Merge tag 'for-linus-4.14b-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / drivers / hv / hv_balloon.c
1 /*
2  * Copyright (c) 2012, Microsoft Corporation.
3  *
4  * Author:
5  *   K. Y. Srinivasan <kys@microsoft.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  * NON INFRINGEMENT.  See the GNU General Public License for more
15  * details.
16  *
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/jiffies.h>
23 #include <linux/mman.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/kthread.h>
29 #include <linux/completion.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memory.h>
32 #include <linux/notifier.h>
33 #include <linux/percpu_counter.h>
34
35 #include <linux/hyperv.h>
36
37 /*
38  * We begin with definitions supporting the Dynamic Memory protocol
39  * with the host.
40  *
41  * Begin protocol definitions.
42  */
43
44
45
46 /*
47  * Protocol versions. The low word is the minor version, the high word the major
48  * version.
49  *
50  * History:
51  * Initial version 1.0
52  * Changed to 0.1 on 2009/03/25
53  * Changes to 0.2 on 2009/05/14
54  * Changes to 0.3 on 2009/12/03
55  * Changed to 1.0 on 2011/04/05
56  */
57
58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
61
62 enum {
63         DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64         DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65         DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
66
67         DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
68         DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
69         DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
70
71         DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
72 };
73
74
75
76 /*
77  * Message Types
78  */
79
80 enum dm_message_type {
81         /*
82          * Version 0.3
83          */
84         DM_ERROR                        = 0,
85         DM_VERSION_REQUEST              = 1,
86         DM_VERSION_RESPONSE             = 2,
87         DM_CAPABILITIES_REPORT          = 3,
88         DM_CAPABILITIES_RESPONSE        = 4,
89         DM_STATUS_REPORT                = 5,
90         DM_BALLOON_REQUEST              = 6,
91         DM_BALLOON_RESPONSE             = 7,
92         DM_UNBALLOON_REQUEST            = 8,
93         DM_UNBALLOON_RESPONSE           = 9,
94         DM_MEM_HOT_ADD_REQUEST          = 10,
95         DM_MEM_HOT_ADD_RESPONSE         = 11,
96         DM_VERSION_03_MAX               = 11,
97         /*
98          * Version 1.0.
99          */
100         DM_INFO_MESSAGE                 = 12,
101         DM_VERSION_1_MAX                = 12
102 };
103
104
105 /*
106  * Structures defining the dynamic memory management
107  * protocol.
108  */
109
110 union dm_version {
111         struct {
112                 __u16 minor_version;
113                 __u16 major_version;
114         };
115         __u32 version;
116 } __packed;
117
118
119 union dm_caps {
120         struct {
121                 __u64 balloon:1;
122                 __u64 hot_add:1;
123                 /*
124                  * To support guests that may have alignment
125                  * limitations on hot-add, the guest can specify
126                  * its alignment requirements; a value of n
127                  * represents an alignment of 2^n in mega bytes.
128                  */
129                 __u64 hot_add_alignment:4;
130                 __u64 reservedz:58;
131         } cap_bits;
132         __u64 caps;
133 } __packed;
134
135 union dm_mem_page_range {
136         struct  {
137                 /*
138                  * The PFN number of the first page in the range.
139                  * 40 bits is the architectural limit of a PFN
140                  * number for AMD64.
141                  */
142                 __u64 start_page:40;
143                 /*
144                  * The number of pages in the range.
145                  */
146                 __u64 page_cnt:24;
147         } finfo;
148         __u64  page_range;
149 } __packed;
150
151
152
153 /*
154  * The header for all dynamic memory messages:
155  *
156  * type: Type of the message.
157  * size: Size of the message in bytes; including the header.
158  * trans_id: The guest is responsible for manufacturing this ID.
159  */
160
161 struct dm_header {
162         __u16 type;
163         __u16 size;
164         __u32 trans_id;
165 } __packed;
166
167 /*
168  * A generic message format for dynamic memory.
169  * Specific message formats are defined later in the file.
170  */
171
172 struct dm_message {
173         struct dm_header hdr;
174         __u8 data[]; /* enclosed message */
175 } __packed;
176
177
178 /*
179  * Specific message types supporting the dynamic memory protocol.
180  */
181
182 /*
183  * Version negotiation message. Sent from the guest to the host.
184  * The guest is free to try different versions until the host
185  * accepts the version.
186  *
187  * dm_version: The protocol version requested.
188  * is_last_attempt: If TRUE, this is the last version guest will request.
189  * reservedz: Reserved field, set to zero.
190  */
191
192 struct dm_version_request {
193         struct dm_header hdr;
194         union dm_version version;
195         __u32 is_last_attempt:1;
196         __u32 reservedz:31;
197 } __packed;
198
199 /*
200  * Version response message; Host to Guest and indicates
201  * if the host has accepted the version sent by the guest.
202  *
203  * is_accepted: If TRUE, host has accepted the version and the guest
204  * should proceed to the next stage of the protocol. FALSE indicates that
205  * guest should re-try with a different version.
206  *
207  * reservedz: Reserved field, set to zero.
208  */
209
210 struct dm_version_response {
211         struct dm_header hdr;
212         __u64 is_accepted:1;
213         __u64 reservedz:63;
214 } __packed;
215
216 /*
217  * Message reporting capabilities. This is sent from the guest to the
218  * host.
219  */
220
221 struct dm_capabilities {
222         struct dm_header hdr;
223         union dm_caps caps;
224         __u64 min_page_cnt;
225         __u64 max_page_number;
226 } __packed;
227
228 /*
229  * Response to the capabilities message. This is sent from the host to the
230  * guest. This message notifies if the host has accepted the guest's
231  * capabilities. If the host has not accepted, the guest must shutdown
232  * the service.
233  *
234  * is_accepted: Indicates if the host has accepted guest's capabilities.
235  * reservedz: Must be 0.
236  */
237
238 struct dm_capabilities_resp_msg {
239         struct dm_header hdr;
240         __u64 is_accepted:1;
241         __u64 reservedz:63;
242 } __packed;
243
244 /*
245  * This message is used to report memory pressure from the guest.
246  * This message is not part of any transaction and there is no
247  * response to this message.
248  *
249  * num_avail: Available memory in pages.
250  * num_committed: Committed memory in pages.
251  * page_file_size: The accumulated size of all page files
252  *                 in the system in pages.
253  * zero_free: The nunber of zero and free pages.
254  * page_file_writes: The writes to the page file in pages.
255  * io_diff: An indicator of file cache efficiency or page file activity,
256  *          calculated as File Cache Page Fault Count - Page Read Count.
257  *          This value is in pages.
258  *
259  * Some of these metrics are Windows specific and fortunately
260  * the algorithm on the host side that computes the guest memory
261  * pressure only uses num_committed value.
262  */
263
264 struct dm_status {
265         struct dm_header hdr;
266         __u64 num_avail;
267         __u64 num_committed;
268         __u64 page_file_size;
269         __u64 zero_free;
270         __u32 page_file_writes;
271         __u32 io_diff;
272 } __packed;
273
274
275 /*
276  * Message to ask the guest to allocate memory - balloon up message.
277  * This message is sent from the host to the guest. The guest may not be
278  * able to allocate as much memory as requested.
279  *
280  * num_pages: number of pages to allocate.
281  */
282
283 struct dm_balloon {
284         struct dm_header hdr;
285         __u32 num_pages;
286         __u32 reservedz;
287 } __packed;
288
289
290 /*
291  * Balloon response message; this message is sent from the guest
292  * to the host in response to the balloon message.
293  *
294  * reservedz: Reserved; must be set to zero.
295  * more_pages: If FALSE, this is the last message of the transaction.
296  * if TRUE there will atleast one more message from the guest.
297  *
298  * range_count: The number of ranges in the range array.
299  *
300  * range_array: An array of page ranges returned to the host.
301  *
302  */
303
304 struct dm_balloon_response {
305         struct dm_header hdr;
306         __u32 reservedz;
307         __u32 more_pages:1;
308         __u32 range_count:31;
309         union dm_mem_page_range range_array[];
310 } __packed;
311
312 /*
313  * Un-balloon message; this message is sent from the host
314  * to the guest to give guest more memory.
315  *
316  * more_pages: If FALSE, this is the last message of the transaction.
317  * if TRUE there will atleast one more message from the guest.
318  *
319  * reservedz: Reserved; must be set to zero.
320  *
321  * range_count: The number of ranges in the range array.
322  *
323  * range_array: An array of page ranges returned to the host.
324  *
325  */
326
327 struct dm_unballoon_request {
328         struct dm_header hdr;
329         __u32 more_pages:1;
330         __u32 reservedz:31;
331         __u32 range_count;
332         union dm_mem_page_range range_array[];
333 } __packed;
334
335 /*
336  * Un-balloon response message; this message is sent from the guest
337  * to the host in response to an unballoon request.
338  *
339  */
340
341 struct dm_unballoon_response {
342         struct dm_header hdr;
343 } __packed;
344
345
346 /*
347  * Hot add request message. Message sent from the host to the guest.
348  *
349  * mem_range: Memory range to hot add.
350  *
351  * On Linux we currently don't support this since we cannot hot add
352  * arbitrary granularity of memory.
353  */
354
355 struct dm_hot_add {
356         struct dm_header hdr;
357         union dm_mem_page_range range;
358 } __packed;
359
360 /*
361  * Hot add response message.
362  * This message is sent by the guest to report the status of a hot add request.
363  * If page_count is less than the requested page count, then the host should
364  * assume all further hot add requests will fail, since this indicates that
365  * the guest has hit an upper physical memory barrier.
366  *
367  * Hot adds may also fail due to low resources; in this case, the guest must
368  * not complete this message until the hot add can succeed, and the host must
369  * not send a new hot add request until the response is sent.
370  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
371  * times it fails the request.
372  *
373  *
374  * page_count: number of pages that were successfully hot added.
375  *
376  * result: result of the operation 1: success, 0: failure.
377  *
378  */
379
380 struct dm_hot_add_response {
381         struct dm_header hdr;
382         __u32 page_count;
383         __u32 result;
384 } __packed;
385
386 /*
387  * Types of information sent from host to the guest.
388  */
389
390 enum dm_info_type {
391         INFO_TYPE_MAX_PAGE_CNT = 0,
392         MAX_INFO_TYPE
393 };
394
395
396 /*
397  * Header for the information message.
398  */
399
400 struct dm_info_header {
401         enum dm_info_type type;
402         __u32 data_size;
403 } __packed;
404
405 /*
406  * This message is sent from the host to the guest to pass
407  * some relevant information (win8 addition).
408  *
409  * reserved: no used.
410  * info_size: size of the information blob.
411  * info: information blob.
412  */
413
414 struct dm_info_msg {
415         struct dm_header hdr;
416         __u32 reserved;
417         __u32 info_size;
418         __u8  info[];
419 };
420
421 /*
422  * End protocol definitions.
423  */
424
425 /*
426  * State to manage hot adding memory into the guest.
427  * The range start_pfn : end_pfn specifies the range
428  * that the host has asked us to hot add. The range
429  * start_pfn : ha_end_pfn specifies the range that we have
430  * currently hot added. We hot add in multiples of 128M
431  * chunks; it is possible that we may not be able to bring
432  * online all the pages in the region. The range
433  * covered_start_pfn:covered_end_pfn defines the pages that can
434  * be brough online.
435  */
436
437 struct hv_hotadd_state {
438         struct list_head list;
439         unsigned long start_pfn;
440         unsigned long covered_start_pfn;
441         unsigned long covered_end_pfn;
442         unsigned long ha_end_pfn;
443         unsigned long end_pfn;
444         /*
445          * A list of gaps.
446          */
447         struct list_head gap_list;
448 };
449
450 struct hv_hotadd_gap {
451         struct list_head list;
452         unsigned long start_pfn;
453         unsigned long end_pfn;
454 };
455
456 struct balloon_state {
457         __u32 num_pages;
458         struct work_struct wrk;
459 };
460
461 struct hot_add_wrk {
462         union dm_mem_page_range ha_page_range;
463         union dm_mem_page_range ha_region_range;
464         struct work_struct wrk;
465 };
466
467 static bool hot_add = true;
468 static bool do_hot_add;
469 /*
470  * Delay reporting memory pressure by
471  * the specified number of seconds.
472  */
473 static uint pressure_report_delay = 45;
474
475 /*
476  * The last time we posted a pressure report to host.
477  */
478 static unsigned long last_post_time;
479
480 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
481 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
482
483 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
484 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
485 static atomic_t trans_id = ATOMIC_INIT(0);
486
487 static int dm_ring_size = (5 * PAGE_SIZE);
488
489 /*
490  * Driver specific state.
491  */
492
493 enum hv_dm_state {
494         DM_INITIALIZING = 0,
495         DM_INITIALIZED,
496         DM_BALLOON_UP,
497         DM_BALLOON_DOWN,
498         DM_HOT_ADD,
499         DM_INIT_ERROR
500 };
501
502
503 static __u8 recv_buffer[PAGE_SIZE];
504 static __u8 *send_buffer;
505 #define PAGES_IN_2M     512
506 #define HA_CHUNK (32 * 1024)
507
508 struct hv_dynmem_device {
509         struct hv_device *dev;
510         enum hv_dm_state state;
511         struct completion host_event;
512         struct completion config_event;
513
514         /*
515          * Number of pages we have currently ballooned out.
516          */
517         unsigned int num_pages_ballooned;
518         unsigned int num_pages_onlined;
519         unsigned int num_pages_added;
520
521         /*
522          * State to manage the ballooning (up) operation.
523          */
524         struct balloon_state balloon_wrk;
525
526         /*
527          * State to execute the "hot-add" operation.
528          */
529         struct hot_add_wrk ha_wrk;
530
531         /*
532          * This state tracks if the host has specified a hot-add
533          * region.
534          */
535         bool host_specified_ha_region;
536
537         /*
538          * State to synchronize hot-add.
539          */
540         struct completion  ol_waitevent;
541         bool ha_waiting;
542         /*
543          * This thread handles hot-add
544          * requests from the host as well as notifying
545          * the host with regards to memory pressure in
546          * the guest.
547          */
548         struct task_struct *thread;
549
550         /*
551          * Protects ha_region_list, num_pages_onlined counter and individual
552          * regions from ha_region_list.
553          */
554         spinlock_t ha_lock;
555
556         /*
557          * A list of hot-add regions.
558          */
559         struct list_head ha_region_list;
560
561         /*
562          * We start with the highest version we can support
563          * and downgrade based on the host; we save here the
564          * next version to try.
565          */
566         __u32 next_version;
567
568         /*
569          * The negotiated version agreed by host.
570          */
571         __u32 version;
572 };
573
574 static struct hv_dynmem_device dm_device;
575
576 static void post_status(struct hv_dynmem_device *dm);
577
578 #ifdef CONFIG_MEMORY_HOTPLUG
579 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
580                               void *v)
581 {
582         struct memory_notify *mem = (struct memory_notify *)v;
583         unsigned long flags;
584
585         switch (val) {
586         case MEM_ONLINE:
587         case MEM_CANCEL_ONLINE:
588                 if (dm_device.ha_waiting) {
589                         dm_device.ha_waiting = false;
590                         complete(&dm_device.ol_waitevent);
591                 }
592                 break;
593
594         case MEM_OFFLINE:
595                 spin_lock_irqsave(&dm_device.ha_lock, flags);
596                 dm_device.num_pages_onlined -= mem->nr_pages;
597                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
598                 break;
599         case MEM_GOING_ONLINE:
600         case MEM_GOING_OFFLINE:
601         case MEM_CANCEL_OFFLINE:
602                 break;
603         }
604         return NOTIFY_OK;
605 }
606
607 static struct notifier_block hv_memory_nb = {
608         .notifier_call = hv_memory_notifier,
609         .priority = 0
610 };
611
612 /* Check if the particular page is backed and can be onlined and online it. */
613 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
614 {
615         unsigned long cur_start_pgp;
616         unsigned long cur_end_pgp;
617         struct hv_hotadd_gap *gap;
618
619         cur_start_pgp = (unsigned long)pfn_to_page(has->covered_start_pfn);
620         cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
621
622         /* The page is not backed. */
623         if (((unsigned long)pg < cur_start_pgp) ||
624             ((unsigned long)pg >= cur_end_pgp))
625                 return;
626
627         /* Check for gaps. */
628         list_for_each_entry(gap, &has->gap_list, list) {
629                 cur_start_pgp = (unsigned long)
630                         pfn_to_page(gap->start_pfn);
631                 cur_end_pgp = (unsigned long)
632                         pfn_to_page(gap->end_pfn);
633                 if (((unsigned long)pg >= cur_start_pgp) &&
634                     ((unsigned long)pg < cur_end_pgp)) {
635                         return;
636                 }
637         }
638
639         /* This frame is currently backed; online the page. */
640         __online_page_set_limits(pg);
641         __online_page_increment_counters(pg);
642         __online_page_free(pg);
643
644         WARN_ON_ONCE(!spin_is_locked(&dm_device.ha_lock));
645         dm_device.num_pages_onlined++;
646 }
647
648 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
649                                 unsigned long start_pfn, unsigned long size)
650 {
651         int i;
652
653         pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
654         for (i = 0; i < size; i++)
655                 hv_page_online_one(has, pfn_to_page(start_pfn + i));
656 }
657
658 static void hv_mem_hot_add(unsigned long start, unsigned long size,
659                                 unsigned long pfn_count,
660                                 struct hv_hotadd_state *has)
661 {
662         int ret = 0;
663         int i, nid;
664         unsigned long start_pfn;
665         unsigned long processed_pfn;
666         unsigned long total_pfn = pfn_count;
667         unsigned long flags;
668
669         for (i = 0; i < (size/HA_CHUNK); i++) {
670                 start_pfn = start + (i * HA_CHUNK);
671
672                 spin_lock_irqsave(&dm_device.ha_lock, flags);
673                 has->ha_end_pfn +=  HA_CHUNK;
674
675                 if (total_pfn > HA_CHUNK) {
676                         processed_pfn = HA_CHUNK;
677                         total_pfn -= HA_CHUNK;
678                 } else {
679                         processed_pfn = total_pfn;
680                         total_pfn = 0;
681                 }
682
683                 has->covered_end_pfn +=  processed_pfn;
684                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
685
686                 init_completion(&dm_device.ol_waitevent);
687                 dm_device.ha_waiting = !memhp_auto_online;
688
689                 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
690                 ret = add_memory(nid, PFN_PHYS((start_pfn)),
691                                 (HA_CHUNK << PAGE_SHIFT));
692
693                 if (ret) {
694                         pr_warn("hot_add memory failed error is %d\n", ret);
695                         if (ret == -EEXIST) {
696                                 /*
697                                  * This error indicates that the error
698                                  * is not a transient failure. This is the
699                                  * case where the guest's physical address map
700                                  * precludes hot adding memory. Stop all further
701                                  * memory hot-add.
702                                  */
703                                 do_hot_add = false;
704                         }
705                         spin_lock_irqsave(&dm_device.ha_lock, flags);
706                         has->ha_end_pfn -= HA_CHUNK;
707                         has->covered_end_pfn -=  processed_pfn;
708                         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
709                         break;
710                 }
711
712                 /*
713                  * Wait for the memory block to be onlined when memory onlining
714                  * is done outside of kernel (memhp_auto_online). Since the hot
715                  * add has succeeded, it is ok to proceed even if the pages in
716                  * the hot added region have not been "onlined" within the
717                  * allowed time.
718                  */
719                 if (dm_device.ha_waiting)
720                         wait_for_completion_timeout(&dm_device.ol_waitevent,
721                                                     5*HZ);
722                 post_status(&dm_device);
723         }
724 }
725
726 static void hv_online_page(struct page *pg)
727 {
728         struct hv_hotadd_state *has;
729         unsigned long cur_start_pgp;
730         unsigned long cur_end_pgp;
731         unsigned long flags;
732
733         spin_lock_irqsave(&dm_device.ha_lock, flags);
734         list_for_each_entry(has, &dm_device.ha_region_list, list) {
735                 cur_start_pgp = (unsigned long)
736                         pfn_to_page(has->start_pfn);
737                 cur_end_pgp = (unsigned long)pfn_to_page(has->end_pfn);
738
739                 /* The page belongs to a different HAS. */
740                 if (((unsigned long)pg < cur_start_pgp) ||
741                     ((unsigned long)pg >= cur_end_pgp))
742                         continue;
743
744                 hv_page_online_one(has, pg);
745                 break;
746         }
747         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
748 }
749
750 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
751 {
752         struct hv_hotadd_state *has;
753         struct hv_hotadd_gap *gap;
754         unsigned long residual, new_inc;
755         int ret = 0;
756         unsigned long flags;
757
758         spin_lock_irqsave(&dm_device.ha_lock, flags);
759         list_for_each_entry(has, &dm_device.ha_region_list, list) {
760                 /*
761                  * If the pfn range we are dealing with is not in the current
762                  * "hot add block", move on.
763                  */
764                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
765                         continue;
766
767                 /*
768                  * If the current start pfn is not where the covered_end
769                  * is, create a gap and update covered_end_pfn.
770                  */
771                 if (has->covered_end_pfn != start_pfn) {
772                         gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
773                         if (!gap) {
774                                 ret = -ENOMEM;
775                                 break;
776                         }
777
778                         INIT_LIST_HEAD(&gap->list);
779                         gap->start_pfn = has->covered_end_pfn;
780                         gap->end_pfn = start_pfn;
781                         list_add_tail(&gap->list, &has->gap_list);
782
783                         has->covered_end_pfn = start_pfn;
784                 }
785
786                 /*
787                  * If the current hot add-request extends beyond
788                  * our current limit; extend it.
789                  */
790                 if ((start_pfn + pfn_cnt) > has->end_pfn) {
791                         residual = (start_pfn + pfn_cnt - has->end_pfn);
792                         /*
793                          * Extend the region by multiples of HA_CHUNK.
794                          */
795                         new_inc = (residual / HA_CHUNK) * HA_CHUNK;
796                         if (residual % HA_CHUNK)
797                                 new_inc += HA_CHUNK;
798
799                         has->end_pfn += new_inc;
800                 }
801
802                 ret = 1;
803                 break;
804         }
805         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
806
807         return ret;
808 }
809
810 static unsigned long handle_pg_range(unsigned long pg_start,
811                                         unsigned long pg_count)
812 {
813         unsigned long start_pfn = pg_start;
814         unsigned long pfn_cnt = pg_count;
815         unsigned long size;
816         struct hv_hotadd_state *has;
817         unsigned long pgs_ol = 0;
818         unsigned long old_covered_state;
819         unsigned long res = 0, flags;
820
821         pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
822                 pg_start);
823
824         spin_lock_irqsave(&dm_device.ha_lock, flags);
825         list_for_each_entry(has, &dm_device.ha_region_list, list) {
826                 /*
827                  * If the pfn range we are dealing with is not in the current
828                  * "hot add block", move on.
829                  */
830                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
831                         continue;
832
833                 old_covered_state = has->covered_end_pfn;
834
835                 if (start_pfn < has->ha_end_pfn) {
836                         /*
837                          * This is the case where we are backing pages
838                          * in an already hot added region. Bring
839                          * these pages online first.
840                          */
841                         pgs_ol = has->ha_end_pfn - start_pfn;
842                         if (pgs_ol > pfn_cnt)
843                                 pgs_ol = pfn_cnt;
844
845                         has->covered_end_pfn +=  pgs_ol;
846                         pfn_cnt -= pgs_ol;
847                         /*
848                          * Check if the corresponding memory block is already
849                          * online by checking its last previously backed page.
850                          * In case it is we need to bring rest (which was not
851                          * backed previously) online too.
852                          */
853                         if (start_pfn > has->start_pfn &&
854                             !PageReserved(pfn_to_page(start_pfn - 1)))
855                                 hv_bring_pgs_online(has, start_pfn, pgs_ol);
856
857                 }
858
859                 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
860                         /*
861                          * We have some residual hot add range
862                          * that needs to be hot added; hot add
863                          * it now. Hot add a multiple of
864                          * of HA_CHUNK that fully covers the pages
865                          * we have.
866                          */
867                         size = (has->end_pfn - has->ha_end_pfn);
868                         if (pfn_cnt <= size) {
869                                 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
870                                 if (pfn_cnt % HA_CHUNK)
871                                         size += HA_CHUNK;
872                         } else {
873                                 pfn_cnt = size;
874                         }
875                         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
876                         hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
877                         spin_lock_irqsave(&dm_device.ha_lock, flags);
878                 }
879                 /*
880                  * If we managed to online any pages that were given to us,
881                  * we declare success.
882                  */
883                 res = has->covered_end_pfn - old_covered_state;
884                 break;
885         }
886         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
887
888         return res;
889 }
890
891 static unsigned long process_hot_add(unsigned long pg_start,
892                                         unsigned long pfn_cnt,
893                                         unsigned long rg_start,
894                                         unsigned long rg_size)
895 {
896         struct hv_hotadd_state *ha_region = NULL;
897         int covered;
898         unsigned long flags;
899
900         if (pfn_cnt == 0)
901                 return 0;
902
903         if (!dm_device.host_specified_ha_region) {
904                 covered = pfn_covered(pg_start, pfn_cnt);
905                 if (covered < 0)
906                         return 0;
907
908                 if (covered)
909                         goto do_pg_range;
910         }
911
912         /*
913          * If the host has specified a hot-add range; deal with it first.
914          */
915
916         if (rg_size != 0) {
917                 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
918                 if (!ha_region)
919                         return 0;
920
921                 INIT_LIST_HEAD(&ha_region->list);
922                 INIT_LIST_HEAD(&ha_region->gap_list);
923
924                 ha_region->start_pfn = rg_start;
925                 ha_region->ha_end_pfn = rg_start;
926                 ha_region->covered_start_pfn = pg_start;
927                 ha_region->covered_end_pfn = pg_start;
928                 ha_region->end_pfn = rg_start + rg_size;
929
930                 spin_lock_irqsave(&dm_device.ha_lock, flags);
931                 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
932                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
933         }
934
935 do_pg_range:
936         /*
937          * Process the page range specified; bringing them
938          * online if possible.
939          */
940         return handle_pg_range(pg_start, pfn_cnt);
941 }
942
943 #endif
944
945 static void hot_add_req(struct work_struct *dummy)
946 {
947         struct dm_hot_add_response resp;
948 #ifdef CONFIG_MEMORY_HOTPLUG
949         unsigned long pg_start, pfn_cnt;
950         unsigned long rg_start, rg_sz;
951 #endif
952         struct hv_dynmem_device *dm = &dm_device;
953
954         memset(&resp, 0, sizeof(struct dm_hot_add_response));
955         resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
956         resp.hdr.size = sizeof(struct dm_hot_add_response);
957
958 #ifdef CONFIG_MEMORY_HOTPLUG
959         pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
960         pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
961
962         rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
963         rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
964
965         if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
966                 unsigned long region_size;
967                 unsigned long region_start;
968
969                 /*
970                  * The host has not specified the hot-add region.
971                  * Based on the hot-add page range being specified,
972                  * compute a hot-add region that can cover the pages
973                  * that need to be hot-added while ensuring the alignment
974                  * and size requirements of Linux as it relates to hot-add.
975                  */
976                 region_start = pg_start;
977                 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
978                 if (pfn_cnt % HA_CHUNK)
979                         region_size += HA_CHUNK;
980
981                 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
982
983                 rg_start = region_start;
984                 rg_sz = region_size;
985         }
986
987         if (do_hot_add)
988                 resp.page_count = process_hot_add(pg_start, pfn_cnt,
989                                                 rg_start, rg_sz);
990
991         dm->num_pages_added += resp.page_count;
992 #endif
993         /*
994          * The result field of the response structure has the
995          * following semantics:
996          *
997          * 1. If all or some pages hot-added: Guest should return success.
998          *
999          * 2. If no pages could be hot-added:
1000          *
1001          * If the guest returns success, then the host
1002          * will not attempt any further hot-add operations. This
1003          * signifies a permanent failure.
1004          *
1005          * If the guest returns failure, then this failure will be
1006          * treated as a transient failure and the host may retry the
1007          * hot-add operation after some delay.
1008          */
1009         if (resp.page_count > 0)
1010                 resp.result = 1;
1011         else if (!do_hot_add)
1012                 resp.result = 1;
1013         else
1014                 resp.result = 0;
1015
1016         if (!do_hot_add || (resp.page_count == 0))
1017                 pr_info("Memory hot add failed\n");
1018
1019         dm->state = DM_INITIALIZED;
1020         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1021         vmbus_sendpacket(dm->dev->channel, &resp,
1022                         sizeof(struct dm_hot_add_response),
1023                         (unsigned long)NULL,
1024                         VM_PKT_DATA_INBAND, 0);
1025 }
1026
1027 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1028 {
1029         struct dm_info_header *info_hdr;
1030
1031         info_hdr = (struct dm_info_header *)msg->info;
1032
1033         switch (info_hdr->type) {
1034         case INFO_TYPE_MAX_PAGE_CNT:
1035                 if (info_hdr->data_size == sizeof(__u64)) {
1036                         __u64 *max_page_count = (__u64 *)&info_hdr[1];
1037
1038                         pr_info("Max. dynamic memory size: %llu MB\n",
1039                                 (*max_page_count) >> (20 - PAGE_SHIFT));
1040                 }
1041
1042                 break;
1043         default:
1044                 pr_info("Received Unknown type: %d\n", info_hdr->type);
1045         }
1046 }
1047
1048 static unsigned long compute_balloon_floor(void)
1049 {
1050         unsigned long min_pages;
1051 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1052         /* Simple continuous piecewiese linear function:
1053          *  max MiB -> min MiB  gradient
1054          *       0         0
1055          *      16        16
1056          *      32        24
1057          *     128        72    (1/2)
1058          *     512       168    (1/4)
1059          *    2048       360    (1/8)
1060          *    8192       744    (1/16)
1061          *   32768      1512    (1/32)
1062          */
1063         if (totalram_pages < MB2PAGES(128))
1064                 min_pages = MB2PAGES(8) + (totalram_pages >> 1);
1065         else if (totalram_pages < MB2PAGES(512))
1066                 min_pages = MB2PAGES(40) + (totalram_pages >> 2);
1067         else if (totalram_pages < MB2PAGES(2048))
1068                 min_pages = MB2PAGES(104) + (totalram_pages >> 3);
1069         else if (totalram_pages < MB2PAGES(8192))
1070                 min_pages = MB2PAGES(232) + (totalram_pages >> 4);
1071         else
1072                 min_pages = MB2PAGES(488) + (totalram_pages >> 5);
1073 #undef MB2PAGES
1074         return min_pages;
1075 }
1076
1077 /*
1078  * Post our status as it relates memory pressure to the
1079  * host. Host expects the guests to post this status
1080  * periodically at 1 second intervals.
1081  *
1082  * The metrics specified in this protocol are very Windows
1083  * specific and so we cook up numbers here to convey our memory
1084  * pressure.
1085  */
1086
1087 static void post_status(struct hv_dynmem_device *dm)
1088 {
1089         struct dm_status status;
1090         unsigned long now = jiffies;
1091         unsigned long last_post = last_post_time;
1092
1093         if (pressure_report_delay > 0) {
1094                 --pressure_report_delay;
1095                 return;
1096         }
1097
1098         if (!time_after(now, (last_post_time + HZ)))
1099                 return;
1100
1101         memset(&status, 0, sizeof(struct dm_status));
1102         status.hdr.type = DM_STATUS_REPORT;
1103         status.hdr.size = sizeof(struct dm_status);
1104         status.hdr.trans_id = atomic_inc_return(&trans_id);
1105
1106         /*
1107          * The host expects the guest to report free and committed memory.
1108          * Furthermore, the host expects the pressure information to include
1109          * the ballooned out pages. For a given amount of memory that we are
1110          * managing we need to compute a floor below which we should not
1111          * balloon. Compute this and add it to the pressure report.
1112          * We also need to report all offline pages (num_pages_added -
1113          * num_pages_onlined) as committed to the host, otherwise it can try
1114          * asking us to balloon them out.
1115          */
1116         status.num_avail = si_mem_available();
1117         status.num_committed = vm_memory_committed() +
1118                 dm->num_pages_ballooned +
1119                 (dm->num_pages_added > dm->num_pages_onlined ?
1120                  dm->num_pages_added - dm->num_pages_onlined : 0) +
1121                 compute_balloon_floor();
1122
1123         /*
1124          * If our transaction ID is no longer current, just don't
1125          * send the status. This can happen if we were interrupted
1126          * after we picked our transaction ID.
1127          */
1128         if (status.hdr.trans_id != atomic_read(&trans_id))
1129                 return;
1130
1131         /*
1132          * If the last post time that we sampled has changed,
1133          * we have raced, don't post the status.
1134          */
1135         if (last_post != last_post_time)
1136                 return;
1137
1138         last_post_time = jiffies;
1139         vmbus_sendpacket(dm->dev->channel, &status,
1140                                 sizeof(struct dm_status),
1141                                 (unsigned long)NULL,
1142                                 VM_PKT_DATA_INBAND, 0);
1143
1144 }
1145
1146 static void free_balloon_pages(struct hv_dynmem_device *dm,
1147                          union dm_mem_page_range *range_array)
1148 {
1149         int num_pages = range_array->finfo.page_cnt;
1150         __u64 start_frame = range_array->finfo.start_page;
1151         struct page *pg;
1152         int i;
1153
1154         for (i = 0; i < num_pages; i++) {
1155                 pg = pfn_to_page(i + start_frame);
1156                 __free_page(pg);
1157                 dm->num_pages_ballooned--;
1158         }
1159 }
1160
1161
1162
1163 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1164                                         unsigned int num_pages,
1165                                         struct dm_balloon_response *bl_resp,
1166                                         int alloc_unit)
1167 {
1168         unsigned int i = 0;
1169         struct page *pg;
1170
1171         if (num_pages < alloc_unit)
1172                 return 0;
1173
1174         for (i = 0; (i * alloc_unit) < num_pages; i++) {
1175                 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1176                         PAGE_SIZE)
1177                         return i * alloc_unit;
1178
1179                 /*
1180                  * We execute this code in a thread context. Furthermore,
1181                  * we don't want the kernel to try too hard.
1182                  */
1183                 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1184                                 __GFP_NOMEMALLOC | __GFP_NOWARN,
1185                                 get_order(alloc_unit << PAGE_SHIFT));
1186
1187                 if (!pg)
1188                         return i * alloc_unit;
1189
1190                 dm->num_pages_ballooned += alloc_unit;
1191
1192                 /*
1193                  * If we allocatted 2M pages; split them so we
1194                  * can free them in any order we get.
1195                  */
1196
1197                 if (alloc_unit != 1)
1198                         split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1199
1200                 bl_resp->range_count++;
1201                 bl_resp->range_array[i].finfo.start_page =
1202                         page_to_pfn(pg);
1203                 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1204                 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1205
1206         }
1207
1208         return num_pages;
1209 }
1210
1211 static void balloon_up(struct work_struct *dummy)
1212 {
1213         unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1214         unsigned int num_ballooned = 0;
1215         struct dm_balloon_response *bl_resp;
1216         int alloc_unit;
1217         int ret;
1218         bool done = false;
1219         int i;
1220         long avail_pages;
1221         unsigned long floor;
1222
1223         /* The host balloons pages in 2M granularity. */
1224         WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1225
1226         /*
1227          * We will attempt 2M allocations. However, if we fail to
1228          * allocate 2M chunks, we will go back to 4k allocations.
1229          */
1230         alloc_unit = 512;
1231
1232         avail_pages = si_mem_available();
1233         floor = compute_balloon_floor();
1234
1235         /* Refuse to balloon below the floor, keep the 2M granularity. */
1236         if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1237                 pr_warn("Balloon request will be partially fulfilled. %s\n",
1238                         avail_pages < num_pages ? "Not enough memory." :
1239                         "Balloon floor reached.");
1240
1241                 num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1242                 num_pages -= num_pages % PAGES_IN_2M;
1243         }
1244
1245         while (!done) {
1246                 bl_resp = (struct dm_balloon_response *)send_buffer;
1247                 memset(send_buffer, 0, PAGE_SIZE);
1248                 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1249                 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1250                 bl_resp->more_pages = 1;
1251
1252                 num_pages -= num_ballooned;
1253                 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1254                                                     bl_resp, alloc_unit);
1255
1256                 if (alloc_unit != 1 && num_ballooned == 0) {
1257                         alloc_unit = 1;
1258                         continue;
1259                 }
1260
1261                 if (num_ballooned == 0 || num_ballooned == num_pages) {
1262                         pr_debug("Ballooned %u out of %u requested pages.\n",
1263                                 num_pages, dm_device.balloon_wrk.num_pages);
1264
1265                         bl_resp->more_pages = 0;
1266                         done = true;
1267                         dm_device.state = DM_INITIALIZED;
1268                 }
1269
1270                 /*
1271                  * We are pushing a lot of data through the channel;
1272                  * deal with transient failures caused because of the
1273                  * lack of space in the ring buffer.
1274                  */
1275
1276                 do {
1277                         bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1278                         ret = vmbus_sendpacket(dm_device.dev->channel,
1279                                                 bl_resp,
1280                                                 bl_resp->hdr.size,
1281                                                 (unsigned long)NULL,
1282                                                 VM_PKT_DATA_INBAND, 0);
1283
1284                         if (ret == -EAGAIN)
1285                                 msleep(20);
1286                         post_status(&dm_device);
1287                 } while (ret == -EAGAIN);
1288
1289                 if (ret) {
1290                         /*
1291                          * Free up the memory we allocatted.
1292                          */
1293                         pr_info("Balloon response failed\n");
1294
1295                         for (i = 0; i < bl_resp->range_count; i++)
1296                                 free_balloon_pages(&dm_device,
1297                                                  &bl_resp->range_array[i]);
1298
1299                         done = true;
1300                 }
1301         }
1302
1303 }
1304
1305 static void balloon_down(struct hv_dynmem_device *dm,
1306                         struct dm_unballoon_request *req)
1307 {
1308         union dm_mem_page_range *range_array = req->range_array;
1309         int range_count = req->range_count;
1310         struct dm_unballoon_response resp;
1311         int i;
1312         unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1313
1314         for (i = 0; i < range_count; i++) {
1315                 free_balloon_pages(dm, &range_array[i]);
1316                 complete(&dm_device.config_event);
1317         }
1318
1319         pr_debug("Freed %u ballooned pages.\n",
1320                 prev_pages_ballooned - dm->num_pages_ballooned);
1321
1322         if (req->more_pages == 1)
1323                 return;
1324
1325         memset(&resp, 0, sizeof(struct dm_unballoon_response));
1326         resp.hdr.type = DM_UNBALLOON_RESPONSE;
1327         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1328         resp.hdr.size = sizeof(struct dm_unballoon_response);
1329
1330         vmbus_sendpacket(dm_device.dev->channel, &resp,
1331                                 sizeof(struct dm_unballoon_response),
1332                                 (unsigned long)NULL,
1333                                 VM_PKT_DATA_INBAND, 0);
1334
1335         dm->state = DM_INITIALIZED;
1336 }
1337
1338 static void balloon_onchannelcallback(void *context);
1339
1340 static int dm_thread_func(void *dm_dev)
1341 {
1342         struct hv_dynmem_device *dm = dm_dev;
1343
1344         while (!kthread_should_stop()) {
1345                 wait_for_completion_interruptible_timeout(
1346                                                 &dm_device.config_event, 1*HZ);
1347                 /*
1348                  * The host expects us to post information on the memory
1349                  * pressure every second.
1350                  */
1351                 reinit_completion(&dm_device.config_event);
1352                 post_status(dm);
1353         }
1354
1355         return 0;
1356 }
1357
1358
1359 static void version_resp(struct hv_dynmem_device *dm,
1360                         struct dm_version_response *vresp)
1361 {
1362         struct dm_version_request version_req;
1363         int ret;
1364
1365         if (vresp->is_accepted) {
1366                 /*
1367                  * We are done; wakeup the
1368                  * context waiting for version
1369                  * negotiation.
1370                  */
1371                 complete(&dm->host_event);
1372                 return;
1373         }
1374         /*
1375          * If there are more versions to try, continue
1376          * with negotiations; if not
1377          * shutdown the service since we are not able
1378          * to negotiate a suitable version number
1379          * with the host.
1380          */
1381         if (dm->next_version == 0)
1382                 goto version_error;
1383
1384         memset(&version_req, 0, sizeof(struct dm_version_request));
1385         version_req.hdr.type = DM_VERSION_REQUEST;
1386         version_req.hdr.size = sizeof(struct dm_version_request);
1387         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1388         version_req.version.version = dm->next_version;
1389         dm->version = version_req.version.version;
1390
1391         /*
1392          * Set the next version to try in case current version fails.
1393          * Win7 protocol ought to be the last one to try.
1394          */
1395         switch (version_req.version.version) {
1396         case DYNMEM_PROTOCOL_VERSION_WIN8:
1397                 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1398                 version_req.is_last_attempt = 0;
1399                 break;
1400         default:
1401                 dm->next_version = 0;
1402                 version_req.is_last_attempt = 1;
1403         }
1404
1405         ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1406                                 sizeof(struct dm_version_request),
1407                                 (unsigned long)NULL,
1408                                 VM_PKT_DATA_INBAND, 0);
1409
1410         if (ret)
1411                 goto version_error;
1412
1413         return;
1414
1415 version_error:
1416         dm->state = DM_INIT_ERROR;
1417         complete(&dm->host_event);
1418 }
1419
1420 static void cap_resp(struct hv_dynmem_device *dm,
1421                         struct dm_capabilities_resp_msg *cap_resp)
1422 {
1423         if (!cap_resp->is_accepted) {
1424                 pr_info("Capabilities not accepted by host\n");
1425                 dm->state = DM_INIT_ERROR;
1426         }
1427         complete(&dm->host_event);
1428 }
1429
1430 static void balloon_onchannelcallback(void *context)
1431 {
1432         struct hv_device *dev = context;
1433         u32 recvlen;
1434         u64 requestid;
1435         struct dm_message *dm_msg;
1436         struct dm_header *dm_hdr;
1437         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1438         struct dm_balloon *bal_msg;
1439         struct dm_hot_add *ha_msg;
1440         union dm_mem_page_range *ha_pg_range;
1441         union dm_mem_page_range *ha_region;
1442
1443         memset(recv_buffer, 0, sizeof(recv_buffer));
1444         vmbus_recvpacket(dev->channel, recv_buffer,
1445                          PAGE_SIZE, &recvlen, &requestid);
1446
1447         if (recvlen > 0) {
1448                 dm_msg = (struct dm_message *)recv_buffer;
1449                 dm_hdr = &dm_msg->hdr;
1450
1451                 switch (dm_hdr->type) {
1452                 case DM_VERSION_RESPONSE:
1453                         version_resp(dm,
1454                                  (struct dm_version_response *)dm_msg);
1455                         break;
1456
1457                 case DM_CAPABILITIES_RESPONSE:
1458                         cap_resp(dm,
1459                                  (struct dm_capabilities_resp_msg *)dm_msg);
1460                         break;
1461
1462                 case DM_BALLOON_REQUEST:
1463                         if (dm->state == DM_BALLOON_UP)
1464                                 pr_warn("Currently ballooning\n");
1465                         bal_msg = (struct dm_balloon *)recv_buffer;
1466                         dm->state = DM_BALLOON_UP;
1467                         dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1468                         schedule_work(&dm_device.balloon_wrk.wrk);
1469                         break;
1470
1471                 case DM_UNBALLOON_REQUEST:
1472                         dm->state = DM_BALLOON_DOWN;
1473                         balloon_down(dm,
1474                                  (struct dm_unballoon_request *)recv_buffer);
1475                         break;
1476
1477                 case DM_MEM_HOT_ADD_REQUEST:
1478                         if (dm->state == DM_HOT_ADD)
1479                                 pr_warn("Currently hot-adding\n");
1480                         dm->state = DM_HOT_ADD;
1481                         ha_msg = (struct dm_hot_add *)recv_buffer;
1482                         if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1483                                 /*
1484                                  * This is a normal hot-add request specifying
1485                                  * hot-add memory.
1486                                  */
1487                                 dm->host_specified_ha_region = false;
1488                                 ha_pg_range = &ha_msg->range;
1489                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1490                                 dm->ha_wrk.ha_region_range.page_range = 0;
1491                         } else {
1492                                 /*
1493                                  * Host is specifying that we first hot-add
1494                                  * a region and then partially populate this
1495                                  * region.
1496                                  */
1497                                 dm->host_specified_ha_region = true;
1498                                 ha_pg_range = &ha_msg->range;
1499                                 ha_region = &ha_pg_range[1];
1500                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1501                                 dm->ha_wrk.ha_region_range = *ha_region;
1502                         }
1503                         schedule_work(&dm_device.ha_wrk.wrk);
1504                         break;
1505
1506                 case DM_INFO_MESSAGE:
1507                         process_info(dm, (struct dm_info_msg *)dm_msg);
1508                         break;
1509
1510                 default:
1511                         pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1512
1513                 }
1514         }
1515
1516 }
1517
1518 static int balloon_probe(struct hv_device *dev,
1519                         const struct hv_vmbus_device_id *dev_id)
1520 {
1521         int ret;
1522         unsigned long t;
1523         struct dm_version_request version_req;
1524         struct dm_capabilities cap_msg;
1525
1526 #ifdef CONFIG_MEMORY_HOTPLUG
1527         do_hot_add = hot_add;
1528 #else
1529         do_hot_add = false;
1530 #endif
1531
1532         /*
1533          * First allocate a send buffer.
1534          */
1535
1536         send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1537         if (!send_buffer)
1538                 return -ENOMEM;
1539
1540         ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1541                         balloon_onchannelcallback, dev);
1542
1543         if (ret)
1544                 goto probe_error0;
1545
1546         dm_device.dev = dev;
1547         dm_device.state = DM_INITIALIZING;
1548         dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1549         init_completion(&dm_device.host_event);
1550         init_completion(&dm_device.config_event);
1551         INIT_LIST_HEAD(&dm_device.ha_region_list);
1552         spin_lock_init(&dm_device.ha_lock);
1553         INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1554         INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1555         dm_device.host_specified_ha_region = false;
1556
1557         dm_device.thread =
1558                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1559         if (IS_ERR(dm_device.thread)) {
1560                 ret = PTR_ERR(dm_device.thread);
1561                 goto probe_error1;
1562         }
1563
1564 #ifdef CONFIG_MEMORY_HOTPLUG
1565         set_online_page_callback(&hv_online_page);
1566         register_memory_notifier(&hv_memory_nb);
1567 #endif
1568
1569         hv_set_drvdata(dev, &dm_device);
1570         /*
1571          * Initiate the hand shake with the host and negotiate
1572          * a version that the host can support. We start with the
1573          * highest version number and go down if the host cannot
1574          * support it.
1575          */
1576         memset(&version_req, 0, sizeof(struct dm_version_request));
1577         version_req.hdr.type = DM_VERSION_REQUEST;
1578         version_req.hdr.size = sizeof(struct dm_version_request);
1579         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1580         version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1581         version_req.is_last_attempt = 0;
1582         dm_device.version = version_req.version.version;
1583
1584         ret = vmbus_sendpacket(dev->channel, &version_req,
1585                                 sizeof(struct dm_version_request),
1586                                 (unsigned long)NULL,
1587                                 VM_PKT_DATA_INBAND, 0);
1588         if (ret)
1589                 goto probe_error2;
1590
1591         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1592         if (t == 0) {
1593                 ret = -ETIMEDOUT;
1594                 goto probe_error2;
1595         }
1596
1597         /*
1598          * If we could not negotiate a compatible version with the host
1599          * fail the probe function.
1600          */
1601         if (dm_device.state == DM_INIT_ERROR) {
1602                 ret = -ETIMEDOUT;
1603                 goto probe_error2;
1604         }
1605
1606         pr_info("Using Dynamic Memory protocol version %u.%u\n",
1607                 DYNMEM_MAJOR_VERSION(dm_device.version),
1608                 DYNMEM_MINOR_VERSION(dm_device.version));
1609
1610         /*
1611          * Now submit our capabilities to the host.
1612          */
1613         memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1614         cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1615         cap_msg.hdr.size = sizeof(struct dm_capabilities);
1616         cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1617
1618         cap_msg.caps.cap_bits.balloon = 1;
1619         cap_msg.caps.cap_bits.hot_add = 1;
1620
1621         /*
1622          * Specify our alignment requirements as it relates
1623          * memory hot-add. Specify 128MB alignment.
1624          */
1625         cap_msg.caps.cap_bits.hot_add_alignment = 7;
1626
1627         /*
1628          * Currently the host does not use these
1629          * values and we set them to what is done in the
1630          * Windows driver.
1631          */
1632         cap_msg.min_page_cnt = 0;
1633         cap_msg.max_page_number = -1;
1634
1635         ret = vmbus_sendpacket(dev->channel, &cap_msg,
1636                                 sizeof(struct dm_capabilities),
1637                                 (unsigned long)NULL,
1638                                 VM_PKT_DATA_INBAND, 0);
1639         if (ret)
1640                 goto probe_error2;
1641
1642         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1643         if (t == 0) {
1644                 ret = -ETIMEDOUT;
1645                 goto probe_error2;
1646         }
1647
1648         /*
1649          * If the host does not like our capabilities,
1650          * fail the probe function.
1651          */
1652         if (dm_device.state == DM_INIT_ERROR) {
1653                 ret = -ETIMEDOUT;
1654                 goto probe_error2;
1655         }
1656
1657         dm_device.state = DM_INITIALIZED;
1658         last_post_time = jiffies;
1659
1660         return 0;
1661
1662 probe_error2:
1663 #ifdef CONFIG_MEMORY_HOTPLUG
1664         restore_online_page_callback(&hv_online_page);
1665 #endif
1666         kthread_stop(dm_device.thread);
1667
1668 probe_error1:
1669         vmbus_close(dev->channel);
1670 probe_error0:
1671         kfree(send_buffer);
1672         return ret;
1673 }
1674
1675 static int balloon_remove(struct hv_device *dev)
1676 {
1677         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1678         struct hv_hotadd_state *has, *tmp;
1679         struct hv_hotadd_gap *gap, *tmp_gap;
1680         unsigned long flags;
1681
1682         if (dm->num_pages_ballooned != 0)
1683                 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1684
1685         cancel_work_sync(&dm->balloon_wrk.wrk);
1686         cancel_work_sync(&dm->ha_wrk.wrk);
1687
1688         vmbus_close(dev->channel);
1689         kthread_stop(dm->thread);
1690         kfree(send_buffer);
1691 #ifdef CONFIG_MEMORY_HOTPLUG
1692         restore_online_page_callback(&hv_online_page);
1693         unregister_memory_notifier(&hv_memory_nb);
1694 #endif
1695         spin_lock_irqsave(&dm_device.ha_lock, flags);
1696         list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1697                 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1698                         list_del(&gap->list);
1699                         kfree(gap);
1700                 }
1701                 list_del(&has->list);
1702                 kfree(has);
1703         }
1704         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1705
1706         return 0;
1707 }
1708
1709 static const struct hv_vmbus_device_id id_table[] = {
1710         /* Dynamic Memory Class ID */
1711         /* 525074DC-8985-46e2-8057-A307DC18A502 */
1712         { HV_DM_GUID, },
1713         { },
1714 };
1715
1716 MODULE_DEVICE_TABLE(vmbus, id_table);
1717
1718 static  struct hv_driver balloon_drv = {
1719         .name = "hv_balloon",
1720         .id_table = id_table,
1721         .probe =  balloon_probe,
1722         .remove =  balloon_remove,
1723 };
1724
1725 static int __init init_balloon_drv(void)
1726 {
1727
1728         return vmbus_driver_register(&balloon_drv);
1729 }
1730
1731 module_init(init_balloon_drv);
1732
1733 MODULE_DESCRIPTION("Hyper-V Balloon");
1734 MODULE_LICENSE("GPL");