Drivers: hv: Create debugfs file with hyper-v balloon usage information
[platform/kernel/linux-starfive.git] / drivers / hv / hv_balloon.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012, Microsoft Corporation.
4  *
5  * Author:
6  *   K. Y. Srinivasan <kys@microsoft.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/jiffies.h>
13 #include <linux/mman.h>
14 #include <linux/debugfs.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/kthread.h>
20 #include <linux/completion.h>
21 #include <linux/count_zeros.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/memory.h>
24 #include <linux/notifier.h>
25 #include <linux/percpu_counter.h>
26 #include <linux/page_reporting.h>
27
28 #include <linux/hyperv.h>
29 #include <asm/hyperv-tlfs.h>
30
31 #include <asm/mshyperv.h>
32
33 #define CREATE_TRACE_POINTS
34 #include "hv_trace_balloon.h"
35
36 /*
37  * We begin with definitions supporting the Dynamic Memory protocol
38  * with the host.
39  *
40  * Begin protocol definitions.
41  */
42
43
44
45 /*
46  * Protocol versions. The low word is the minor version, the high word the major
47  * version.
48  *
49  * History:
50  * Initial version 1.0
51  * Changed to 0.1 on 2009/03/25
52  * Changes to 0.2 on 2009/05/14
53  * Changes to 0.3 on 2009/12/03
54  * Changed to 1.0 on 2011/04/05
55  */
56
57 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
58 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
59 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
60
61 enum {
62         DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
63         DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
64         DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
65
66         DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
67         DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
68         DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
69
70         DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
71 };
72
73
74
75 /*
76  * Message Types
77  */
78
79 enum dm_message_type {
80         /*
81          * Version 0.3
82          */
83         DM_ERROR                        = 0,
84         DM_VERSION_REQUEST              = 1,
85         DM_VERSION_RESPONSE             = 2,
86         DM_CAPABILITIES_REPORT          = 3,
87         DM_CAPABILITIES_RESPONSE        = 4,
88         DM_STATUS_REPORT                = 5,
89         DM_BALLOON_REQUEST              = 6,
90         DM_BALLOON_RESPONSE             = 7,
91         DM_UNBALLOON_REQUEST            = 8,
92         DM_UNBALLOON_RESPONSE           = 9,
93         DM_MEM_HOT_ADD_REQUEST          = 10,
94         DM_MEM_HOT_ADD_RESPONSE         = 11,
95         DM_VERSION_03_MAX               = 11,
96         /*
97          * Version 1.0.
98          */
99         DM_INFO_MESSAGE                 = 12,
100         DM_VERSION_1_MAX                = 12
101 };
102
103
104 /*
105  * Structures defining the dynamic memory management
106  * protocol.
107  */
108
109 union dm_version {
110         struct {
111                 __u16 minor_version;
112                 __u16 major_version;
113         };
114         __u32 version;
115 } __packed;
116
117
118 union dm_caps {
119         struct {
120                 __u64 balloon:1;
121                 __u64 hot_add:1;
122                 /*
123                  * To support guests that may have alignment
124                  * limitations on hot-add, the guest can specify
125                  * its alignment requirements; a value of n
126                  * represents an alignment of 2^n in mega bytes.
127                  */
128                 __u64 hot_add_alignment:4;
129                 __u64 reservedz:58;
130         } cap_bits;
131         __u64 caps;
132 } __packed;
133
134 union dm_mem_page_range {
135         struct  {
136                 /*
137                  * The PFN number of the first page in the range.
138                  * 40 bits is the architectural limit of a PFN
139                  * number for AMD64.
140                  */
141                 __u64 start_page:40;
142                 /*
143                  * The number of pages in the range.
144                  */
145                 __u64 page_cnt:24;
146         } finfo;
147         __u64  page_range;
148 } __packed;
149
150
151
152 /*
153  * The header for all dynamic memory messages:
154  *
155  * type: Type of the message.
156  * size: Size of the message in bytes; including the header.
157  * trans_id: The guest is responsible for manufacturing this ID.
158  */
159
160 struct dm_header {
161         __u16 type;
162         __u16 size;
163         __u32 trans_id;
164 } __packed;
165
166 /*
167  * A generic message format for dynamic memory.
168  * Specific message formats are defined later in the file.
169  */
170
171 struct dm_message {
172         struct dm_header hdr;
173         __u8 data[]; /* enclosed message */
174 } __packed;
175
176
177 /*
178  * Specific message types supporting the dynamic memory protocol.
179  */
180
181 /*
182  * Version negotiation message. Sent from the guest to the host.
183  * The guest is free to try different versions until the host
184  * accepts the version.
185  *
186  * dm_version: The protocol version requested.
187  * is_last_attempt: If TRUE, this is the last version guest will request.
188  * reservedz: Reserved field, set to zero.
189  */
190
191 struct dm_version_request {
192         struct dm_header hdr;
193         union dm_version version;
194         __u32 is_last_attempt:1;
195         __u32 reservedz:31;
196 } __packed;
197
198 /*
199  * Version response message; Host to Guest and indicates
200  * if the host has accepted the version sent by the guest.
201  *
202  * is_accepted: If TRUE, host has accepted the version and the guest
203  * should proceed to the next stage of the protocol. FALSE indicates that
204  * guest should re-try with a different version.
205  *
206  * reservedz: Reserved field, set to zero.
207  */
208
209 struct dm_version_response {
210         struct dm_header hdr;
211         __u64 is_accepted:1;
212         __u64 reservedz:63;
213 } __packed;
214
215 /*
216  * Message reporting capabilities. This is sent from the guest to the
217  * host.
218  */
219
220 struct dm_capabilities {
221         struct dm_header hdr;
222         union dm_caps caps;
223         __u64 min_page_cnt;
224         __u64 max_page_number;
225 } __packed;
226
227 /*
228  * Response to the capabilities message. This is sent from the host to the
229  * guest. This message notifies if the host has accepted the guest's
230  * capabilities. If the host has not accepted, the guest must shutdown
231  * the service.
232  *
233  * is_accepted: Indicates if the host has accepted guest's capabilities.
234  * reservedz: Must be 0.
235  */
236
237 struct dm_capabilities_resp_msg {
238         struct dm_header hdr;
239         __u64 is_accepted:1;
240         __u64 reservedz:63;
241 } __packed;
242
243 /*
244  * This message is used to report memory pressure from the guest.
245  * This message is not part of any transaction and there is no
246  * response to this message.
247  *
248  * num_avail: Available memory in pages.
249  * num_committed: Committed memory in pages.
250  * page_file_size: The accumulated size of all page files
251  *                 in the system in pages.
252  * zero_free: The number of zero and free pages.
253  * page_file_writes: The writes to the page file in pages.
254  * io_diff: An indicator of file cache efficiency or page file activity,
255  *          calculated as File Cache Page Fault Count - Page Read Count.
256  *          This value is in pages.
257  *
258  * Some of these metrics are Windows specific and fortunately
259  * the algorithm on the host side that computes the guest memory
260  * pressure only uses num_committed value.
261  */
262
263 struct dm_status {
264         struct dm_header hdr;
265         __u64 num_avail;
266         __u64 num_committed;
267         __u64 page_file_size;
268         __u64 zero_free;
269         __u32 page_file_writes;
270         __u32 io_diff;
271 } __packed;
272
273
274 /*
275  * Message to ask the guest to allocate memory - balloon up message.
276  * This message is sent from the host to the guest. The guest may not be
277  * able to allocate as much memory as requested.
278  *
279  * num_pages: number of pages to allocate.
280  */
281
282 struct dm_balloon {
283         struct dm_header hdr;
284         __u32 num_pages;
285         __u32 reservedz;
286 } __packed;
287
288
289 /*
290  * Balloon response message; this message is sent from the guest
291  * to the host in response to the balloon message.
292  *
293  * reservedz: Reserved; must be set to zero.
294  * more_pages: If FALSE, this is the last message of the transaction.
295  * if TRUE there will atleast one more message from the guest.
296  *
297  * range_count: The number of ranges in the range array.
298  *
299  * range_array: An array of page ranges returned to the host.
300  *
301  */
302
303 struct dm_balloon_response {
304         struct dm_header hdr;
305         __u32 reservedz;
306         __u32 more_pages:1;
307         __u32 range_count:31;
308         union dm_mem_page_range range_array[];
309 } __packed;
310
311 /*
312  * Un-balloon message; this message is sent from the host
313  * to the guest to give guest more memory.
314  *
315  * more_pages: If FALSE, this is the last message of the transaction.
316  * if TRUE there will atleast one more message from the guest.
317  *
318  * reservedz: Reserved; must be set to zero.
319  *
320  * range_count: The number of ranges in the range array.
321  *
322  * range_array: An array of page ranges returned to the host.
323  *
324  */
325
326 struct dm_unballoon_request {
327         struct dm_header hdr;
328         __u32 more_pages:1;
329         __u32 reservedz:31;
330         __u32 range_count;
331         union dm_mem_page_range range_array[];
332 } __packed;
333
334 /*
335  * Un-balloon response message; this message is sent from the guest
336  * to the host in response to an unballoon request.
337  *
338  */
339
340 struct dm_unballoon_response {
341         struct dm_header hdr;
342 } __packed;
343
344
345 /*
346  * Hot add request message. Message sent from the host to the guest.
347  *
348  * mem_range: Memory range to hot add.
349  *
350  */
351
352 struct dm_hot_add {
353         struct dm_header hdr;
354         union dm_mem_page_range range;
355 } __packed;
356
357 /*
358  * Hot add response message.
359  * This message is sent by the guest to report the status of a hot add request.
360  * If page_count is less than the requested page count, then the host should
361  * assume all further hot add requests will fail, since this indicates that
362  * the guest has hit an upper physical memory barrier.
363  *
364  * Hot adds may also fail due to low resources; in this case, the guest must
365  * not complete this message until the hot add can succeed, and the host must
366  * not send a new hot add request until the response is sent.
367  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
368  * times it fails the request.
369  *
370  *
371  * page_count: number of pages that were successfully hot added.
372  *
373  * result: result of the operation 1: success, 0: failure.
374  *
375  */
376
377 struct dm_hot_add_response {
378         struct dm_header hdr;
379         __u32 page_count;
380         __u32 result;
381 } __packed;
382
383 /*
384  * Types of information sent from host to the guest.
385  */
386
387 enum dm_info_type {
388         INFO_TYPE_MAX_PAGE_CNT = 0,
389         MAX_INFO_TYPE
390 };
391
392
393 /*
394  * Header for the information message.
395  */
396
397 struct dm_info_header {
398         enum dm_info_type type;
399         __u32 data_size;
400 } __packed;
401
402 /*
403  * This message is sent from the host to the guest to pass
404  * some relevant information (win8 addition).
405  *
406  * reserved: no used.
407  * info_size: size of the information blob.
408  * info: information blob.
409  */
410
411 struct dm_info_msg {
412         struct dm_header hdr;
413         __u32 reserved;
414         __u32 info_size;
415         __u8  info[];
416 };
417
418 /*
419  * End protocol definitions.
420  */
421
422 /*
423  * State to manage hot adding memory into the guest.
424  * The range start_pfn : end_pfn specifies the range
425  * that the host has asked us to hot add. The range
426  * start_pfn : ha_end_pfn specifies the range that we have
427  * currently hot added. We hot add in multiples of 128M
428  * chunks; it is possible that we may not be able to bring
429  * online all the pages in the region. The range
430  * covered_start_pfn:covered_end_pfn defines the pages that can
431  * be brough online.
432  */
433
434 struct hv_hotadd_state {
435         struct list_head list;
436         unsigned long start_pfn;
437         unsigned long covered_start_pfn;
438         unsigned long covered_end_pfn;
439         unsigned long ha_end_pfn;
440         unsigned long end_pfn;
441         /*
442          * A list of gaps.
443          */
444         struct list_head gap_list;
445 };
446
447 struct hv_hotadd_gap {
448         struct list_head list;
449         unsigned long start_pfn;
450         unsigned long end_pfn;
451 };
452
453 struct balloon_state {
454         __u32 num_pages;
455         struct work_struct wrk;
456 };
457
458 struct hot_add_wrk {
459         union dm_mem_page_range ha_page_range;
460         union dm_mem_page_range ha_region_range;
461         struct work_struct wrk;
462 };
463
464 static bool allow_hibernation;
465 static bool hot_add = true;
466 static bool do_hot_add;
467 /*
468  * Delay reporting memory pressure by
469  * the specified number of seconds.
470  */
471 static uint pressure_report_delay = 45;
472
473 /*
474  * The last time we posted a pressure report to host.
475  */
476 static unsigned long last_post_time;
477
478 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
479 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
480
481 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
482 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
483 static atomic_t trans_id = ATOMIC_INIT(0);
484
485 static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024);
486
487 /*
488  * Driver specific state.
489  */
490
491 enum hv_dm_state {
492         DM_INITIALIZING = 0,
493         DM_INITIALIZED,
494         DM_BALLOON_UP,
495         DM_BALLOON_DOWN,
496         DM_HOT_ADD,
497         DM_INIT_ERROR
498 };
499
500
501 static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
502 static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
503 #define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
504 #define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
505
506 struct hv_dynmem_device {
507         struct hv_device *dev;
508         enum hv_dm_state state;
509         struct completion host_event;
510         struct completion config_event;
511
512         /*
513          * Number of pages we have currently ballooned out.
514          */
515         unsigned int num_pages_ballooned;
516         unsigned int num_pages_onlined;
517         unsigned int num_pages_added;
518
519         /*
520          * State to manage the ballooning (up) operation.
521          */
522         struct balloon_state balloon_wrk;
523
524         /*
525          * State to execute the "hot-add" operation.
526          */
527         struct hot_add_wrk ha_wrk;
528
529         /*
530          * This state tracks if the host has specified a hot-add
531          * region.
532          */
533         bool host_specified_ha_region;
534
535         /*
536          * State to synchronize hot-add.
537          */
538         struct completion  ol_waitevent;
539         /*
540          * This thread handles hot-add
541          * requests from the host as well as notifying
542          * the host with regards to memory pressure in
543          * the guest.
544          */
545         struct task_struct *thread;
546
547         /*
548          * Protects ha_region_list, num_pages_onlined counter and individual
549          * regions from ha_region_list.
550          */
551         spinlock_t ha_lock;
552
553         /*
554          * A list of hot-add regions.
555          */
556         struct list_head ha_region_list;
557
558         /*
559          * We start with the highest version we can support
560          * and downgrade based on the host; we save here the
561          * next version to try.
562          */
563         __u32 next_version;
564
565         /*
566          * The negotiated version agreed by host.
567          */
568         __u32 version;
569
570         struct page_reporting_dev_info pr_dev_info;
571
572         /*
573          * Maximum number of pages that can be hot_add-ed
574          */
575         __u64 max_dynamic_page_count;
576 };
577
578 static struct hv_dynmem_device dm_device;
579
580 static void post_status(struct hv_dynmem_device *dm);
581
582 #ifdef CONFIG_MEMORY_HOTPLUG
583 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
584                                      unsigned long pfn)
585 {
586         struct hv_hotadd_gap *gap;
587
588         /* The page is not backed. */
589         if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
590                 return false;
591
592         /* Check for gaps. */
593         list_for_each_entry(gap, &has->gap_list, list) {
594                 if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
595                         return false;
596         }
597
598         return true;
599 }
600
601 static unsigned long hv_page_offline_check(unsigned long start_pfn,
602                                            unsigned long nr_pages)
603 {
604         unsigned long pfn = start_pfn, count = 0;
605         struct hv_hotadd_state *has;
606         bool found;
607
608         while (pfn < start_pfn + nr_pages) {
609                 /*
610                  * Search for HAS which covers the pfn and when we find one
611                  * count how many consequitive PFNs are covered.
612                  */
613                 found = false;
614                 list_for_each_entry(has, &dm_device.ha_region_list, list) {
615                         while ((pfn >= has->start_pfn) &&
616                                (pfn < has->end_pfn) &&
617                                (pfn < start_pfn + nr_pages)) {
618                                 found = true;
619                                 if (has_pfn_is_backed(has, pfn))
620                                         count++;
621                                 pfn++;
622                         }
623                 }
624
625                 /*
626                  * This PFN is not in any HAS (e.g. we're offlining a region
627                  * which was present at boot), no need to account for it. Go
628                  * to the next one.
629                  */
630                 if (!found)
631                         pfn++;
632         }
633
634         return count;
635 }
636
637 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
638                               void *v)
639 {
640         struct memory_notify *mem = (struct memory_notify *)v;
641         unsigned long flags, pfn_count;
642
643         switch (val) {
644         case MEM_ONLINE:
645         case MEM_CANCEL_ONLINE:
646                 complete(&dm_device.ol_waitevent);
647                 break;
648
649         case MEM_OFFLINE:
650                 spin_lock_irqsave(&dm_device.ha_lock, flags);
651                 pfn_count = hv_page_offline_check(mem->start_pfn,
652                                                   mem->nr_pages);
653                 if (pfn_count <= dm_device.num_pages_onlined) {
654                         dm_device.num_pages_onlined -= pfn_count;
655                 } else {
656                         /*
657                          * We're offlining more pages than we managed to online.
658                          * This is unexpected. In any case don't let
659                          * num_pages_onlined wrap around zero.
660                          */
661                         WARN_ON_ONCE(1);
662                         dm_device.num_pages_onlined = 0;
663                 }
664                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
665                 break;
666         case MEM_GOING_ONLINE:
667         case MEM_GOING_OFFLINE:
668         case MEM_CANCEL_OFFLINE:
669                 break;
670         }
671         return NOTIFY_OK;
672 }
673
674 static struct notifier_block hv_memory_nb = {
675         .notifier_call = hv_memory_notifier,
676         .priority = 0
677 };
678
679 /* Check if the particular page is backed and can be onlined and online it. */
680 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
681 {
682         if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
683                 if (!PageOffline(pg))
684                         __SetPageOffline(pg);
685                 return;
686         }
687         if (PageOffline(pg))
688                 __ClearPageOffline(pg);
689
690         /* This frame is currently backed; online the page. */
691         generic_online_page(pg, 0);
692
693         lockdep_assert_held(&dm_device.ha_lock);
694         dm_device.num_pages_onlined++;
695 }
696
697 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
698                                 unsigned long start_pfn, unsigned long size)
699 {
700         int i;
701
702         pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
703         for (i = 0; i < size; i++)
704                 hv_page_online_one(has, pfn_to_page(start_pfn + i));
705 }
706
707 static void hv_mem_hot_add(unsigned long start, unsigned long size,
708                                 unsigned long pfn_count,
709                                 struct hv_hotadd_state *has)
710 {
711         int ret = 0;
712         int i, nid;
713         unsigned long start_pfn;
714         unsigned long processed_pfn;
715         unsigned long total_pfn = pfn_count;
716         unsigned long flags;
717
718         for (i = 0; i < (size/HA_CHUNK); i++) {
719                 start_pfn = start + (i * HA_CHUNK);
720
721                 spin_lock_irqsave(&dm_device.ha_lock, flags);
722                 has->ha_end_pfn +=  HA_CHUNK;
723
724                 if (total_pfn > HA_CHUNK) {
725                         processed_pfn = HA_CHUNK;
726                         total_pfn -= HA_CHUNK;
727                 } else {
728                         processed_pfn = total_pfn;
729                         total_pfn = 0;
730                 }
731
732                 has->covered_end_pfn +=  processed_pfn;
733                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
734
735                 reinit_completion(&dm_device.ol_waitevent);
736
737                 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
738                 ret = add_memory(nid, PFN_PHYS((start_pfn)),
739                                 (HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE);
740
741                 if (ret) {
742                         pr_err("hot_add memory failed error is %d\n", ret);
743                         if (ret == -EEXIST) {
744                                 /*
745                                  * This error indicates that the error
746                                  * is not a transient failure. This is the
747                                  * case where the guest's physical address map
748                                  * precludes hot adding memory. Stop all further
749                                  * memory hot-add.
750                                  */
751                                 do_hot_add = false;
752                         }
753                         spin_lock_irqsave(&dm_device.ha_lock, flags);
754                         has->ha_end_pfn -= HA_CHUNK;
755                         has->covered_end_pfn -=  processed_pfn;
756                         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
757                         break;
758                 }
759
760                 /*
761                  * Wait for memory to get onlined. If the kernel onlined the
762                  * memory when adding it, this will return directly. Otherwise,
763                  * it will wait for user space to online the memory. This helps
764                  * to avoid adding memory faster than it is getting onlined. As
765                  * adding succeeded, it is ok to proceed even if the memory was
766                  * not onlined in time.
767                  */
768                 wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
769                 post_status(&dm_device);
770         }
771 }
772
773 static void hv_online_page(struct page *pg, unsigned int order)
774 {
775         struct hv_hotadd_state *has;
776         unsigned long flags;
777         unsigned long pfn = page_to_pfn(pg);
778
779         spin_lock_irqsave(&dm_device.ha_lock, flags);
780         list_for_each_entry(has, &dm_device.ha_region_list, list) {
781                 /* The page belongs to a different HAS. */
782                 if ((pfn < has->start_pfn) ||
783                                 (pfn + (1UL << order) > has->end_pfn))
784                         continue;
785
786                 hv_bring_pgs_online(has, pfn, 1UL << order);
787                 break;
788         }
789         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
790 }
791
792 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
793 {
794         struct hv_hotadd_state *has;
795         struct hv_hotadd_gap *gap;
796         unsigned long residual, new_inc;
797         int ret = 0;
798         unsigned long flags;
799
800         spin_lock_irqsave(&dm_device.ha_lock, flags);
801         list_for_each_entry(has, &dm_device.ha_region_list, list) {
802                 /*
803                  * If the pfn range we are dealing with is not in the current
804                  * "hot add block", move on.
805                  */
806                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
807                         continue;
808
809                 /*
810                  * If the current start pfn is not where the covered_end
811                  * is, create a gap and update covered_end_pfn.
812                  */
813                 if (has->covered_end_pfn != start_pfn) {
814                         gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
815                         if (!gap) {
816                                 ret = -ENOMEM;
817                                 break;
818                         }
819
820                         INIT_LIST_HEAD(&gap->list);
821                         gap->start_pfn = has->covered_end_pfn;
822                         gap->end_pfn = start_pfn;
823                         list_add_tail(&gap->list, &has->gap_list);
824
825                         has->covered_end_pfn = start_pfn;
826                 }
827
828                 /*
829                  * If the current hot add-request extends beyond
830                  * our current limit; extend it.
831                  */
832                 if ((start_pfn + pfn_cnt) > has->end_pfn) {
833                         residual = (start_pfn + pfn_cnt - has->end_pfn);
834                         /*
835                          * Extend the region by multiples of HA_CHUNK.
836                          */
837                         new_inc = (residual / HA_CHUNK) * HA_CHUNK;
838                         if (residual % HA_CHUNK)
839                                 new_inc += HA_CHUNK;
840
841                         has->end_pfn += new_inc;
842                 }
843
844                 ret = 1;
845                 break;
846         }
847         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
848
849         return ret;
850 }
851
852 static unsigned long handle_pg_range(unsigned long pg_start,
853                                         unsigned long pg_count)
854 {
855         unsigned long start_pfn = pg_start;
856         unsigned long pfn_cnt = pg_count;
857         unsigned long size;
858         struct hv_hotadd_state *has;
859         unsigned long pgs_ol = 0;
860         unsigned long old_covered_state;
861         unsigned long res = 0, flags;
862
863         pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
864                 pg_start);
865
866         spin_lock_irqsave(&dm_device.ha_lock, flags);
867         list_for_each_entry(has, &dm_device.ha_region_list, list) {
868                 /*
869                  * If the pfn range we are dealing with is not in the current
870                  * "hot add block", move on.
871                  */
872                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
873                         continue;
874
875                 old_covered_state = has->covered_end_pfn;
876
877                 if (start_pfn < has->ha_end_pfn) {
878                         /*
879                          * This is the case where we are backing pages
880                          * in an already hot added region. Bring
881                          * these pages online first.
882                          */
883                         pgs_ol = has->ha_end_pfn - start_pfn;
884                         if (pgs_ol > pfn_cnt)
885                                 pgs_ol = pfn_cnt;
886
887                         has->covered_end_pfn +=  pgs_ol;
888                         pfn_cnt -= pgs_ol;
889                         /*
890                          * Check if the corresponding memory block is already
891                          * online. It is possible to observe struct pages still
892                          * being uninitialized here so check section instead.
893                          * In case the section is online we need to bring the
894                          * rest of pfns (which were not backed previously)
895                          * online too.
896                          */
897                         if (start_pfn > has->start_pfn &&
898                             online_section_nr(pfn_to_section_nr(start_pfn)))
899                                 hv_bring_pgs_online(has, start_pfn, pgs_ol);
900
901                 }
902
903                 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
904                         /*
905                          * We have some residual hot add range
906                          * that needs to be hot added; hot add
907                          * it now. Hot add a multiple of
908                          * of HA_CHUNK that fully covers the pages
909                          * we have.
910                          */
911                         size = (has->end_pfn - has->ha_end_pfn);
912                         if (pfn_cnt <= size) {
913                                 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
914                                 if (pfn_cnt % HA_CHUNK)
915                                         size += HA_CHUNK;
916                         } else {
917                                 pfn_cnt = size;
918                         }
919                         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
920                         hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
921                         spin_lock_irqsave(&dm_device.ha_lock, flags);
922                 }
923                 /*
924                  * If we managed to online any pages that were given to us,
925                  * we declare success.
926                  */
927                 res = has->covered_end_pfn - old_covered_state;
928                 break;
929         }
930         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
931
932         return res;
933 }
934
935 static unsigned long process_hot_add(unsigned long pg_start,
936                                         unsigned long pfn_cnt,
937                                         unsigned long rg_start,
938                                         unsigned long rg_size)
939 {
940         struct hv_hotadd_state *ha_region = NULL;
941         int covered;
942         unsigned long flags;
943
944         if (pfn_cnt == 0)
945                 return 0;
946
947         if (!dm_device.host_specified_ha_region) {
948                 covered = pfn_covered(pg_start, pfn_cnt);
949                 if (covered < 0)
950                         return 0;
951
952                 if (covered)
953                         goto do_pg_range;
954         }
955
956         /*
957          * If the host has specified a hot-add range; deal with it first.
958          */
959
960         if (rg_size != 0) {
961                 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
962                 if (!ha_region)
963                         return 0;
964
965                 INIT_LIST_HEAD(&ha_region->list);
966                 INIT_LIST_HEAD(&ha_region->gap_list);
967
968                 ha_region->start_pfn = rg_start;
969                 ha_region->ha_end_pfn = rg_start;
970                 ha_region->covered_start_pfn = pg_start;
971                 ha_region->covered_end_pfn = pg_start;
972                 ha_region->end_pfn = rg_start + rg_size;
973
974                 spin_lock_irqsave(&dm_device.ha_lock, flags);
975                 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
976                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
977         }
978
979 do_pg_range:
980         /*
981          * Process the page range specified; bringing them
982          * online if possible.
983          */
984         return handle_pg_range(pg_start, pfn_cnt);
985 }
986
987 #endif
988
989 static void hot_add_req(struct work_struct *dummy)
990 {
991         struct dm_hot_add_response resp;
992 #ifdef CONFIG_MEMORY_HOTPLUG
993         unsigned long pg_start, pfn_cnt;
994         unsigned long rg_start, rg_sz;
995 #endif
996         struct hv_dynmem_device *dm = &dm_device;
997
998         memset(&resp, 0, sizeof(struct dm_hot_add_response));
999         resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
1000         resp.hdr.size = sizeof(struct dm_hot_add_response);
1001
1002 #ifdef CONFIG_MEMORY_HOTPLUG
1003         pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1004         pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1005
1006         rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1007         rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1008
1009         if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1010                 unsigned long region_size;
1011                 unsigned long region_start;
1012
1013                 /*
1014                  * The host has not specified the hot-add region.
1015                  * Based on the hot-add page range being specified,
1016                  * compute a hot-add region that can cover the pages
1017                  * that need to be hot-added while ensuring the alignment
1018                  * and size requirements of Linux as it relates to hot-add.
1019                  */
1020                 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1021                 if (pfn_cnt % HA_CHUNK)
1022                         region_size += HA_CHUNK;
1023
1024                 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1025
1026                 rg_start = region_start;
1027                 rg_sz = region_size;
1028         }
1029
1030         if (do_hot_add)
1031                 resp.page_count = process_hot_add(pg_start, pfn_cnt,
1032                                                 rg_start, rg_sz);
1033
1034         dm->num_pages_added += resp.page_count;
1035 #endif
1036         /*
1037          * The result field of the response structure has the
1038          * following semantics:
1039          *
1040          * 1. If all or some pages hot-added: Guest should return success.
1041          *
1042          * 2. If no pages could be hot-added:
1043          *
1044          * If the guest returns success, then the host
1045          * will not attempt any further hot-add operations. This
1046          * signifies a permanent failure.
1047          *
1048          * If the guest returns failure, then this failure will be
1049          * treated as a transient failure and the host may retry the
1050          * hot-add operation after some delay.
1051          */
1052         if (resp.page_count > 0)
1053                 resp.result = 1;
1054         else if (!do_hot_add)
1055                 resp.result = 1;
1056         else
1057                 resp.result = 0;
1058
1059         if (!do_hot_add || resp.page_count == 0) {
1060                 if (!allow_hibernation)
1061                         pr_err("Memory hot add failed\n");
1062                 else
1063                         pr_info("Ignore hot-add request!\n");
1064         }
1065
1066         dm->state = DM_INITIALIZED;
1067         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1068         vmbus_sendpacket(dm->dev->channel, &resp,
1069                         sizeof(struct dm_hot_add_response),
1070                         (unsigned long)NULL,
1071                         VM_PKT_DATA_INBAND, 0);
1072 }
1073
1074 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1075 {
1076         struct dm_info_header *info_hdr;
1077
1078         info_hdr = (struct dm_info_header *)msg->info;
1079
1080         switch (info_hdr->type) {
1081         case INFO_TYPE_MAX_PAGE_CNT:
1082                 if (info_hdr->data_size == sizeof(__u64)) {
1083                         __u64 *max_page_count = (__u64 *)&info_hdr[1];
1084
1085                         pr_info("Max. dynamic memory size: %llu MB\n",
1086                                 (*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1087                         dm->max_dynamic_page_count = *max_page_count;
1088                 }
1089
1090                 break;
1091         default:
1092                 pr_warn("Received Unknown type: %d\n", info_hdr->type);
1093         }
1094 }
1095
1096 static unsigned long compute_balloon_floor(void)
1097 {
1098         unsigned long min_pages;
1099         unsigned long nr_pages = totalram_pages();
1100 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1101         /* Simple continuous piecewiese linear function:
1102          *  max MiB -> min MiB  gradient
1103          *       0         0
1104          *      16        16
1105          *      32        24
1106          *     128        72    (1/2)
1107          *     512       168    (1/4)
1108          *    2048       360    (1/8)
1109          *    8192       744    (1/16)
1110          *   32768      1512    (1/32)
1111          */
1112         if (nr_pages < MB2PAGES(128))
1113                 min_pages = MB2PAGES(8) + (nr_pages >> 1);
1114         else if (nr_pages < MB2PAGES(512))
1115                 min_pages = MB2PAGES(40) + (nr_pages >> 2);
1116         else if (nr_pages < MB2PAGES(2048))
1117                 min_pages = MB2PAGES(104) + (nr_pages >> 3);
1118         else if (nr_pages < MB2PAGES(8192))
1119                 min_pages = MB2PAGES(232) + (nr_pages >> 4);
1120         else
1121                 min_pages = MB2PAGES(488) + (nr_pages >> 5);
1122 #undef MB2PAGES
1123         return min_pages;
1124 }
1125
1126 /*
1127  * Compute total committed memory pages
1128  */
1129
1130 static unsigned long get_pages_committed(struct hv_dynmem_device *dm)
1131 {
1132         return vm_memory_committed() +
1133                 dm->num_pages_ballooned +
1134                 (dm->num_pages_added > dm->num_pages_onlined ?
1135                  dm->num_pages_added - dm->num_pages_onlined : 0) +
1136                 compute_balloon_floor();
1137 }
1138
1139 /*
1140  * Post our status as it relates memory pressure to the
1141  * host. Host expects the guests to post this status
1142  * periodically at 1 second intervals.
1143  *
1144  * The metrics specified in this protocol are very Windows
1145  * specific and so we cook up numbers here to convey our memory
1146  * pressure.
1147  */
1148
1149 static void post_status(struct hv_dynmem_device *dm)
1150 {
1151         struct dm_status status;
1152         unsigned long now = jiffies;
1153         unsigned long last_post = last_post_time;
1154         unsigned long num_pages_avail, num_pages_committed;
1155
1156         if (pressure_report_delay > 0) {
1157                 --pressure_report_delay;
1158                 return;
1159         }
1160
1161         if (!time_after(now, (last_post_time + HZ)))
1162                 return;
1163
1164         memset(&status, 0, sizeof(struct dm_status));
1165         status.hdr.type = DM_STATUS_REPORT;
1166         status.hdr.size = sizeof(struct dm_status);
1167         status.hdr.trans_id = atomic_inc_return(&trans_id);
1168
1169         /*
1170          * The host expects the guest to report free and committed memory.
1171          * Furthermore, the host expects the pressure information to include
1172          * the ballooned out pages. For a given amount of memory that we are
1173          * managing we need to compute a floor below which we should not
1174          * balloon. Compute this and add it to the pressure report.
1175          * We also need to report all offline pages (num_pages_added -
1176          * num_pages_onlined) as committed to the host, otherwise it can try
1177          * asking us to balloon them out.
1178          */
1179         num_pages_avail = si_mem_available();
1180         num_pages_committed = get_pages_committed(dm);
1181
1182         trace_balloon_status(num_pages_avail, num_pages_committed,
1183                              vm_memory_committed(), dm->num_pages_ballooned,
1184                              dm->num_pages_added, dm->num_pages_onlined);
1185
1186         /* Convert numbers of pages into numbers of HV_HYP_PAGEs. */
1187         status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE;
1188         status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE;
1189
1190         /*
1191          * If our transaction ID is no longer current, just don't
1192          * send the status. This can happen if we were interrupted
1193          * after we picked our transaction ID.
1194          */
1195         if (status.hdr.trans_id != atomic_read(&trans_id))
1196                 return;
1197
1198         /*
1199          * If the last post time that we sampled has changed,
1200          * we have raced, don't post the status.
1201          */
1202         if (last_post != last_post_time)
1203                 return;
1204
1205         last_post_time = jiffies;
1206         vmbus_sendpacket(dm->dev->channel, &status,
1207                                 sizeof(struct dm_status),
1208                                 (unsigned long)NULL,
1209                                 VM_PKT_DATA_INBAND, 0);
1210
1211 }
1212
1213 static void free_balloon_pages(struct hv_dynmem_device *dm,
1214                          union dm_mem_page_range *range_array)
1215 {
1216         int num_pages = range_array->finfo.page_cnt;
1217         __u64 start_frame = range_array->finfo.start_page;
1218         struct page *pg;
1219         int i;
1220
1221         for (i = 0; i < num_pages; i++) {
1222                 pg = pfn_to_page(i + start_frame);
1223                 __ClearPageOffline(pg);
1224                 __free_page(pg);
1225                 dm->num_pages_ballooned--;
1226                 adjust_managed_page_count(pg, 1);
1227         }
1228 }
1229
1230
1231
1232 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1233                                         unsigned int num_pages,
1234                                         struct dm_balloon_response *bl_resp,
1235                                         int alloc_unit)
1236 {
1237         unsigned int i, j;
1238         struct page *pg;
1239
1240         for (i = 0; i < num_pages / alloc_unit; i++) {
1241                 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1242                         HV_HYP_PAGE_SIZE)
1243                         return i * alloc_unit;
1244
1245                 /*
1246                  * We execute this code in a thread context. Furthermore,
1247                  * we don't want the kernel to try too hard.
1248                  */
1249                 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1250                                 __GFP_NOMEMALLOC | __GFP_NOWARN,
1251                                 get_order(alloc_unit << PAGE_SHIFT));
1252
1253                 if (!pg)
1254                         return i * alloc_unit;
1255
1256                 dm->num_pages_ballooned += alloc_unit;
1257
1258                 /*
1259                  * If we allocatted 2M pages; split them so we
1260                  * can free them in any order we get.
1261                  */
1262
1263                 if (alloc_unit != 1)
1264                         split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1265
1266                 /* mark all pages offline */
1267                 for (j = 0; j < alloc_unit; j++) {
1268                         __SetPageOffline(pg + j);
1269                         adjust_managed_page_count(pg + j, -1);
1270                 }
1271
1272                 bl_resp->range_count++;
1273                 bl_resp->range_array[i].finfo.start_page =
1274                         page_to_pfn(pg);
1275                 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1276                 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1277
1278         }
1279
1280         return i * alloc_unit;
1281 }
1282
1283 static void balloon_up(struct work_struct *dummy)
1284 {
1285         unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1286         unsigned int num_ballooned = 0;
1287         struct dm_balloon_response *bl_resp;
1288         int alloc_unit;
1289         int ret;
1290         bool done = false;
1291         int i;
1292         long avail_pages;
1293         unsigned long floor;
1294
1295         /*
1296          * We will attempt 2M allocations. However, if we fail to
1297          * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1298          */
1299         alloc_unit = PAGES_IN_2M;
1300
1301         avail_pages = si_mem_available();
1302         floor = compute_balloon_floor();
1303
1304         /* Refuse to balloon below the floor. */
1305         if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1306                 pr_info("Balloon request will be partially fulfilled. %s\n",
1307                         avail_pages < num_pages ? "Not enough memory." :
1308                         "Balloon floor reached.");
1309
1310                 num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1311         }
1312
1313         while (!done) {
1314                 memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1315                 bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1316                 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1317                 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1318                 bl_resp->more_pages = 1;
1319
1320                 num_pages -= num_ballooned;
1321                 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1322                                                     bl_resp, alloc_unit);
1323
1324                 if (alloc_unit != 1 && num_ballooned == 0) {
1325                         alloc_unit = 1;
1326                         continue;
1327                 }
1328
1329                 if (num_ballooned == 0 || num_ballooned == num_pages) {
1330                         pr_debug("Ballooned %u out of %u requested pages.\n",
1331                                 num_pages, dm_device.balloon_wrk.num_pages);
1332
1333                         bl_resp->more_pages = 0;
1334                         done = true;
1335                         dm_device.state = DM_INITIALIZED;
1336                 }
1337
1338                 /*
1339                  * We are pushing a lot of data through the channel;
1340                  * deal with transient failures caused because of the
1341                  * lack of space in the ring buffer.
1342                  */
1343
1344                 do {
1345                         bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1346                         ret = vmbus_sendpacket(dm_device.dev->channel,
1347                                                 bl_resp,
1348                                                 bl_resp->hdr.size,
1349                                                 (unsigned long)NULL,
1350                                                 VM_PKT_DATA_INBAND, 0);
1351
1352                         if (ret == -EAGAIN)
1353                                 msleep(20);
1354                         post_status(&dm_device);
1355                 } while (ret == -EAGAIN);
1356
1357                 if (ret) {
1358                         /*
1359                          * Free up the memory we allocatted.
1360                          */
1361                         pr_err("Balloon response failed\n");
1362
1363                         for (i = 0; i < bl_resp->range_count; i++)
1364                                 free_balloon_pages(&dm_device,
1365                                                  &bl_resp->range_array[i]);
1366
1367                         done = true;
1368                 }
1369         }
1370
1371 }
1372
1373 static void balloon_down(struct hv_dynmem_device *dm,
1374                         struct dm_unballoon_request *req)
1375 {
1376         union dm_mem_page_range *range_array = req->range_array;
1377         int range_count = req->range_count;
1378         struct dm_unballoon_response resp;
1379         int i;
1380         unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1381
1382         for (i = 0; i < range_count; i++) {
1383                 free_balloon_pages(dm, &range_array[i]);
1384                 complete(&dm_device.config_event);
1385         }
1386
1387         pr_debug("Freed %u ballooned pages.\n",
1388                 prev_pages_ballooned - dm->num_pages_ballooned);
1389
1390         if (req->more_pages == 1)
1391                 return;
1392
1393         memset(&resp, 0, sizeof(struct dm_unballoon_response));
1394         resp.hdr.type = DM_UNBALLOON_RESPONSE;
1395         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1396         resp.hdr.size = sizeof(struct dm_unballoon_response);
1397
1398         vmbus_sendpacket(dm_device.dev->channel, &resp,
1399                                 sizeof(struct dm_unballoon_response),
1400                                 (unsigned long)NULL,
1401                                 VM_PKT_DATA_INBAND, 0);
1402
1403         dm->state = DM_INITIALIZED;
1404 }
1405
1406 static void balloon_onchannelcallback(void *context);
1407
1408 static int dm_thread_func(void *dm_dev)
1409 {
1410         struct hv_dynmem_device *dm = dm_dev;
1411
1412         while (!kthread_should_stop()) {
1413                 wait_for_completion_interruptible_timeout(
1414                                                 &dm_device.config_event, 1*HZ);
1415                 /*
1416                  * The host expects us to post information on the memory
1417                  * pressure every second.
1418                  */
1419                 reinit_completion(&dm_device.config_event);
1420                 post_status(dm);
1421         }
1422
1423         return 0;
1424 }
1425
1426
1427 static void version_resp(struct hv_dynmem_device *dm,
1428                         struct dm_version_response *vresp)
1429 {
1430         struct dm_version_request version_req;
1431         int ret;
1432
1433         if (vresp->is_accepted) {
1434                 /*
1435                  * We are done; wakeup the
1436                  * context waiting for version
1437                  * negotiation.
1438                  */
1439                 complete(&dm->host_event);
1440                 return;
1441         }
1442         /*
1443          * If there are more versions to try, continue
1444          * with negotiations; if not
1445          * shutdown the service since we are not able
1446          * to negotiate a suitable version number
1447          * with the host.
1448          */
1449         if (dm->next_version == 0)
1450                 goto version_error;
1451
1452         memset(&version_req, 0, sizeof(struct dm_version_request));
1453         version_req.hdr.type = DM_VERSION_REQUEST;
1454         version_req.hdr.size = sizeof(struct dm_version_request);
1455         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1456         version_req.version.version = dm->next_version;
1457         dm->version = version_req.version.version;
1458
1459         /*
1460          * Set the next version to try in case current version fails.
1461          * Win7 protocol ought to be the last one to try.
1462          */
1463         switch (version_req.version.version) {
1464         case DYNMEM_PROTOCOL_VERSION_WIN8:
1465                 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1466                 version_req.is_last_attempt = 0;
1467                 break;
1468         default:
1469                 dm->next_version = 0;
1470                 version_req.is_last_attempt = 1;
1471         }
1472
1473         ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1474                                 sizeof(struct dm_version_request),
1475                                 (unsigned long)NULL,
1476                                 VM_PKT_DATA_INBAND, 0);
1477
1478         if (ret)
1479                 goto version_error;
1480
1481         return;
1482
1483 version_error:
1484         dm->state = DM_INIT_ERROR;
1485         complete(&dm->host_event);
1486 }
1487
1488 static void cap_resp(struct hv_dynmem_device *dm,
1489                         struct dm_capabilities_resp_msg *cap_resp)
1490 {
1491         if (!cap_resp->is_accepted) {
1492                 pr_err("Capabilities not accepted by host\n");
1493                 dm->state = DM_INIT_ERROR;
1494         }
1495         complete(&dm->host_event);
1496 }
1497
1498 static void balloon_onchannelcallback(void *context)
1499 {
1500         struct hv_device *dev = context;
1501         u32 recvlen;
1502         u64 requestid;
1503         struct dm_message *dm_msg;
1504         struct dm_header *dm_hdr;
1505         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1506         struct dm_balloon *bal_msg;
1507         struct dm_hot_add *ha_msg;
1508         union dm_mem_page_range *ha_pg_range;
1509         union dm_mem_page_range *ha_region;
1510
1511         memset(recv_buffer, 0, sizeof(recv_buffer));
1512         vmbus_recvpacket(dev->channel, recv_buffer,
1513                          HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1514
1515         if (recvlen > 0) {
1516                 dm_msg = (struct dm_message *)recv_buffer;
1517                 dm_hdr = &dm_msg->hdr;
1518
1519                 switch (dm_hdr->type) {
1520                 case DM_VERSION_RESPONSE:
1521                         version_resp(dm,
1522                                  (struct dm_version_response *)dm_msg);
1523                         break;
1524
1525                 case DM_CAPABILITIES_RESPONSE:
1526                         cap_resp(dm,
1527                                  (struct dm_capabilities_resp_msg *)dm_msg);
1528                         break;
1529
1530                 case DM_BALLOON_REQUEST:
1531                         if (allow_hibernation) {
1532                                 pr_info("Ignore balloon-up request!\n");
1533                                 break;
1534                         }
1535
1536                         if (dm->state == DM_BALLOON_UP)
1537                                 pr_warn("Currently ballooning\n");
1538                         bal_msg = (struct dm_balloon *)recv_buffer;
1539                         dm->state = DM_BALLOON_UP;
1540                         dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1541                         schedule_work(&dm_device.balloon_wrk.wrk);
1542                         break;
1543
1544                 case DM_UNBALLOON_REQUEST:
1545                         if (allow_hibernation) {
1546                                 pr_info("Ignore balloon-down request!\n");
1547                                 break;
1548                         }
1549
1550                         dm->state = DM_BALLOON_DOWN;
1551                         balloon_down(dm,
1552                                  (struct dm_unballoon_request *)recv_buffer);
1553                         break;
1554
1555                 case DM_MEM_HOT_ADD_REQUEST:
1556                         if (dm->state == DM_HOT_ADD)
1557                                 pr_warn("Currently hot-adding\n");
1558                         dm->state = DM_HOT_ADD;
1559                         ha_msg = (struct dm_hot_add *)recv_buffer;
1560                         if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1561                                 /*
1562                                  * This is a normal hot-add request specifying
1563                                  * hot-add memory.
1564                                  */
1565                                 dm->host_specified_ha_region = false;
1566                                 ha_pg_range = &ha_msg->range;
1567                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1568                                 dm->ha_wrk.ha_region_range.page_range = 0;
1569                         } else {
1570                                 /*
1571                                  * Host is specifying that we first hot-add
1572                                  * a region and then partially populate this
1573                                  * region.
1574                                  */
1575                                 dm->host_specified_ha_region = true;
1576                                 ha_pg_range = &ha_msg->range;
1577                                 ha_region = &ha_pg_range[1];
1578                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1579                                 dm->ha_wrk.ha_region_range = *ha_region;
1580                         }
1581                         schedule_work(&dm_device.ha_wrk.wrk);
1582                         break;
1583
1584                 case DM_INFO_MESSAGE:
1585                         process_info(dm, (struct dm_info_msg *)dm_msg);
1586                         break;
1587
1588                 default:
1589                         pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type);
1590
1591                 }
1592         }
1593
1594 }
1595
1596 /* Hyper-V only supports reporting 2MB pages or higher */
1597 #define HV_MIN_PAGE_REPORTING_ORDER     9
1598 #define HV_MIN_PAGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << HV_MIN_PAGE_REPORTING_ORDER)
1599 static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
1600                     struct scatterlist *sgl, unsigned int nents)
1601 {
1602         unsigned long flags;
1603         struct hv_memory_hint *hint;
1604         int i;
1605         u64 status;
1606         struct scatterlist *sg;
1607
1608         WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1609         WARN_ON_ONCE(sgl->length < HV_MIN_PAGE_REPORTING_LEN);
1610         local_irq_save(flags);
1611         hint = *(struct hv_memory_hint **)this_cpu_ptr(hyperv_pcpu_input_arg);
1612         if (!hint) {
1613                 local_irq_restore(flags);
1614                 return -ENOSPC;
1615         }
1616
1617         hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
1618         hint->reserved = 0;
1619         for_each_sg(sgl, sg, nents, i) {
1620                 union hv_gpa_page_range *range;
1621
1622                 range = &hint->ranges[i];
1623                 range->address_space = 0;
1624                 /* page reporting only reports 2MB pages or higher */
1625                 range->page.largepage = 1;
1626                 range->page.additional_pages =
1627                         (sg->length / HV_MIN_PAGE_REPORTING_LEN) - 1;
1628                 range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
1629                 range->base_large_pfn =
1630                         page_to_hvpfn(sg_page(sg)) >> HV_MIN_PAGE_REPORTING_ORDER;
1631         }
1632
1633         status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
1634                                      hint, NULL);
1635         local_irq_restore(flags);
1636         if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS) {
1637                 pr_err("Cold memory discard hypercall failed with status %llx\n",
1638                         status);
1639                 return -EINVAL;
1640         }
1641
1642         return 0;
1643 }
1644
1645 static void enable_page_reporting(void)
1646 {
1647         int ret;
1648
1649         /* Essentially, validating 'PAGE_REPORTING_MIN_ORDER' is big enough. */
1650         if (pageblock_order < HV_MIN_PAGE_REPORTING_ORDER) {
1651                 pr_debug("Cold memory discard is only supported on 2MB pages and above\n");
1652                 return;
1653         }
1654
1655         if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
1656                 pr_debug("Cold memory discard hint not supported by Hyper-V\n");
1657                 return;
1658         }
1659
1660         BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1661         dm_device.pr_dev_info.report = hv_free_page_report;
1662         ret = page_reporting_register(&dm_device.pr_dev_info);
1663         if (ret < 0) {
1664                 dm_device.pr_dev_info.report = NULL;
1665                 pr_err("Failed to enable cold memory discard: %d\n", ret);
1666         } else {
1667                 pr_info("Cold memory discard hint enabled\n");
1668         }
1669 }
1670
1671 static void disable_page_reporting(void)
1672 {
1673         if (dm_device.pr_dev_info.report) {
1674                 page_reporting_unregister(&dm_device.pr_dev_info);
1675                 dm_device.pr_dev_info.report = NULL;
1676         }
1677 }
1678
1679 static int ballooning_enabled(void)
1680 {
1681         /*
1682          * Disable ballooning if the page size is not 4k (HV_HYP_PAGE_SIZE),
1683          * since currently it's unclear to us whether an unballoon request can
1684          * make sure all page ranges are guest page size aligned.
1685          */
1686         if (PAGE_SIZE != HV_HYP_PAGE_SIZE) {
1687                 pr_info("Ballooning disabled because page size is not 4096 bytes\n");
1688                 return 0;
1689         }
1690
1691         return 1;
1692 }
1693
1694 static int hot_add_enabled(void)
1695 {
1696         /*
1697          * Disable hot add on ARM64, because we currently rely on
1698          * memory_add_physaddr_to_nid() to get a node id of a hot add range,
1699          * however ARM64's memory_add_physaddr_to_nid() always return 0 and
1700          * DM_MEM_HOT_ADD_REQUEST doesn't have the NUMA node information for
1701          * add_memory().
1702          */
1703         if (IS_ENABLED(CONFIG_ARM64)) {
1704                 pr_info("Memory hot add disabled on ARM64\n");
1705                 return 0;
1706         }
1707
1708         return 1;
1709 }
1710
1711 static int balloon_connect_vsp(struct hv_device *dev)
1712 {
1713         struct dm_version_request version_req;
1714         struct dm_capabilities cap_msg;
1715         unsigned long t;
1716         int ret;
1717
1718         /*
1719          * max_pkt_size should be large enough for one vmbus packet header plus
1720          * our receive buffer size. Hyper-V sends messages up to
1721          * HV_HYP_PAGE_SIZE bytes long on balloon channel.
1722          */
1723         dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2;
1724
1725         ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1726                          balloon_onchannelcallback, dev);
1727         if (ret)
1728                 return ret;
1729
1730         /*
1731          * Initiate the hand shake with the host and negotiate
1732          * a version that the host can support. We start with the
1733          * highest version number and go down if the host cannot
1734          * support it.
1735          */
1736         memset(&version_req, 0, sizeof(struct dm_version_request));
1737         version_req.hdr.type = DM_VERSION_REQUEST;
1738         version_req.hdr.size = sizeof(struct dm_version_request);
1739         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1740         version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1741         version_req.is_last_attempt = 0;
1742         dm_device.version = version_req.version.version;
1743
1744         ret = vmbus_sendpacket(dev->channel, &version_req,
1745                                sizeof(struct dm_version_request),
1746                                (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1747         if (ret)
1748                 goto out;
1749
1750         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1751         if (t == 0) {
1752                 ret = -ETIMEDOUT;
1753                 goto out;
1754         }
1755
1756         /*
1757          * If we could not negotiate a compatible version with the host
1758          * fail the probe function.
1759          */
1760         if (dm_device.state == DM_INIT_ERROR) {
1761                 ret = -EPROTO;
1762                 goto out;
1763         }
1764
1765         pr_info("Using Dynamic Memory protocol version %u.%u\n",
1766                 DYNMEM_MAJOR_VERSION(dm_device.version),
1767                 DYNMEM_MINOR_VERSION(dm_device.version));
1768
1769         /*
1770          * Now submit our capabilities to the host.
1771          */
1772         memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1773         cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1774         cap_msg.hdr.size = sizeof(struct dm_capabilities);
1775         cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1776
1777         /*
1778          * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1779          * currently still requires the bits to be set, so we have to add code
1780          * to fail the host's hot-add and balloon up/down requests, if any.
1781          */
1782         cap_msg.caps.cap_bits.balloon = ballooning_enabled();
1783         cap_msg.caps.cap_bits.hot_add = hot_add_enabled();
1784
1785         /*
1786          * Specify our alignment requirements as it relates
1787          * memory hot-add. Specify 128MB alignment.
1788          */
1789         cap_msg.caps.cap_bits.hot_add_alignment = 7;
1790
1791         /*
1792          * Currently the host does not use these
1793          * values and we set them to what is done in the
1794          * Windows driver.
1795          */
1796         cap_msg.min_page_cnt = 0;
1797         cap_msg.max_page_number = -1;
1798
1799         ret = vmbus_sendpacket(dev->channel, &cap_msg,
1800                                sizeof(struct dm_capabilities),
1801                                (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1802         if (ret)
1803                 goto out;
1804
1805         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1806         if (t == 0) {
1807                 ret = -ETIMEDOUT;
1808                 goto out;
1809         }
1810
1811         /*
1812          * If the host does not like our capabilities,
1813          * fail the probe function.
1814          */
1815         if (dm_device.state == DM_INIT_ERROR) {
1816                 ret = -EPROTO;
1817                 goto out;
1818         }
1819
1820         return 0;
1821 out:
1822         vmbus_close(dev->channel);
1823         return ret;
1824 }
1825
1826 /*
1827  * DEBUGFS Interface
1828  */
1829 #ifdef CONFIG_DEBUG_FS
1830
1831 /**
1832  * hv_balloon_debug_show - shows statistics of balloon operations.
1833  * @f: pointer to the &struct seq_file.
1834  * @offset: ignored.
1835  *
1836  * Provides the statistics that can be accessed in hv-balloon in the debugfs.
1837  *
1838  * Return: zero on success or an error code.
1839  */
1840 static int hv_balloon_debug_show(struct seq_file *f, void *offset)
1841 {
1842         struct hv_dynmem_device *dm = f->private;
1843         char *sname;
1844
1845         seq_printf(f, "%-22s: %u.%u\n", "host_version",
1846                                 DYNMEM_MAJOR_VERSION(dm->version),
1847                                 DYNMEM_MINOR_VERSION(dm->version));
1848
1849         seq_printf(f, "%-22s:", "capabilities");
1850         if (ballooning_enabled())
1851                 seq_puts(f, " enabled");
1852
1853         if (hot_add_enabled())
1854                 seq_puts(f, " hot_add");
1855
1856         seq_puts(f, "\n");
1857
1858         seq_printf(f, "%-22s: %u", "state", dm->state);
1859         switch (dm->state) {
1860         case DM_INITIALIZING:
1861                         sname = "Initializing";
1862                         break;
1863         case DM_INITIALIZED:
1864                         sname = "Initialized";
1865                         break;
1866         case DM_BALLOON_UP:
1867                         sname = "Balloon Up";
1868                         break;
1869         case DM_BALLOON_DOWN:
1870                         sname = "Balloon Down";
1871                         break;
1872         case DM_HOT_ADD:
1873                         sname = "Hot Add";
1874                         break;
1875         case DM_INIT_ERROR:
1876                         sname = "Error";
1877                         break;
1878         default:
1879                         sname = "Unknown";
1880         }
1881         seq_printf(f, " (%s)\n", sname);
1882
1883         /* HV Page Size */
1884         seq_printf(f, "%-22s: %ld\n", "page_size", HV_HYP_PAGE_SIZE);
1885
1886         /* Pages added with hot_add */
1887         seq_printf(f, "%-22s: %u\n", "pages_added", dm->num_pages_added);
1888
1889         /* pages that are "onlined"/used from pages_added */
1890         seq_printf(f, "%-22s: %u\n", "pages_onlined", dm->num_pages_onlined);
1891
1892         /* pages we have given back to host */
1893         seq_printf(f, "%-22s: %u\n", "pages_ballooned", dm->num_pages_ballooned);
1894
1895         seq_printf(f, "%-22s: %lu\n", "total_pages_committed",
1896                                 get_pages_committed(dm));
1897
1898         seq_printf(f, "%-22s: %llu\n", "max_dynamic_page_count",
1899                                 dm->max_dynamic_page_count);
1900
1901         return 0;
1902 }
1903
1904 DEFINE_SHOW_ATTRIBUTE(hv_balloon_debug);
1905
1906 static void  hv_balloon_debugfs_init(struct hv_dynmem_device *b)
1907 {
1908         debugfs_create_file("hv-balloon", 0444, NULL, b,
1909                         &hv_balloon_debug_fops);
1910 }
1911
1912 static void  hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1913 {
1914         debugfs_remove(debugfs_lookup("hv-balloon", NULL));
1915 }
1916
1917 #else
1918
1919 static inline void hv_balloon_debugfs_init(struct hv_dynmem_device  *b)
1920 {
1921 }
1922
1923 static inline void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1924 {
1925 }
1926
1927 #endif  /* CONFIG_DEBUG_FS */
1928
1929 static int balloon_probe(struct hv_device *dev,
1930                          const struct hv_vmbus_device_id *dev_id)
1931 {
1932         int ret;
1933
1934         allow_hibernation = hv_is_hibernation_supported();
1935         if (allow_hibernation)
1936                 hot_add = false;
1937
1938 #ifdef CONFIG_MEMORY_HOTPLUG
1939         do_hot_add = hot_add;
1940 #else
1941         do_hot_add = false;
1942 #endif
1943         dm_device.dev = dev;
1944         dm_device.state = DM_INITIALIZING;
1945         dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1946         init_completion(&dm_device.host_event);
1947         init_completion(&dm_device.config_event);
1948         INIT_LIST_HEAD(&dm_device.ha_region_list);
1949         spin_lock_init(&dm_device.ha_lock);
1950         INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1951         INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1952         dm_device.host_specified_ha_region = false;
1953
1954 #ifdef CONFIG_MEMORY_HOTPLUG
1955         set_online_page_callback(&hv_online_page);
1956         init_completion(&dm_device.ol_waitevent);
1957         register_memory_notifier(&hv_memory_nb);
1958 #endif
1959
1960         hv_set_drvdata(dev, &dm_device);
1961
1962         ret = balloon_connect_vsp(dev);
1963         if (ret != 0)
1964                 goto connect_error;
1965
1966         enable_page_reporting();
1967         dm_device.state = DM_INITIALIZED;
1968
1969         dm_device.thread =
1970                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1971         if (IS_ERR(dm_device.thread)) {
1972                 ret = PTR_ERR(dm_device.thread);
1973                 goto probe_error;
1974         }
1975
1976         hv_balloon_debugfs_init(&dm_device);
1977
1978         return 0;
1979
1980 probe_error:
1981         dm_device.state = DM_INIT_ERROR;
1982         dm_device.thread  = NULL;
1983         disable_page_reporting();
1984         vmbus_close(dev->channel);
1985 connect_error:
1986 #ifdef CONFIG_MEMORY_HOTPLUG
1987         unregister_memory_notifier(&hv_memory_nb);
1988         restore_online_page_callback(&hv_online_page);
1989 #endif
1990         return ret;
1991 }
1992
1993 static int balloon_remove(struct hv_device *dev)
1994 {
1995         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1996         struct hv_hotadd_state *has, *tmp;
1997         struct hv_hotadd_gap *gap, *tmp_gap;
1998         unsigned long flags;
1999
2000         if (dm->num_pages_ballooned != 0)
2001                 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
2002
2003         hv_balloon_debugfs_exit(dm);
2004
2005         cancel_work_sync(&dm->balloon_wrk.wrk);
2006         cancel_work_sync(&dm->ha_wrk.wrk);
2007
2008         kthread_stop(dm->thread);
2009
2010         /*
2011          * This is to handle the case when balloon_resume()
2012          * call has failed and some cleanup has been done as
2013          * a part of the error handling.
2014          */
2015         if (dm_device.state != DM_INIT_ERROR) {
2016                 disable_page_reporting();
2017                 vmbus_close(dev->channel);
2018 #ifdef CONFIG_MEMORY_HOTPLUG
2019                 unregister_memory_notifier(&hv_memory_nb);
2020                 restore_online_page_callback(&hv_online_page);
2021 #endif
2022         }
2023
2024         spin_lock_irqsave(&dm_device.ha_lock, flags);
2025         list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
2026                 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
2027                         list_del(&gap->list);
2028                         kfree(gap);
2029                 }
2030                 list_del(&has->list);
2031                 kfree(has);
2032         }
2033         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
2034
2035         return 0;
2036 }
2037
2038 static int balloon_suspend(struct hv_device *hv_dev)
2039 {
2040         struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
2041
2042         tasklet_disable(&hv_dev->channel->callback_event);
2043
2044         cancel_work_sync(&dm->balloon_wrk.wrk);
2045         cancel_work_sync(&dm->ha_wrk.wrk);
2046
2047         if (dm->thread) {
2048                 kthread_stop(dm->thread);
2049                 dm->thread = NULL;
2050                 vmbus_close(hv_dev->channel);
2051         }
2052
2053         tasklet_enable(&hv_dev->channel->callback_event);
2054
2055         return 0;
2056
2057 }
2058
2059 static int balloon_resume(struct hv_device *dev)
2060 {
2061         int ret;
2062
2063         dm_device.state = DM_INITIALIZING;
2064
2065         ret = balloon_connect_vsp(dev);
2066
2067         if (ret != 0)
2068                 goto out;
2069
2070         dm_device.thread =
2071                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2072         if (IS_ERR(dm_device.thread)) {
2073                 ret = PTR_ERR(dm_device.thread);
2074                 dm_device.thread = NULL;
2075                 goto close_channel;
2076         }
2077
2078         dm_device.state = DM_INITIALIZED;
2079         return 0;
2080 close_channel:
2081         vmbus_close(dev->channel);
2082 out:
2083         dm_device.state = DM_INIT_ERROR;
2084         disable_page_reporting();
2085 #ifdef CONFIG_MEMORY_HOTPLUG
2086         unregister_memory_notifier(&hv_memory_nb);
2087         restore_online_page_callback(&hv_online_page);
2088 #endif
2089         return ret;
2090 }
2091
2092 static const struct hv_vmbus_device_id id_table[] = {
2093         /* Dynamic Memory Class ID */
2094         /* 525074DC-8985-46e2-8057-A307DC18A502 */
2095         { HV_DM_GUID, },
2096         { },
2097 };
2098
2099 MODULE_DEVICE_TABLE(vmbus, id_table);
2100
2101 static  struct hv_driver balloon_drv = {
2102         .name = "hv_balloon",
2103         .id_table = id_table,
2104         .probe =  balloon_probe,
2105         .remove =  balloon_remove,
2106         .suspend = balloon_suspend,
2107         .resume = balloon_resume,
2108         .driver = {
2109                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2110         },
2111 };
2112
2113 static int __init init_balloon_drv(void)
2114 {
2115
2116         return vmbus_driver_register(&balloon_drv);
2117 }
2118
2119 module_init(init_balloon_drv);
2120
2121 MODULE_DESCRIPTION("Hyper-V Balloon");
2122 MODULE_LICENSE("GPL");