1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2012, Microsoft Corporation.
6 * K. Y. Srinivasan <kys@microsoft.com>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/jiffies.h>
13 #include <linux/mman.h>
14 #include <linux/debugfs.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/kthread.h>
20 #include <linux/completion.h>
21 #include <linux/count_zeros.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/memory.h>
24 #include <linux/notifier.h>
25 #include <linux/percpu_counter.h>
26 #include <linux/page_reporting.h>
28 #include <linux/hyperv.h>
29 #include <asm/hyperv-tlfs.h>
31 #include <asm/mshyperv.h>
33 #define CREATE_TRACE_POINTS
34 #include "hv_trace_balloon.h"
37 * We begin with definitions supporting the Dynamic Memory protocol
40 * Begin protocol definitions.
46 * Protocol versions. The low word is the minor version, the high word the major
51 * Changed to 0.1 on 2009/03/25
52 * Changes to 0.2 on 2009/05/14
53 * Changes to 0.3 on 2009/12/03
54 * Changed to 1.0 on 2011/04/05
57 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
58 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
59 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
62 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
63 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
64 DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
66 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
67 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
68 DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
70 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
79 enum dm_message_type {
84 DM_VERSION_REQUEST = 1,
85 DM_VERSION_RESPONSE = 2,
86 DM_CAPABILITIES_REPORT = 3,
87 DM_CAPABILITIES_RESPONSE = 4,
89 DM_BALLOON_REQUEST = 6,
90 DM_BALLOON_RESPONSE = 7,
91 DM_UNBALLOON_REQUEST = 8,
92 DM_UNBALLOON_RESPONSE = 9,
93 DM_MEM_HOT_ADD_REQUEST = 10,
94 DM_MEM_HOT_ADD_RESPONSE = 11,
95 DM_VERSION_03_MAX = 11,
100 DM_VERSION_1_MAX = 12
105 * Structures defining the dynamic memory management
123 * To support guests that may have alignment
124 * limitations on hot-add, the guest can specify
125 * its alignment requirements; a value of n
126 * represents an alignment of 2^n in mega bytes.
128 __u64 hot_add_alignment:4;
134 union dm_mem_page_range {
137 * The PFN number of the first page in the range.
138 * 40 bits is the architectural limit of a PFN
143 * The number of pages in the range.
153 * The header for all dynamic memory messages:
155 * type: Type of the message.
156 * size: Size of the message in bytes; including the header.
157 * trans_id: The guest is responsible for manufacturing this ID.
167 * A generic message format for dynamic memory.
168 * Specific message formats are defined later in the file.
172 struct dm_header hdr;
173 __u8 data[]; /* enclosed message */
178 * Specific message types supporting the dynamic memory protocol.
182 * Version negotiation message. Sent from the guest to the host.
183 * The guest is free to try different versions until the host
184 * accepts the version.
186 * dm_version: The protocol version requested.
187 * is_last_attempt: If TRUE, this is the last version guest will request.
188 * reservedz: Reserved field, set to zero.
191 struct dm_version_request {
192 struct dm_header hdr;
193 union dm_version version;
194 __u32 is_last_attempt:1;
199 * Version response message; Host to Guest and indicates
200 * if the host has accepted the version sent by the guest.
202 * is_accepted: If TRUE, host has accepted the version and the guest
203 * should proceed to the next stage of the protocol. FALSE indicates that
204 * guest should re-try with a different version.
206 * reservedz: Reserved field, set to zero.
209 struct dm_version_response {
210 struct dm_header hdr;
216 * Message reporting capabilities. This is sent from the guest to the
220 struct dm_capabilities {
221 struct dm_header hdr;
224 __u64 max_page_number;
228 * Response to the capabilities message. This is sent from the host to the
229 * guest. This message notifies if the host has accepted the guest's
230 * capabilities. If the host has not accepted, the guest must shutdown
233 * is_accepted: Indicates if the host has accepted guest's capabilities.
234 * reservedz: Must be 0.
237 struct dm_capabilities_resp_msg {
238 struct dm_header hdr;
244 * This message is used to report memory pressure from the guest.
245 * This message is not part of any transaction and there is no
246 * response to this message.
248 * num_avail: Available memory in pages.
249 * num_committed: Committed memory in pages.
250 * page_file_size: The accumulated size of all page files
251 * in the system in pages.
252 * zero_free: The number of zero and free pages.
253 * page_file_writes: The writes to the page file in pages.
254 * io_diff: An indicator of file cache efficiency or page file activity,
255 * calculated as File Cache Page Fault Count - Page Read Count.
256 * This value is in pages.
258 * Some of these metrics are Windows specific and fortunately
259 * the algorithm on the host side that computes the guest memory
260 * pressure only uses num_committed value.
264 struct dm_header hdr;
267 __u64 page_file_size;
269 __u32 page_file_writes;
275 * Message to ask the guest to allocate memory - balloon up message.
276 * This message is sent from the host to the guest. The guest may not be
277 * able to allocate as much memory as requested.
279 * num_pages: number of pages to allocate.
283 struct dm_header hdr;
290 * Balloon response message; this message is sent from the guest
291 * to the host in response to the balloon message.
293 * reservedz: Reserved; must be set to zero.
294 * more_pages: If FALSE, this is the last message of the transaction.
295 * if TRUE there will atleast one more message from the guest.
297 * range_count: The number of ranges in the range array.
299 * range_array: An array of page ranges returned to the host.
303 struct dm_balloon_response {
304 struct dm_header hdr;
307 __u32 range_count:31;
308 union dm_mem_page_range range_array[];
312 * Un-balloon message; this message is sent from the host
313 * to the guest to give guest more memory.
315 * more_pages: If FALSE, this is the last message of the transaction.
316 * if TRUE there will atleast one more message from the guest.
318 * reservedz: Reserved; must be set to zero.
320 * range_count: The number of ranges in the range array.
322 * range_array: An array of page ranges returned to the host.
326 struct dm_unballoon_request {
327 struct dm_header hdr;
331 union dm_mem_page_range range_array[];
335 * Un-balloon response message; this message is sent from the guest
336 * to the host in response to an unballoon request.
340 struct dm_unballoon_response {
341 struct dm_header hdr;
346 * Hot add request message. Message sent from the host to the guest.
348 * mem_range: Memory range to hot add.
353 struct dm_header hdr;
354 union dm_mem_page_range range;
358 * Hot add response message.
359 * This message is sent by the guest to report the status of a hot add request.
360 * If page_count is less than the requested page count, then the host should
361 * assume all further hot add requests will fail, since this indicates that
362 * the guest has hit an upper physical memory barrier.
364 * Hot adds may also fail due to low resources; in this case, the guest must
365 * not complete this message until the hot add can succeed, and the host must
366 * not send a new hot add request until the response is sent.
367 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
368 * times it fails the request.
371 * page_count: number of pages that were successfully hot added.
373 * result: result of the operation 1: success, 0: failure.
377 struct dm_hot_add_response {
378 struct dm_header hdr;
384 * Types of information sent from host to the guest.
388 INFO_TYPE_MAX_PAGE_CNT = 0,
394 * Header for the information message.
397 struct dm_info_header {
398 enum dm_info_type type;
403 * This message is sent from the host to the guest to pass
404 * some relevant information (win8 addition).
407 * info_size: size of the information blob.
408 * info: information blob.
412 struct dm_header hdr;
419 * End protocol definitions.
423 * State to manage hot adding memory into the guest.
424 * The range start_pfn : end_pfn specifies the range
425 * that the host has asked us to hot add. The range
426 * start_pfn : ha_end_pfn specifies the range that we have
427 * currently hot added. We hot add in multiples of 128M
428 * chunks; it is possible that we may not be able to bring
429 * online all the pages in the region. The range
430 * covered_start_pfn:covered_end_pfn defines the pages that can
434 struct hv_hotadd_state {
435 struct list_head list;
436 unsigned long start_pfn;
437 unsigned long covered_start_pfn;
438 unsigned long covered_end_pfn;
439 unsigned long ha_end_pfn;
440 unsigned long end_pfn;
444 struct list_head gap_list;
447 struct hv_hotadd_gap {
448 struct list_head list;
449 unsigned long start_pfn;
450 unsigned long end_pfn;
453 struct balloon_state {
455 struct work_struct wrk;
459 union dm_mem_page_range ha_page_range;
460 union dm_mem_page_range ha_region_range;
461 struct work_struct wrk;
464 static bool allow_hibernation;
465 static bool hot_add = true;
466 static bool do_hot_add;
468 * Delay reporting memory pressure by
469 * the specified number of seconds.
471 static uint pressure_report_delay = 45;
472 extern unsigned int page_reporting_order;
473 #define HV_MAX_FAILURES 2
476 * The last time we posted a pressure report to host.
478 static unsigned long last_post_time;
480 static int hv_hypercall_multi_failure;
482 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
483 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
485 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
486 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
487 static atomic_t trans_id = ATOMIC_INIT(0);
489 static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024);
492 * Driver specific state.
505 static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
506 static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
507 #define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
508 #define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
510 struct hv_dynmem_device {
511 struct hv_device *dev;
512 enum hv_dm_state state;
513 struct completion host_event;
514 struct completion config_event;
517 * Number of pages we have currently ballooned out.
519 unsigned int num_pages_ballooned;
520 unsigned int num_pages_onlined;
521 unsigned int num_pages_added;
524 * State to manage the ballooning (up) operation.
526 struct balloon_state balloon_wrk;
529 * State to execute the "hot-add" operation.
531 struct hot_add_wrk ha_wrk;
534 * This state tracks if the host has specified a hot-add
537 bool host_specified_ha_region;
540 * State to synchronize hot-add.
542 struct completion ol_waitevent;
544 * This thread handles hot-add
545 * requests from the host as well as notifying
546 * the host with regards to memory pressure in
549 struct task_struct *thread;
552 * Protects ha_region_list, num_pages_onlined counter and individual
553 * regions from ha_region_list.
558 * A list of hot-add regions.
560 struct list_head ha_region_list;
563 * We start with the highest version we can support
564 * and downgrade based on the host; we save here the
565 * next version to try.
570 * The negotiated version agreed by host.
574 struct page_reporting_dev_info pr_dev_info;
577 * Maximum number of pages that can be hot_add-ed
579 __u64 max_dynamic_page_count;
582 static struct hv_dynmem_device dm_device;
584 static void post_status(struct hv_dynmem_device *dm);
586 static void enable_page_reporting(void);
588 static void disable_page_reporting(void);
590 #ifdef CONFIG_MEMORY_HOTPLUG
591 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
594 struct hv_hotadd_gap *gap;
596 /* The page is not backed. */
597 if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
600 /* Check for gaps. */
601 list_for_each_entry(gap, &has->gap_list, list) {
602 if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
609 static unsigned long hv_page_offline_check(unsigned long start_pfn,
610 unsigned long nr_pages)
612 unsigned long pfn = start_pfn, count = 0;
613 struct hv_hotadd_state *has;
616 while (pfn < start_pfn + nr_pages) {
618 * Search for HAS which covers the pfn and when we find one
619 * count how many consequitive PFNs are covered.
622 list_for_each_entry(has, &dm_device.ha_region_list, list) {
623 while ((pfn >= has->start_pfn) &&
624 (pfn < has->end_pfn) &&
625 (pfn < start_pfn + nr_pages)) {
627 if (has_pfn_is_backed(has, pfn))
634 * This PFN is not in any HAS (e.g. we're offlining a region
635 * which was present at boot), no need to account for it. Go
645 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
648 struct memory_notify *mem = (struct memory_notify *)v;
649 unsigned long flags, pfn_count;
653 case MEM_CANCEL_ONLINE:
654 complete(&dm_device.ol_waitevent);
658 spin_lock_irqsave(&dm_device.ha_lock, flags);
659 pfn_count = hv_page_offline_check(mem->start_pfn,
661 if (pfn_count <= dm_device.num_pages_onlined) {
662 dm_device.num_pages_onlined -= pfn_count;
665 * We're offlining more pages than we managed to online.
666 * This is unexpected. In any case don't let
667 * num_pages_onlined wrap around zero.
670 dm_device.num_pages_onlined = 0;
672 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
674 case MEM_GOING_ONLINE:
675 case MEM_GOING_OFFLINE:
676 case MEM_CANCEL_OFFLINE:
682 static struct notifier_block hv_memory_nb = {
683 .notifier_call = hv_memory_notifier,
687 /* Check if the particular page is backed and can be onlined and online it. */
688 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
690 if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
691 if (!PageOffline(pg))
692 __SetPageOffline(pg);
696 __ClearPageOffline(pg);
698 /* This frame is currently backed; online the page. */
699 generic_online_page(pg, 0);
701 lockdep_assert_held(&dm_device.ha_lock);
702 dm_device.num_pages_onlined++;
705 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
706 unsigned long start_pfn, unsigned long size)
710 pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
711 for (i = 0; i < size; i++)
712 hv_page_online_one(has, pfn_to_page(start_pfn + i));
715 static void hv_mem_hot_add(unsigned long start, unsigned long size,
716 unsigned long pfn_count,
717 struct hv_hotadd_state *has)
721 unsigned long start_pfn;
722 unsigned long processed_pfn;
723 unsigned long total_pfn = pfn_count;
726 for (i = 0; i < (size/HA_CHUNK); i++) {
727 start_pfn = start + (i * HA_CHUNK);
729 spin_lock_irqsave(&dm_device.ha_lock, flags);
730 has->ha_end_pfn += HA_CHUNK;
732 if (total_pfn > HA_CHUNK) {
733 processed_pfn = HA_CHUNK;
734 total_pfn -= HA_CHUNK;
736 processed_pfn = total_pfn;
740 has->covered_end_pfn += processed_pfn;
741 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
743 reinit_completion(&dm_device.ol_waitevent);
745 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
746 ret = add_memory(nid, PFN_PHYS((start_pfn)),
747 (HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE);
750 pr_err("hot_add memory failed error is %d\n", ret);
751 if (ret == -EEXIST) {
753 * This error indicates that the error
754 * is not a transient failure. This is the
755 * case where the guest's physical address map
756 * precludes hot adding memory. Stop all further
761 spin_lock_irqsave(&dm_device.ha_lock, flags);
762 has->ha_end_pfn -= HA_CHUNK;
763 has->covered_end_pfn -= processed_pfn;
764 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
769 * Wait for memory to get onlined. If the kernel onlined the
770 * memory when adding it, this will return directly. Otherwise,
771 * it will wait for user space to online the memory. This helps
772 * to avoid adding memory faster than it is getting onlined. As
773 * adding succeeded, it is ok to proceed even if the memory was
774 * not onlined in time.
776 wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
777 post_status(&dm_device);
781 static void hv_online_page(struct page *pg, unsigned int order)
783 struct hv_hotadd_state *has;
785 unsigned long pfn = page_to_pfn(pg);
787 spin_lock_irqsave(&dm_device.ha_lock, flags);
788 list_for_each_entry(has, &dm_device.ha_region_list, list) {
789 /* The page belongs to a different HAS. */
790 if ((pfn < has->start_pfn) ||
791 (pfn + (1UL << order) > has->end_pfn))
794 hv_bring_pgs_online(has, pfn, 1UL << order);
797 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
800 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
802 struct hv_hotadd_state *has;
803 struct hv_hotadd_gap *gap;
804 unsigned long residual, new_inc;
808 spin_lock_irqsave(&dm_device.ha_lock, flags);
809 list_for_each_entry(has, &dm_device.ha_region_list, list) {
811 * If the pfn range we are dealing with is not in the current
812 * "hot add block", move on.
814 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
818 * If the current start pfn is not where the covered_end
819 * is, create a gap and update covered_end_pfn.
821 if (has->covered_end_pfn != start_pfn) {
822 gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
828 INIT_LIST_HEAD(&gap->list);
829 gap->start_pfn = has->covered_end_pfn;
830 gap->end_pfn = start_pfn;
831 list_add_tail(&gap->list, &has->gap_list);
833 has->covered_end_pfn = start_pfn;
837 * If the current hot add-request extends beyond
838 * our current limit; extend it.
840 if ((start_pfn + pfn_cnt) > has->end_pfn) {
841 residual = (start_pfn + pfn_cnt - has->end_pfn);
843 * Extend the region by multiples of HA_CHUNK.
845 new_inc = (residual / HA_CHUNK) * HA_CHUNK;
846 if (residual % HA_CHUNK)
849 has->end_pfn += new_inc;
855 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
860 static unsigned long handle_pg_range(unsigned long pg_start,
861 unsigned long pg_count)
863 unsigned long start_pfn = pg_start;
864 unsigned long pfn_cnt = pg_count;
866 struct hv_hotadd_state *has;
867 unsigned long pgs_ol = 0;
868 unsigned long old_covered_state;
869 unsigned long res = 0, flags;
871 pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
874 spin_lock_irqsave(&dm_device.ha_lock, flags);
875 list_for_each_entry(has, &dm_device.ha_region_list, list) {
877 * If the pfn range we are dealing with is not in the current
878 * "hot add block", move on.
880 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
883 old_covered_state = has->covered_end_pfn;
885 if (start_pfn < has->ha_end_pfn) {
887 * This is the case where we are backing pages
888 * in an already hot added region. Bring
889 * these pages online first.
891 pgs_ol = has->ha_end_pfn - start_pfn;
892 if (pgs_ol > pfn_cnt)
895 has->covered_end_pfn += pgs_ol;
898 * Check if the corresponding memory block is already
899 * online. It is possible to observe struct pages still
900 * being uninitialized here so check section instead.
901 * In case the section is online we need to bring the
902 * rest of pfns (which were not backed previously)
905 if (start_pfn > has->start_pfn &&
906 online_section_nr(pfn_to_section_nr(start_pfn)))
907 hv_bring_pgs_online(has, start_pfn, pgs_ol);
911 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
913 * We have some residual hot add range
914 * that needs to be hot added; hot add
915 * it now. Hot add a multiple of
916 * HA_CHUNK that fully covers the pages
919 size = (has->end_pfn - has->ha_end_pfn);
920 if (pfn_cnt <= size) {
921 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
922 if (pfn_cnt % HA_CHUNK)
927 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
928 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
929 spin_lock_irqsave(&dm_device.ha_lock, flags);
932 * If we managed to online any pages that were given to us,
933 * we declare success.
935 res = has->covered_end_pfn - old_covered_state;
938 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
943 static unsigned long process_hot_add(unsigned long pg_start,
944 unsigned long pfn_cnt,
945 unsigned long rg_start,
946 unsigned long rg_size)
948 struct hv_hotadd_state *ha_region = NULL;
955 if (!dm_device.host_specified_ha_region) {
956 covered = pfn_covered(pg_start, pfn_cnt);
965 * If the host has specified a hot-add range; deal with it first.
969 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
973 INIT_LIST_HEAD(&ha_region->list);
974 INIT_LIST_HEAD(&ha_region->gap_list);
976 ha_region->start_pfn = rg_start;
977 ha_region->ha_end_pfn = rg_start;
978 ha_region->covered_start_pfn = pg_start;
979 ha_region->covered_end_pfn = pg_start;
980 ha_region->end_pfn = rg_start + rg_size;
982 spin_lock_irqsave(&dm_device.ha_lock, flags);
983 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
984 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
989 * Process the page range specified; bringing them
990 * online if possible.
992 return handle_pg_range(pg_start, pfn_cnt);
997 static void hot_add_req(struct work_struct *dummy)
999 struct dm_hot_add_response resp;
1000 #ifdef CONFIG_MEMORY_HOTPLUG
1001 unsigned long pg_start, pfn_cnt;
1002 unsigned long rg_start, rg_sz;
1004 struct hv_dynmem_device *dm = &dm_device;
1006 memset(&resp, 0, sizeof(struct dm_hot_add_response));
1007 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
1008 resp.hdr.size = sizeof(struct dm_hot_add_response);
1010 #ifdef CONFIG_MEMORY_HOTPLUG
1011 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1012 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1014 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1015 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1017 if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1018 unsigned long region_size;
1019 unsigned long region_start;
1022 * The host has not specified the hot-add region.
1023 * Based on the hot-add page range being specified,
1024 * compute a hot-add region that can cover the pages
1025 * that need to be hot-added while ensuring the alignment
1026 * and size requirements of Linux as it relates to hot-add.
1028 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1029 if (pfn_cnt % HA_CHUNK)
1030 region_size += HA_CHUNK;
1032 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1034 rg_start = region_start;
1035 rg_sz = region_size;
1039 resp.page_count = process_hot_add(pg_start, pfn_cnt,
1042 dm->num_pages_added += resp.page_count;
1045 * The result field of the response structure has the
1046 * following semantics:
1048 * 1. If all or some pages hot-added: Guest should return success.
1050 * 2. If no pages could be hot-added:
1052 * If the guest returns success, then the host
1053 * will not attempt any further hot-add operations. This
1054 * signifies a permanent failure.
1056 * If the guest returns failure, then this failure will be
1057 * treated as a transient failure and the host may retry the
1058 * hot-add operation after some delay.
1060 if (resp.page_count > 0)
1062 else if (!do_hot_add)
1067 if (!do_hot_add || resp.page_count == 0) {
1068 if (!allow_hibernation)
1069 pr_err("Memory hot add failed\n");
1071 pr_info("Ignore hot-add request!\n");
1074 dm->state = DM_INITIALIZED;
1075 resp.hdr.trans_id = atomic_inc_return(&trans_id);
1076 vmbus_sendpacket(dm->dev->channel, &resp,
1077 sizeof(struct dm_hot_add_response),
1078 (unsigned long)NULL,
1079 VM_PKT_DATA_INBAND, 0);
1082 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1084 struct dm_info_header *info_hdr;
1086 info_hdr = (struct dm_info_header *)msg->info;
1088 switch (info_hdr->type) {
1089 case INFO_TYPE_MAX_PAGE_CNT:
1090 if (info_hdr->data_size == sizeof(__u64)) {
1091 __u64 *max_page_count = (__u64 *)&info_hdr[1];
1093 pr_info("Max. dynamic memory size: %llu MB\n",
1094 (*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1095 dm->max_dynamic_page_count = *max_page_count;
1100 pr_warn("Received Unknown type: %d\n", info_hdr->type);
1104 static unsigned long compute_balloon_floor(void)
1106 unsigned long min_pages;
1107 unsigned long nr_pages = totalram_pages();
1108 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1109 /* Simple continuous piecewiese linear function:
1110 * max MiB -> min MiB gradient
1120 if (nr_pages < MB2PAGES(128))
1121 min_pages = MB2PAGES(8) + (nr_pages >> 1);
1122 else if (nr_pages < MB2PAGES(512))
1123 min_pages = MB2PAGES(40) + (nr_pages >> 2);
1124 else if (nr_pages < MB2PAGES(2048))
1125 min_pages = MB2PAGES(104) + (nr_pages >> 3);
1126 else if (nr_pages < MB2PAGES(8192))
1127 min_pages = MB2PAGES(232) + (nr_pages >> 4);
1129 min_pages = MB2PAGES(488) + (nr_pages >> 5);
1135 * Compute total committed memory pages
1138 static unsigned long get_pages_committed(struct hv_dynmem_device *dm)
1140 return vm_memory_committed() +
1141 dm->num_pages_ballooned +
1142 (dm->num_pages_added > dm->num_pages_onlined ?
1143 dm->num_pages_added - dm->num_pages_onlined : 0) +
1144 compute_balloon_floor();
1148 * Post our status as it relates memory pressure to the
1149 * host. Host expects the guests to post this status
1150 * periodically at 1 second intervals.
1152 * The metrics specified in this protocol are very Windows
1153 * specific and so we cook up numbers here to convey our memory
1157 static void post_status(struct hv_dynmem_device *dm)
1159 struct dm_status status;
1160 unsigned long now = jiffies;
1161 unsigned long last_post = last_post_time;
1162 unsigned long num_pages_avail, num_pages_committed;
1164 if (pressure_report_delay > 0) {
1165 --pressure_report_delay;
1169 if (!time_after(now, (last_post_time + HZ)))
1172 memset(&status, 0, sizeof(struct dm_status));
1173 status.hdr.type = DM_STATUS_REPORT;
1174 status.hdr.size = sizeof(struct dm_status);
1175 status.hdr.trans_id = atomic_inc_return(&trans_id);
1178 * The host expects the guest to report free and committed memory.
1179 * Furthermore, the host expects the pressure information to include
1180 * the ballooned out pages. For a given amount of memory that we are
1181 * managing we need to compute a floor below which we should not
1182 * balloon. Compute this and add it to the pressure report.
1183 * We also need to report all offline pages (num_pages_added -
1184 * num_pages_onlined) as committed to the host, otherwise it can try
1185 * asking us to balloon them out.
1187 num_pages_avail = si_mem_available();
1188 num_pages_committed = get_pages_committed(dm);
1190 trace_balloon_status(num_pages_avail, num_pages_committed,
1191 vm_memory_committed(), dm->num_pages_ballooned,
1192 dm->num_pages_added, dm->num_pages_onlined);
1194 /* Convert numbers of pages into numbers of HV_HYP_PAGEs. */
1195 status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE;
1196 status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE;
1199 * If our transaction ID is no longer current, just don't
1200 * send the status. This can happen if we were interrupted
1201 * after we picked our transaction ID.
1203 if (status.hdr.trans_id != atomic_read(&trans_id))
1207 * If the last post time that we sampled has changed,
1208 * we have raced, don't post the status.
1210 if (last_post != last_post_time)
1213 last_post_time = jiffies;
1214 vmbus_sendpacket(dm->dev->channel, &status,
1215 sizeof(struct dm_status),
1216 (unsigned long)NULL,
1217 VM_PKT_DATA_INBAND, 0);
1221 static void free_balloon_pages(struct hv_dynmem_device *dm,
1222 union dm_mem_page_range *range_array)
1224 int num_pages = range_array->finfo.page_cnt;
1225 __u64 start_frame = range_array->finfo.start_page;
1229 for (i = 0; i < num_pages; i++) {
1230 pg = pfn_to_page(i + start_frame);
1231 __ClearPageOffline(pg);
1233 dm->num_pages_ballooned--;
1234 adjust_managed_page_count(pg, 1);
1240 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1241 unsigned int num_pages,
1242 struct dm_balloon_response *bl_resp,
1248 for (i = 0; i < num_pages / alloc_unit; i++) {
1249 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1251 return i * alloc_unit;
1254 * We execute this code in a thread context. Furthermore,
1255 * we don't want the kernel to try too hard.
1257 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1258 __GFP_NOMEMALLOC | __GFP_NOWARN,
1259 get_order(alloc_unit << PAGE_SHIFT));
1262 return i * alloc_unit;
1264 dm->num_pages_ballooned += alloc_unit;
1267 * If we allocatted 2M pages; split them so we
1268 * can free them in any order we get.
1271 if (alloc_unit != 1)
1272 split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1274 /* mark all pages offline */
1275 for (j = 0; j < alloc_unit; j++) {
1276 __SetPageOffline(pg + j);
1277 adjust_managed_page_count(pg + j, -1);
1280 bl_resp->range_count++;
1281 bl_resp->range_array[i].finfo.start_page =
1283 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1284 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1288 return i * alloc_unit;
1291 static void balloon_up(struct work_struct *dummy)
1293 unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1294 unsigned int num_ballooned = 0;
1295 struct dm_balloon_response *bl_resp;
1301 unsigned long floor;
1304 * We will attempt 2M allocations. However, if we fail to
1305 * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1307 alloc_unit = PAGES_IN_2M;
1309 avail_pages = si_mem_available();
1310 floor = compute_balloon_floor();
1312 /* Refuse to balloon below the floor. */
1313 if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1314 pr_info("Balloon request will be partially fulfilled. %s\n",
1315 avail_pages < num_pages ? "Not enough memory." :
1316 "Balloon floor reached.");
1318 num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1322 memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1323 bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1324 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1325 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1326 bl_resp->more_pages = 1;
1328 num_pages -= num_ballooned;
1329 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1330 bl_resp, alloc_unit);
1332 if (alloc_unit != 1 && num_ballooned == 0) {
1337 if (num_ballooned == 0 || num_ballooned == num_pages) {
1338 pr_debug("Ballooned %u out of %u requested pages.\n",
1339 num_pages, dm_device.balloon_wrk.num_pages);
1341 bl_resp->more_pages = 0;
1343 dm_device.state = DM_INITIALIZED;
1347 * We are pushing a lot of data through the channel;
1348 * deal with transient failures caused because of the
1349 * lack of space in the ring buffer.
1353 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1354 ret = vmbus_sendpacket(dm_device.dev->channel,
1357 (unsigned long)NULL,
1358 VM_PKT_DATA_INBAND, 0);
1362 post_status(&dm_device);
1363 } while (ret == -EAGAIN);
1367 * Free up the memory we allocatted.
1369 pr_err("Balloon response failed\n");
1371 for (i = 0; i < bl_resp->range_count; i++)
1372 free_balloon_pages(&dm_device,
1373 &bl_resp->range_array[i]);
1381 static void balloon_down(struct hv_dynmem_device *dm,
1382 struct dm_unballoon_request *req)
1384 union dm_mem_page_range *range_array = req->range_array;
1385 int range_count = req->range_count;
1386 struct dm_unballoon_response resp;
1388 unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1390 for (i = 0; i < range_count; i++) {
1391 free_balloon_pages(dm, &range_array[i]);
1392 complete(&dm_device.config_event);
1395 pr_debug("Freed %u ballooned pages.\n",
1396 prev_pages_ballooned - dm->num_pages_ballooned);
1398 if (req->more_pages == 1)
1401 memset(&resp, 0, sizeof(struct dm_unballoon_response));
1402 resp.hdr.type = DM_UNBALLOON_RESPONSE;
1403 resp.hdr.trans_id = atomic_inc_return(&trans_id);
1404 resp.hdr.size = sizeof(struct dm_unballoon_response);
1406 vmbus_sendpacket(dm_device.dev->channel, &resp,
1407 sizeof(struct dm_unballoon_response),
1408 (unsigned long)NULL,
1409 VM_PKT_DATA_INBAND, 0);
1411 dm->state = DM_INITIALIZED;
1414 static void balloon_onchannelcallback(void *context);
1416 static int dm_thread_func(void *dm_dev)
1418 struct hv_dynmem_device *dm = dm_dev;
1420 while (!kthread_should_stop()) {
1421 wait_for_completion_interruptible_timeout(
1422 &dm_device.config_event, 1*HZ);
1424 * The host expects us to post information on the memory
1425 * pressure every second.
1427 reinit_completion(&dm_device.config_event);
1430 * disable free page reporting if multiple hypercall
1431 * failure flag set. It is not done in the page_reporting
1432 * callback context as that causes a deadlock between
1433 * page_reporting_process() and page_reporting_unregister()
1435 if (hv_hypercall_multi_failure >= HV_MAX_FAILURES) {
1436 pr_err("Multiple failures in cold memory discard hypercall, disabling page reporting\n");
1437 disable_page_reporting();
1438 /* Reset the flag after disabling reporting */
1439 hv_hypercall_multi_failure = 0;
1447 static void version_resp(struct hv_dynmem_device *dm,
1448 struct dm_version_response *vresp)
1450 struct dm_version_request version_req;
1453 if (vresp->is_accepted) {
1455 * We are done; wakeup the
1456 * context waiting for version
1459 complete(&dm->host_event);
1463 * If there are more versions to try, continue
1464 * with negotiations; if not
1465 * shutdown the service since we are not able
1466 * to negotiate a suitable version number
1469 if (dm->next_version == 0)
1472 memset(&version_req, 0, sizeof(struct dm_version_request));
1473 version_req.hdr.type = DM_VERSION_REQUEST;
1474 version_req.hdr.size = sizeof(struct dm_version_request);
1475 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1476 version_req.version.version = dm->next_version;
1477 dm->version = version_req.version.version;
1480 * Set the next version to try in case current version fails.
1481 * Win7 protocol ought to be the last one to try.
1483 switch (version_req.version.version) {
1484 case DYNMEM_PROTOCOL_VERSION_WIN8:
1485 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1486 version_req.is_last_attempt = 0;
1489 dm->next_version = 0;
1490 version_req.is_last_attempt = 1;
1493 ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1494 sizeof(struct dm_version_request),
1495 (unsigned long)NULL,
1496 VM_PKT_DATA_INBAND, 0);
1504 dm->state = DM_INIT_ERROR;
1505 complete(&dm->host_event);
1508 static void cap_resp(struct hv_dynmem_device *dm,
1509 struct dm_capabilities_resp_msg *cap_resp)
1511 if (!cap_resp->is_accepted) {
1512 pr_err("Capabilities not accepted by host\n");
1513 dm->state = DM_INIT_ERROR;
1515 complete(&dm->host_event);
1518 static void balloon_onchannelcallback(void *context)
1520 struct hv_device *dev = context;
1523 struct dm_message *dm_msg;
1524 struct dm_header *dm_hdr;
1525 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1526 struct dm_balloon *bal_msg;
1527 struct dm_hot_add *ha_msg;
1528 union dm_mem_page_range *ha_pg_range;
1529 union dm_mem_page_range *ha_region;
1531 memset(recv_buffer, 0, sizeof(recv_buffer));
1532 vmbus_recvpacket(dev->channel, recv_buffer,
1533 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1536 dm_msg = (struct dm_message *)recv_buffer;
1537 dm_hdr = &dm_msg->hdr;
1539 switch (dm_hdr->type) {
1540 case DM_VERSION_RESPONSE:
1542 (struct dm_version_response *)dm_msg);
1545 case DM_CAPABILITIES_RESPONSE:
1547 (struct dm_capabilities_resp_msg *)dm_msg);
1550 case DM_BALLOON_REQUEST:
1551 if (allow_hibernation) {
1552 pr_info("Ignore balloon-up request!\n");
1556 if (dm->state == DM_BALLOON_UP)
1557 pr_warn("Currently ballooning\n");
1558 bal_msg = (struct dm_balloon *)recv_buffer;
1559 dm->state = DM_BALLOON_UP;
1560 dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1561 schedule_work(&dm_device.balloon_wrk.wrk);
1564 case DM_UNBALLOON_REQUEST:
1565 if (allow_hibernation) {
1566 pr_info("Ignore balloon-down request!\n");
1570 dm->state = DM_BALLOON_DOWN;
1572 (struct dm_unballoon_request *)recv_buffer);
1575 case DM_MEM_HOT_ADD_REQUEST:
1576 if (dm->state == DM_HOT_ADD)
1577 pr_warn("Currently hot-adding\n");
1578 dm->state = DM_HOT_ADD;
1579 ha_msg = (struct dm_hot_add *)recv_buffer;
1580 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1582 * This is a normal hot-add request specifying
1585 dm->host_specified_ha_region = false;
1586 ha_pg_range = &ha_msg->range;
1587 dm->ha_wrk.ha_page_range = *ha_pg_range;
1588 dm->ha_wrk.ha_region_range.page_range = 0;
1591 * Host is specifying that we first hot-add
1592 * a region and then partially populate this
1595 dm->host_specified_ha_region = true;
1596 ha_pg_range = &ha_msg->range;
1597 ha_region = &ha_pg_range[1];
1598 dm->ha_wrk.ha_page_range = *ha_pg_range;
1599 dm->ha_wrk.ha_region_range = *ha_region;
1601 schedule_work(&dm_device.ha_wrk.wrk);
1604 case DM_INFO_MESSAGE:
1605 process_info(dm, (struct dm_info_msg *)dm_msg);
1609 pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type);
1616 #define HV_LARGE_REPORTING_ORDER 9
1617 #define HV_LARGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << \
1618 HV_LARGE_REPORTING_ORDER)
1619 static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
1620 struct scatterlist *sgl, unsigned int nents)
1622 unsigned long flags;
1623 struct hv_memory_hint *hint;
1626 struct scatterlist *sg;
1628 WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1629 WARN_ON_ONCE(sgl->length < (HV_HYP_PAGE_SIZE << page_reporting_order));
1630 local_irq_save(flags);
1631 hint = *this_cpu_ptr(hyperv_pcpu_input_arg);
1633 local_irq_restore(flags);
1637 hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
1639 for_each_sg(sgl, sg, nents, i) {
1640 union hv_gpa_page_range *range;
1642 range = &hint->ranges[i];
1643 range->address_space = 0;
1644 order = get_order(sg->length);
1646 * Hyper-V expects the additional_pages field in the units
1647 * of one of these 3 sizes, 4Kbytes, 2Mbytes or 1Gbytes.
1648 * This is dictated by the values of the fields page.largesize
1650 * This code however, only uses 4Kbytes and 2Mbytes units
1651 * and not 1Gbytes unit.
1654 /* page reporting for pages 2MB or higher */
1655 if (order >= HV_LARGE_REPORTING_ORDER ) {
1656 range->page.largepage = 1;
1657 range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
1658 range->base_large_pfn = page_to_hvpfn(
1659 sg_page(sg)) >> HV_LARGE_REPORTING_ORDER;
1660 range->page.additional_pages =
1661 (sg->length / HV_LARGE_REPORTING_LEN) - 1;
1663 /* Page reporting for pages below 2MB */
1664 range->page.basepfn = page_to_hvpfn(sg_page(sg));
1665 range->page.largepage = false;
1666 range->page.additional_pages =
1667 (sg->length / HV_HYP_PAGE_SIZE) - 1;
1672 status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
1674 local_irq_restore(flags);
1675 if (!hv_result_success(status)) {
1677 pr_err("Cold memory discard hypercall failed with status %llx\n",
1679 if (hv_hypercall_multi_failure > 0)
1680 hv_hypercall_multi_failure++;
1682 if (hv_result(status) == HV_STATUS_INVALID_PARAMETER) {
1683 pr_err("Underlying Hyper-V does not support order less than 9. Hypercall failed\n");
1684 pr_err("Defaulting to page_reporting_order %d\n",
1686 page_reporting_order = pageblock_order;
1687 hv_hypercall_multi_failure++;
1697 static void enable_page_reporting(void)
1701 if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
1702 pr_debug("Cold memory discard hint not supported by Hyper-V\n");
1706 BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1707 dm_device.pr_dev_info.report = hv_free_page_report;
1709 * We let the page_reporting_order parameter decide the order
1710 * in the page_reporting code
1712 dm_device.pr_dev_info.order = 0;
1713 ret = page_reporting_register(&dm_device.pr_dev_info);
1715 dm_device.pr_dev_info.report = NULL;
1716 pr_err("Failed to enable cold memory discard: %d\n", ret);
1718 pr_info("Cold memory discard hint enabled with order %d\n",
1719 page_reporting_order);
1723 static void disable_page_reporting(void)
1725 if (dm_device.pr_dev_info.report) {
1726 page_reporting_unregister(&dm_device.pr_dev_info);
1727 dm_device.pr_dev_info.report = NULL;
1731 static int ballooning_enabled(void)
1734 * Disable ballooning if the page size is not 4k (HV_HYP_PAGE_SIZE),
1735 * since currently it's unclear to us whether an unballoon request can
1736 * make sure all page ranges are guest page size aligned.
1738 if (PAGE_SIZE != HV_HYP_PAGE_SIZE) {
1739 pr_info("Ballooning disabled because page size is not 4096 bytes\n");
1746 static int hot_add_enabled(void)
1749 * Disable hot add on ARM64, because we currently rely on
1750 * memory_add_physaddr_to_nid() to get a node id of a hot add range,
1751 * however ARM64's memory_add_physaddr_to_nid() always return 0 and
1752 * DM_MEM_HOT_ADD_REQUEST doesn't have the NUMA node information for
1755 if (IS_ENABLED(CONFIG_ARM64)) {
1756 pr_info("Memory hot add disabled on ARM64\n");
1763 static int balloon_connect_vsp(struct hv_device *dev)
1765 struct dm_version_request version_req;
1766 struct dm_capabilities cap_msg;
1771 * max_pkt_size should be large enough for one vmbus packet header plus
1772 * our receive buffer size. Hyper-V sends messages up to
1773 * HV_HYP_PAGE_SIZE bytes long on balloon channel.
1775 dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2;
1777 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1778 balloon_onchannelcallback, dev);
1783 * Initiate the hand shake with the host and negotiate
1784 * a version that the host can support. We start with the
1785 * highest version number and go down if the host cannot
1788 memset(&version_req, 0, sizeof(struct dm_version_request));
1789 version_req.hdr.type = DM_VERSION_REQUEST;
1790 version_req.hdr.size = sizeof(struct dm_version_request);
1791 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1792 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1793 version_req.is_last_attempt = 0;
1794 dm_device.version = version_req.version.version;
1796 ret = vmbus_sendpacket(dev->channel, &version_req,
1797 sizeof(struct dm_version_request),
1798 (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1802 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1809 * If we could not negotiate a compatible version with the host
1810 * fail the probe function.
1812 if (dm_device.state == DM_INIT_ERROR) {
1817 pr_info("Using Dynamic Memory protocol version %u.%u\n",
1818 DYNMEM_MAJOR_VERSION(dm_device.version),
1819 DYNMEM_MINOR_VERSION(dm_device.version));
1822 * Now submit our capabilities to the host.
1824 memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1825 cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1826 cap_msg.hdr.size = sizeof(struct dm_capabilities);
1827 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1830 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1831 * currently still requires the bits to be set, so we have to add code
1832 * to fail the host's hot-add and balloon up/down requests, if any.
1834 cap_msg.caps.cap_bits.balloon = ballooning_enabled();
1835 cap_msg.caps.cap_bits.hot_add = hot_add_enabled();
1838 * Specify our alignment requirements as it relates
1839 * memory hot-add. Specify 128MB alignment.
1841 cap_msg.caps.cap_bits.hot_add_alignment = 7;
1844 * Currently the host does not use these
1845 * values and we set them to what is done in the
1848 cap_msg.min_page_cnt = 0;
1849 cap_msg.max_page_number = -1;
1851 ret = vmbus_sendpacket(dev->channel, &cap_msg,
1852 sizeof(struct dm_capabilities),
1853 (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1857 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1864 * If the host does not like our capabilities,
1865 * fail the probe function.
1867 if (dm_device.state == DM_INIT_ERROR) {
1874 vmbus_close(dev->channel);
1881 #ifdef CONFIG_DEBUG_FS
1884 * hv_balloon_debug_show - shows statistics of balloon operations.
1885 * @f: pointer to the &struct seq_file.
1888 * Provides the statistics that can be accessed in hv-balloon in the debugfs.
1890 * Return: zero on success or an error code.
1892 static int hv_balloon_debug_show(struct seq_file *f, void *offset)
1894 struct hv_dynmem_device *dm = f->private;
1897 seq_printf(f, "%-22s: %u.%u\n", "host_version",
1898 DYNMEM_MAJOR_VERSION(dm->version),
1899 DYNMEM_MINOR_VERSION(dm->version));
1901 seq_printf(f, "%-22s:", "capabilities");
1902 if (ballooning_enabled())
1903 seq_puts(f, " enabled");
1905 if (hot_add_enabled())
1906 seq_puts(f, " hot_add");
1910 seq_printf(f, "%-22s: %u", "state", dm->state);
1911 switch (dm->state) {
1912 case DM_INITIALIZING:
1913 sname = "Initializing";
1915 case DM_INITIALIZED:
1916 sname = "Initialized";
1919 sname = "Balloon Up";
1921 case DM_BALLOON_DOWN:
1922 sname = "Balloon Down";
1933 seq_printf(f, " (%s)\n", sname);
1936 seq_printf(f, "%-22s: %ld\n", "page_size", HV_HYP_PAGE_SIZE);
1938 /* Pages added with hot_add */
1939 seq_printf(f, "%-22s: %u\n", "pages_added", dm->num_pages_added);
1941 /* pages that are "onlined"/used from pages_added */
1942 seq_printf(f, "%-22s: %u\n", "pages_onlined", dm->num_pages_onlined);
1944 /* pages we have given back to host */
1945 seq_printf(f, "%-22s: %u\n", "pages_ballooned", dm->num_pages_ballooned);
1947 seq_printf(f, "%-22s: %lu\n", "total_pages_committed",
1948 get_pages_committed(dm));
1950 seq_printf(f, "%-22s: %llu\n", "max_dynamic_page_count",
1951 dm->max_dynamic_page_count);
1956 DEFINE_SHOW_ATTRIBUTE(hv_balloon_debug);
1958 static void hv_balloon_debugfs_init(struct hv_dynmem_device *b)
1960 debugfs_create_file("hv-balloon", 0444, NULL, b,
1961 &hv_balloon_debug_fops);
1964 static void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1966 debugfs_lookup_and_remove("hv-balloon", NULL);
1971 static inline void hv_balloon_debugfs_init(struct hv_dynmem_device *b)
1975 static inline void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1979 #endif /* CONFIG_DEBUG_FS */
1981 static int balloon_probe(struct hv_device *dev,
1982 const struct hv_vmbus_device_id *dev_id)
1986 allow_hibernation = hv_is_hibernation_supported();
1987 if (allow_hibernation)
1990 #ifdef CONFIG_MEMORY_HOTPLUG
1991 do_hot_add = hot_add;
1995 dm_device.dev = dev;
1996 dm_device.state = DM_INITIALIZING;
1997 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1998 init_completion(&dm_device.host_event);
1999 init_completion(&dm_device.config_event);
2000 INIT_LIST_HEAD(&dm_device.ha_region_list);
2001 spin_lock_init(&dm_device.ha_lock);
2002 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
2003 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
2004 dm_device.host_specified_ha_region = false;
2006 #ifdef CONFIG_MEMORY_HOTPLUG
2007 set_online_page_callback(&hv_online_page);
2008 init_completion(&dm_device.ol_waitevent);
2009 register_memory_notifier(&hv_memory_nb);
2012 hv_set_drvdata(dev, &dm_device);
2014 ret = balloon_connect_vsp(dev);
2018 enable_page_reporting();
2019 dm_device.state = DM_INITIALIZED;
2022 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2023 if (IS_ERR(dm_device.thread)) {
2024 ret = PTR_ERR(dm_device.thread);
2028 hv_balloon_debugfs_init(&dm_device);
2033 dm_device.state = DM_INIT_ERROR;
2034 dm_device.thread = NULL;
2035 disable_page_reporting();
2036 vmbus_close(dev->channel);
2038 #ifdef CONFIG_MEMORY_HOTPLUG
2039 unregister_memory_notifier(&hv_memory_nb);
2040 restore_online_page_callback(&hv_online_page);
2045 static void balloon_remove(struct hv_device *dev)
2047 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
2048 struct hv_hotadd_state *has, *tmp;
2049 struct hv_hotadd_gap *gap, *tmp_gap;
2050 unsigned long flags;
2052 if (dm->num_pages_ballooned != 0)
2053 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
2055 hv_balloon_debugfs_exit(dm);
2057 cancel_work_sync(&dm->balloon_wrk.wrk);
2058 cancel_work_sync(&dm->ha_wrk.wrk);
2060 kthread_stop(dm->thread);
2063 * This is to handle the case when balloon_resume()
2064 * call has failed and some cleanup has been done as
2065 * a part of the error handling.
2067 if (dm_device.state != DM_INIT_ERROR) {
2068 disable_page_reporting();
2069 vmbus_close(dev->channel);
2070 #ifdef CONFIG_MEMORY_HOTPLUG
2071 unregister_memory_notifier(&hv_memory_nb);
2072 restore_online_page_callback(&hv_online_page);
2076 spin_lock_irqsave(&dm_device.ha_lock, flags);
2077 list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
2078 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
2079 list_del(&gap->list);
2082 list_del(&has->list);
2085 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
2088 static int balloon_suspend(struct hv_device *hv_dev)
2090 struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
2092 tasklet_disable(&hv_dev->channel->callback_event);
2094 cancel_work_sync(&dm->balloon_wrk.wrk);
2095 cancel_work_sync(&dm->ha_wrk.wrk);
2098 kthread_stop(dm->thread);
2100 vmbus_close(hv_dev->channel);
2103 tasklet_enable(&hv_dev->channel->callback_event);
2109 static int balloon_resume(struct hv_device *dev)
2113 dm_device.state = DM_INITIALIZING;
2115 ret = balloon_connect_vsp(dev);
2121 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2122 if (IS_ERR(dm_device.thread)) {
2123 ret = PTR_ERR(dm_device.thread);
2124 dm_device.thread = NULL;
2128 dm_device.state = DM_INITIALIZED;
2131 vmbus_close(dev->channel);
2133 dm_device.state = DM_INIT_ERROR;
2134 disable_page_reporting();
2135 #ifdef CONFIG_MEMORY_HOTPLUG
2136 unregister_memory_notifier(&hv_memory_nb);
2137 restore_online_page_callback(&hv_online_page);
2142 static const struct hv_vmbus_device_id id_table[] = {
2143 /* Dynamic Memory Class ID */
2144 /* 525074DC-8985-46e2-8057-A307DC18A502 */
2149 MODULE_DEVICE_TABLE(vmbus, id_table);
2151 static struct hv_driver balloon_drv = {
2152 .name = "hv_balloon",
2153 .id_table = id_table,
2154 .probe = balloon_probe,
2155 .remove = balloon_remove,
2156 .suspend = balloon_suspend,
2157 .resume = balloon_resume,
2159 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2163 static int __init init_balloon_drv(void)
2166 return vmbus_driver_register(&balloon_drv);
2169 module_init(init_balloon_drv);
2171 MODULE_DESCRIPTION("Hyper-V Balloon");
2172 MODULE_LICENSE("GPL");