1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2012, Microsoft Corporation.
6 * K. Y. Srinivasan <kys@microsoft.com>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/jiffies.h>
13 #include <linux/mman.h>
14 #include <linux/debugfs.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/kthread.h>
20 #include <linux/completion.h>
21 #include <linux/count_zeros.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/memory.h>
24 #include <linux/notifier.h>
25 #include <linux/percpu_counter.h>
26 #include <linux/page_reporting.h>
28 #include <linux/hyperv.h>
29 #include <asm/hyperv-tlfs.h>
31 #include <asm/mshyperv.h>
33 #define CREATE_TRACE_POINTS
34 #include "hv_trace_balloon.h"
37 * We begin with definitions supporting the Dynamic Memory protocol
40 * Begin protocol definitions.
46 * Protocol versions. The low word is the minor version, the high word the major
51 * Changed to 0.1 on 2009/03/25
52 * Changes to 0.2 on 2009/05/14
53 * Changes to 0.3 on 2009/12/03
54 * Changed to 1.0 on 2011/04/05
57 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
58 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
59 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
62 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
63 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
64 DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
66 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
67 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
68 DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
70 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
79 enum dm_message_type {
84 DM_VERSION_REQUEST = 1,
85 DM_VERSION_RESPONSE = 2,
86 DM_CAPABILITIES_REPORT = 3,
87 DM_CAPABILITIES_RESPONSE = 4,
89 DM_BALLOON_REQUEST = 6,
90 DM_BALLOON_RESPONSE = 7,
91 DM_UNBALLOON_REQUEST = 8,
92 DM_UNBALLOON_RESPONSE = 9,
93 DM_MEM_HOT_ADD_REQUEST = 10,
94 DM_MEM_HOT_ADD_RESPONSE = 11,
95 DM_VERSION_03_MAX = 11,
100 DM_VERSION_1_MAX = 12
105 * Structures defining the dynamic memory management
123 * To support guests that may have alignment
124 * limitations on hot-add, the guest can specify
125 * its alignment requirements; a value of n
126 * represents an alignment of 2^n in mega bytes.
128 __u64 hot_add_alignment:4;
134 union dm_mem_page_range {
137 * The PFN number of the first page in the range.
138 * 40 bits is the architectural limit of a PFN
143 * The number of pages in the range.
153 * The header for all dynamic memory messages:
155 * type: Type of the message.
156 * size: Size of the message in bytes; including the header.
157 * trans_id: The guest is responsible for manufacturing this ID.
167 * A generic message format for dynamic memory.
168 * Specific message formats are defined later in the file.
172 struct dm_header hdr;
173 __u8 data[]; /* enclosed message */
178 * Specific message types supporting the dynamic memory protocol.
182 * Version negotiation message. Sent from the guest to the host.
183 * The guest is free to try different versions until the host
184 * accepts the version.
186 * dm_version: The protocol version requested.
187 * is_last_attempt: If TRUE, this is the last version guest will request.
188 * reservedz: Reserved field, set to zero.
191 struct dm_version_request {
192 struct dm_header hdr;
193 union dm_version version;
194 __u32 is_last_attempt:1;
199 * Version response message; Host to Guest and indicates
200 * if the host has accepted the version sent by the guest.
202 * is_accepted: If TRUE, host has accepted the version and the guest
203 * should proceed to the next stage of the protocol. FALSE indicates that
204 * guest should re-try with a different version.
206 * reservedz: Reserved field, set to zero.
209 struct dm_version_response {
210 struct dm_header hdr;
216 * Message reporting capabilities. This is sent from the guest to the
220 struct dm_capabilities {
221 struct dm_header hdr;
224 __u64 max_page_number;
228 * Response to the capabilities message. This is sent from the host to the
229 * guest. This message notifies if the host has accepted the guest's
230 * capabilities. If the host has not accepted, the guest must shutdown
233 * is_accepted: Indicates if the host has accepted guest's capabilities.
234 * reservedz: Must be 0.
237 struct dm_capabilities_resp_msg {
238 struct dm_header hdr;
244 * This message is used to report memory pressure from the guest.
245 * This message is not part of any transaction and there is no
246 * response to this message.
248 * num_avail: Available memory in pages.
249 * num_committed: Committed memory in pages.
250 * page_file_size: The accumulated size of all page files
251 * in the system in pages.
252 * zero_free: The number of zero and free pages.
253 * page_file_writes: The writes to the page file in pages.
254 * io_diff: An indicator of file cache efficiency or page file activity,
255 * calculated as File Cache Page Fault Count - Page Read Count.
256 * This value is in pages.
258 * Some of these metrics are Windows specific and fortunately
259 * the algorithm on the host side that computes the guest memory
260 * pressure only uses num_committed value.
264 struct dm_header hdr;
267 __u64 page_file_size;
269 __u32 page_file_writes;
275 * Message to ask the guest to allocate memory - balloon up message.
276 * This message is sent from the host to the guest. The guest may not be
277 * able to allocate as much memory as requested.
279 * num_pages: number of pages to allocate.
283 struct dm_header hdr;
290 * Balloon response message; this message is sent from the guest
291 * to the host in response to the balloon message.
293 * reservedz: Reserved; must be set to zero.
294 * more_pages: If FALSE, this is the last message of the transaction.
295 * if TRUE there will atleast one more message from the guest.
297 * range_count: The number of ranges in the range array.
299 * range_array: An array of page ranges returned to the host.
303 struct dm_balloon_response {
304 struct dm_header hdr;
307 __u32 range_count:31;
308 union dm_mem_page_range range_array[];
312 * Un-balloon message; this message is sent from the host
313 * to the guest to give guest more memory.
315 * more_pages: If FALSE, this is the last message of the transaction.
316 * if TRUE there will atleast one more message from the guest.
318 * reservedz: Reserved; must be set to zero.
320 * range_count: The number of ranges in the range array.
322 * range_array: An array of page ranges returned to the host.
326 struct dm_unballoon_request {
327 struct dm_header hdr;
331 union dm_mem_page_range range_array[];
335 * Un-balloon response message; this message is sent from the guest
336 * to the host in response to an unballoon request.
340 struct dm_unballoon_response {
341 struct dm_header hdr;
346 * Hot add request message. Message sent from the host to the guest.
348 * mem_range: Memory range to hot add.
353 struct dm_header hdr;
354 union dm_mem_page_range range;
358 * Hot add response message.
359 * This message is sent by the guest to report the status of a hot add request.
360 * If page_count is less than the requested page count, then the host should
361 * assume all further hot add requests will fail, since this indicates that
362 * the guest has hit an upper physical memory barrier.
364 * Hot adds may also fail due to low resources; in this case, the guest must
365 * not complete this message until the hot add can succeed, and the host must
366 * not send a new hot add request until the response is sent.
367 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
368 * times it fails the request.
371 * page_count: number of pages that were successfully hot added.
373 * result: result of the operation 1: success, 0: failure.
377 struct dm_hot_add_response {
378 struct dm_header hdr;
384 * Types of information sent from host to the guest.
388 INFO_TYPE_MAX_PAGE_CNT = 0,
394 * Header for the information message.
397 struct dm_info_header {
398 enum dm_info_type type;
403 * This message is sent from the host to the guest to pass
404 * some relevant information (win8 addition).
407 * info_size: size of the information blob.
408 * info: information blob.
412 struct dm_header hdr;
419 * End protocol definitions.
423 * State to manage hot adding memory into the guest.
424 * The range start_pfn : end_pfn specifies the range
425 * that the host has asked us to hot add. The range
426 * start_pfn : ha_end_pfn specifies the range that we have
427 * currently hot added. We hot add in multiples of 128M
428 * chunks; it is possible that we may not be able to bring
429 * online all the pages in the region. The range
430 * covered_start_pfn:covered_end_pfn defines the pages that can
434 struct hv_hotadd_state {
435 struct list_head list;
436 unsigned long start_pfn;
437 unsigned long covered_start_pfn;
438 unsigned long covered_end_pfn;
439 unsigned long ha_end_pfn;
440 unsigned long end_pfn;
444 struct list_head gap_list;
447 struct hv_hotadd_gap {
448 struct list_head list;
449 unsigned long start_pfn;
450 unsigned long end_pfn;
453 struct balloon_state {
455 struct work_struct wrk;
459 union dm_mem_page_range ha_page_range;
460 union dm_mem_page_range ha_region_range;
461 struct work_struct wrk;
464 static bool allow_hibernation;
465 static bool hot_add = true;
466 static bool do_hot_add;
468 * Delay reporting memory pressure by
469 * the specified number of seconds.
471 static uint pressure_report_delay = 45;
474 * The last time we posted a pressure report to host.
476 static unsigned long last_post_time;
478 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
479 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
481 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
482 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
483 static atomic_t trans_id = ATOMIC_INIT(0);
485 static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024);
488 * Driver specific state.
501 static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
502 static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
503 #define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
504 #define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
506 struct hv_dynmem_device {
507 struct hv_device *dev;
508 enum hv_dm_state state;
509 struct completion host_event;
510 struct completion config_event;
513 * Number of pages we have currently ballooned out.
515 unsigned int num_pages_ballooned;
516 unsigned int num_pages_onlined;
517 unsigned int num_pages_added;
520 * State to manage the ballooning (up) operation.
522 struct balloon_state balloon_wrk;
525 * State to execute the "hot-add" operation.
527 struct hot_add_wrk ha_wrk;
530 * This state tracks if the host has specified a hot-add
533 bool host_specified_ha_region;
536 * State to synchronize hot-add.
538 struct completion ol_waitevent;
540 * This thread handles hot-add
541 * requests from the host as well as notifying
542 * the host with regards to memory pressure in
545 struct task_struct *thread;
548 * Protects ha_region_list, num_pages_onlined counter and individual
549 * regions from ha_region_list.
554 * A list of hot-add regions.
556 struct list_head ha_region_list;
559 * We start with the highest version we can support
560 * and downgrade based on the host; we save here the
561 * next version to try.
566 * The negotiated version agreed by host.
570 struct page_reporting_dev_info pr_dev_info;
573 * Maximum number of pages that can be hot_add-ed
575 __u64 max_dynamic_page_count;
578 static struct hv_dynmem_device dm_device;
580 static void post_status(struct hv_dynmem_device *dm);
582 #ifdef CONFIG_MEMORY_HOTPLUG
583 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
586 struct hv_hotadd_gap *gap;
588 /* The page is not backed. */
589 if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
592 /* Check for gaps. */
593 list_for_each_entry(gap, &has->gap_list, list) {
594 if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
601 static unsigned long hv_page_offline_check(unsigned long start_pfn,
602 unsigned long nr_pages)
604 unsigned long pfn = start_pfn, count = 0;
605 struct hv_hotadd_state *has;
608 while (pfn < start_pfn + nr_pages) {
610 * Search for HAS which covers the pfn and when we find one
611 * count how many consequitive PFNs are covered.
614 list_for_each_entry(has, &dm_device.ha_region_list, list) {
615 while ((pfn >= has->start_pfn) &&
616 (pfn < has->end_pfn) &&
617 (pfn < start_pfn + nr_pages)) {
619 if (has_pfn_is_backed(has, pfn))
626 * This PFN is not in any HAS (e.g. we're offlining a region
627 * which was present at boot), no need to account for it. Go
637 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
640 struct memory_notify *mem = (struct memory_notify *)v;
641 unsigned long flags, pfn_count;
645 case MEM_CANCEL_ONLINE:
646 complete(&dm_device.ol_waitevent);
650 spin_lock_irqsave(&dm_device.ha_lock, flags);
651 pfn_count = hv_page_offline_check(mem->start_pfn,
653 if (pfn_count <= dm_device.num_pages_onlined) {
654 dm_device.num_pages_onlined -= pfn_count;
657 * We're offlining more pages than we managed to online.
658 * This is unexpected. In any case don't let
659 * num_pages_onlined wrap around zero.
662 dm_device.num_pages_onlined = 0;
664 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
666 case MEM_GOING_ONLINE:
667 case MEM_GOING_OFFLINE:
668 case MEM_CANCEL_OFFLINE:
674 static struct notifier_block hv_memory_nb = {
675 .notifier_call = hv_memory_notifier,
679 /* Check if the particular page is backed and can be onlined and online it. */
680 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
682 if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
683 if (!PageOffline(pg))
684 __SetPageOffline(pg);
688 __ClearPageOffline(pg);
690 /* This frame is currently backed; online the page. */
691 generic_online_page(pg, 0);
693 lockdep_assert_held(&dm_device.ha_lock);
694 dm_device.num_pages_onlined++;
697 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
698 unsigned long start_pfn, unsigned long size)
702 pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
703 for (i = 0; i < size; i++)
704 hv_page_online_one(has, pfn_to_page(start_pfn + i));
707 static void hv_mem_hot_add(unsigned long start, unsigned long size,
708 unsigned long pfn_count,
709 struct hv_hotadd_state *has)
713 unsigned long start_pfn;
714 unsigned long processed_pfn;
715 unsigned long total_pfn = pfn_count;
718 for (i = 0; i < (size/HA_CHUNK); i++) {
719 start_pfn = start + (i * HA_CHUNK);
721 spin_lock_irqsave(&dm_device.ha_lock, flags);
722 has->ha_end_pfn += HA_CHUNK;
724 if (total_pfn > HA_CHUNK) {
725 processed_pfn = HA_CHUNK;
726 total_pfn -= HA_CHUNK;
728 processed_pfn = total_pfn;
732 has->covered_end_pfn += processed_pfn;
733 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
735 reinit_completion(&dm_device.ol_waitevent);
737 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
738 ret = add_memory(nid, PFN_PHYS((start_pfn)),
739 (HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE);
742 pr_err("hot_add memory failed error is %d\n", ret);
743 if (ret == -EEXIST) {
745 * This error indicates that the error
746 * is not a transient failure. This is the
747 * case where the guest's physical address map
748 * precludes hot adding memory. Stop all further
753 spin_lock_irqsave(&dm_device.ha_lock, flags);
754 has->ha_end_pfn -= HA_CHUNK;
755 has->covered_end_pfn -= processed_pfn;
756 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
761 * Wait for memory to get onlined. If the kernel onlined the
762 * memory when adding it, this will return directly. Otherwise,
763 * it will wait for user space to online the memory. This helps
764 * to avoid adding memory faster than it is getting onlined. As
765 * adding succeeded, it is ok to proceed even if the memory was
766 * not onlined in time.
768 wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
769 post_status(&dm_device);
773 static void hv_online_page(struct page *pg, unsigned int order)
775 struct hv_hotadd_state *has;
777 unsigned long pfn = page_to_pfn(pg);
779 spin_lock_irqsave(&dm_device.ha_lock, flags);
780 list_for_each_entry(has, &dm_device.ha_region_list, list) {
781 /* The page belongs to a different HAS. */
782 if ((pfn < has->start_pfn) ||
783 (pfn + (1UL << order) > has->end_pfn))
786 hv_bring_pgs_online(has, pfn, 1UL << order);
789 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
792 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
794 struct hv_hotadd_state *has;
795 struct hv_hotadd_gap *gap;
796 unsigned long residual, new_inc;
800 spin_lock_irqsave(&dm_device.ha_lock, flags);
801 list_for_each_entry(has, &dm_device.ha_region_list, list) {
803 * If the pfn range we are dealing with is not in the current
804 * "hot add block", move on.
806 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
810 * If the current start pfn is not where the covered_end
811 * is, create a gap and update covered_end_pfn.
813 if (has->covered_end_pfn != start_pfn) {
814 gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
820 INIT_LIST_HEAD(&gap->list);
821 gap->start_pfn = has->covered_end_pfn;
822 gap->end_pfn = start_pfn;
823 list_add_tail(&gap->list, &has->gap_list);
825 has->covered_end_pfn = start_pfn;
829 * If the current hot add-request extends beyond
830 * our current limit; extend it.
832 if ((start_pfn + pfn_cnt) > has->end_pfn) {
833 residual = (start_pfn + pfn_cnt - has->end_pfn);
835 * Extend the region by multiples of HA_CHUNK.
837 new_inc = (residual / HA_CHUNK) * HA_CHUNK;
838 if (residual % HA_CHUNK)
841 has->end_pfn += new_inc;
847 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
852 static unsigned long handle_pg_range(unsigned long pg_start,
853 unsigned long pg_count)
855 unsigned long start_pfn = pg_start;
856 unsigned long pfn_cnt = pg_count;
858 struct hv_hotadd_state *has;
859 unsigned long pgs_ol = 0;
860 unsigned long old_covered_state;
861 unsigned long res = 0, flags;
863 pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
866 spin_lock_irqsave(&dm_device.ha_lock, flags);
867 list_for_each_entry(has, &dm_device.ha_region_list, list) {
869 * If the pfn range we are dealing with is not in the current
870 * "hot add block", move on.
872 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
875 old_covered_state = has->covered_end_pfn;
877 if (start_pfn < has->ha_end_pfn) {
879 * This is the case where we are backing pages
880 * in an already hot added region. Bring
881 * these pages online first.
883 pgs_ol = has->ha_end_pfn - start_pfn;
884 if (pgs_ol > pfn_cnt)
887 has->covered_end_pfn += pgs_ol;
890 * Check if the corresponding memory block is already
891 * online. It is possible to observe struct pages still
892 * being uninitialized here so check section instead.
893 * In case the section is online we need to bring the
894 * rest of pfns (which were not backed previously)
897 if (start_pfn > has->start_pfn &&
898 online_section_nr(pfn_to_section_nr(start_pfn)))
899 hv_bring_pgs_online(has, start_pfn, pgs_ol);
903 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
905 * We have some residual hot add range
906 * that needs to be hot added; hot add
907 * it now. Hot add a multiple of
908 * of HA_CHUNK that fully covers the pages
911 size = (has->end_pfn - has->ha_end_pfn);
912 if (pfn_cnt <= size) {
913 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
914 if (pfn_cnt % HA_CHUNK)
919 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
920 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
921 spin_lock_irqsave(&dm_device.ha_lock, flags);
924 * If we managed to online any pages that were given to us,
925 * we declare success.
927 res = has->covered_end_pfn - old_covered_state;
930 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
935 static unsigned long process_hot_add(unsigned long pg_start,
936 unsigned long pfn_cnt,
937 unsigned long rg_start,
938 unsigned long rg_size)
940 struct hv_hotadd_state *ha_region = NULL;
947 if (!dm_device.host_specified_ha_region) {
948 covered = pfn_covered(pg_start, pfn_cnt);
957 * If the host has specified a hot-add range; deal with it first.
961 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
965 INIT_LIST_HEAD(&ha_region->list);
966 INIT_LIST_HEAD(&ha_region->gap_list);
968 ha_region->start_pfn = rg_start;
969 ha_region->ha_end_pfn = rg_start;
970 ha_region->covered_start_pfn = pg_start;
971 ha_region->covered_end_pfn = pg_start;
972 ha_region->end_pfn = rg_start + rg_size;
974 spin_lock_irqsave(&dm_device.ha_lock, flags);
975 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
976 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
981 * Process the page range specified; bringing them
982 * online if possible.
984 return handle_pg_range(pg_start, pfn_cnt);
989 static void hot_add_req(struct work_struct *dummy)
991 struct dm_hot_add_response resp;
992 #ifdef CONFIG_MEMORY_HOTPLUG
993 unsigned long pg_start, pfn_cnt;
994 unsigned long rg_start, rg_sz;
996 struct hv_dynmem_device *dm = &dm_device;
998 memset(&resp, 0, sizeof(struct dm_hot_add_response));
999 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
1000 resp.hdr.size = sizeof(struct dm_hot_add_response);
1002 #ifdef CONFIG_MEMORY_HOTPLUG
1003 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1004 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1006 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1007 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1009 if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1010 unsigned long region_size;
1011 unsigned long region_start;
1014 * The host has not specified the hot-add region.
1015 * Based on the hot-add page range being specified,
1016 * compute a hot-add region that can cover the pages
1017 * that need to be hot-added while ensuring the alignment
1018 * and size requirements of Linux as it relates to hot-add.
1020 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1021 if (pfn_cnt % HA_CHUNK)
1022 region_size += HA_CHUNK;
1024 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1026 rg_start = region_start;
1027 rg_sz = region_size;
1031 resp.page_count = process_hot_add(pg_start, pfn_cnt,
1034 dm->num_pages_added += resp.page_count;
1037 * The result field of the response structure has the
1038 * following semantics:
1040 * 1. If all or some pages hot-added: Guest should return success.
1042 * 2. If no pages could be hot-added:
1044 * If the guest returns success, then the host
1045 * will not attempt any further hot-add operations. This
1046 * signifies a permanent failure.
1048 * If the guest returns failure, then this failure will be
1049 * treated as a transient failure and the host may retry the
1050 * hot-add operation after some delay.
1052 if (resp.page_count > 0)
1054 else if (!do_hot_add)
1059 if (!do_hot_add || resp.page_count == 0) {
1060 if (!allow_hibernation)
1061 pr_err("Memory hot add failed\n");
1063 pr_info("Ignore hot-add request!\n");
1066 dm->state = DM_INITIALIZED;
1067 resp.hdr.trans_id = atomic_inc_return(&trans_id);
1068 vmbus_sendpacket(dm->dev->channel, &resp,
1069 sizeof(struct dm_hot_add_response),
1070 (unsigned long)NULL,
1071 VM_PKT_DATA_INBAND, 0);
1074 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1076 struct dm_info_header *info_hdr;
1078 info_hdr = (struct dm_info_header *)msg->info;
1080 switch (info_hdr->type) {
1081 case INFO_TYPE_MAX_PAGE_CNT:
1082 if (info_hdr->data_size == sizeof(__u64)) {
1083 __u64 *max_page_count = (__u64 *)&info_hdr[1];
1085 pr_info("Max. dynamic memory size: %llu MB\n",
1086 (*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1087 dm->max_dynamic_page_count = *max_page_count;
1092 pr_warn("Received Unknown type: %d\n", info_hdr->type);
1096 static unsigned long compute_balloon_floor(void)
1098 unsigned long min_pages;
1099 unsigned long nr_pages = totalram_pages();
1100 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1101 /* Simple continuous piecewiese linear function:
1102 * max MiB -> min MiB gradient
1112 if (nr_pages < MB2PAGES(128))
1113 min_pages = MB2PAGES(8) + (nr_pages >> 1);
1114 else if (nr_pages < MB2PAGES(512))
1115 min_pages = MB2PAGES(40) + (nr_pages >> 2);
1116 else if (nr_pages < MB2PAGES(2048))
1117 min_pages = MB2PAGES(104) + (nr_pages >> 3);
1118 else if (nr_pages < MB2PAGES(8192))
1119 min_pages = MB2PAGES(232) + (nr_pages >> 4);
1121 min_pages = MB2PAGES(488) + (nr_pages >> 5);
1127 * Compute total committed memory pages
1130 static unsigned long get_pages_committed(struct hv_dynmem_device *dm)
1132 return vm_memory_committed() +
1133 dm->num_pages_ballooned +
1134 (dm->num_pages_added > dm->num_pages_onlined ?
1135 dm->num_pages_added - dm->num_pages_onlined : 0) +
1136 compute_balloon_floor();
1140 * Post our status as it relates memory pressure to the
1141 * host. Host expects the guests to post this status
1142 * periodically at 1 second intervals.
1144 * The metrics specified in this protocol are very Windows
1145 * specific and so we cook up numbers here to convey our memory
1149 static void post_status(struct hv_dynmem_device *dm)
1151 struct dm_status status;
1152 unsigned long now = jiffies;
1153 unsigned long last_post = last_post_time;
1154 unsigned long num_pages_avail, num_pages_committed;
1156 if (pressure_report_delay > 0) {
1157 --pressure_report_delay;
1161 if (!time_after(now, (last_post_time + HZ)))
1164 memset(&status, 0, sizeof(struct dm_status));
1165 status.hdr.type = DM_STATUS_REPORT;
1166 status.hdr.size = sizeof(struct dm_status);
1167 status.hdr.trans_id = atomic_inc_return(&trans_id);
1170 * The host expects the guest to report free and committed memory.
1171 * Furthermore, the host expects the pressure information to include
1172 * the ballooned out pages. For a given amount of memory that we are
1173 * managing we need to compute a floor below which we should not
1174 * balloon. Compute this and add it to the pressure report.
1175 * We also need to report all offline pages (num_pages_added -
1176 * num_pages_onlined) as committed to the host, otherwise it can try
1177 * asking us to balloon them out.
1179 num_pages_avail = si_mem_available();
1180 num_pages_committed = get_pages_committed(dm);
1182 trace_balloon_status(num_pages_avail, num_pages_committed,
1183 vm_memory_committed(), dm->num_pages_ballooned,
1184 dm->num_pages_added, dm->num_pages_onlined);
1186 /* Convert numbers of pages into numbers of HV_HYP_PAGEs. */
1187 status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE;
1188 status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE;
1191 * If our transaction ID is no longer current, just don't
1192 * send the status. This can happen if we were interrupted
1193 * after we picked our transaction ID.
1195 if (status.hdr.trans_id != atomic_read(&trans_id))
1199 * If the last post time that we sampled has changed,
1200 * we have raced, don't post the status.
1202 if (last_post != last_post_time)
1205 last_post_time = jiffies;
1206 vmbus_sendpacket(dm->dev->channel, &status,
1207 sizeof(struct dm_status),
1208 (unsigned long)NULL,
1209 VM_PKT_DATA_INBAND, 0);
1213 static void free_balloon_pages(struct hv_dynmem_device *dm,
1214 union dm_mem_page_range *range_array)
1216 int num_pages = range_array->finfo.page_cnt;
1217 __u64 start_frame = range_array->finfo.start_page;
1221 for (i = 0; i < num_pages; i++) {
1222 pg = pfn_to_page(i + start_frame);
1223 __ClearPageOffline(pg);
1225 dm->num_pages_ballooned--;
1226 adjust_managed_page_count(pg, 1);
1232 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1233 unsigned int num_pages,
1234 struct dm_balloon_response *bl_resp,
1240 for (i = 0; i < num_pages / alloc_unit; i++) {
1241 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1243 return i * alloc_unit;
1246 * We execute this code in a thread context. Furthermore,
1247 * we don't want the kernel to try too hard.
1249 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1250 __GFP_NOMEMALLOC | __GFP_NOWARN,
1251 get_order(alloc_unit << PAGE_SHIFT));
1254 return i * alloc_unit;
1256 dm->num_pages_ballooned += alloc_unit;
1259 * If we allocatted 2M pages; split them so we
1260 * can free them in any order we get.
1263 if (alloc_unit != 1)
1264 split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1266 /* mark all pages offline */
1267 for (j = 0; j < alloc_unit; j++) {
1268 __SetPageOffline(pg + j);
1269 adjust_managed_page_count(pg + j, -1);
1272 bl_resp->range_count++;
1273 bl_resp->range_array[i].finfo.start_page =
1275 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1276 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1280 return i * alloc_unit;
1283 static void balloon_up(struct work_struct *dummy)
1285 unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1286 unsigned int num_ballooned = 0;
1287 struct dm_balloon_response *bl_resp;
1293 unsigned long floor;
1296 * We will attempt 2M allocations. However, if we fail to
1297 * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1299 alloc_unit = PAGES_IN_2M;
1301 avail_pages = si_mem_available();
1302 floor = compute_balloon_floor();
1304 /* Refuse to balloon below the floor. */
1305 if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1306 pr_info("Balloon request will be partially fulfilled. %s\n",
1307 avail_pages < num_pages ? "Not enough memory." :
1308 "Balloon floor reached.");
1310 num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1314 memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1315 bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1316 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1317 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1318 bl_resp->more_pages = 1;
1320 num_pages -= num_ballooned;
1321 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1322 bl_resp, alloc_unit);
1324 if (alloc_unit != 1 && num_ballooned == 0) {
1329 if (num_ballooned == 0 || num_ballooned == num_pages) {
1330 pr_debug("Ballooned %u out of %u requested pages.\n",
1331 num_pages, dm_device.balloon_wrk.num_pages);
1333 bl_resp->more_pages = 0;
1335 dm_device.state = DM_INITIALIZED;
1339 * We are pushing a lot of data through the channel;
1340 * deal with transient failures caused because of the
1341 * lack of space in the ring buffer.
1345 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1346 ret = vmbus_sendpacket(dm_device.dev->channel,
1349 (unsigned long)NULL,
1350 VM_PKT_DATA_INBAND, 0);
1354 post_status(&dm_device);
1355 } while (ret == -EAGAIN);
1359 * Free up the memory we allocatted.
1361 pr_err("Balloon response failed\n");
1363 for (i = 0; i < bl_resp->range_count; i++)
1364 free_balloon_pages(&dm_device,
1365 &bl_resp->range_array[i]);
1373 static void balloon_down(struct hv_dynmem_device *dm,
1374 struct dm_unballoon_request *req)
1376 union dm_mem_page_range *range_array = req->range_array;
1377 int range_count = req->range_count;
1378 struct dm_unballoon_response resp;
1380 unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1382 for (i = 0; i < range_count; i++) {
1383 free_balloon_pages(dm, &range_array[i]);
1384 complete(&dm_device.config_event);
1387 pr_debug("Freed %u ballooned pages.\n",
1388 prev_pages_ballooned - dm->num_pages_ballooned);
1390 if (req->more_pages == 1)
1393 memset(&resp, 0, sizeof(struct dm_unballoon_response));
1394 resp.hdr.type = DM_UNBALLOON_RESPONSE;
1395 resp.hdr.trans_id = atomic_inc_return(&trans_id);
1396 resp.hdr.size = sizeof(struct dm_unballoon_response);
1398 vmbus_sendpacket(dm_device.dev->channel, &resp,
1399 sizeof(struct dm_unballoon_response),
1400 (unsigned long)NULL,
1401 VM_PKT_DATA_INBAND, 0);
1403 dm->state = DM_INITIALIZED;
1406 static void balloon_onchannelcallback(void *context);
1408 static int dm_thread_func(void *dm_dev)
1410 struct hv_dynmem_device *dm = dm_dev;
1412 while (!kthread_should_stop()) {
1413 wait_for_completion_interruptible_timeout(
1414 &dm_device.config_event, 1*HZ);
1416 * The host expects us to post information on the memory
1417 * pressure every second.
1419 reinit_completion(&dm_device.config_event);
1427 static void version_resp(struct hv_dynmem_device *dm,
1428 struct dm_version_response *vresp)
1430 struct dm_version_request version_req;
1433 if (vresp->is_accepted) {
1435 * We are done; wakeup the
1436 * context waiting for version
1439 complete(&dm->host_event);
1443 * If there are more versions to try, continue
1444 * with negotiations; if not
1445 * shutdown the service since we are not able
1446 * to negotiate a suitable version number
1449 if (dm->next_version == 0)
1452 memset(&version_req, 0, sizeof(struct dm_version_request));
1453 version_req.hdr.type = DM_VERSION_REQUEST;
1454 version_req.hdr.size = sizeof(struct dm_version_request);
1455 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1456 version_req.version.version = dm->next_version;
1457 dm->version = version_req.version.version;
1460 * Set the next version to try in case current version fails.
1461 * Win7 protocol ought to be the last one to try.
1463 switch (version_req.version.version) {
1464 case DYNMEM_PROTOCOL_VERSION_WIN8:
1465 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1466 version_req.is_last_attempt = 0;
1469 dm->next_version = 0;
1470 version_req.is_last_attempt = 1;
1473 ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1474 sizeof(struct dm_version_request),
1475 (unsigned long)NULL,
1476 VM_PKT_DATA_INBAND, 0);
1484 dm->state = DM_INIT_ERROR;
1485 complete(&dm->host_event);
1488 static void cap_resp(struct hv_dynmem_device *dm,
1489 struct dm_capabilities_resp_msg *cap_resp)
1491 if (!cap_resp->is_accepted) {
1492 pr_err("Capabilities not accepted by host\n");
1493 dm->state = DM_INIT_ERROR;
1495 complete(&dm->host_event);
1498 static void balloon_onchannelcallback(void *context)
1500 struct hv_device *dev = context;
1503 struct dm_message *dm_msg;
1504 struct dm_header *dm_hdr;
1505 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1506 struct dm_balloon *bal_msg;
1507 struct dm_hot_add *ha_msg;
1508 union dm_mem_page_range *ha_pg_range;
1509 union dm_mem_page_range *ha_region;
1511 memset(recv_buffer, 0, sizeof(recv_buffer));
1512 vmbus_recvpacket(dev->channel, recv_buffer,
1513 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1516 dm_msg = (struct dm_message *)recv_buffer;
1517 dm_hdr = &dm_msg->hdr;
1519 switch (dm_hdr->type) {
1520 case DM_VERSION_RESPONSE:
1522 (struct dm_version_response *)dm_msg);
1525 case DM_CAPABILITIES_RESPONSE:
1527 (struct dm_capabilities_resp_msg *)dm_msg);
1530 case DM_BALLOON_REQUEST:
1531 if (allow_hibernation) {
1532 pr_info("Ignore balloon-up request!\n");
1536 if (dm->state == DM_BALLOON_UP)
1537 pr_warn("Currently ballooning\n");
1538 bal_msg = (struct dm_balloon *)recv_buffer;
1539 dm->state = DM_BALLOON_UP;
1540 dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1541 schedule_work(&dm_device.balloon_wrk.wrk);
1544 case DM_UNBALLOON_REQUEST:
1545 if (allow_hibernation) {
1546 pr_info("Ignore balloon-down request!\n");
1550 dm->state = DM_BALLOON_DOWN;
1552 (struct dm_unballoon_request *)recv_buffer);
1555 case DM_MEM_HOT_ADD_REQUEST:
1556 if (dm->state == DM_HOT_ADD)
1557 pr_warn("Currently hot-adding\n");
1558 dm->state = DM_HOT_ADD;
1559 ha_msg = (struct dm_hot_add *)recv_buffer;
1560 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1562 * This is a normal hot-add request specifying
1565 dm->host_specified_ha_region = false;
1566 ha_pg_range = &ha_msg->range;
1567 dm->ha_wrk.ha_page_range = *ha_pg_range;
1568 dm->ha_wrk.ha_region_range.page_range = 0;
1571 * Host is specifying that we first hot-add
1572 * a region and then partially populate this
1575 dm->host_specified_ha_region = true;
1576 ha_pg_range = &ha_msg->range;
1577 ha_region = &ha_pg_range[1];
1578 dm->ha_wrk.ha_page_range = *ha_pg_range;
1579 dm->ha_wrk.ha_region_range = *ha_region;
1581 schedule_work(&dm_device.ha_wrk.wrk);
1584 case DM_INFO_MESSAGE:
1585 process_info(dm, (struct dm_info_msg *)dm_msg);
1589 pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type);
1596 /* Hyper-V only supports reporting 2MB pages or higher */
1597 #define HV_MIN_PAGE_REPORTING_ORDER 9
1598 #define HV_MIN_PAGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << HV_MIN_PAGE_REPORTING_ORDER)
1599 static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
1600 struct scatterlist *sgl, unsigned int nents)
1602 unsigned long flags;
1603 struct hv_memory_hint *hint;
1606 struct scatterlist *sg;
1608 WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1609 WARN_ON_ONCE(sgl->length < HV_MIN_PAGE_REPORTING_LEN);
1610 local_irq_save(flags);
1611 hint = *(struct hv_memory_hint **)this_cpu_ptr(hyperv_pcpu_input_arg);
1613 local_irq_restore(flags);
1617 hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
1619 for_each_sg(sgl, sg, nents, i) {
1620 union hv_gpa_page_range *range;
1622 range = &hint->ranges[i];
1623 range->address_space = 0;
1624 /* page reporting only reports 2MB pages or higher */
1625 range->page.largepage = 1;
1626 range->page.additional_pages =
1627 (sg->length / HV_MIN_PAGE_REPORTING_LEN) - 1;
1628 range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
1629 range->base_large_pfn =
1630 page_to_hvpfn(sg_page(sg)) >> HV_MIN_PAGE_REPORTING_ORDER;
1633 status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
1635 local_irq_restore(flags);
1636 if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS) {
1637 pr_err("Cold memory discard hypercall failed with status %llx\n",
1645 static void enable_page_reporting(void)
1649 /* Essentially, validating 'PAGE_REPORTING_MIN_ORDER' is big enough. */
1650 if (pageblock_order < HV_MIN_PAGE_REPORTING_ORDER) {
1651 pr_debug("Cold memory discard is only supported on 2MB pages and above\n");
1655 if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
1656 pr_debug("Cold memory discard hint not supported by Hyper-V\n");
1660 BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1661 dm_device.pr_dev_info.report = hv_free_page_report;
1662 ret = page_reporting_register(&dm_device.pr_dev_info);
1664 dm_device.pr_dev_info.report = NULL;
1665 pr_err("Failed to enable cold memory discard: %d\n", ret);
1667 pr_info("Cold memory discard hint enabled\n");
1671 static void disable_page_reporting(void)
1673 if (dm_device.pr_dev_info.report) {
1674 page_reporting_unregister(&dm_device.pr_dev_info);
1675 dm_device.pr_dev_info.report = NULL;
1679 static int ballooning_enabled(void)
1682 * Disable ballooning if the page size is not 4k (HV_HYP_PAGE_SIZE),
1683 * since currently it's unclear to us whether an unballoon request can
1684 * make sure all page ranges are guest page size aligned.
1686 if (PAGE_SIZE != HV_HYP_PAGE_SIZE) {
1687 pr_info("Ballooning disabled because page size is not 4096 bytes\n");
1694 static int hot_add_enabled(void)
1697 * Disable hot add on ARM64, because we currently rely on
1698 * memory_add_physaddr_to_nid() to get a node id of a hot add range,
1699 * however ARM64's memory_add_physaddr_to_nid() always return 0 and
1700 * DM_MEM_HOT_ADD_REQUEST doesn't have the NUMA node information for
1703 if (IS_ENABLED(CONFIG_ARM64)) {
1704 pr_info("Memory hot add disabled on ARM64\n");
1711 static int balloon_connect_vsp(struct hv_device *dev)
1713 struct dm_version_request version_req;
1714 struct dm_capabilities cap_msg;
1719 * max_pkt_size should be large enough for one vmbus packet header plus
1720 * our receive buffer size. Hyper-V sends messages up to
1721 * HV_HYP_PAGE_SIZE bytes long on balloon channel.
1723 dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2;
1725 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1726 balloon_onchannelcallback, dev);
1731 * Initiate the hand shake with the host and negotiate
1732 * a version that the host can support. We start with the
1733 * highest version number and go down if the host cannot
1736 memset(&version_req, 0, sizeof(struct dm_version_request));
1737 version_req.hdr.type = DM_VERSION_REQUEST;
1738 version_req.hdr.size = sizeof(struct dm_version_request);
1739 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1740 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1741 version_req.is_last_attempt = 0;
1742 dm_device.version = version_req.version.version;
1744 ret = vmbus_sendpacket(dev->channel, &version_req,
1745 sizeof(struct dm_version_request),
1746 (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1750 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1757 * If we could not negotiate a compatible version with the host
1758 * fail the probe function.
1760 if (dm_device.state == DM_INIT_ERROR) {
1765 pr_info("Using Dynamic Memory protocol version %u.%u\n",
1766 DYNMEM_MAJOR_VERSION(dm_device.version),
1767 DYNMEM_MINOR_VERSION(dm_device.version));
1770 * Now submit our capabilities to the host.
1772 memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1773 cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1774 cap_msg.hdr.size = sizeof(struct dm_capabilities);
1775 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1778 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1779 * currently still requires the bits to be set, so we have to add code
1780 * to fail the host's hot-add and balloon up/down requests, if any.
1782 cap_msg.caps.cap_bits.balloon = ballooning_enabled();
1783 cap_msg.caps.cap_bits.hot_add = hot_add_enabled();
1786 * Specify our alignment requirements as it relates
1787 * memory hot-add. Specify 128MB alignment.
1789 cap_msg.caps.cap_bits.hot_add_alignment = 7;
1792 * Currently the host does not use these
1793 * values and we set them to what is done in the
1796 cap_msg.min_page_cnt = 0;
1797 cap_msg.max_page_number = -1;
1799 ret = vmbus_sendpacket(dev->channel, &cap_msg,
1800 sizeof(struct dm_capabilities),
1801 (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1805 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1812 * If the host does not like our capabilities,
1813 * fail the probe function.
1815 if (dm_device.state == DM_INIT_ERROR) {
1822 vmbus_close(dev->channel);
1829 #ifdef CONFIG_DEBUG_FS
1832 * hv_balloon_debug_show - shows statistics of balloon operations.
1833 * @f: pointer to the &struct seq_file.
1836 * Provides the statistics that can be accessed in hv-balloon in the debugfs.
1838 * Return: zero on success or an error code.
1840 static int hv_balloon_debug_show(struct seq_file *f, void *offset)
1842 struct hv_dynmem_device *dm = f->private;
1845 seq_printf(f, "%-22s: %u.%u\n", "host_version",
1846 DYNMEM_MAJOR_VERSION(dm->version),
1847 DYNMEM_MINOR_VERSION(dm->version));
1849 seq_printf(f, "%-22s:", "capabilities");
1850 if (ballooning_enabled())
1851 seq_puts(f, " enabled");
1853 if (hot_add_enabled())
1854 seq_puts(f, " hot_add");
1858 seq_printf(f, "%-22s: %u", "state", dm->state);
1859 switch (dm->state) {
1860 case DM_INITIALIZING:
1861 sname = "Initializing";
1863 case DM_INITIALIZED:
1864 sname = "Initialized";
1867 sname = "Balloon Up";
1869 case DM_BALLOON_DOWN:
1870 sname = "Balloon Down";
1881 seq_printf(f, " (%s)\n", sname);
1884 seq_printf(f, "%-22s: %ld\n", "page_size", HV_HYP_PAGE_SIZE);
1886 /* Pages added with hot_add */
1887 seq_printf(f, "%-22s: %u\n", "pages_added", dm->num_pages_added);
1889 /* pages that are "onlined"/used from pages_added */
1890 seq_printf(f, "%-22s: %u\n", "pages_onlined", dm->num_pages_onlined);
1892 /* pages we have given back to host */
1893 seq_printf(f, "%-22s: %u\n", "pages_ballooned", dm->num_pages_ballooned);
1895 seq_printf(f, "%-22s: %lu\n", "total_pages_committed",
1896 get_pages_committed(dm));
1898 seq_printf(f, "%-22s: %llu\n", "max_dynamic_page_count",
1899 dm->max_dynamic_page_count);
1904 DEFINE_SHOW_ATTRIBUTE(hv_balloon_debug);
1906 static void hv_balloon_debugfs_init(struct hv_dynmem_device *b)
1908 debugfs_create_file("hv-balloon", 0444, NULL, b,
1909 &hv_balloon_debug_fops);
1912 static void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1914 debugfs_remove(debugfs_lookup("hv-balloon", NULL));
1919 static inline void hv_balloon_debugfs_init(struct hv_dynmem_device *b)
1923 static inline void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1927 #endif /* CONFIG_DEBUG_FS */
1929 static int balloon_probe(struct hv_device *dev,
1930 const struct hv_vmbus_device_id *dev_id)
1934 allow_hibernation = hv_is_hibernation_supported();
1935 if (allow_hibernation)
1938 #ifdef CONFIG_MEMORY_HOTPLUG
1939 do_hot_add = hot_add;
1943 dm_device.dev = dev;
1944 dm_device.state = DM_INITIALIZING;
1945 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1946 init_completion(&dm_device.host_event);
1947 init_completion(&dm_device.config_event);
1948 INIT_LIST_HEAD(&dm_device.ha_region_list);
1949 spin_lock_init(&dm_device.ha_lock);
1950 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1951 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1952 dm_device.host_specified_ha_region = false;
1954 #ifdef CONFIG_MEMORY_HOTPLUG
1955 set_online_page_callback(&hv_online_page);
1956 init_completion(&dm_device.ol_waitevent);
1957 register_memory_notifier(&hv_memory_nb);
1960 hv_set_drvdata(dev, &dm_device);
1962 ret = balloon_connect_vsp(dev);
1966 enable_page_reporting();
1967 dm_device.state = DM_INITIALIZED;
1970 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1971 if (IS_ERR(dm_device.thread)) {
1972 ret = PTR_ERR(dm_device.thread);
1976 hv_balloon_debugfs_init(&dm_device);
1981 dm_device.state = DM_INIT_ERROR;
1982 dm_device.thread = NULL;
1983 disable_page_reporting();
1984 vmbus_close(dev->channel);
1986 #ifdef CONFIG_MEMORY_HOTPLUG
1987 unregister_memory_notifier(&hv_memory_nb);
1988 restore_online_page_callback(&hv_online_page);
1993 static int balloon_remove(struct hv_device *dev)
1995 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1996 struct hv_hotadd_state *has, *tmp;
1997 struct hv_hotadd_gap *gap, *tmp_gap;
1998 unsigned long flags;
2000 if (dm->num_pages_ballooned != 0)
2001 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
2003 hv_balloon_debugfs_exit(dm);
2005 cancel_work_sync(&dm->balloon_wrk.wrk);
2006 cancel_work_sync(&dm->ha_wrk.wrk);
2008 kthread_stop(dm->thread);
2011 * This is to handle the case when balloon_resume()
2012 * call has failed and some cleanup has been done as
2013 * a part of the error handling.
2015 if (dm_device.state != DM_INIT_ERROR) {
2016 disable_page_reporting();
2017 vmbus_close(dev->channel);
2018 #ifdef CONFIG_MEMORY_HOTPLUG
2019 unregister_memory_notifier(&hv_memory_nb);
2020 restore_online_page_callback(&hv_online_page);
2024 spin_lock_irqsave(&dm_device.ha_lock, flags);
2025 list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
2026 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
2027 list_del(&gap->list);
2030 list_del(&has->list);
2033 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
2038 static int balloon_suspend(struct hv_device *hv_dev)
2040 struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
2042 tasklet_disable(&hv_dev->channel->callback_event);
2044 cancel_work_sync(&dm->balloon_wrk.wrk);
2045 cancel_work_sync(&dm->ha_wrk.wrk);
2048 kthread_stop(dm->thread);
2050 vmbus_close(hv_dev->channel);
2053 tasklet_enable(&hv_dev->channel->callback_event);
2059 static int balloon_resume(struct hv_device *dev)
2063 dm_device.state = DM_INITIALIZING;
2065 ret = balloon_connect_vsp(dev);
2071 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2072 if (IS_ERR(dm_device.thread)) {
2073 ret = PTR_ERR(dm_device.thread);
2074 dm_device.thread = NULL;
2078 dm_device.state = DM_INITIALIZED;
2081 vmbus_close(dev->channel);
2083 dm_device.state = DM_INIT_ERROR;
2084 disable_page_reporting();
2085 #ifdef CONFIG_MEMORY_HOTPLUG
2086 unregister_memory_notifier(&hv_memory_nb);
2087 restore_online_page_callback(&hv_online_page);
2092 static const struct hv_vmbus_device_id id_table[] = {
2093 /* Dynamic Memory Class ID */
2094 /* 525074DC-8985-46e2-8057-A307DC18A502 */
2099 MODULE_DEVICE_TABLE(vmbus, id_table);
2101 static struct hv_driver balloon_drv = {
2102 .name = "hv_balloon",
2103 .id_table = id_table,
2104 .probe = balloon_probe,
2105 .remove = balloon_remove,
2106 .suspend = balloon_suspend,
2107 .resume = balloon_resume,
2109 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2113 static int __init init_balloon_drv(void)
2116 return vmbus_driver_register(&balloon_drv);
2119 module_init(init_balloon_drv);
2121 MODULE_DESCRIPTION("Hyper-V Balloon");
2122 MODULE_LICENSE("GPL");