 const guid_t *instance,
2033 struct vmbus_channel *channel)
2035 struct hv_device *child_device_obj;
2037 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
2038 if (!child_device_obj) {
2039 pr_err("Unable to allocate device object for child device\n");
2043 child_device_obj->channel = channel;
2044 guid_copy(&child_device_obj->dev_type, type);
2045 guid_copy(&child_device_obj->dev_instance, instance);
2046 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
2048 return child_device_obj;
2052 * vmbus_device_register - Register the child device
2054 int vmbus_device_register(struct hv_device *child_device_obj)
2056 struct kobject *kobj = &child_device_obj->device.kobj;
2059 dev_set_name(&child_device_obj->device, "%pUl",
2060 &child_device_obj->channel->offermsg.offer.if_instance);
2062 child_device_obj->device.bus = &hv_bus;
2063 child_device_obj->device.parent = &hv_acpi_dev->dev;
2064 child_device_obj->device.release = vmbus_device_release;
2066 child_device_obj->device.dma_parms = &child_device_obj->dma_parms;
2067 child_device_obj->device.dma_mask = &child_device_obj->dma_mask;
2068 dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64));
2071 * Register with the LDM. This will kick off the driver/device
2072 * binding...which will eventually call vmbus_match() and vmbus_probe()
2074 ret = device_register(&child_device_obj->device);
2076 pr_err("Unable to register child device\n");
2080 child_device_obj->channels_kset = kset_create_and_add("channels",
2082 if (!child_device_obj->channels_kset) {
2084 goto err_dev_unregister;
2087 ret = vmbus_add_channel_kobj(child_device_obj,
2088 child_device_obj->channel);
2090 pr_err("Unable to register primary channeln");
2091 goto err_kset_unregister;
2093 hv_debug_add_dev_dir(child_device_obj);
2097 err_kset_unregister:
2098 kset_unregister(child_device_obj->channels_kset);
2101 device_unregister(&child_device_obj->device);
2106 * vmbus_device_unregister - Remove the specified child device
2109 void vmbus_device_unregister(struct hv_device *device_obj)
2111 pr_debug("child device %s unregistered\n",
2112 dev_name(&device_obj->device));
2114 kset_unregister(device_obj->channels_kset);
2117 * Kick off the process of unregistering the device.
2118 * This will call vmbus_remove() and eventually vmbus_device_release()
2120 device_unregister(&device_obj->device);
2125 * VMBUS is an acpi enumerated device. Get the information we
2128 #define VTPM_BASE_ADDRESS 0xfed40000
2129 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2131 resource_size_t start = 0;
2132 resource_size_t end = 0;
2133 struct resource *new_res;
2134 struct resource **old_res = &hyperv_mmio;
2135 struct resource **prev_res = NULL;
2138 switch (res->type) {
2141 * "Address" descriptors are for bus windows. Ignore
2142 * "memory" descriptors, which are for registers on
2145 case ACPI_RESOURCE_TYPE_ADDRESS32:
2146 start = res->data.address32.address.minimum;
2147 end = res->data.address32.address.maximum;
2150 case ACPI_RESOURCE_TYPE_ADDRESS64:
2151 start = res->data.address64.address.minimum;
2152 end = res->data.address64.address.maximum;
2156 * The IRQ information is needed only on ARM64, which Hyper-V
2157 * sets up in the extended format. IRQ information is present
2158 * on x86/x64 in the non-extended format but it is not used by
2159 * Linux. So don't bother checking for the non-extended format.
2161 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2162 if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2163 pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2166 /* ARM64 INTID for VMbus */
2167 vmbus_interrupt = res->data.extended_irq.interrupts[0];
2168 /* Linux IRQ number */
2169 vmbus_irq = r.start;
2173 /* Unused resource type */
2178 * Ignore ranges that are below 1MB, as they're not
2179 * necessary or useful here.
2184 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2186 return AE_NO_MEMORY;
2188 /* If this range overlaps the virtual TPM, truncate it. */
2189 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2190 end = VTPM_BASE_ADDRESS;
2192 new_res->name = "hyperv mmio";
2193 new_res->flags = IORESOURCE_MEM;
2194 new_res->start = start;
2198 * If two ranges are adjacent, merge them.
2206 if (((*old_res)->end + 1) == new_res->start) {
2207 (*old_res)->end = new_res->end;
2212 if ((*old_res)->start == new_res->end + 1) {
2213 (*old_res)->start = new_res->start;
2218 if ((*old_res)->start > new_res->end) {
2219 new_res->sibling = *old_res;
2221 (*prev_res)->sibling = new_res;
2227 old_res = &(*old_res)->sibling;
2234 static int vmbus_acpi_remove(struct acpi_device *device)
2236 struct resource *cur_res;
2237 struct resource *next_res;
2241 __release_region(hyperv_mmio, fb_mmio->start,
2242 resource_size(fb_mmio));
2246 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2247 next_res = cur_res->sibling;
2255 static void vmbus_reserve_fb(void)
2259 * Make a claim for the frame buffer in the resource tree under the
2260 * first node, which will be the one below 4GB. The length seems to
2261 * be underreported, particularly in a Generation 1 VM. So start out
2262 * reserving a larger area and make it smaller until it succeeds.
2265 if (screen_info.lfb_base) {
2266 if (efi_enabled(EFI_BOOT))
2267 size = max_t(__u32, screen_info.lfb_size, 0x800000);
2269 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
2271 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
2272 fb_mmio = __request_region(hyperv_mmio,
2273 screen_info.lfb_base, size,
2280 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2281 * @new: If successful, supplied a pointer to the
2282 * allocated MMIO space.
2283 * @device_obj: Identifies the caller
2284 * @min: Minimum guest physical address of the
2286 * @max: Maximum guest physical address
2287 * @size: Size of the range to be allocated
2288 * @align: Alignment of the range to be allocated
2289 * @fb_overlap_ok: Whether this allocation can be allowed
2290 * to overlap the video frame buffer.
2292 * This function walks the resources granted to VMBus by the
2293 * _CRS object in the ACPI namespace underneath the parent
2294 * "bridge" whether that's a root PCI bus in the Generation 1
2295 * case or a Module Device in the Generation 2 case. It then
2296 * attempts to allocate from the global MMIO pool in a way that
2297 * matches the constraints supplied in these parameters and by
2300 * Return: 0 on success, -errno on failure
2302 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2303 resource_size_t min, resource_size_t max,
2304 resource_size_t size, resource_size_t align,
2307 struct resource *iter, *shadow;
2308 resource_size_t range_min, range_max, start;
2309 const char *dev_n = dev_name(&device_obj->device);
2313 mutex_lock(&hyperv_mmio_lock);
2316 * If overlaps with frame buffers are allowed, then first attempt to
2317 * make the allocation from within the reserved region. Because it
2318 * is already reserved, no shadow allocation is necessary.
2320 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2321 !(max < fb_mmio->start)) {
2323 range_min = fb_mmio->start;
2324 range_max = fb_mmio->end;
2325 start = (range_min + align - 1) & ~(align - 1);
2326 for (; start + size - 1 <= range_max; start += align) {
2327 *new = request_mem_region_exclusive(start, size, dev_n);
2335 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2336 if ((iter->start >= max) || (iter->end <= min))
2339 range_min = iter->start;
2340 range_max = iter->end;
2341 start = (range_min + align - 1) & ~(align - 1);
2342 for (; start + size - 1 <= range_max; start += align) {
2343 shadow = __request_region(iter, start, size, NULL,
2348 *new = request_mem_region_exclusive(start, size, dev_n);
2350 shadow->name = (char *)*new;
2355 __release_region(iter, start, size);
2360 mutex_unlock(&hyperv_mmio_lock);
2363 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2366 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2367 * @start: Base address of region to release.
2368 * @size: Size of the range to be allocated
2370 * This function releases anything requested by
2371 * vmbus_mmio_allocate().
2373 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2375 struct resource *iter;
2377 mutex_lock(&hyperv_mmio_lock);
2378 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2379 if ((iter->start >= start + size) || (iter->end <= start))
2382 __release_region(iter, start, size);
2384 release_mem_region(start, size);
2385 mutex_unlock(&hyperv_mmio_lock);
2388 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2390 static int vmbus_acpi_add(struct acpi_device *device)
2393 int ret_val = -ENODEV;
2394 struct acpi_device *ancestor;
2396 hv_acpi_dev = device;
2399 * Older versions of Hyper-V for ARM64 fail to include the _CCA
2400 * method on the top level VMbus device in the DSDT. But devices
2401 * are hardware coherent in all current Hyper-V use cases, so fix
2402 * up the ACPI device to behave as if _CCA is present and indicates
2403 * hardware coherence.
2405 ACPI_COMPANION_SET(&device->dev, device);
2406 if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) &&
2407 device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) {
2408 pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
2409 device->flags.cca_seen = true;
2410 device->flags.coherent_dma = true;
2413 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2414 vmbus_walk_resources, NULL);
2416 if (ACPI_FAILURE(result))
2419 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2420 * firmware) is the VMOD that has the mmio ranges. Get that.
2422 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2423 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2424 vmbus_walk_resources, NULL);
2426 if (ACPI_FAILURE(result))
2436 complete(&probe_event);
2438 vmbus_acpi_remove(device);
2442 #ifdef CONFIG_PM_SLEEP
2443 static int vmbus_bus_suspend(struct device *dev)
2445 struct vmbus_channel *channel, *sc;
2447 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
2449 * We wait here until the completion of any channel
2450 * offers that are currently in progress.
2452 usleep_range(1000, 2000);
2455 mutex_lock(&vmbus_connection.channel_mutex);
2456 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2457 if (!is_hvsock_channel(channel))
2460 vmbus_force_channel_rescinded(channel);
2462 mutex_unlock(&vmbus_connection.channel_mutex);
2465 * Wait until all the sub-channels and hv_sock channels have been
2466 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2467 * they would conflict with the new sub-channels that will be created
2468 * in the resume path. hv_sock channels should also be destroyed, but
2469 * a hv_sock channel of an established hv_sock connection can not be
2470 * really destroyed since it may still be referenced by the userspace
2471 * application, so we just force the hv_sock channel to be rescinded
2472 * by vmbus_force_channel_rescinded(), and the userspace application
2473 * will thoroughly destroy the channel after hibernation.
2475 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2476 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2478 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2479 wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2481 if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2482 pr_err("Can not suspend due to a previous failed resuming\n");
2486 mutex_lock(&vmbus_connection.channel_mutex);
2488 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2490 * Remove the channel from the array of channels and invalidate
2491 * the channel's relid. Upon resume, vmbus_onoffer() will fix
2492 * up the relid (and other fields, if necessary) and add the
2493 * channel back to the array.
2495 vmbus_channel_unmap_relid(channel);
2496 channel->offermsg.child_relid = INVALID_RELID;
2498 if (is_hvsock_channel(channel)) {
2499 if (!channel->rescind) {
2500 pr_err("hv_sock channel not rescinded!\n");
2506 list_for_each_entry(sc, &channel->sc_list, sc_list) {
2507 pr_err("Sub-channel not deleted!\n");
2511 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2514 mutex_unlock(&vmbus_connection.channel_mutex);
2516 vmbus_initiate_unload(false);
2518 /* Reset the event for the next resume. */
2519 reinit_completion(&vmbus_connection.ready_for_resume_event);
2524 static int vmbus_bus_resume(struct device *dev)
2526 struct vmbus_channel_msginfo *msginfo;
2531 * We only use the 'vmbus_proto_version', which was in use before
2532 * hibernation, to re-negotiate with the host.
2534 if (!vmbus_proto_version) {
2535 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2539 msgsize = sizeof(*msginfo) +
2540 sizeof(struct vmbus_channel_initiate_contact);
2542 msginfo = kzalloc(msgsize, GFP_KERNEL);
2544 if (msginfo == NULL)
2547 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2554 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2556 vmbus_request_offers();
2558 if (wait_for_completion_timeout(
2559 &vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2560 pr_err("Some vmbus device is missing after suspending?\n");
2562 /* Reset the event for the next suspend. */
2563 reinit_completion(&vmbus_connection.ready_for_suspend_event);
2568 #define vmbus_bus_suspend NULL
2569 #define vmbus_bus_resume NULL
2570 #endif /* CONFIG_PM_SLEEP */
2572 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2577 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2580 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2581 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2582 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2583 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2584 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2585 * resume callback must also run via the "noirq" ops.
2587 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2588 * earlier in this file before vmbus_pm.
2591 static const struct dev_pm_ops vmbus_bus_pm = {
2592 .suspend_noirq = NULL,
2593 .resume_noirq = NULL,
2594 .freeze_noirq = vmbus_bus_suspend,
2595 .thaw_noirq = vmbus_bus_resume,
2596 .poweroff_noirq = vmbus_bus_suspend,
2597 .restore_noirq = vmbus_bus_resume
2600 static struct acpi_driver vmbus_acpi_driver = {
2602 .ids = vmbus_acpi_device_ids,
2604 .add = vmbus_acpi_add,
2605 .remove = vmbus_acpi_remove,
2607 .drv.pm = &vmbus_bus_pm,
2610 static void hv_kexec_handler(void)
2612 hv_stimer_global_cleanup();
2613 vmbus_initiate_unload(false);
2614 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
2616 cpuhp_remove_state(hyperv_cpuhp_online);
2619 static void hv_crash_handler(struct pt_regs *regs)
2623 vmbus_initiate_unload(true);
2625 * In crash handler we can't schedule synic cleanup for all CPUs,
2626 * doing the cleanup for current CPU only. This should be sufficient
2629 cpu = smp_processor_id();
2630 hv_stimer_cleanup(cpu);
2631 hv_synic_disable_regs(cpu);
2634 static int hv_synic_suspend(void)
2637 * When we reach here, all the non-boot CPUs have been offlined.
2638 * If we're in a legacy configuration where stimer Direct Mode is
2639 * not enabled, the stimers on the non-boot CPUs have been unbound
2640 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2641 * hv_stimer_cleanup() -> clockevents_unbind_device().
2643 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2644 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2645 * 1) it's unnecessary as interrupts remain disabled between
2646 * syscore_suspend() and syscore_resume(): see create_image() and
2647 * resume_target_kernel()
2648 * 2) the stimer on CPU0 is automatically disabled later by
2649 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2650 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2651 * 3) a warning would be triggered if we call
2652 * clockevents_unbind_device(), which may sleep, in an
2653 * interrupts-disabled context.
2656 hv_synic_disable_regs(0);
2661 static void hv_synic_resume(void)
2663 hv_synic_enable_regs(0);
2666 * Note: we don't need to call hv_stimer_init(0), because the timer
2667 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2668 * automatically re-enabled in timekeeping_resume().
2672 /* The callbacks run only on CPU0, with irqs_disabled. */
2673 static struct syscore_ops hv_synic_syscore_ops = {
2674 .suspend = hv_synic_suspend,
2675 .resume = hv_synic_resume,
2678 static int __init hv_acpi_init(void)
2682 if (!hv_is_hyperv_initialized())
2685 if (hv_root_partition)
2688 init_completion(&probe_event);
2691 * Get ACPI resources first.
2693 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2698 t = wait_for_completion_timeout(&probe_event, 5*HZ);
2705 * If we're on an architecture with a hardcoded hypervisor
2706 * vector (i.e. x86/x64), override the VMbus interrupt found
2707 * in the ACPI tables. Ensure vmbus_irq is not set since the
2708 * normal Linux IRQ mechanism is not used in this case.
2710 #ifdef HYPERVISOR_CALLBACK_VECTOR
2711 vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2717 ret = vmbus_bus_init();
2721 hv_setup_kexec_handler(hv_kexec_handler);
2722 hv_setup_crash_handler(hv_crash_handler);
2724 register_syscore_ops(&hv_synic_syscore_ops);
2729 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2734 static void __exit vmbus_exit(void)
2738 unregister_syscore_ops(&hv_synic_syscore_ops);
2740 hv_remove_kexec_handler();
2741 hv_remove_crash_handler();
2742 vmbus_connection.conn_state = DISCONNECTED;
2743 hv_stimer_global_cleanup();
2745 if (vmbus_irq == -1) {
2746 hv_remove_vmbus_handler();
2748 free_percpu_irq(vmbus_irq, vmbus_evt);
2749 free_percpu(vmbus_evt);
2751 for_each_online_cpu(cpu) {
2752 struct hv_per_cpu_context *hv_cpu
2753 = per_cpu_ptr(hv_context.cpu_context, cpu);
2755 tasklet_kill(&hv_cpu->msg_dpc);
2757 hv_debug_rm_all_dir();
2759 vmbus_free_channels();
2760 kfree(vmbus_connection.channels);
2762 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2763 kmsg_dump_unregister(&hv_kmsg_dumper);
2764 unregister_die_notifier(&hyperv_die_block);
2768 * The panic notifier is always registered, hence we should
2769 * also unconditionally unregister it here as well.
2771 atomic_notifier_chain_unregister(&panic_notifier_list,
2772 &hyperv_panic_block);
2774 free_page((unsigned long)hv_panic_page);
2775 unregister_sysctl_table(hv_ctl_table_hdr);
2776 hv_ctl_table_hdr = NULL;
2777 bus_unregister(&hv_bus);
2779 cpuhp_remove_state(hyperv_cpuhp_online);
2781 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2785 MODULE_LICENSE("GPL");
2786 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2788 subsys_initcall(hv_acpi_init);
2789 module_exit(vmbus_exit);