tty/serial/sirf: fix MODULE_DEVICE_TABLE
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / hv / ring_buffer.c
1 /*
2  *
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <haiyangz@microsoft.com>
20  *   Hank Janssen  <hjanssen@microsoft.com>
21  *   K. Y. Srinivasan <kys@microsoft.com>
22  *
23  */
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/hyperv.h>
29
30 #include "hyperv_vmbus.h"
31
32 void hv_begin_read(struct hv_ring_buffer_info *rbi)
33 {
34         rbi->ring_buffer->interrupt_mask = 1;
35         smp_mb();
36 }
37
38 u32 hv_end_read(struct hv_ring_buffer_info *rbi)
39 {
40         u32 read;
41         u32 write;
42
43         rbi->ring_buffer->interrupt_mask = 0;
44         smp_mb();
45
46         /*
47          * Now check to see if the ring buffer is still empty.
48          * If it is not, we raced and we need to process new
49          * incoming messages.
50          */
51         hv_get_ringbuffer_availbytes(rbi, &read, &write);
52
53         return read;
54 }
55
56 /*
57  * When we write to the ring buffer, check if the host needs to
58  * be signaled. Here is the details of this protocol:
59  *
60  *      1. The host guarantees that while it is draining the
61  *         ring buffer, it will set the interrupt_mask to
62  *         indicate it does not need to be interrupted when
63  *         new data is placed.
64  *
65  *      2. The host guarantees that it will completely drain
66  *         the ring buffer before exiting the read loop. Further,
67  *         once the ring buffer is empty, it will clear the
68  *         interrupt_mask and re-check to see if new data has
69  *         arrived.
70  */
71
72 static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi)
73 {
74         if (rbi->ring_buffer->interrupt_mask)
75                 return false;
76
77         /*
78          * This is the only case we need to signal when the
79          * ring transitions from being empty to non-empty.
80          */
81         if (old_write == rbi->ring_buffer->read_index)
82                 return true;
83
84         return false;
85 }
86
87 /*
88  * To optimize the flow management on the send-side,
89  * when the sender is blocked because of lack of
90  * sufficient space in the ring buffer, potential the
91  * consumer of the ring buffer can signal the producer.
92  * This is controlled by the following parameters:
93  *
94  * 1. pending_send_sz: This is the size in bytes that the
95  *    producer is trying to send.
96  * 2. The feature bit feat_pending_send_sz set to indicate if
97  *    the consumer of the ring will signal when the ring
98  *    state transitions from being full to a state where
99  *    there is room for the producer to send the pending packet.
100  */
101
102 static bool hv_need_to_signal_on_read(u32 old_rd,
103                                          struct hv_ring_buffer_info *rbi)
104 {
105         u32 prev_write_sz;
106         u32 cur_write_sz;
107         u32 r_size;
108         u32 write_loc = rbi->ring_buffer->write_index;
109         u32 read_loc = rbi->ring_buffer->read_index;
110         u32 pending_sz = rbi->ring_buffer->pending_send_sz;
111
112         /*
113          * If the other end is not blocked on write don't bother.
114          */
115         if (pending_sz == 0)
116                 return false;
117
118         r_size = rbi->ring_datasize;
119         cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) :
120                         read_loc - write_loc;
121
122         prev_write_sz = write_loc >= old_rd ? r_size - (write_loc - old_rd) :
123                         old_rd - write_loc;
124
125
126         if ((prev_write_sz < pending_sz) && (cur_write_sz >= pending_sz))
127                 return true;
128
129         return false;
130 }
131
132 /*
133  * hv_get_next_write_location()
134  *
135  * Get the next write location for the specified ring buffer
136  *
137  */
138 static inline u32
139 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
140 {
141         u32 next = ring_info->ring_buffer->write_index;
142
143         return next;
144 }
145
146 /*
147  * hv_set_next_write_location()
148  *
149  * Set the next write location for the specified ring buffer
150  *
151  */
152 static inline void
153 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
154                      u32 next_write_location)
155 {
156         ring_info->ring_buffer->write_index = next_write_location;
157 }
158
159 /*
160  * hv_get_next_read_location()
161  *
162  * Get the next read location for the specified ring buffer
163  */
164 static inline u32
165 hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
166 {
167         u32 next = ring_info->ring_buffer->read_index;
168
169         return next;
170 }
171
172 /*
173  * hv_get_next_readlocation_withoffset()
174  *
175  * Get the next read location + offset for the specified ring buffer.
176  * This allows the caller to skip
177  */
178 static inline u32
179 hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
180                                  u32 offset)
181 {
182         u32 next = ring_info->ring_buffer->read_index;
183
184         next += offset;
185         next %= ring_info->ring_datasize;
186
187         return next;
188 }
189
190 /*
191  *
192  * hv_set_next_read_location()
193  *
194  * Set the next read location for the specified ring buffer
195  *
196  */
197 static inline void
198 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
199                     u32 next_read_location)
200 {
201         ring_info->ring_buffer->read_index = next_read_location;
202 }
203
204
205 /*
206  *
207  * hv_get_ring_buffer()
208  *
209  * Get the start of the ring buffer
210  */
211 static inline void *
212 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
213 {
214         return (void *)ring_info->ring_buffer->buffer;
215 }
216
217
218 /*
219  *
220  * hv_get_ring_buffersize()
221  *
222  * Get the size of the ring buffer
223  */
224 static inline u32
225 hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
226 {
227         return ring_info->ring_datasize;
228 }
229
230 /*
231  *
232  * hv_get_ring_bufferindices()
233  *
234  * Get the read and write indices as u64 of the specified ring buffer
235  *
236  */
237 static inline u64
238 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
239 {
240         return (u64)ring_info->ring_buffer->write_index << 32;
241 }
242
243 /*
244  *
245  * hv_copyfrom_ringbuffer()
246  *
247  * Helper routine to copy to source from ring buffer.
248  * Assume there is enough room. Handles wrap-around in src case only!!
249  *
250  */
251 static u32 hv_copyfrom_ringbuffer(
252         struct hv_ring_buffer_info      *ring_info,
253         void                            *dest,
254         u32                             destlen,
255         u32                             start_read_offset)
256 {
257         void *ring_buffer = hv_get_ring_buffer(ring_info);
258         u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
259
260         u32 frag_len;
261
262         /* wrap-around detected at the src */
263         if (destlen > ring_buffer_size - start_read_offset) {
264                 frag_len = ring_buffer_size - start_read_offset;
265
266                 memcpy(dest, ring_buffer + start_read_offset, frag_len);
267                 memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
268         } else
269
270                 memcpy(dest, ring_buffer + start_read_offset, destlen);
271
272
273         start_read_offset += destlen;
274         start_read_offset %= ring_buffer_size;
275
276         return start_read_offset;
277 }
278
279
280 /*
281  *
282  * hv_copyto_ringbuffer()
283  *
284  * Helper routine to copy from source to ring buffer.
285  * Assume there is enough room. Handles wrap-around in dest case only!!
286  *
287  */
288 static u32 hv_copyto_ringbuffer(
289         struct hv_ring_buffer_info      *ring_info,
290         u32                             start_write_offset,
291         void                            *src,
292         u32                             srclen)
293 {
294         void *ring_buffer = hv_get_ring_buffer(ring_info);
295         u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
296         u32 frag_len;
297
298         /* wrap-around detected! */
299         if (srclen > ring_buffer_size - start_write_offset) {
300                 frag_len = ring_buffer_size - start_write_offset;
301                 memcpy(ring_buffer + start_write_offset, src, frag_len);
302                 memcpy(ring_buffer, src + frag_len, srclen - frag_len);
303         } else
304                 memcpy(ring_buffer + start_write_offset, src, srclen);
305
306         start_write_offset += srclen;
307         start_write_offset %= ring_buffer_size;
308
309         return start_write_offset;
310 }
311
312 /*
313  *
314  * hv_ringbuffer_get_debuginfo()
315  *
316  * Get various debug metrics for the specified ring buffer
317  *
318  */
319 void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
320                             struct hv_ring_buffer_debug_info *debug_info)
321 {
322         u32 bytes_avail_towrite;
323         u32 bytes_avail_toread;
324
325         if (ring_info->ring_buffer) {
326                 hv_get_ringbuffer_availbytes(ring_info,
327                                         &bytes_avail_toread,
328                                         &bytes_avail_towrite);
329
330                 debug_info->bytes_avail_toread = bytes_avail_toread;
331                 debug_info->bytes_avail_towrite = bytes_avail_towrite;
332                 debug_info->current_read_index =
333                         ring_info->ring_buffer->read_index;
334                 debug_info->current_write_index =
335                         ring_info->ring_buffer->write_index;
336                 debug_info->current_interrupt_mask =
337                         ring_info->ring_buffer->interrupt_mask;
338         }
339 }
340
341 /*
342  *
343  * hv_ringbuffer_init()
344  *
345  *Initialize the ring buffer
346  *
347  */
348 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
349                    void *buffer, u32 buflen)
350 {
351         if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
352                 return -EINVAL;
353
354         memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
355
356         ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
357         ring_info->ring_buffer->read_index =
358                 ring_info->ring_buffer->write_index = 0;
359
360         ring_info->ring_size = buflen;
361         ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
362
363         spin_lock_init(&ring_info->ring_lock);
364
365         return 0;
366 }
367
368 /*
369  *
370  * hv_ringbuffer_cleanup()
371  *
372  * Cleanup the ring buffer
373  *
374  */
375 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
376 {
377 }
378
379 /*
380  *
381  * hv_ringbuffer_write()
382  *
383  * Write to the ring buffer
384  *
385  */
386 int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
387                     struct scatterlist *sglist, u32 sgcount, bool *signal)
388 {
389         int i = 0;
390         u32 bytes_avail_towrite;
391         u32 bytes_avail_toread;
392         u32 totalbytes_towrite = 0;
393
394         struct scatterlist *sg;
395         u32 next_write_location;
396         u32 old_write;
397         u64 prev_indices = 0;
398         unsigned long flags;
399
400         for_each_sg(sglist, sg, sgcount, i)
401         {
402                 totalbytes_towrite += sg->length;
403         }
404
405         totalbytes_towrite += sizeof(u64);
406
407         spin_lock_irqsave(&outring_info->ring_lock, flags);
408
409         hv_get_ringbuffer_availbytes(outring_info,
410                                 &bytes_avail_toread,
411                                 &bytes_avail_towrite);
412
413
414         /* If there is only room for the packet, assume it is full. */
415         /* Otherwise, the next time around, we think the ring buffer */
416         /* is empty since the read index == write index */
417         if (bytes_avail_towrite <= totalbytes_towrite) {
418                 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
419                 return -EAGAIN;
420         }
421
422         /* Write to the ring buffer */
423         next_write_location = hv_get_next_write_location(outring_info);
424
425         old_write = next_write_location;
426
427         for_each_sg(sglist, sg, sgcount, i)
428         {
429                 next_write_location = hv_copyto_ringbuffer(outring_info,
430                                                      next_write_location,
431                                                      sg_virt(sg),
432                                                      sg->length);
433         }
434
435         /* Set previous packet start */
436         prev_indices = hv_get_ring_bufferindices(outring_info);
437
438         next_write_location = hv_copyto_ringbuffer(outring_info,
439                                              next_write_location,
440                                              &prev_indices,
441                                              sizeof(u64));
442
443         /* Issue a full memory barrier before updating the write index */
444         smp_mb();
445
446         /* Now, update the write location */
447         hv_set_next_write_location(outring_info, next_write_location);
448
449
450         spin_unlock_irqrestore(&outring_info->ring_lock, flags);
451
452         *signal = hv_need_to_signal(old_write, outring_info);
453         return 0;
454 }
455
456
457 /*
458  *
459  * hv_ringbuffer_peek()
460  *
461  * Read without advancing the read index
462  *
463  */
464 int hv_ringbuffer_peek(struct hv_ring_buffer_info *Inring_info,
465                    void *Buffer, u32 buflen)
466 {
467         u32 bytes_avail_towrite;
468         u32 bytes_avail_toread;
469         u32 next_read_location = 0;
470         unsigned long flags;
471
472         spin_lock_irqsave(&Inring_info->ring_lock, flags);
473
474         hv_get_ringbuffer_availbytes(Inring_info,
475                                 &bytes_avail_toread,
476                                 &bytes_avail_towrite);
477
478         /* Make sure there is something to read */
479         if (bytes_avail_toread < buflen) {
480
481                 spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
482
483                 return -EAGAIN;
484         }
485
486         /* Convert to byte offset */
487         next_read_location = hv_get_next_read_location(Inring_info);
488
489         next_read_location = hv_copyfrom_ringbuffer(Inring_info,
490                                                 Buffer,
491                                                 buflen,
492                                                 next_read_location);
493
494         spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
495
496         return 0;
497 }
498
499
500 /*
501  *
502  * hv_ringbuffer_read()
503  *
504  * Read and advance the read index
505  *
506  */
507 int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, void *buffer,
508                    u32 buflen, u32 offset, bool *signal)
509 {
510         u32 bytes_avail_towrite;
511         u32 bytes_avail_toread;
512         u32 next_read_location = 0;
513         u64 prev_indices = 0;
514         unsigned long flags;
515         u32 old_read;
516
517         if (buflen <= 0)
518                 return -EINVAL;
519
520         spin_lock_irqsave(&inring_info->ring_lock, flags);
521
522         hv_get_ringbuffer_availbytes(inring_info,
523                                 &bytes_avail_toread,
524                                 &bytes_avail_towrite);
525
526         old_read = bytes_avail_toread;
527
528         /* Make sure there is something to read */
529         if (bytes_avail_toread < buflen) {
530                 spin_unlock_irqrestore(&inring_info->ring_lock, flags);
531
532                 return -EAGAIN;
533         }
534
535         next_read_location =
536                 hv_get_next_readlocation_withoffset(inring_info, offset);
537
538         next_read_location = hv_copyfrom_ringbuffer(inring_info,
539                                                 buffer,
540                                                 buflen,
541                                                 next_read_location);
542
543         next_read_location = hv_copyfrom_ringbuffer(inring_info,
544                                                 &prev_indices,
545                                                 sizeof(u64),
546                                                 next_read_location);
547
548         /* Make sure all reads are done before we update the read index since */
549         /* the writer may start writing to the read area once the read index */
550         /*is updated */
551         smp_mb();
552
553         /* Update the read index */
554         hv_set_next_read_location(inring_info, next_read_location);
555
556         spin_unlock_irqrestore(&inring_info->ring_lock, flags);
557
558         *signal = hv_need_to_signal_on_read(old_read, inring_info);
559
560         return 0;
561 }