1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2009, Microsoft Corporation.
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 * K. Y. Srinivasan <kys@microsoft.com>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/isolation.h>
25 #include <linux/sched/task_stack.h>
27 #include <linux/delay.h>
28 #include <linux/notifier.h>
29 #include <linux/panic_notifier.h>
30 #include <linux/ptrace.h>
31 #include <linux/screen_info.h>
32 #include <linux/kdebug.h>
33 #include <linux/efi.h>
34 #include <linux/random.h>
35 #include <linux/kernel.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/dma-map-ops.h>
38 #include <linux/pci.h>
39 #include <clocksource/hyperv_timer.h>
40 #include "hyperv_vmbus.h"
43 struct list_head node;
44 struct hv_vmbus_device_id id;
47 static struct acpi_device *hv_acpi_dev;
49 static int hyperv_cpuhp_online;
51 static void *hv_panic_page;
53 static long __percpu *vmbus_evt;
55 /* Values parsed from ACPI DSDT */
60 * Boolean to control whether to report panic messages over Hyper-V.
62 * It can be set via /proc/sys/kernel/hyperv_record_panic_msg
64 static int sysctl_record_panic_msg = 1;
66 static int hyperv_report_reg(void)
68 return !sysctl_record_panic_msg || !hv_panic_page;
71 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
76 vmbus_initiate_unload(true);
79 * Hyper-V should be notified only once about a panic. If we will be
80 * doing hv_kmsg_dump() with kmsg data later, don't do the notification
83 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
84 && hyperv_report_reg()) {
85 regs = current_pt_regs();
86 hyperv_report_panic(regs, val, false);
91 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
94 struct die_args *die = args;
95 struct pt_regs *regs = die->regs;
97 /* Don't notify Hyper-V if the die event is other than oops */
102 * Hyper-V should be notified only once about a panic. If we will be
103 * doing hv_kmsg_dump() with kmsg data later, don't do the notification
106 if (hyperv_report_reg())
107 hyperv_report_panic(regs, val, true);
111 static struct notifier_block hyperv_die_block = {
112 .notifier_call = hyperv_die_event,
114 static struct notifier_block hyperv_panic_block = {
115 .notifier_call = hyperv_panic_event,
118 static const char *fb_mmio_name = "fb_range";
119 static struct resource *fb_mmio;
120 static struct resource *hyperv_mmio;
121 static DEFINE_MUTEX(hyperv_mmio_lock);
123 static int vmbus_exists(void)
125 if (hv_acpi_dev == NULL)
131 static u8 channel_monitor_group(const struct vmbus_channel *channel)
133 return (u8)channel->offermsg.monitorid / 32;
136 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
138 return (u8)channel->offermsg.monitorid % 32;
141 static u32 channel_pending(const struct vmbus_channel *channel,
142 const struct hv_monitor_page *monitor_page)
144 u8 monitor_group = channel_monitor_group(channel);
146 return monitor_page->trigger_group[monitor_group].pending;
149 static u32 channel_latency(const struct vmbus_channel *channel,
150 const struct hv_monitor_page *monitor_page)
152 u8 monitor_group = channel_monitor_group(channel);
153 u8 monitor_offset = channel_monitor_offset(channel);
155 return monitor_page->latency[monitor_group][monitor_offset];
158 static u32 channel_conn_id(struct vmbus_channel *channel,
159 struct hv_monitor_page *monitor_page)
161 u8 monitor_group = channel_monitor_group(channel);
162 u8 monitor_offset = channel_monitor_offset(channel);
164 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
167 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
170 struct hv_device *hv_dev = device_to_hv_device(dev);
172 if (!hv_dev->channel)
174 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
176 static DEVICE_ATTR_RO(id);
178 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
181 struct hv_device *hv_dev = device_to_hv_device(dev);
183 if (!hv_dev->channel)
185 return sprintf(buf, "%d\n", hv_dev->channel->state);
187 static DEVICE_ATTR_RO(state);
189 static ssize_t monitor_id_show(struct device *dev,
190 struct device_attribute *dev_attr, char *buf)
192 struct hv_device *hv_dev = device_to_hv_device(dev);
194 if (!hv_dev->channel)
196 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
198 static DEVICE_ATTR_RO(monitor_id);
200 static ssize_t class_id_show(struct device *dev,
201 struct device_attribute *dev_attr, char *buf)
203 struct hv_device *hv_dev = device_to_hv_device(dev);
205 if (!hv_dev->channel)
207 return sprintf(buf, "{%pUl}\n",
208 &hv_dev->channel->offermsg.offer.if_type);
210 static DEVICE_ATTR_RO(class_id);
212 static ssize_t device_id_show(struct device *dev,
213 struct device_attribute *dev_attr, char *buf)
215 struct hv_device *hv_dev = device_to_hv_device(dev);
217 if (!hv_dev->channel)
219 return sprintf(buf, "{%pUl}\n",
220 &hv_dev->channel->offermsg.offer.if_instance);
222 static DEVICE_ATTR_RO(device_id);
224 static ssize_t modalias_show(struct device *dev,
225 struct device_attribute *dev_attr, char *buf)
227 struct hv_device *hv_dev = device_to_hv_device(dev);
229 return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
231 static DEVICE_ATTR_RO(modalias);
234 static ssize_t numa_node_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
237 struct hv_device *hv_dev = device_to_hv_device(dev);
239 if (!hv_dev->channel)
242 return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
244 static DEVICE_ATTR_RO(numa_node);
247 static ssize_t server_monitor_pending_show(struct device *dev,
248 struct device_attribute *dev_attr,
251 struct hv_device *hv_dev = device_to_hv_device(dev);
253 if (!hv_dev->channel)
255 return sprintf(buf, "%d\n",
256 channel_pending(hv_dev->channel,
257 vmbus_connection.monitor_pages[0]));
259 static DEVICE_ATTR_RO(server_monitor_pending);
261 static ssize_t client_monitor_pending_show(struct device *dev,
262 struct device_attribute *dev_attr,
265 struct hv_device *hv_dev = device_to_hv_device(dev);
267 if (!hv_dev->channel)
269 return sprintf(buf, "%d\n",
270 channel_pending(hv_dev->channel,
271 vmbus_connection.monitor_pages[1]));
273 static DEVICE_ATTR_RO(client_monitor_pending);
275 static ssize_t server_monitor_latency_show(struct device *dev,
276 struct device_attribute *dev_attr,
279 struct hv_device *hv_dev = device_to_hv_device(dev);
281 if (!hv_dev->channel)
283 return sprintf(buf, "%d\n",
284 channel_latency(hv_dev->channel,
285 vmbus_connection.monitor_pages[0]));
287 static DEVICE_ATTR_RO(server_monitor_latency);
289 static ssize_t client_monitor_latency_show(struct device *dev,
290 struct device_attribute *dev_attr,
293 struct hv_device *hv_dev = device_to_hv_device(dev);
295 if (!hv_dev->channel)
297 return sprintf(buf, "%d\n",
298 channel_latency(hv_dev->channel,
299 vmbus_connection.monitor_pages[1]));
301 static DEVICE_ATTR_RO(client_monitor_latency);
303 static ssize_t server_monitor_conn_id_show(struct device *dev,
304 struct device_attribute *dev_attr,
307 struct hv_device *hv_dev = device_to_hv_device(dev);
309 if (!hv_dev->channel)
311 return sprintf(buf, "%d\n",
312 channel_conn_id(hv_dev->channel,
313 vmbus_connection.monitor_pages[0]));
315 static DEVICE_ATTR_RO(server_monitor_conn_id);
317 static ssize_t client_monitor_conn_id_show(struct device *dev,
318 struct device_attribute *dev_attr,
321 struct hv_device *hv_dev = device_to_hv_device(dev);
323 if (!hv_dev->channel)
325 return sprintf(buf, "%d\n",
326 channel_conn_id(hv_dev->channel,
327 vmbus_connection.monitor_pages[1]));
329 static DEVICE_ATTR_RO(client_monitor_conn_id);
331 static ssize_t out_intr_mask_show(struct device *dev,
332 struct device_attribute *dev_attr, char *buf)
334 struct hv_device *hv_dev = device_to_hv_device(dev);
335 struct hv_ring_buffer_debug_info outbound;
338 if (!hv_dev->channel)
341 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
346 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
348 static DEVICE_ATTR_RO(out_intr_mask);
350 static ssize_t out_read_index_show(struct device *dev,
351 struct device_attribute *dev_attr, char *buf)
353 struct hv_device *hv_dev = device_to_hv_device(dev);
354 struct hv_ring_buffer_debug_info outbound;
357 if (!hv_dev->channel)
360 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
364 return sprintf(buf, "%d\n", outbound.current_read_index);
366 static DEVICE_ATTR_RO(out_read_index);
368 static ssize_t out_write_index_show(struct device *dev,
369 struct device_attribute *dev_attr,
372 struct hv_device *hv_dev = device_to_hv_device(dev);
373 struct hv_ring_buffer_debug_info outbound;
376 if (!hv_dev->channel)
379 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
383 return sprintf(buf, "%d\n", outbound.current_write_index);
385 static DEVICE_ATTR_RO(out_write_index);
387 static ssize_t out_read_bytes_avail_show(struct device *dev,
388 struct device_attribute *dev_attr,
391 struct hv_device *hv_dev = device_to_hv_device(dev);
392 struct hv_ring_buffer_debug_info outbound;
395 if (!hv_dev->channel)
398 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
402 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
404 static DEVICE_ATTR_RO(out_read_bytes_avail);
406 static ssize_t out_write_bytes_avail_show(struct device *dev,
407 struct device_attribute *dev_attr,
410 struct hv_device *hv_dev = device_to_hv_device(dev);
411 struct hv_ring_buffer_debug_info outbound;
414 if (!hv_dev->channel)
417 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
421 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
423 static DEVICE_ATTR_RO(out_write_bytes_avail);
425 static ssize_t in_intr_mask_show(struct device *dev,
426 struct device_attribute *dev_attr, char *buf)
428 struct hv_device *hv_dev = device_to_hv_device(dev);
429 struct hv_ring_buffer_debug_info inbound;
432 if (!hv_dev->channel)
435 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
439 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
441 static DEVICE_ATTR_RO(in_intr_mask);
443 static ssize_t in_read_index_show(struct device *dev,
444 struct device_attribute *dev_attr, char *buf)
446 struct hv_device *hv_dev = device_to_hv_device(dev);
447 struct hv_ring_buffer_debug_info inbound;
450 if (!hv_dev->channel)
453 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
457 return sprintf(buf, "%d\n", inbound.current_read_index);
459 static DEVICE_ATTR_RO(in_read_index);
461 static ssize_t in_write_index_show(struct device *dev,
462 struct device_attribute *dev_attr, char *buf)
464 struct hv_device *hv_dev = device_to_hv_device(dev);
465 struct hv_ring_buffer_debug_info inbound;
468 if (!hv_dev->channel)
471 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
475 return sprintf(buf, "%d\n", inbound.current_write_index);
477 static DEVICE_ATTR_RO(in_write_index);
479 static ssize_t in_read_bytes_avail_show(struct device *dev,
480 struct device_attribute *dev_attr,
483 struct hv_device *hv_dev = device_to_hv_device(dev);
484 struct hv_ring_buffer_debug_info inbound;
487 if (!hv_dev->channel)
490 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
494 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
496 static DEVICE_ATTR_RO(in_read_bytes_avail);
498 static ssize_t in_write_bytes_avail_show(struct device *dev,
499 struct device_attribute *dev_attr,
502 struct hv_device *hv_dev = device_to_hv_device(dev);
503 struct hv_ring_buffer_debug_info inbound;
506 if (!hv_dev->channel)
509 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
513 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
515 static DEVICE_ATTR_RO(in_write_bytes_avail);
517 static ssize_t channel_vp_mapping_show(struct device *dev,
518 struct device_attribute *dev_attr,
521 struct hv_device *hv_dev = device_to_hv_device(dev);
522 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
523 int buf_size = PAGE_SIZE, n_written, tot_written;
524 struct list_head *cur;
529 mutex_lock(&vmbus_connection.channel_mutex);
531 tot_written = snprintf(buf, buf_size, "%u:%u\n",
532 channel->offermsg.child_relid, channel->target_cpu);
534 list_for_each(cur, &channel->sc_list) {
535 if (tot_written >= buf_size - 1)
538 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
539 n_written = scnprintf(buf + tot_written,
540 buf_size - tot_written,
542 cur_sc->offermsg.child_relid,
544 tot_written += n_written;
547 mutex_unlock(&vmbus_connection.channel_mutex);
551 static DEVICE_ATTR_RO(channel_vp_mapping);
553 static ssize_t vendor_show(struct device *dev,
554 struct device_attribute *dev_attr,
557 struct hv_device *hv_dev = device_to_hv_device(dev);
559 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
561 static DEVICE_ATTR_RO(vendor);
563 static ssize_t device_show(struct device *dev,
564 struct device_attribute *dev_attr,
567 struct hv_device *hv_dev = device_to_hv_device(dev);
569 return sprintf(buf, "0x%x\n", hv_dev->device_id);
571 static DEVICE_ATTR_RO(device);
573 static ssize_t driver_override_store(struct device *dev,
574 struct device_attribute *attr,
575 const char *buf, size_t count)
577 struct hv_device *hv_dev = device_to_hv_device(dev);
580 ret = driver_set_override(dev, &hv_dev->driver_override, buf, count);
587 static ssize_t driver_override_show(struct device *dev,
588 struct device_attribute *attr, char *buf)
590 struct hv_device *hv_dev = device_to_hv_device(dev);
594 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
599 static DEVICE_ATTR_RW(driver_override);
601 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
602 static struct attribute *vmbus_dev_attrs[] = {
604 &dev_attr_state.attr,
605 &dev_attr_monitor_id.attr,
606 &dev_attr_class_id.attr,
607 &dev_attr_device_id.attr,
608 &dev_attr_modalias.attr,
610 &dev_attr_numa_node.attr,
612 &dev_attr_server_monitor_pending.attr,
613 &dev_attr_client_monitor_pending.attr,
614 &dev_attr_server_monitor_latency.attr,
615 &dev_attr_client_monitor_latency.attr,
616 &dev_attr_server_monitor_conn_id.attr,
617 &dev_attr_client_monitor_conn_id.attr,
618 &dev_attr_out_intr_mask.attr,
619 &dev_attr_out_read_index.attr,
620 &dev_attr_out_write_index.attr,
621 &dev_attr_out_read_bytes_avail.attr,
622 &dev_attr_out_write_bytes_avail.attr,
623 &dev_attr_in_intr_mask.attr,
624 &dev_attr_in_read_index.attr,
625 &dev_attr_in_write_index.attr,
626 &dev_attr_in_read_bytes_avail.attr,
627 &dev_attr_in_write_bytes_avail.attr,
628 &dev_attr_channel_vp_mapping.attr,
629 &dev_attr_vendor.attr,
630 &dev_attr_device.attr,
631 &dev_attr_driver_override.attr,
636 * Device-level attribute_group callback function. Returns the permission for
637 * each attribute, and returns 0 if an attribute is not visible.
639 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
640 struct attribute *attr, int idx)
642 struct device *dev = kobj_to_dev(kobj);
643 const struct hv_device *hv_dev = device_to_hv_device(dev);
645 /* Hide the monitor attributes if the monitor mechanism is not used. */
646 if (!hv_dev->channel->offermsg.monitor_allocated &&
647 (attr == &dev_attr_monitor_id.attr ||
648 attr == &dev_attr_server_monitor_pending.attr ||
649 attr == &dev_attr_client_monitor_pending.attr ||
650 attr == &dev_attr_server_monitor_latency.attr ||
651 attr == &dev_attr_client_monitor_latency.attr ||
652 attr == &dev_attr_server_monitor_conn_id.attr ||
653 attr == &dev_attr_client_monitor_conn_id.attr))
659 static const struct attribute_group vmbus_dev_group = {
660 .attrs = vmbus_dev_attrs,
661 .is_visible = vmbus_dev_attr_is_visible
663 __ATTRIBUTE_GROUPS(vmbus_dev);
665 /* Set up the attribute for /sys/bus/vmbus/hibernation */
666 static ssize_t hibernation_show(struct bus_type *bus, char *buf)
668 return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
671 static BUS_ATTR_RO(hibernation);
673 static struct attribute *vmbus_bus_attrs[] = {
674 &bus_attr_hibernation.attr,
677 static const struct attribute_group vmbus_bus_group = {
678 .attrs = vmbus_bus_attrs,
680 __ATTRIBUTE_GROUPS(vmbus_bus);
683 * vmbus_uevent - add uevent for our device
685 * This routine is invoked when a device is added or removed on the vmbus to
686 * generate a uevent to udev in the userspace. The udev will then look at its
687 * rule and the uevent generated here to load the appropriate driver
689 * The alias string will be of the form vmbus:guid where guid is the string
690 * representation of the device guid (each byte of the guid will be
691 * represented with two hex characters.
693 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
695 struct hv_device *dev = device_to_hv_device(device);
696 const char *format = "MODALIAS=vmbus:%*phN";
698 return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
701 static const struct hv_vmbus_device_id *
702 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
705 return NULL; /* empty device table */
707 for (; !guid_is_null(&id->guid); id++)
708 if (guid_equal(&id->guid, guid))
714 static const struct hv_vmbus_device_id *
715 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
717 const struct hv_vmbus_device_id *id = NULL;
718 struct vmbus_dynid *dynid;
720 spin_lock(&drv->dynids.lock);
721 list_for_each_entry(dynid, &drv->dynids.list, node) {
722 if (guid_equal(&dynid->id.guid, guid)) {
727 spin_unlock(&drv->dynids.lock);
732 static const struct hv_vmbus_device_id vmbus_device_null;
735 * Return a matching hv_vmbus_device_id pointer.
736 * If there is no match, return NULL.
738 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
739 struct hv_device *dev)
741 const guid_t *guid = &dev->dev_type;
742 const struct hv_vmbus_device_id *id;
744 /* When driver_override is set, only bind to the matching driver */
745 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
748 /* Look at the dynamic ids first, before the static ones */
749 id = hv_vmbus_dynid_match(drv, guid);
751 id = hv_vmbus_dev_match(drv->id_table, guid);
753 /* driver_override will always match, send a dummy id */
754 if (!id && dev->driver_override)
755 id = &vmbus_device_null;
760 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
761 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
763 struct vmbus_dynid *dynid;
765 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
769 dynid->id.guid = *guid;
771 spin_lock(&drv->dynids.lock);
772 list_add_tail(&dynid->node, &drv->dynids.list);
773 spin_unlock(&drv->dynids.lock);
775 return driver_attach(&drv->driver);
778 static void vmbus_free_dynids(struct hv_driver *drv)
780 struct vmbus_dynid *dynid, *n;
782 spin_lock(&drv->dynids.lock);
783 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
784 list_del(&dynid->node);
787 spin_unlock(&drv->dynids.lock);
791 * store_new_id - sysfs frontend to vmbus_add_dynid()
793 * Allow GUIDs to be added to an existing driver via sysfs.
795 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
798 struct hv_driver *drv = drv_to_hv_drv(driver);
802 retval = guid_parse(buf, &guid);
806 if (hv_vmbus_dynid_match(drv, &guid))
809 retval = vmbus_add_dynid(drv, &guid);
814 static DRIVER_ATTR_WO(new_id);
817 * store_remove_id - remove a PCI device ID from this driver
819 * Removes a dynamic pci device ID to this driver.
821 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
824 struct hv_driver *drv = drv_to_hv_drv(driver);
825 struct vmbus_dynid *dynid, *n;
829 retval = guid_parse(buf, &guid);
834 spin_lock(&drv->dynids.lock);
835 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
836 struct hv_vmbus_device_id *id = &dynid->id;
838 if (guid_equal(&id->guid, &guid)) {
839 list_del(&dynid->node);
845 spin_unlock(&drv->dynids.lock);
849 static DRIVER_ATTR_WO(remove_id);
851 static struct attribute *vmbus_drv_attrs[] = {
852 &driver_attr_new_id.attr,
853 &driver_attr_remove_id.attr,
856 ATTRIBUTE_GROUPS(vmbus_drv);
860 * vmbus_match - Attempt to match the specified device to the specified driver
862 static int vmbus_match(struct device *device, struct device_driver *driver)
864 struct hv_driver *drv = drv_to_hv_drv(driver);
865 struct hv_device *hv_dev = device_to_hv_device(device);
867 /* The hv_sock driver handles all hv_sock offers. */
868 if (is_hvsock_channel(hv_dev->channel))
871 if (hv_vmbus_get_id(drv, hv_dev))
878 * vmbus_probe - Add the new vmbus's child device
880 static int vmbus_probe(struct device *child_device)
883 struct hv_driver *drv =
884 drv_to_hv_drv(child_device->driver);
885 struct hv_device *dev = device_to_hv_device(child_device);
886 const struct hv_vmbus_device_id *dev_id;
888 dev_id = hv_vmbus_get_id(drv, dev);
890 ret = drv->probe(dev, dev_id);
892 pr_err("probe failed for device %s (%d)\n",
893 dev_name(child_device), ret);
896 pr_err("probe not set for driver %s\n",
897 dev_name(child_device));
904 * vmbus_dma_configure -- Configure DMA coherence for VMbus device
906 static int vmbus_dma_configure(struct device *child_device)
909 * On ARM64, propagate the DMA coherence setting from the top level
910 * VMbus ACPI device to the child VMbus device being added here.
911 * On x86/x64 coherence is assumed and these calls have no effect.
913 hv_setup_dma_ops(child_device,
914 device_get_dma_attr(&hv_acpi_dev->dev) == DEV_DMA_COHERENT);
919 * vmbus_remove - Remove a vmbus device
921 static void vmbus_remove(struct device *child_device)
923 struct hv_driver *drv;
924 struct hv_device *dev = device_to_hv_device(child_device);
926 if (child_device->driver) {
927 drv = drv_to_hv_drv(child_device->driver);
934 * vmbus_shutdown - Shutdown a vmbus device
936 static void vmbus_shutdown(struct device *child_device)
938 struct hv_driver *drv;
939 struct hv_device *dev = device_to_hv_device(child_device);
942 /* The device may not be attached yet */
943 if (!child_device->driver)
946 drv = drv_to_hv_drv(child_device->driver);
952 #ifdef CONFIG_PM_SLEEP
954 * vmbus_suspend - Suspend a vmbus device
956 static int vmbus_suspend(struct device *child_device)
958 struct hv_driver *drv;
959 struct hv_device *dev = device_to_hv_device(child_device);
961 /* The device may not be attached yet */
962 if (!child_device->driver)
965 drv = drv_to_hv_drv(child_device->driver);
969 return drv->suspend(dev);
973 * vmbus_resume - Resume a vmbus device
975 static int vmbus_resume(struct device *child_device)
977 struct hv_driver *drv;
978 struct hv_device *dev = device_to_hv_device(child_device);
980 /* The device may not be attached yet */
981 if (!child_device->driver)
984 drv = drv_to_hv_drv(child_device->driver);
988 return drv->resume(dev);
991 #define vmbus_suspend NULL
992 #define vmbus_resume NULL
993 #endif /* CONFIG_PM_SLEEP */
996 * vmbus_device_release - Final callback release of the vmbus child device
998 static void vmbus_device_release(struct device *device)
1000 struct hv_device *hv_dev = device_to_hv_device(device);
1001 struct vmbus_channel *channel = hv_dev->channel;
1003 hv_debug_rm_dev_dir(hv_dev);
1005 mutex_lock(&vmbus_connection.channel_mutex);
1006 hv_process_channel_removal(channel);
1007 mutex_unlock(&vmbus_connection.channel_mutex);
1012 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
1014 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
1015 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
1016 * is no way to wake up a Generation-2 VM.
1018 * The other 4 ops are for hibernation.
1021 static const struct dev_pm_ops vmbus_pm = {
1022 .suspend_noirq = NULL,
1023 .resume_noirq = NULL,
1024 .freeze_noirq = vmbus_suspend,
1025 .thaw_noirq = vmbus_resume,
1026 .poweroff_noirq = vmbus_suspend,
1027 .restore_noirq = vmbus_resume,
1030 /* The one and only one */
1031 static struct bus_type hv_bus = {
1033 .match = vmbus_match,
1034 .shutdown = vmbus_shutdown,
1035 .remove = vmbus_remove,
1036 .probe = vmbus_probe,
1037 .uevent = vmbus_uevent,
1038 .dma_configure = vmbus_dma_configure,
1039 .dev_groups = vmbus_dev_groups,
1040 .drv_groups = vmbus_drv_groups,
1041 .bus_groups = vmbus_bus_groups,
1045 struct onmessage_work_context {
1046 struct work_struct work;
1048 struct hv_message_header header;
1053 static void vmbus_onmessage_work(struct work_struct *work)
1055 struct onmessage_work_context *ctx;
1057 /* Do not process messages if we're in DISCONNECTED state */
1058 if (vmbus_connection.conn_state == DISCONNECTED)
1061 ctx = container_of(work, struct onmessage_work_context,
1063 vmbus_onmessage((struct vmbus_channel_message_header *)
1068 void vmbus_on_msg_dpc(unsigned long data)
1070 struct hv_per_cpu_context *hv_cpu = (void *)data;
1071 void *page_addr = hv_cpu->synic_message_page;
1072 struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1074 struct vmbus_channel_message_header *hdr;
1075 enum vmbus_channel_message_type msgtype;
1076 const struct vmbus_channel_message_table_entry *entry;
1077 struct onmessage_work_context *ctx;
1082 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1083 * it is being used in 'struct vmbus_channel_message_header' definition
1084 * which is supposed to match hypervisor ABI.
1086 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1089 * Since the message is in memory shared with the host, an erroneous or
1090 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1091 * or individual message handlers are executing; to prevent this, copy
1092 * the message into private memory.
1094 memcpy(&msg_copy, msg, sizeof(struct hv_message));
1096 message_type = msg_copy.header.message_type;
1097 if (message_type == HVMSG_NONE)
1101 hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1102 msgtype = hdr->msgtype;
1104 trace_vmbus_on_msg_dpc(hdr);
1106 if (msgtype >= CHANNELMSG_COUNT) {
1107 WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1111 payload_size = msg_copy.header.payload_size;
1112 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1113 WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1117 entry = &channel_message_table[msgtype];
1119 if (!entry->message_handler)
1122 if (payload_size < entry->min_payload_len) {
1123 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1127 if (entry->handler_type == VMHT_BLOCKING) {
1128 ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC);
1132 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1133 ctx->msg.header = msg_copy.header;
1134 memcpy(&ctx->msg.payload, msg_copy.u.payload, payload_size);
1137 * The host can generate a rescind message while we
1138 * may still be handling the original offer. We deal with
1139 * this condition by relying on the synchronization provided
1140 * by offer_in_progress and by channel_mutex. See also the
1141 * inline comments in vmbus_onoffer_rescind().
1144 case CHANNELMSG_RESCIND_CHANNELOFFER:
1146 * If we are handling the rescind message;
1147 * schedule the work on the global work queue.
1149 * The OFFER message and the RESCIND message should
1150 * not be handled by the same serialized work queue,
1151 * because the OFFER handler may call vmbus_open(),
1152 * which tries to open the channel by sending an
1153 * OPEN_CHANNEL message to the host and waits for
1154 * the host's response; however, if the host has
1155 * rescinded the channel before it receives the
1156 * OPEN_CHANNEL message, the host just silently
1157 * ignores the OPEN_CHANNEL message; as a result,
1158 * the guest's OFFER handler hangs for ever, if we
1159 * handle the RESCIND message in the same serialized
1160 * work queue: the RESCIND handler can not start to
1161 * run before the OFFER handler finishes.
1163 if (vmbus_connection.ignore_any_offer_msg)
1165 queue_work(vmbus_connection.rescind_work_queue, &ctx->work);
1168 case CHANNELMSG_OFFERCHANNEL:
1170 * The host sends the offer message of a given channel
1171 * before sending the rescind message of the same
1172 * channel. These messages are sent to the guest's
1173 * connect CPU; the guest then starts processing them
1174 * in the tasklet handler on this CPU:
1178 * [vmbus_on_msg_dpc()]
1179 * atomic_inc() // CHANNELMSG_OFFERCHANNEL
1182 * [vmbus_on_msg_dpc()]
1183 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER
1185 * We rely on the memory-ordering properties of the
1186 * queue_work() and schedule_work() primitives, which
1187 * guarantee that the atomic increment will be visible
1188 * to the CPUs which will execute the offer & rescind
1189 * works by the time these works will start execution.
1191 if (vmbus_connection.ignore_any_offer_msg)
1193 atomic_inc(&vmbus_connection.offer_in_progress);
1197 queue_work(vmbus_connection.work_queue, &ctx->work);
1200 entry->message_handler(hdr);
1203 vmbus_signal_eom(msg, message_type);
1206 #ifdef CONFIG_PM_SLEEP
1208 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1209 * hibernation, because hv_sock connections can not persist across hibernation.
1211 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1213 struct onmessage_work_context *ctx;
1214 struct vmbus_channel_rescind_offer *rescind;
1216 WARN_ON(!is_hvsock_channel(channel));
1219 * Allocation size is small and the allocation should really not fail,
1220 * otherwise the state of the hv_sock connections ends up in limbo.
1222 ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1223 GFP_KERNEL | __GFP_NOFAIL);
1226 * So far, these are not really used by Linux. Just set them to the
1227 * reasonable values conforming to the definitions of the fields.
1229 ctx->msg.header.message_type = 1;
1230 ctx->msg.header.payload_size = sizeof(*rescind);
1232 /* These values are actually used by Linux. */
1233 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1234 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1235 rescind->child_relid = channel->offermsg.child_relid;
1237 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1239 queue_work(vmbus_connection.work_queue, &ctx->work);
1241 #endif /* CONFIG_PM_SLEEP */
1244 * Schedule all channels with events pending
1246 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1248 unsigned long *recv_int_page;
1252 * The event page can be directly checked to get the id of
1253 * the channel that has the interrupt pending.
1255 void *page_addr = hv_cpu->synic_event_page;
1256 union hv_synic_event_flags *event
1257 = (union hv_synic_event_flags *)page_addr +
1260 maxbits = HV_EVENT_FLAGS_COUNT;
1261 recv_int_page = event->flags;
1263 if (unlikely(!recv_int_page))
1266 for_each_set_bit(relid, recv_int_page, maxbits) {
1267 void (*callback_fn)(void *context);
1268 struct vmbus_channel *channel;
1270 if (!sync_test_and_clear_bit(relid, recv_int_page))
1273 /* Special case - vmbus channel protocol msg */
1278 * Pairs with the kfree_rcu() in vmbus_chan_release().
1279 * Guarantees that the channel data structure doesn't
1280 * get freed while the channel pointer below is being
1285 /* Find channel based on relid */
1286 channel = relid2channel(relid);
1287 if (channel == NULL)
1288 goto sched_unlock_rcu;
1290 if (channel->rescind)
1291 goto sched_unlock_rcu;
1294 * Make sure that the ring buffer data structure doesn't get
1295 * freed while we dereference the ring buffer pointer. Test
1296 * for the channel's onchannel_callback being NULL within a
1297 * sched_lock critical section. See also the inline comments
1298 * in vmbus_reset_channel_cb().
1300 spin_lock(&channel->sched_lock);
1302 callback_fn = channel->onchannel_callback;
1303 if (unlikely(callback_fn == NULL))
1306 trace_vmbus_chan_sched(channel);
1308 ++channel->interrupts;
1310 switch (channel->callback_mode) {
1312 (*callback_fn)(channel->channel_callback_context);
1315 case HV_CALL_BATCHED:
1316 hv_begin_read(&channel->inbound);
1318 case HV_CALL_DIRECT:
1319 tasklet_schedule(&channel->callback_event);
1323 spin_unlock(&channel->sched_lock);
1329 static void vmbus_isr(void)
1331 struct hv_per_cpu_context *hv_cpu
1332 = this_cpu_ptr(hv_context.cpu_context);
1334 struct hv_message *msg;
1336 vmbus_chan_sched(hv_cpu);
1338 page_addr = hv_cpu->synic_message_page;
1339 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1341 /* Check if there are actual msgs to be processed */
1342 if (msg->header.message_type != HVMSG_NONE) {
1343 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1345 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1347 tasklet_schedule(&hv_cpu->msg_dpc);
1350 add_interrupt_randomness(vmbus_interrupt);
1353 static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1360 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1361 * buffer and call into Hyper-V to transfer the data.
1363 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1364 enum kmsg_dump_reason reason)
1366 struct kmsg_dump_iter iter;
1367 size_t bytes_written;
1369 /* We are only interested in panics. */
1370 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1374 * Write dump contents to the page. No need to synchronize; panic should
1375 * be single-threaded.
1377 kmsg_dump_rewind(&iter);
1378 kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE,
1383 * P3 to contain the physical address of the panic page & P4 to
1384 * contain the size of the panic data in that page. Rest of the
1385 * registers are no-op when the NOTIFY_MSG flag is set.
1387 hv_set_register(HV_REGISTER_CRASH_P0, 0);
1388 hv_set_register(HV_REGISTER_CRASH_P1, 0);
1389 hv_set_register(HV_REGISTER_CRASH_P2, 0);
1390 hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page));
1391 hv_set_register(HV_REGISTER_CRASH_P4, bytes_written);
1394 * Let Hyper-V know there is crash data available along with
1395 * the panic message.
1397 hv_set_register(HV_REGISTER_CRASH_CTL,
1398 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
1401 static struct kmsg_dumper hv_kmsg_dumper = {
1402 .dump = hv_kmsg_dump,
1405 static void hv_kmsg_dump_register(void)
1409 hv_panic_page = hv_alloc_hyperv_zeroed_page();
1410 if (!hv_panic_page) {
1411 pr_err("Hyper-V: panic message page memory allocation failed\n");
1415 ret = kmsg_dump_register(&hv_kmsg_dumper);
1417 pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret);
1418 hv_free_hyperv_page((unsigned long)hv_panic_page);
1419 hv_panic_page = NULL;
1423 static struct ctl_table_header *hv_ctl_table_hdr;
1426 * sysctl option to allow the user to control whether kmsg data should be
1427 * reported to Hyper-V on panic.
1429 static struct ctl_table hv_ctl_table[] = {
1431 .procname = "hyperv_record_panic_msg",
1432 .data = &sysctl_record_panic_msg,
1433 .maxlen = sizeof(int),
1435 .proc_handler = proc_dointvec_minmax,
1436 .extra1 = SYSCTL_ZERO,
1437 .extra2 = SYSCTL_ONE
1442 static struct ctl_table hv_root_table[] = {
1444 .procname = "kernel",
1446 .child = hv_ctl_table
1452 * vmbus_bus_init -Main vmbus driver initialization routine.
1455 * - initialize the vmbus driver context
1456 * - invoke the vmbus hv main init routine
1457 * - retrieve the channel offers
1459 static int vmbus_bus_init(void)
1465 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1469 ret = bus_register(&hv_bus);
1474 * VMbus interrupts are best modeled as per-cpu interrupts. If
1475 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1476 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1477 * If not on such an architecture (e.g., x86/x64), then rely on
1478 * code in the arch-specific portion of the code tree to connect
1479 * the VMbus interrupt handler.
1482 if (vmbus_irq == -1) {
1483 hv_setup_vmbus_handler(vmbus_isr);
1485 vmbus_evt = alloc_percpu(long);
1486 ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1487 "Hyper-V VMbus", vmbus_evt);
1489 pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1491 free_percpu(vmbus_evt);
1496 ret = hv_synic_alloc();
1501 * Initialize the per-cpu interrupt state and stimer state.
1502 * Then connect to the host.
1504 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1505 hv_synic_init, hv_synic_cleanup);
1508 hyperv_cpuhp_online = ret;
1510 ret = vmbus_connect();
1514 if (hv_is_isolation_supported())
1515 sysctl_record_panic_msg = 0;
1518 * Only register if the crash MSRs are available
1520 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1521 u64 hyperv_crash_ctl;
1523 * Panic message recording (sysctl_record_panic_msg)
1524 * is enabled by default in non-isolated guests and
1525 * disabled by default in isolated guests; the panic
1526 * message recording won't be available in isolated
1527 * guests should the following registration fail.
1529 hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1530 if (!hv_ctl_table_hdr)
1531 pr_err("Hyper-V: sysctl table register error");
1534 * Register for panic kmsg callback only if the right
1535 * capability is supported by the hypervisor.
1537 hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL);
1538 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG)
1539 hv_kmsg_dump_register();
1541 register_die_notifier(&hyperv_die_block);
1545 * Always register the panic notifier because we need to unload
1546 * the VMbus channel connection to prevent any VMbus
1547 * activity after the VM panics.
1549 atomic_notifier_chain_register(&panic_notifier_list,
1550 &hyperv_panic_block);
1552 vmbus_request_offers();
1557 cpuhp_remove_state(hyperv_cpuhp_online);
1561 if (vmbus_irq == -1) {
1562 hv_remove_vmbus_handler();
1564 free_percpu_irq(vmbus_irq, vmbus_evt);
1565 free_percpu(vmbus_evt);
1568 bus_unregister(&hv_bus);
1569 unregister_sysctl_table(hv_ctl_table_hdr);
1570 hv_ctl_table_hdr = NULL;
1575 * __vmbus_driver_register() - Register a vmbus's driver
1576 * @hv_driver: Pointer to driver structure you want to register
1577 * @owner: owner module of the drv
1578 * @mod_name: module name string
1580 * Registers the given driver with Linux through the 'driver_register()' call
1581 * and sets up the hyper-v vmbus handling for this driver.
1582 * It will return the state of the 'driver_register()' call.
1585 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1589 pr_info("registering driver %s\n", hv_driver->name);
1591 ret = vmbus_exists();
1595 hv_driver->driver.name = hv_driver->name;
1596 hv_driver->driver.owner = owner;
1597 hv_driver->driver.mod_name = mod_name;
1598 hv_driver->driver.bus = &hv_bus;
1600 spin_lock_init(&hv_driver->dynids.lock);
1601 INIT_LIST_HEAD(&hv_driver->dynids.list);
1603 ret = driver_register(&hv_driver->driver);
1607 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1610 * vmbus_driver_unregister() - Unregister a vmbus's driver
1611 * @hv_driver: Pointer to driver structure you want to
1614 * Un-register the given driver that was previous registered with a call to
1615 * vmbus_driver_register()
1617 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1619 pr_info("unregistering driver %s\n", hv_driver->name);
1621 if (!vmbus_exists()) {
1622 driver_unregister(&hv_driver->driver);
1623 vmbus_free_dynids(hv_driver);
1626 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1630 * Called when last reference to channel is gone.
1632 static void vmbus_chan_release(struct kobject *kobj)
1634 struct vmbus_channel *channel
1635 = container_of(kobj, struct vmbus_channel, kobj);
1637 kfree_rcu(channel, rcu);
1640 struct vmbus_chan_attribute {
1641 struct attribute attr;
1642 ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1643 ssize_t (*store)(struct vmbus_channel *chan,
1644 const char *buf, size_t count);
1646 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1647 struct vmbus_chan_attribute chan_attr_##_name \
1648 = __ATTR(_name, _mode, _show, _store)
1649 #define VMBUS_CHAN_ATTR_RW(_name) \
1650 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1651 #define VMBUS_CHAN_ATTR_RO(_name) \
1652 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1653 #define VMBUS_CHAN_ATTR_WO(_name) \
1654 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1656 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1657 struct attribute *attr, char *buf)
1659 const struct vmbus_chan_attribute *attribute
1660 = container_of(attr, struct vmbus_chan_attribute, attr);
1661 struct vmbus_channel *chan
1662 = container_of(kobj, struct vmbus_channel, kobj);
1664 if (!attribute->show)
1667 return attribute->show(chan, buf);
1670 static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1671 struct attribute *attr, const char *buf,
1674 const struct vmbus_chan_attribute *attribute
1675 = container_of(attr, struct vmbus_chan_attribute, attr);
1676 struct vmbus_channel *chan
1677 = container_of(kobj, struct vmbus_channel, kobj);
1679 if (!attribute->store)
1682 return attribute->store(chan, buf, count);
1685 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1686 .show = vmbus_chan_attr_show,
1687 .store = vmbus_chan_attr_store,
1690 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1692 struct hv_ring_buffer_info *rbi = &channel->outbound;
1695 mutex_lock(&rbi->ring_buffer_mutex);
1696 if (!rbi->ring_buffer) {
1697 mutex_unlock(&rbi->ring_buffer_mutex);
1701 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1702 mutex_unlock(&rbi->ring_buffer_mutex);
1705 static VMBUS_CHAN_ATTR_RO(out_mask);
1707 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1709 struct hv_ring_buffer_info *rbi = &channel->inbound;
1712 mutex_lock(&rbi->ring_buffer_mutex);
1713 if (!rbi->ring_buffer) {
1714 mutex_unlock(&rbi->ring_buffer_mutex);
1718 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1719 mutex_unlock(&rbi->ring_buffer_mutex);
1722 static VMBUS_CHAN_ATTR_RO(in_mask);
1724 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1726 struct hv_ring_buffer_info *rbi = &channel->inbound;
1729 mutex_lock(&rbi->ring_buffer_mutex);
1730 if (!rbi->ring_buffer) {
1731 mutex_unlock(&rbi->ring_buffer_mutex);
1735 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1736 mutex_unlock(&rbi->ring_buffer_mutex);
1739 static VMBUS_CHAN_ATTR_RO(read_avail);
1741 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1743 struct hv_ring_buffer_info *rbi = &channel->outbound;
1746 mutex_lock(&rbi->ring_buffer_mutex);
1747 if (!rbi->ring_buffer) {
1748 mutex_unlock(&rbi->ring_buffer_mutex);
1752 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1753 mutex_unlock(&rbi->ring_buffer_mutex);
1756 static VMBUS_CHAN_ATTR_RO(write_avail);
1758 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1760 return sprintf(buf, "%u\n", channel->target_cpu);
1762 static ssize_t target_cpu_store(struct vmbus_channel *channel,
1763 const char *buf, size_t count)
1765 u32 target_cpu, origin_cpu;
1766 ssize_t ret = count;
1768 if (vmbus_proto_version < VERSION_WIN10_V4_1)
1771 if (sscanf(buf, "%uu", &target_cpu) != 1)
1774 /* Validate target_cpu for the cpumask_test_cpu() operation below. */
1775 if (target_cpu >= nr_cpumask_bits)
1778 if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ)))
1781 /* No CPUs should come up or down during this. */
1784 if (!cpu_online(target_cpu)) {
1790 * Synchronizes target_cpu_store() and channel closure:
1792 * { Initially: state = CHANNEL_OPENED }
1796 * [target_cpu_store()] [vmbus_disconnect_ring()]
1798 * LOCK channel_mutex LOCK channel_mutex
1799 * LOAD r1 = state LOAD r2 = state
1800 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED)
1801 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN
1802 * [...] SEND CLOSECHANNEL
1803 * UNLOCK channel_mutex UNLOCK channel_mutex
1805 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1806 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1808 * Note. The host processes the channel messages "sequentially", in
1809 * the order in which they are received on a per-partition basis.
1811 mutex_lock(&vmbus_connection.channel_mutex);
1814 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1815 * avoid sending the message and fail here for such channels.
1817 if (channel->state != CHANNEL_OPENED_STATE) {
1819 goto cpu_store_unlock;
1822 origin_cpu = channel->target_cpu;
1823 if (target_cpu == origin_cpu)
1824 goto cpu_store_unlock;
1826 if (vmbus_send_modifychannel(channel,
1827 hv_cpu_number_to_vp_number(target_cpu))) {
1829 goto cpu_store_unlock;
1833 * For version before VERSION_WIN10_V5_3, the following warning holds:
1835 * Warning. At this point, there is *no* guarantee that the host will
1836 * have successfully processed the vmbus_send_modifychannel() request.
1837 * See the header comment of vmbus_send_modifychannel() for more info.
1839 * Lags in the processing of the above vmbus_send_modifychannel() can
1840 * result in missed interrupts if the "old" target CPU is taken offline
1841 * before Hyper-V starts sending interrupts to the "new" target CPU.
1842 * But apart from this offlining scenario, the code tolerates such
1843 * lags. It will function correctly even if a channel interrupt comes
1844 * in on a CPU that is different from the channel target_cpu value.
1847 channel->target_cpu = target_cpu;
1849 /* See init_vp_index(). */
1850 if (hv_is_perf_channel(channel))
1851 hv_update_allocated_cpus(origin_cpu, target_cpu);
1853 /* Currently set only for storvsc channels. */
1854 if (channel->change_target_cpu_callback) {
1855 (*channel->change_target_cpu_callback)(channel,
1856 origin_cpu, target_cpu);
1860 mutex_unlock(&vmbus_connection.channel_mutex);
1864 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1866 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1869 return sprintf(buf, "%d\n",
1870 channel_pending(channel,
1871 vmbus_connection.monitor_pages[1]));
1873 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1875 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1878 return sprintf(buf, "%d\n",
1879 channel_latency(channel,
1880 vmbus_connection.monitor_pages[1]));
1882 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1884 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1886 return sprintf(buf, "%llu\n", channel->interrupts);
1888 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1890 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1892 return sprintf(buf, "%llu\n", channel->sig_events);
1894 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1896 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1899 return sprintf(buf, "%llu\n",
1900 (unsigned long long)channel->intr_in_full);
1902 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1904 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1907 return sprintf(buf, "%llu\n",
1908 (unsigned long long)channel->intr_out_empty);
1910 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1912 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1915 return sprintf(buf, "%llu\n",
1916 (unsigned long long)channel->out_full_first);
1918 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1920 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1923 return sprintf(buf, "%llu\n",
1924 (unsigned long long)channel->out_full_total);
1926 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1928 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1931 return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1933 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1935 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1938 return sprintf(buf, "%u\n",
1939 channel->offermsg.offer.sub_channel_index);
1941 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1943 static struct attribute *vmbus_chan_attrs[] = {
1944 &chan_attr_out_mask.attr,
1945 &chan_attr_in_mask.attr,
1946 &chan_attr_read_avail.attr,
1947 &chan_attr_write_avail.attr,
1948 &chan_attr_cpu.attr,
1949 &chan_attr_pending.attr,
1950 &chan_attr_latency.attr,
1951 &chan_attr_interrupts.attr,
1952 &chan_attr_events.attr,
1953 &chan_attr_intr_in_full.attr,
1954 &chan_attr_intr_out_empty.attr,
1955 &chan_attr_out_full_first.attr,
1956 &chan_attr_out_full_total.attr,
1957 &chan_attr_monitor_id.attr,
1958 &chan_attr_subchannel_id.attr,
1963 * Channel-level attribute_group callback function. Returns the permission for
1964 * each attribute, and returns 0 if an attribute is not visible.
1966 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1967 struct attribute *attr, int idx)
1969 const struct vmbus_channel *channel =
1970 container_of(kobj, struct vmbus_channel, kobj);
1972 /* Hide the monitor attributes if the monitor mechanism is not used. */
1973 if (!channel->offermsg.monitor_allocated &&
1974 (attr == &chan_attr_pending.attr ||
1975 attr == &chan_attr_latency.attr ||
1976 attr == &chan_attr_monitor_id.attr))
1982 static struct attribute_group vmbus_chan_group = {
1983 .attrs = vmbus_chan_attrs,
1984 .is_visible = vmbus_chan_attr_is_visible
1987 static struct kobj_type vmbus_chan_ktype = {
1988 .sysfs_ops = &vmbus_chan_sysfs_ops,
1989 .release = vmbus_chan_release,
1993 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1995 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1997 const struct device *device = &dev->device;
1998 struct kobject *kobj = &channel->kobj;
1999 u32 relid = channel->offermsg.child_relid;
2002 kobj->kset = dev->channels_kset;
2003 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
2010 ret = sysfs_create_group(kobj, &vmbus_chan_group);
2014 * The calling functions' error handling paths will cleanup the
2015 * empty channel directory.
2018 dev_err(device, "Unable to set up channel sysfs files\n");
2022 kobject_uevent(kobj, KOBJ_ADD);
2028 * vmbus_remove_channel_attr_group - remove the channel's attribute group
2030 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
2032 sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
2036 * vmbus_device_create - Creates and registers a new child device
2039 struct hv_device *vmbus_device_create(const guid_t *type,
2040 const guid_t *instance,
2041 struct vmbus_channel *channel)
2043 struct hv_device *child_device_obj;
2045 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
2046 if (!child_device_obj) {
2047 pr_err("Unable to allocate device object for child device\n");
2051 child_device_obj->channel = channel;
2052 guid_copy(&child_device_obj->dev_type, type);
2053 guid_copy(&child_device_obj->dev_instance, instance);
2054 child_device_obj->vendor_id = PCI_VENDOR_ID_MICROSOFT;
2056 return child_device_obj;
2060 * vmbus_device_register - Register the child device
2062 int vmbus_device_register(struct hv_device *child_device_obj)
2064 struct kobject *kobj = &child_device_obj->device.kobj;
2067 dev_set_name(&child_device_obj->device, "%pUl",
2068 &child_device_obj->channel->offermsg.offer.if_instance);
2070 child_device_obj->device.bus = &hv_bus;
2071 child_device_obj->device.parent = &hv_acpi_dev->dev;
2072 child_device_obj->device.release = vmbus_device_release;
2074 child_device_obj->device.dma_parms = &child_device_obj->dma_parms;
2075 child_device_obj->device.dma_mask = &child_device_obj->dma_mask;
2076 dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64));
2079 * Register with the LDM. This will kick off the driver/device
2080 * binding...which will eventually call vmbus_match() and vmbus_probe()
2082 ret = device_register(&child_device_obj->device);
2084 pr_err("Unable to register child device\n");
2088 child_device_obj->channels_kset = kset_create_and_add("channels",
2090 if (!child_device_obj->channels_kset) {
2092 goto err_dev_unregister;
2095 ret = vmbus_add_channel_kobj(child_device_obj,
2096 child_device_obj->channel);
2098 pr_err("Unable to register primary channeln");
2099 goto err_kset_unregister;
2101 hv_debug_add_dev_dir(child_device_obj);
2105 err_kset_unregister:
2106 kset_unregister(child_device_obj->channels_kset);
2109 device_unregister(&child_device_obj->device);
2114 * vmbus_device_unregister - Remove the specified child device
2117 void vmbus_device_unregister(struct hv_device *device_obj)
2119 pr_debug("child device %s unregistered\n",
2120 dev_name(&device_obj->device));
2122 kset_unregister(device_obj->channels_kset);
2125 * Kick off the process of unregistering the device.
2126 * This will call vmbus_remove() and eventually vmbus_device_release()
2128 device_unregister(&device_obj->device);
2133 * VMBUS is an acpi enumerated device. Get the information we
2136 #define VTPM_BASE_ADDRESS 0xfed40000
2137 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2139 resource_size_t start = 0;
2140 resource_size_t end = 0;
2141 struct resource *new_res;
2142 struct resource **old_res = &hyperv_mmio;
2143 struct resource **prev_res = NULL;
2146 switch (res->type) {
2149 * "Address" descriptors are for bus windows. Ignore
2150 * "memory" descriptors, which are for registers on
2153 case ACPI_RESOURCE_TYPE_ADDRESS32:
2154 start = res->data.address32.address.minimum;
2155 end = res->data.address32.address.maximum;
2158 case ACPI_RESOURCE_TYPE_ADDRESS64:
2159 start = res->data.address64.address.minimum;
2160 end = res->data.address64.address.maximum;
2164 * The IRQ information is needed only on ARM64, which Hyper-V
2165 * sets up in the extended format. IRQ information is present
2166 * on x86/x64 in the non-extended format but it is not used by
2167 * Linux. So don't bother checking for the non-extended format.
2169 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2170 if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2171 pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2174 /* ARM64 INTID for VMbus */
2175 vmbus_interrupt = res->data.extended_irq.interrupts[0];
2176 /* Linux IRQ number */
2177 vmbus_irq = r.start;
2181 /* Unused resource type */
2186 * Ignore ranges that are below 1MB, as they're not
2187 * necessary or useful here.
2192 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2194 return AE_NO_MEMORY;
2196 /* If this range overlaps the virtual TPM, truncate it. */
2197 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2198 end = VTPM_BASE_ADDRESS;
2200 new_res->name = "hyperv mmio";
2201 new_res->flags = IORESOURCE_MEM;
2202 new_res->start = start;
2206 * If two ranges are adjacent, merge them.
2214 if (((*old_res)->end + 1) == new_res->start) {
2215 (*old_res)->end = new_res->end;
2220 if ((*old_res)->start == new_res->end + 1) {
2221 (*old_res)->start = new_res->start;
2226 if ((*old_res)->start > new_res->end) {
2227 new_res->sibling = *old_res;
2229 (*prev_res)->sibling = new_res;
2235 old_res = &(*old_res)->sibling;
2242 static int vmbus_acpi_remove(struct acpi_device *device)
2244 struct resource *cur_res;
2245 struct resource *next_res;
2249 __release_region(hyperv_mmio, fb_mmio->start,
2250 resource_size(fb_mmio));
2254 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2255 next_res = cur_res->sibling;
2263 static void vmbus_reserve_fb(void)
2265 resource_size_t start = 0, size;
2266 struct pci_dev *pdev;
2268 if (efi_enabled(EFI_BOOT)) {
2269 /* Gen2 VM: get FB base from EFI framebuffer */
2270 start = screen_info.lfb_base;
2271 size = max_t(__u32, screen_info.lfb_size, 0x800000);
2273 /* Gen1 VM: get FB base from PCI */
2274 pdev = pci_get_device(PCI_VENDOR_ID_MICROSOFT,
2275 PCI_DEVICE_ID_HYPERV_VIDEO, NULL);
2279 if (pdev->resource[0].flags & IORESOURCE_MEM) {
2280 start = pci_resource_start(pdev, 0);
2281 size = pci_resource_len(pdev, 0);
2285 * Release the PCI device so hyperv_drm or hyperv_fb driver can
2295 * Make a claim for the frame buffer in the resource tree under the
2296 * first node, which will be the one below 4GB. The length seems to
2297 * be underreported, particularly in a Generation 1 VM. So start out
2298 * reserving a larger area and make it smaller until it succeeds.
2300 for (; !fb_mmio && (size >= 0x100000); size >>= 1)
2301 fb_mmio = __request_region(hyperv_mmio, start, size, fb_mmio_name, 0);
2305 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2306 * @new: If successful, supplied a pointer to the
2307 * allocated MMIO space.
2308 * @device_obj: Identifies the caller
2309 * @min: Minimum guest physical address of the
2311 * @max: Maximum guest physical address
2312 * @size: Size of the range to be allocated
2313 * @align: Alignment of the range to be allocated
2314 * @fb_overlap_ok: Whether this allocation can be allowed
2315 * to overlap the video frame buffer.
2317 * This function walks the resources granted to VMBus by the
2318 * _CRS object in the ACPI namespace underneath the parent
2319 * "bridge" whether that's a root PCI bus in the Generation 1
2320 * case or a Module Device in the Generation 2 case. It then
2321 * attempts to allocate from the global MMIO pool in a way that
2322 * matches the constraints supplied in these parameters and by
2325 * Return: 0 on success, -errno on failure
2327 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2328 resource_size_t min, resource_size_t max,
2329 resource_size_t size, resource_size_t align,
2332 struct resource *iter, *shadow;
2333 resource_size_t range_min, range_max, start, end;
2334 const char *dev_n = dev_name(&device_obj->device);
2338 mutex_lock(&hyperv_mmio_lock);
2341 * If overlaps with frame buffers are allowed, then first attempt to
2342 * make the allocation from within the reserved region. Because it
2343 * is already reserved, no shadow allocation is necessary.
2345 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2346 !(max < fb_mmio->start)) {
2348 range_min = fb_mmio->start;
2349 range_max = fb_mmio->end;
2350 start = (range_min + align - 1) & ~(align - 1);
2351 for (; start + size - 1 <= range_max; start += align) {
2352 *new = request_mem_region_exclusive(start, size, dev_n);
2360 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2361 if ((iter->start >= max) || (iter->end <= min))
2364 range_min = iter->start;
2365 range_max = iter->end;
2366 start = (range_min + align - 1) & ~(align - 1);
2367 for (; start + size - 1 <= range_max; start += align) {
2368 end = start + size - 1;
2370 /* Skip the whole fb_mmio region if not fb_overlap_ok */
2371 if (!fb_overlap_ok && fb_mmio &&
2372 (((start >= fb_mmio->start) && (start <= fb_mmio->end)) ||
2373 ((end >= fb_mmio->start) && (end <= fb_mmio->end))))
2376 shadow = __request_region(iter, start, size, NULL,
2381 *new = request_mem_region_exclusive(start, size, dev_n);
2383 shadow->name = (char *)*new;
2388 __release_region(iter, start, size);
2393 mutex_unlock(&hyperv_mmio_lock);
2396 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2399 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2400 * @start: Base address of region to release.
2401 * @size: Size of the range to be allocated
2403 * This function releases anything requested by
2404 * vmbus_mmio_allocate().
2406 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2408 struct resource *iter;
2410 mutex_lock(&hyperv_mmio_lock);
2411 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2412 if ((iter->start >= start + size) || (iter->end <= start))
2415 __release_region(iter, start, size);
2417 release_mem_region(start, size);
2418 mutex_unlock(&hyperv_mmio_lock);
2421 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2423 static int vmbus_acpi_add(struct acpi_device *device)
2426 int ret_val = -ENODEV;
2427 struct acpi_device *ancestor;
2429 hv_acpi_dev = device;
2432 * Older versions of Hyper-V for ARM64 fail to include the _CCA
2433 * method on the top level VMbus device in the DSDT. But devices
2434 * are hardware coherent in all current Hyper-V use cases, so fix
2435 * up the ACPI device to behave as if _CCA is present and indicates
2436 * hardware coherence.
2438 ACPI_COMPANION_SET(&device->dev, device);
2439 if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) &&
2440 device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) {
2441 pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
2442 device->flags.cca_seen = true;
2443 device->flags.coherent_dma = true;
2446 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2447 vmbus_walk_resources, NULL);
2449 if (ACPI_FAILURE(result))
2452 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2453 * firmware) is the VMOD that has the mmio ranges. Get that.
2455 for (ancestor = acpi_dev_parent(device); ancestor;
2456 ancestor = acpi_dev_parent(ancestor)) {
2457 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2458 vmbus_walk_resources, NULL);
2460 if (ACPI_FAILURE(result))
2471 vmbus_acpi_remove(device);
2475 #ifdef CONFIG_PM_SLEEP
2476 static int vmbus_bus_suspend(struct device *dev)
2478 struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(
2479 hv_context.cpu_context, VMBUS_CONNECT_CPU);
2480 struct vmbus_channel *channel, *sc;
2482 tasklet_disable(&hv_cpu->msg_dpc);
2483 vmbus_connection.ignore_any_offer_msg = true;
2484 /* The tasklet_enable() takes care of providing a memory barrier */
2485 tasklet_enable(&hv_cpu->msg_dpc);
2487 /* Drain all the workqueues as we are in suspend */
2488 drain_workqueue(vmbus_connection.rescind_work_queue);
2489 drain_workqueue(vmbus_connection.work_queue);
2490 drain_workqueue(vmbus_connection.handle_primary_chan_wq);
2491 drain_workqueue(vmbus_connection.handle_sub_chan_wq);
2493 mutex_lock(&vmbus_connection.channel_mutex);
2494 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2495 if (!is_hvsock_channel(channel))
2498 vmbus_force_channel_rescinded(channel);
2500 mutex_unlock(&vmbus_connection.channel_mutex);
2503 * Wait until all the sub-channels and hv_sock channels have been
2504 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2505 * they would conflict with the new sub-channels that will be created
2506 * in the resume path. hv_sock channels should also be destroyed, but
2507 * a hv_sock channel of an established hv_sock connection can not be
2508 * really destroyed since it may still be referenced by the userspace
2509 * application, so we just force the hv_sock channel to be rescinded
2510 * by vmbus_force_channel_rescinded(), and the userspace application
2511 * will thoroughly destroy the channel after hibernation.
2513 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2514 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2516 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2517 wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2519 if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2520 pr_err("Can not suspend due to a previous failed resuming\n");
2524 mutex_lock(&vmbus_connection.channel_mutex);
2526 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2528 * Remove the channel from the array of channels and invalidate
2529 * the channel's relid. Upon resume, vmbus_onoffer() will fix
2530 * up the relid (and other fields, if necessary) and add the
2531 * channel back to the array.
2533 vmbus_channel_unmap_relid(channel);
2534 channel->offermsg.child_relid = INVALID_RELID;
2536 if (is_hvsock_channel(channel)) {
2537 if (!channel->rescind) {
2538 pr_err("hv_sock channel not rescinded!\n");
2544 list_for_each_entry(sc, &channel->sc_list, sc_list) {
2545 pr_err("Sub-channel not deleted!\n");
2549 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2552 mutex_unlock(&vmbus_connection.channel_mutex);
2554 vmbus_initiate_unload(false);
2556 /* Reset the event for the next resume. */
2557 reinit_completion(&vmbus_connection.ready_for_resume_event);
2562 static int vmbus_bus_resume(struct device *dev)
2564 struct vmbus_channel_msginfo *msginfo;
2568 vmbus_connection.ignore_any_offer_msg = false;
2571 * We only use the 'vmbus_proto_version', which was in use before
2572 * hibernation, to re-negotiate with the host.
2574 if (!vmbus_proto_version) {
2575 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2579 msgsize = sizeof(*msginfo) +
2580 sizeof(struct vmbus_channel_initiate_contact);
2582 msginfo = kzalloc(msgsize, GFP_KERNEL);
2584 if (msginfo == NULL)
2587 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2594 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2596 vmbus_request_offers();
2598 if (wait_for_completion_timeout(
2599 &vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2600 pr_err("Some vmbus device is missing after suspending?\n");
2602 /* Reset the event for the next suspend. */
2603 reinit_completion(&vmbus_connection.ready_for_suspend_event);
2608 #define vmbus_bus_suspend NULL
2609 #define vmbus_bus_resume NULL
2610 #endif /* CONFIG_PM_SLEEP */
2612 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2617 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2620 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2621 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2622 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2623 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2624 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2625 * resume callback must also run via the "noirq" ops.
2627 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2628 * earlier in this file before vmbus_pm.
2631 static const struct dev_pm_ops vmbus_bus_pm = {
2632 .suspend_noirq = NULL,
2633 .resume_noirq = NULL,
2634 .freeze_noirq = vmbus_bus_suspend,
2635 .thaw_noirq = vmbus_bus_resume,
2636 .poweroff_noirq = vmbus_bus_suspend,
2637 .restore_noirq = vmbus_bus_resume
2640 static struct acpi_driver vmbus_acpi_driver = {
2642 .ids = vmbus_acpi_device_ids,
2644 .add = vmbus_acpi_add,
2645 .remove = vmbus_acpi_remove,
2647 .drv.pm = &vmbus_bus_pm,
2648 .drv.probe_type = PROBE_FORCE_SYNCHRONOUS,
2651 static void hv_kexec_handler(void)
2653 hv_stimer_global_cleanup();
2654 vmbus_initiate_unload(false);
2655 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
2657 cpuhp_remove_state(hyperv_cpuhp_online);
2660 static void hv_crash_handler(struct pt_regs *regs)
2664 vmbus_initiate_unload(true);
2666 * In crash handler we can't schedule synic cleanup for all CPUs,
2667 * doing the cleanup for current CPU only. This should be sufficient
2670 cpu = smp_processor_id();
2671 hv_stimer_cleanup(cpu);
2672 hv_synic_disable_regs(cpu);
2675 static int hv_synic_suspend(void)
2678 * When we reach here, all the non-boot CPUs have been offlined.
2679 * If we're in a legacy configuration where stimer Direct Mode is
2680 * not enabled, the stimers on the non-boot CPUs have been unbound
2681 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2682 * hv_stimer_cleanup() -> clockevents_unbind_device().
2684 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2685 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2686 * 1) it's unnecessary as interrupts remain disabled between
2687 * syscore_suspend() and syscore_resume(): see create_image() and
2688 * resume_target_kernel()
2689 * 2) the stimer on CPU0 is automatically disabled later by
2690 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2691 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2692 * 3) a warning would be triggered if we call
2693 * clockevents_unbind_device(), which may sleep, in an
2694 * interrupts-disabled context.
2697 hv_synic_disable_regs(0);
2702 static void hv_synic_resume(void)
2704 hv_synic_enable_regs(0);
2707 * Note: we don't need to call hv_stimer_init(0), because the timer
2708 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2709 * automatically re-enabled in timekeeping_resume().
2713 /* The callbacks run only on CPU0, with irqs_disabled. */
2714 static struct syscore_ops hv_synic_syscore_ops = {
2715 .suspend = hv_synic_suspend,
2716 .resume = hv_synic_resume,
2719 static int __init hv_acpi_init(void)
2723 if (!hv_is_hyperv_initialized())
2726 if (hv_root_partition)
2730 * Get ACPI resources first.
2732 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2743 * If we're on an architecture with a hardcoded hypervisor
2744 * vector (i.e. x86/x64), override the VMbus interrupt found
2745 * in the ACPI tables. Ensure vmbus_irq is not set since the
2746 * normal Linux IRQ mechanism is not used in this case.
2748 #ifdef HYPERVISOR_CALLBACK_VECTOR
2749 vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2755 ret = vmbus_bus_init();
2759 hv_setup_kexec_handler(hv_kexec_handler);
2760 hv_setup_crash_handler(hv_crash_handler);
2762 register_syscore_ops(&hv_synic_syscore_ops);
2767 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2772 static void __exit vmbus_exit(void)
2776 unregister_syscore_ops(&hv_synic_syscore_ops);
2778 hv_remove_kexec_handler();
2779 hv_remove_crash_handler();
2780 vmbus_connection.conn_state = DISCONNECTED;
2781 hv_stimer_global_cleanup();
2783 if (vmbus_irq == -1) {
2784 hv_remove_vmbus_handler();
2786 free_percpu_irq(vmbus_irq, vmbus_evt);
2787 free_percpu(vmbus_evt);
2789 for_each_online_cpu(cpu) {
2790 struct hv_per_cpu_context *hv_cpu
2791 = per_cpu_ptr(hv_context.cpu_context, cpu);
2793 tasklet_kill(&hv_cpu->msg_dpc);
2795 hv_debug_rm_all_dir();
2797 vmbus_free_channels();
2798 kfree(vmbus_connection.channels);
2800 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2801 kmsg_dump_unregister(&hv_kmsg_dumper);
2802 unregister_die_notifier(&hyperv_die_block);
2806 * The panic notifier is always registered, hence we should
2807 * also unconditionally unregister it here as well.
2809 atomic_notifier_chain_unregister(&panic_notifier_list,
2810 &hyperv_panic_block);
2812 free_page((unsigned long)hv_panic_page);
2813 unregister_sysctl_table(hv_ctl_table_hdr);
2814 hv_ctl_table_hdr = NULL;
2815 bus_unregister(&hv_bus);
2817 cpuhp_remove_state(hyperv_cpuhp_online);
2819 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2823 MODULE_LICENSE("GPL");
2824 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2826 subsys_initcall(hv_acpi_init);
2827 module_exit(vmbus_exit);