LoongArch: Add dependency between vmlinuz.efi and vmlinux.efi
[platform/kernel/linux-starfive.git] / drivers / hv / hv_balloon.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012, Microsoft Corporation.
4  *
5  * Author:
6  *   K. Y. Srinivasan <kys@microsoft.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/cleanup.h>
12 #include <linux/kernel.h>
13 #include <linux/jiffies.h>
14 #include <linux/mman.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/kthread.h>
21 #include <linux/completion.h>
22 #include <linux/count_zeros.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/memory.h>
25 #include <linux/notifier.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/page_reporting.h>
28
29 #include <linux/hyperv.h>
30 #include <asm/hyperv-tlfs.h>
31
32 #include <asm/mshyperv.h>
33
34 #define CREATE_TRACE_POINTS
35 #include "hv_trace_balloon.h"
36
37 /*
38  * We begin with definitions supporting the Dynamic Memory protocol
39  * with the host.
40  *
41  * Begin protocol definitions.
42  */
43
44
45
46 /*
47  * Protocol versions. The low word is the minor version, the high word the major
48  * version.
49  *
50  * History:
51  * Initial version 1.0
52  * Changed to 0.1 on 2009/03/25
53  * Changes to 0.2 on 2009/05/14
54  * Changes to 0.3 on 2009/12/03
55  * Changed to 1.0 on 2011/04/05
56  */
57
58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
61
62 enum {
63         DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64         DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65         DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
66
67         DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
68         DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
69         DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
70
71         DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
72 };
73
74
75
76 /*
77  * Message Types
78  */
79
80 enum dm_message_type {
81         /*
82          * Version 0.3
83          */
84         DM_ERROR                        = 0,
85         DM_VERSION_REQUEST              = 1,
86         DM_VERSION_RESPONSE             = 2,
87         DM_CAPABILITIES_REPORT          = 3,
88         DM_CAPABILITIES_RESPONSE        = 4,
89         DM_STATUS_REPORT                = 5,
90         DM_BALLOON_REQUEST              = 6,
91         DM_BALLOON_RESPONSE             = 7,
92         DM_UNBALLOON_REQUEST            = 8,
93         DM_UNBALLOON_RESPONSE           = 9,
94         DM_MEM_HOT_ADD_REQUEST          = 10,
95         DM_MEM_HOT_ADD_RESPONSE         = 11,
96         DM_VERSION_03_MAX               = 11,
97         /*
98          * Version 1.0.
99          */
100         DM_INFO_MESSAGE                 = 12,
101         DM_VERSION_1_MAX                = 12
102 };
103
104
105 /*
106  * Structures defining the dynamic memory management
107  * protocol.
108  */
109
110 union dm_version {
111         struct {
112                 __u16 minor_version;
113                 __u16 major_version;
114         };
115         __u32 version;
116 } __packed;
117
118
119 union dm_caps {
120         struct {
121                 __u64 balloon:1;
122                 __u64 hot_add:1;
123                 /*
124                  * To support guests that may have alignment
125                  * limitations on hot-add, the guest can specify
126                  * its alignment requirements; a value of n
127                  * represents an alignment of 2^n in mega bytes.
128                  */
129                 __u64 hot_add_alignment:4;
130                 __u64 reservedz:58;
131         } cap_bits;
132         __u64 caps;
133 } __packed;
134
135 union dm_mem_page_range {
136         struct  {
137                 /*
138                  * The PFN number of the first page in the range.
139                  * 40 bits is the architectural limit of a PFN
140                  * number for AMD64.
141                  */
142                 __u64 start_page:40;
143                 /*
144                  * The number of pages in the range.
145                  */
146                 __u64 page_cnt:24;
147         } finfo;
148         __u64  page_range;
149 } __packed;
150
151
152
153 /*
154  * The header for all dynamic memory messages:
155  *
156  * type: Type of the message.
157  * size: Size of the message in bytes; including the header.
158  * trans_id: The guest is responsible for manufacturing this ID.
159  */
160
161 struct dm_header {
162         __u16 type;
163         __u16 size;
164         __u32 trans_id;
165 } __packed;
166
167 /*
168  * A generic message format for dynamic memory.
169  * Specific message formats are defined later in the file.
170  */
171
172 struct dm_message {
173         struct dm_header hdr;
174         __u8 data[]; /* enclosed message */
175 } __packed;
176
177
178 /*
179  * Specific message types supporting the dynamic memory protocol.
180  */
181
182 /*
183  * Version negotiation message. Sent from the guest to the host.
184  * The guest is free to try different versions until the host
185  * accepts the version.
186  *
187  * dm_version: The protocol version requested.
188  * is_last_attempt: If TRUE, this is the last version guest will request.
189  * reservedz: Reserved field, set to zero.
190  */
191
192 struct dm_version_request {
193         struct dm_header hdr;
194         union dm_version version;
195         __u32 is_last_attempt:1;
196         __u32 reservedz:31;
197 } __packed;
198
199 /*
200  * Version response message; Host to Guest and indicates
201  * if the host has accepted the version sent by the guest.
202  *
203  * is_accepted: If TRUE, host has accepted the version and the guest
204  * should proceed to the next stage of the protocol. FALSE indicates that
205  * guest should re-try with a different version.
206  *
207  * reservedz: Reserved field, set to zero.
208  */
209
210 struct dm_version_response {
211         struct dm_header hdr;
212         __u64 is_accepted:1;
213         __u64 reservedz:63;
214 } __packed;
215
216 /*
217  * Message reporting capabilities. This is sent from the guest to the
218  * host.
219  */
220
221 struct dm_capabilities {
222         struct dm_header hdr;
223         union dm_caps caps;
224         __u64 min_page_cnt;
225         __u64 max_page_number;
226 } __packed;
227
228 /*
229  * Response to the capabilities message. This is sent from the host to the
230  * guest. This message notifies if the host has accepted the guest's
231  * capabilities. If the host has not accepted, the guest must shutdown
232  * the service.
233  *
234  * is_accepted: Indicates if the host has accepted guest's capabilities.
235  * reservedz: Must be 0.
236  */
237
238 struct dm_capabilities_resp_msg {
239         struct dm_header hdr;
240         __u64 is_accepted:1;
241         __u64 reservedz:63;
242 } __packed;
243
244 /*
245  * This message is used to report memory pressure from the guest.
246  * This message is not part of any transaction and there is no
247  * response to this message.
248  *
249  * num_avail: Available memory in pages.
250  * num_committed: Committed memory in pages.
251  * page_file_size: The accumulated size of all page files
252  *                 in the system in pages.
253  * zero_free: The number of zero and free pages.
254  * page_file_writes: The writes to the page file in pages.
255  * io_diff: An indicator of file cache efficiency or page file activity,
256  *          calculated as File Cache Page Fault Count - Page Read Count.
257  *          This value is in pages.
258  *
259  * Some of these metrics are Windows specific and fortunately
260  * the algorithm on the host side that computes the guest memory
261  * pressure only uses num_committed value.
262  */
263
264 struct dm_status {
265         struct dm_header hdr;
266         __u64 num_avail;
267         __u64 num_committed;
268         __u64 page_file_size;
269         __u64 zero_free;
270         __u32 page_file_writes;
271         __u32 io_diff;
272 } __packed;
273
274
275 /*
276  * Message to ask the guest to allocate memory - balloon up message.
277  * This message is sent from the host to the guest. The guest may not be
278  * able to allocate as much memory as requested.
279  *
280  * num_pages: number of pages to allocate.
281  */
282
283 struct dm_balloon {
284         struct dm_header hdr;
285         __u32 num_pages;
286         __u32 reservedz;
287 } __packed;
288
289
290 /*
291  * Balloon response message; this message is sent from the guest
292  * to the host in response to the balloon message.
293  *
294  * reservedz: Reserved; must be set to zero.
295  * more_pages: If FALSE, this is the last message of the transaction.
296  * if TRUE there will atleast one more message from the guest.
297  *
298  * range_count: The number of ranges in the range array.
299  *
300  * range_array: An array of page ranges returned to the host.
301  *
302  */
303
304 struct dm_balloon_response {
305         struct dm_header hdr;
306         __u32 reservedz;
307         __u32 more_pages:1;
308         __u32 range_count:31;
309         union dm_mem_page_range range_array[];
310 } __packed;
311
312 /*
313  * Un-balloon message; this message is sent from the host
314  * to the guest to give guest more memory.
315  *
316  * more_pages: If FALSE, this is the last message of the transaction.
317  * if TRUE there will atleast one more message from the guest.
318  *
319  * reservedz: Reserved; must be set to zero.
320  *
321  * range_count: The number of ranges in the range array.
322  *
323  * range_array: An array of page ranges returned to the host.
324  *
325  */
326
327 struct dm_unballoon_request {
328         struct dm_header hdr;
329         __u32 more_pages:1;
330         __u32 reservedz:31;
331         __u32 range_count;
332         union dm_mem_page_range range_array[];
333 } __packed;
334
335 /*
336  * Un-balloon response message; this message is sent from the guest
337  * to the host in response to an unballoon request.
338  *
339  */
340
341 struct dm_unballoon_response {
342         struct dm_header hdr;
343 } __packed;
344
345
346 /*
347  * Hot add request message. Message sent from the host to the guest.
348  *
349  * mem_range: Memory range to hot add.
350  *
351  */
352
353 struct dm_hot_add {
354         struct dm_header hdr;
355         union dm_mem_page_range range;
356 } __packed;
357
358 /*
359  * Hot add response message.
360  * This message is sent by the guest to report the status of a hot add request.
361  * If page_count is less than the requested page count, then the host should
362  * assume all further hot add requests will fail, since this indicates that
363  * the guest has hit an upper physical memory barrier.
364  *
365  * Hot adds may also fail due to low resources; in this case, the guest must
366  * not complete this message until the hot add can succeed, and the host must
367  * not send a new hot add request until the response is sent.
368  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
369  * times it fails the request.
370  *
371  *
372  * page_count: number of pages that were successfully hot added.
373  *
374  * result: result of the operation 1: success, 0: failure.
375  *
376  */
377
378 struct dm_hot_add_response {
379         struct dm_header hdr;
380         __u32 page_count;
381         __u32 result;
382 } __packed;
383
384 /*
385  * Types of information sent from host to the guest.
386  */
387
388 enum dm_info_type {
389         INFO_TYPE_MAX_PAGE_CNT = 0,
390         MAX_INFO_TYPE
391 };
392
393
394 /*
395  * Header for the information message.
396  */
397
398 struct dm_info_header {
399         enum dm_info_type type;
400         __u32 data_size;
401 } __packed;
402
403 /*
404  * This message is sent from the host to the guest to pass
405  * some relevant information (win8 addition).
406  *
407  * reserved: no used.
408  * info_size: size of the information blob.
409  * info: information blob.
410  */
411
412 struct dm_info_msg {
413         struct dm_header hdr;
414         __u32 reserved;
415         __u32 info_size;
416         __u8  info[];
417 };
418
419 /*
420  * End protocol definitions.
421  */
422
423 /*
424  * State to manage hot adding memory into the guest.
425  * The range start_pfn : end_pfn specifies the range
426  * that the host has asked us to hot add. The range
427  * start_pfn : ha_end_pfn specifies the range that we have
428  * currently hot added. We hot add in multiples of 128M
429  * chunks; it is possible that we may not be able to bring
430  * online all the pages in the region. The range
431  * covered_start_pfn:covered_end_pfn defines the pages that can
432  * be brough online.
433  */
434
435 struct hv_hotadd_state {
436         struct list_head list;
437         unsigned long start_pfn;
438         unsigned long covered_start_pfn;
439         unsigned long covered_end_pfn;
440         unsigned long ha_end_pfn;
441         unsigned long end_pfn;
442         /*
443          * A list of gaps.
444          */
445         struct list_head gap_list;
446 };
447
448 struct hv_hotadd_gap {
449         struct list_head list;
450         unsigned long start_pfn;
451         unsigned long end_pfn;
452 };
453
454 struct balloon_state {
455         __u32 num_pages;
456         struct work_struct wrk;
457 };
458
459 struct hot_add_wrk {
460         union dm_mem_page_range ha_page_range;
461         union dm_mem_page_range ha_region_range;
462         struct work_struct wrk;
463 };
464
465 static bool allow_hibernation;
466 static bool hot_add = true;
467 static bool do_hot_add;
468 /*
469  * Delay reporting memory pressure by
470  * the specified number of seconds.
471  */
472 static uint pressure_report_delay = 45;
473 extern unsigned int page_reporting_order;
474 #define HV_MAX_FAILURES 2
475
476 /*
477  * The last time we posted a pressure report to host.
478  */
479 static unsigned long last_post_time;
480
481 static int hv_hypercall_multi_failure;
482
483 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
484 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
485
486 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
487 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
488 static atomic_t trans_id = ATOMIC_INIT(0);
489
490 static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024);
491
492 /*
493  * Driver specific state.
494  */
495
496 enum hv_dm_state {
497         DM_INITIALIZING = 0,
498         DM_INITIALIZED,
499         DM_BALLOON_UP,
500         DM_BALLOON_DOWN,
501         DM_HOT_ADD,
502         DM_INIT_ERROR
503 };
504
505
506 static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
507 static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
508 #define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
509 #define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
510
511 struct hv_dynmem_device {
512         struct hv_device *dev;
513         enum hv_dm_state state;
514         struct completion host_event;
515         struct completion config_event;
516
517         /*
518          * Number of pages we have currently ballooned out.
519          */
520         unsigned int num_pages_ballooned;
521         unsigned int num_pages_onlined;
522         unsigned int num_pages_added;
523
524         /*
525          * State to manage the ballooning (up) operation.
526          */
527         struct balloon_state balloon_wrk;
528
529         /*
530          * State to execute the "hot-add" operation.
531          */
532         struct hot_add_wrk ha_wrk;
533
534         /*
535          * This state tracks if the host has specified a hot-add
536          * region.
537          */
538         bool host_specified_ha_region;
539
540         /*
541          * State to synchronize hot-add.
542          */
543         struct completion  ol_waitevent;
544         /*
545          * This thread handles hot-add
546          * requests from the host as well as notifying
547          * the host with regards to memory pressure in
548          * the guest.
549          */
550         struct task_struct *thread;
551
552         /*
553          * Protects ha_region_list, num_pages_onlined counter and individual
554          * regions from ha_region_list.
555          */
556         spinlock_t ha_lock;
557
558         /*
559          * A list of hot-add regions.
560          */
561         struct list_head ha_region_list;
562
563         /*
564          * We start with the highest version we can support
565          * and downgrade based on the host; we save here the
566          * next version to try.
567          */
568         __u32 next_version;
569
570         /*
571          * The negotiated version agreed by host.
572          */
573         __u32 version;
574
575         struct page_reporting_dev_info pr_dev_info;
576
577         /*
578          * Maximum number of pages that can be hot_add-ed
579          */
580         __u64 max_dynamic_page_count;
581 };
582
583 static struct hv_dynmem_device dm_device;
584
585 static void post_status(struct hv_dynmem_device *dm);
586
587 static void enable_page_reporting(void);
588
589 static void disable_page_reporting(void);
590
591 #ifdef CONFIG_MEMORY_HOTPLUG
592 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
593                                      unsigned long pfn)
594 {
595         struct hv_hotadd_gap *gap;
596
597         /* The page is not backed. */
598         if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
599                 return false;
600
601         /* Check for gaps. */
602         list_for_each_entry(gap, &has->gap_list, list) {
603                 if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
604                         return false;
605         }
606
607         return true;
608 }
609
610 static unsigned long hv_page_offline_check(unsigned long start_pfn,
611                                            unsigned long nr_pages)
612 {
613         unsigned long pfn = start_pfn, count = 0;
614         struct hv_hotadd_state *has;
615         bool found;
616
617         while (pfn < start_pfn + nr_pages) {
618                 /*
619                  * Search for HAS which covers the pfn and when we find one
620                  * count how many consequitive PFNs are covered.
621                  */
622                 found = false;
623                 list_for_each_entry(has, &dm_device.ha_region_list, list) {
624                         while ((pfn >= has->start_pfn) &&
625                                (pfn < has->end_pfn) &&
626                                (pfn < start_pfn + nr_pages)) {
627                                 found = true;
628                                 if (has_pfn_is_backed(has, pfn))
629                                         count++;
630                                 pfn++;
631                         }
632                 }
633
634                 /*
635                  * This PFN is not in any HAS (e.g. we're offlining a region
636                  * which was present at boot), no need to account for it. Go
637                  * to the next one.
638                  */
639                 if (!found)
640                         pfn++;
641         }
642
643         return count;
644 }
645
646 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
647                               void *v)
648 {
649         struct memory_notify *mem = (struct memory_notify *)v;
650         unsigned long pfn_count;
651
652         switch (val) {
653         case MEM_ONLINE:
654         case MEM_CANCEL_ONLINE:
655                 complete(&dm_device.ol_waitevent);
656                 break;
657
658         case MEM_OFFLINE:
659                 scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
660                         pfn_count = hv_page_offline_check(mem->start_pfn,
661                                                           mem->nr_pages);
662                         if (pfn_count <= dm_device.num_pages_onlined) {
663                                 dm_device.num_pages_onlined -= pfn_count;
664                         } else {
665                                 /*
666                                  * We're offlining more pages than we
667                                  * managed to online. This is
668                                  * unexpected. In any case don't let
669                                  * num_pages_onlined wrap around zero.
670                                  */
671                                 WARN_ON_ONCE(1);
672                                 dm_device.num_pages_onlined = 0;
673                         }
674                 }
675                 break;
676         case MEM_GOING_ONLINE:
677         case MEM_GOING_OFFLINE:
678         case MEM_CANCEL_OFFLINE:
679                 break;
680         }
681         return NOTIFY_OK;
682 }
683
684 static struct notifier_block hv_memory_nb = {
685         .notifier_call = hv_memory_notifier,
686         .priority = 0
687 };
688
689 /* Check if the particular page is backed and can be onlined and online it. */
690 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
691 {
692         if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
693                 if (!PageOffline(pg))
694                         __SetPageOffline(pg);
695                 return;
696         }
697         if (PageOffline(pg))
698                 __ClearPageOffline(pg);
699
700         /* This frame is currently backed; online the page. */
701         generic_online_page(pg, 0);
702
703         lockdep_assert_held(&dm_device.ha_lock);
704         dm_device.num_pages_onlined++;
705 }
706
707 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
708                                 unsigned long start_pfn, unsigned long size)
709 {
710         int i;
711
712         pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
713         for (i = 0; i < size; i++)
714                 hv_page_online_one(has, pfn_to_page(start_pfn + i));
715 }
716
717 static void hv_mem_hot_add(unsigned long start, unsigned long size,
718                                 unsigned long pfn_count,
719                                 struct hv_hotadd_state *has)
720 {
721         int ret = 0;
722         int i, nid;
723         unsigned long start_pfn;
724         unsigned long processed_pfn;
725         unsigned long total_pfn = pfn_count;
726
727         for (i = 0; i < (size/HA_CHUNK); i++) {
728                 start_pfn = start + (i * HA_CHUNK);
729
730                 scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
731                         has->ha_end_pfn +=  HA_CHUNK;
732
733                         if (total_pfn > HA_CHUNK) {
734                                 processed_pfn = HA_CHUNK;
735                                 total_pfn -= HA_CHUNK;
736                         } else {
737                                 processed_pfn = total_pfn;
738                                 total_pfn = 0;
739                         }
740
741                         has->covered_end_pfn +=  processed_pfn;
742                 }
743
744                 reinit_completion(&dm_device.ol_waitevent);
745
746                 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
747                 ret = add_memory(nid, PFN_PHYS((start_pfn)),
748                                 (HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE);
749
750                 if (ret) {
751                         pr_err("hot_add memory failed error is %d\n", ret);
752                         if (ret == -EEXIST) {
753                                 /*
754                                  * This error indicates that the error
755                                  * is not a transient failure. This is the
756                                  * case where the guest's physical address map
757                                  * precludes hot adding memory. Stop all further
758                                  * memory hot-add.
759                                  */
760                                 do_hot_add = false;
761                         }
762                         scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
763                                 has->ha_end_pfn -= HA_CHUNK;
764                                 has->covered_end_pfn -=  processed_pfn;
765                         }
766                         break;
767                 }
768
769                 /*
770                  * Wait for memory to get onlined. If the kernel onlined the
771                  * memory when adding it, this will return directly. Otherwise,
772                  * it will wait for user space to online the memory. This helps
773                  * to avoid adding memory faster than it is getting onlined. As
774                  * adding succeeded, it is ok to proceed even if the memory was
775                  * not onlined in time.
776                  */
777                 wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
778                 post_status(&dm_device);
779         }
780 }
781
782 static void hv_online_page(struct page *pg, unsigned int order)
783 {
784         struct hv_hotadd_state *has;
785         unsigned long pfn = page_to_pfn(pg);
786
787         guard(spinlock_irqsave)(&dm_device.ha_lock);
788         list_for_each_entry(has, &dm_device.ha_region_list, list) {
789                 /* The page belongs to a different HAS. */
790                 if ((pfn < has->start_pfn) ||
791                                 (pfn + (1UL << order) > has->end_pfn))
792                         continue;
793
794                 hv_bring_pgs_online(has, pfn, 1UL << order);
795                 break;
796         }
797 }
798
799 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
800 {
801         struct hv_hotadd_state *has;
802         struct hv_hotadd_gap *gap;
803         unsigned long residual, new_inc;
804         int ret = 0;
805
806         guard(spinlock_irqsave)(&dm_device.ha_lock);
807         list_for_each_entry(has, &dm_device.ha_region_list, list) {
808                 /*
809                  * If the pfn range we are dealing with is not in the current
810                  * "hot add block", move on.
811                  */
812                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
813                         continue;
814
815                 /*
816                  * If the current start pfn is not where the covered_end
817                  * is, create a gap and update covered_end_pfn.
818                  */
819                 if (has->covered_end_pfn != start_pfn) {
820                         gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
821                         if (!gap) {
822                                 ret = -ENOMEM;
823                                 break;
824                         }
825
826                         INIT_LIST_HEAD(&gap->list);
827                         gap->start_pfn = has->covered_end_pfn;
828                         gap->end_pfn = start_pfn;
829                         list_add_tail(&gap->list, &has->gap_list);
830
831                         has->covered_end_pfn = start_pfn;
832                 }
833
834                 /*
835                  * If the current hot add-request extends beyond
836                  * our current limit; extend it.
837                  */
838                 if ((start_pfn + pfn_cnt) > has->end_pfn) {
839                         residual = (start_pfn + pfn_cnt - has->end_pfn);
840                         /*
841                          * Extend the region by multiples of HA_CHUNK.
842                          */
843                         new_inc = (residual / HA_CHUNK) * HA_CHUNK;
844                         if (residual % HA_CHUNK)
845                                 new_inc += HA_CHUNK;
846
847                         has->end_pfn += new_inc;
848                 }
849
850                 ret = 1;
851                 break;
852         }
853
854         return ret;
855 }
856
857 static unsigned long handle_pg_range(unsigned long pg_start,
858                                         unsigned long pg_count)
859 {
860         unsigned long start_pfn = pg_start;
861         unsigned long pfn_cnt = pg_count;
862         unsigned long size;
863         struct hv_hotadd_state *has;
864         unsigned long pgs_ol = 0;
865         unsigned long old_covered_state;
866         unsigned long res = 0, flags;
867
868         pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
869                 pg_start);
870
871         spin_lock_irqsave(&dm_device.ha_lock, flags);
872         list_for_each_entry(has, &dm_device.ha_region_list, list) {
873                 /*
874                  * If the pfn range we are dealing with is not in the current
875                  * "hot add block", move on.
876                  */
877                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
878                         continue;
879
880                 old_covered_state = has->covered_end_pfn;
881
882                 if (start_pfn < has->ha_end_pfn) {
883                         /*
884                          * This is the case where we are backing pages
885                          * in an already hot added region. Bring
886                          * these pages online first.
887                          */
888                         pgs_ol = has->ha_end_pfn - start_pfn;
889                         if (pgs_ol > pfn_cnt)
890                                 pgs_ol = pfn_cnt;
891
892                         has->covered_end_pfn +=  pgs_ol;
893                         pfn_cnt -= pgs_ol;
894                         /*
895                          * Check if the corresponding memory block is already
896                          * online. It is possible to observe struct pages still
897                          * being uninitialized here so check section instead.
898                          * In case the section is online we need to bring the
899                          * rest of pfns (which were not backed previously)
900                          * online too.
901                          */
902                         if (start_pfn > has->start_pfn &&
903                             online_section_nr(pfn_to_section_nr(start_pfn)))
904                                 hv_bring_pgs_online(has, start_pfn, pgs_ol);
905
906                 }
907
908                 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
909                         /*
910                          * We have some residual hot add range
911                          * that needs to be hot added; hot add
912                          * it now. Hot add a multiple of
913                          * HA_CHUNK that fully covers the pages
914                          * we have.
915                          */
916                         size = (has->end_pfn - has->ha_end_pfn);
917                         if (pfn_cnt <= size) {
918                                 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
919                                 if (pfn_cnt % HA_CHUNK)
920                                         size += HA_CHUNK;
921                         } else {
922                                 pfn_cnt = size;
923                         }
924                         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
925                         hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
926                         spin_lock_irqsave(&dm_device.ha_lock, flags);
927                 }
928                 /*
929                  * If we managed to online any pages that were given to us,
930                  * we declare success.
931                  */
932                 res = has->covered_end_pfn - old_covered_state;
933                 break;
934         }
935         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
936
937         return res;
938 }
939
940 static unsigned long process_hot_add(unsigned long pg_start,
941                                         unsigned long pfn_cnt,
942                                         unsigned long rg_start,
943                                         unsigned long rg_size)
944 {
945         struct hv_hotadd_state *ha_region = NULL;
946         int covered;
947
948         if (pfn_cnt == 0)
949                 return 0;
950
951         if (!dm_device.host_specified_ha_region) {
952                 covered = pfn_covered(pg_start, pfn_cnt);
953                 if (covered < 0)
954                         return 0;
955
956                 if (covered)
957                         goto do_pg_range;
958         }
959
960         /*
961          * If the host has specified a hot-add range; deal with it first.
962          */
963
964         if (rg_size != 0) {
965                 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
966                 if (!ha_region)
967                         return 0;
968
969                 INIT_LIST_HEAD(&ha_region->list);
970                 INIT_LIST_HEAD(&ha_region->gap_list);
971
972                 ha_region->start_pfn = rg_start;
973                 ha_region->ha_end_pfn = rg_start;
974                 ha_region->covered_start_pfn = pg_start;
975                 ha_region->covered_end_pfn = pg_start;
976                 ha_region->end_pfn = rg_start + rg_size;
977
978                 scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
979                         list_add_tail(&ha_region->list, &dm_device.ha_region_list);
980                 }
981         }
982
983 do_pg_range:
984         /*
985          * Process the page range specified; bringing them
986          * online if possible.
987          */
988         return handle_pg_range(pg_start, pfn_cnt);
989 }
990
991 #endif
992
993 static void hot_add_req(struct work_struct *dummy)
994 {
995         struct dm_hot_add_response resp;
996 #ifdef CONFIG_MEMORY_HOTPLUG
997         unsigned long pg_start, pfn_cnt;
998         unsigned long rg_start, rg_sz;
999 #endif
1000         struct hv_dynmem_device *dm = &dm_device;
1001
1002         memset(&resp, 0, sizeof(struct dm_hot_add_response));
1003         resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
1004         resp.hdr.size = sizeof(struct dm_hot_add_response);
1005
1006 #ifdef CONFIG_MEMORY_HOTPLUG
1007         pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1008         pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1009
1010         rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1011         rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1012
1013         if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1014                 unsigned long region_size;
1015                 unsigned long region_start;
1016
1017                 /*
1018                  * The host has not specified the hot-add region.
1019                  * Based on the hot-add page range being specified,
1020                  * compute a hot-add region that can cover the pages
1021                  * that need to be hot-added while ensuring the alignment
1022                  * and size requirements of Linux as it relates to hot-add.
1023                  */
1024                 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1025                 if (pfn_cnt % HA_CHUNK)
1026                         region_size += HA_CHUNK;
1027
1028                 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1029
1030                 rg_start = region_start;
1031                 rg_sz = region_size;
1032         }
1033
1034         if (do_hot_add)
1035                 resp.page_count = process_hot_add(pg_start, pfn_cnt,
1036                                                 rg_start, rg_sz);
1037
1038         dm->num_pages_added += resp.page_count;
1039 #endif
1040         /*
1041          * The result field of the response structure has the
1042          * following semantics:
1043          *
1044          * 1. If all or some pages hot-added: Guest should return success.
1045          *
1046          * 2. If no pages could be hot-added:
1047          *
1048          * If the guest returns success, then the host
1049          * will not attempt any further hot-add operations. This
1050          * signifies a permanent failure.
1051          *
1052          * If the guest returns failure, then this failure will be
1053          * treated as a transient failure and the host may retry the
1054          * hot-add operation after some delay.
1055          */
1056         if (resp.page_count > 0)
1057                 resp.result = 1;
1058         else if (!do_hot_add)
1059                 resp.result = 1;
1060         else
1061                 resp.result = 0;
1062
1063         if (!do_hot_add || resp.page_count == 0) {
1064                 if (!allow_hibernation)
1065                         pr_err("Memory hot add failed\n");
1066                 else
1067                         pr_info("Ignore hot-add request!\n");
1068         }
1069
1070         dm->state = DM_INITIALIZED;
1071         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1072         vmbus_sendpacket(dm->dev->channel, &resp,
1073                         sizeof(struct dm_hot_add_response),
1074                         (unsigned long)NULL,
1075                         VM_PKT_DATA_INBAND, 0);
1076 }
1077
1078 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1079 {
1080         struct dm_info_header *info_hdr;
1081
1082         info_hdr = (struct dm_info_header *)msg->info;
1083
1084         switch (info_hdr->type) {
1085         case INFO_TYPE_MAX_PAGE_CNT:
1086                 if (info_hdr->data_size == sizeof(__u64)) {
1087                         __u64 *max_page_count = (__u64 *)&info_hdr[1];
1088
1089                         pr_info("Max. dynamic memory size: %llu MB\n",
1090                                 (*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1091                         dm->max_dynamic_page_count = *max_page_count;
1092                 }
1093
1094                 break;
1095         default:
1096                 pr_warn("Received Unknown type: %d\n", info_hdr->type);
1097         }
1098 }
1099
1100 static unsigned long compute_balloon_floor(void)
1101 {
1102         unsigned long min_pages;
1103         unsigned long nr_pages = totalram_pages();
1104 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1105         /* Simple continuous piecewiese linear function:
1106          *  max MiB -> min MiB  gradient
1107          *       0         0
1108          *      16        16
1109          *      32        24
1110          *     128        72    (1/2)
1111          *     512       168    (1/4)
1112          *    2048       360    (1/8)
1113          *    8192       744    (1/16)
1114          *   32768      1512    (1/32)
1115          */
1116         if (nr_pages < MB2PAGES(128))
1117                 min_pages = MB2PAGES(8) + (nr_pages >> 1);
1118         else if (nr_pages < MB2PAGES(512))
1119                 min_pages = MB2PAGES(40) + (nr_pages >> 2);
1120         else if (nr_pages < MB2PAGES(2048))
1121                 min_pages = MB2PAGES(104) + (nr_pages >> 3);
1122         else if (nr_pages < MB2PAGES(8192))
1123                 min_pages = MB2PAGES(232) + (nr_pages >> 4);
1124         else
1125                 min_pages = MB2PAGES(488) + (nr_pages >> 5);
1126 #undef MB2PAGES
1127         return min_pages;
1128 }
1129
1130 /*
1131  * Compute total committed memory pages
1132  */
1133
1134 static unsigned long get_pages_committed(struct hv_dynmem_device *dm)
1135 {
1136         return vm_memory_committed() +
1137                 dm->num_pages_ballooned +
1138                 (dm->num_pages_added > dm->num_pages_onlined ?
1139                  dm->num_pages_added - dm->num_pages_onlined : 0) +
1140                 compute_balloon_floor();
1141 }
1142
1143 /*
1144  * Post our status as it relates memory pressure to the
1145  * host. Host expects the guests to post this status
1146  * periodically at 1 second intervals.
1147  *
1148  * The metrics specified in this protocol are very Windows
1149  * specific and so we cook up numbers here to convey our memory
1150  * pressure.
1151  */
1152
1153 static void post_status(struct hv_dynmem_device *dm)
1154 {
1155         struct dm_status status;
1156         unsigned long now = jiffies;
1157         unsigned long last_post = last_post_time;
1158         unsigned long num_pages_avail, num_pages_committed;
1159
1160         if (pressure_report_delay > 0) {
1161                 --pressure_report_delay;
1162                 return;
1163         }
1164
1165         if (!time_after(now, (last_post_time + HZ)))
1166                 return;
1167
1168         memset(&status, 0, sizeof(struct dm_status));
1169         status.hdr.type = DM_STATUS_REPORT;
1170         status.hdr.size = sizeof(struct dm_status);
1171         status.hdr.trans_id = atomic_inc_return(&trans_id);
1172
1173         /*
1174          * The host expects the guest to report free and committed memory.
1175          * Furthermore, the host expects the pressure information to include
1176          * the ballooned out pages. For a given amount of memory that we are
1177          * managing we need to compute a floor below which we should not
1178          * balloon. Compute this and add it to the pressure report.
1179          * We also need to report all offline pages (num_pages_added -
1180          * num_pages_onlined) as committed to the host, otherwise it can try
1181          * asking us to balloon them out.
1182          */
1183         num_pages_avail = si_mem_available();
1184         num_pages_committed = get_pages_committed(dm);
1185
1186         trace_balloon_status(num_pages_avail, num_pages_committed,
1187                              vm_memory_committed(), dm->num_pages_ballooned,
1188                              dm->num_pages_added, dm->num_pages_onlined);
1189
1190         /* Convert numbers of pages into numbers of HV_HYP_PAGEs. */
1191         status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE;
1192         status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE;
1193
1194         /*
1195          * If our transaction ID is no longer current, just don't
1196          * send the status. This can happen if we were interrupted
1197          * after we picked our transaction ID.
1198          */
1199         if (status.hdr.trans_id != atomic_read(&trans_id))
1200                 return;
1201
1202         /*
1203          * If the last post time that we sampled has changed,
1204          * we have raced, don't post the status.
1205          */
1206         if (last_post != last_post_time)
1207                 return;
1208
1209         last_post_time = jiffies;
1210         vmbus_sendpacket(dm->dev->channel, &status,
1211                                 sizeof(struct dm_status),
1212                                 (unsigned long)NULL,
1213                                 VM_PKT_DATA_INBAND, 0);
1214
1215 }
1216
1217 static void free_balloon_pages(struct hv_dynmem_device *dm,
1218                          union dm_mem_page_range *range_array)
1219 {
1220         int num_pages = range_array->finfo.page_cnt;
1221         __u64 start_frame = range_array->finfo.start_page;
1222         struct page *pg;
1223         int i;
1224
1225         for (i = 0; i < num_pages; i++) {
1226                 pg = pfn_to_page(i + start_frame);
1227                 __ClearPageOffline(pg);
1228                 __free_page(pg);
1229                 dm->num_pages_ballooned--;
1230                 adjust_managed_page_count(pg, 1);
1231         }
1232 }
1233
1234
1235
1236 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1237                                         unsigned int num_pages,
1238                                         struct dm_balloon_response *bl_resp,
1239                                         int alloc_unit)
1240 {
1241         unsigned int i, j;
1242         struct page *pg;
1243
1244         for (i = 0; i < num_pages / alloc_unit; i++) {
1245                 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1246                         HV_HYP_PAGE_SIZE)
1247                         return i * alloc_unit;
1248
1249                 /*
1250                  * We execute this code in a thread context. Furthermore,
1251                  * we don't want the kernel to try too hard.
1252                  */
1253                 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1254                                 __GFP_NOMEMALLOC | __GFP_NOWARN,
1255                                 get_order(alloc_unit << PAGE_SHIFT));
1256
1257                 if (!pg)
1258                         return i * alloc_unit;
1259
1260                 dm->num_pages_ballooned += alloc_unit;
1261
1262                 /*
1263                  * If we allocatted 2M pages; split them so we
1264                  * can free them in any order we get.
1265                  */
1266
1267                 if (alloc_unit != 1)
1268                         split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1269
1270                 /* mark all pages offline */
1271                 for (j = 0; j < alloc_unit; j++) {
1272                         __SetPageOffline(pg + j);
1273                         adjust_managed_page_count(pg + j, -1);
1274                 }
1275
1276                 bl_resp->range_count++;
1277                 bl_resp->range_array[i].finfo.start_page =
1278                         page_to_pfn(pg);
1279                 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1280                 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1281
1282         }
1283
1284         return i * alloc_unit;
1285 }
1286
1287 static void balloon_up(struct work_struct *dummy)
1288 {
1289         unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1290         unsigned int num_ballooned = 0;
1291         struct dm_balloon_response *bl_resp;
1292         int alloc_unit;
1293         int ret;
1294         bool done = false;
1295         int i;
1296         long avail_pages;
1297         unsigned long floor;
1298
1299         /*
1300          * We will attempt 2M allocations. However, if we fail to
1301          * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1302          */
1303         alloc_unit = PAGES_IN_2M;
1304
1305         avail_pages = si_mem_available();
1306         floor = compute_balloon_floor();
1307
1308         /* Refuse to balloon below the floor. */
1309         if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1310                 pr_info("Balloon request will be partially fulfilled. %s\n",
1311                         avail_pages < num_pages ? "Not enough memory." :
1312                         "Balloon floor reached.");
1313
1314                 num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1315         }
1316
1317         while (!done) {
1318                 memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1319                 bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1320                 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1321                 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1322                 bl_resp->more_pages = 1;
1323
1324                 num_pages -= num_ballooned;
1325                 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1326                                                     bl_resp, alloc_unit);
1327
1328                 if (alloc_unit != 1 && num_ballooned == 0) {
1329                         alloc_unit = 1;
1330                         continue;
1331                 }
1332
1333                 if (num_ballooned == 0 || num_ballooned == num_pages) {
1334                         pr_debug("Ballooned %u out of %u requested pages.\n",
1335                                 num_pages, dm_device.balloon_wrk.num_pages);
1336
1337                         bl_resp->more_pages = 0;
1338                         done = true;
1339                         dm_device.state = DM_INITIALIZED;
1340                 }
1341
1342                 /*
1343                  * We are pushing a lot of data through the channel;
1344                  * deal with transient failures caused because of the
1345                  * lack of space in the ring buffer.
1346                  */
1347
1348                 do {
1349                         bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1350                         ret = vmbus_sendpacket(dm_device.dev->channel,
1351                                                 bl_resp,
1352                                                 bl_resp->hdr.size,
1353                                                 (unsigned long)NULL,
1354                                                 VM_PKT_DATA_INBAND, 0);
1355
1356                         if (ret == -EAGAIN)
1357                                 msleep(20);
1358                         post_status(&dm_device);
1359                 } while (ret == -EAGAIN);
1360
1361                 if (ret) {
1362                         /*
1363                          * Free up the memory we allocatted.
1364                          */
1365                         pr_err("Balloon response failed\n");
1366
1367                         for (i = 0; i < bl_resp->range_count; i++)
1368                                 free_balloon_pages(&dm_device,
1369                                                  &bl_resp->range_array[i]);
1370
1371                         done = true;
1372                 }
1373         }
1374
1375 }
1376
1377 static void balloon_down(struct hv_dynmem_device *dm,
1378                         struct dm_unballoon_request *req)
1379 {
1380         union dm_mem_page_range *range_array = req->range_array;
1381         int range_count = req->range_count;
1382         struct dm_unballoon_response resp;
1383         int i;
1384         unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1385
1386         for (i = 0; i < range_count; i++) {
1387                 free_balloon_pages(dm, &range_array[i]);
1388                 complete(&dm_device.config_event);
1389         }
1390
1391         pr_debug("Freed %u ballooned pages.\n",
1392                 prev_pages_ballooned - dm->num_pages_ballooned);
1393
1394         if (req->more_pages == 1)
1395                 return;
1396
1397         memset(&resp, 0, sizeof(struct dm_unballoon_response));
1398         resp.hdr.type = DM_UNBALLOON_RESPONSE;
1399         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1400         resp.hdr.size = sizeof(struct dm_unballoon_response);
1401
1402         vmbus_sendpacket(dm_device.dev->channel, &resp,
1403                                 sizeof(struct dm_unballoon_response),
1404                                 (unsigned long)NULL,
1405                                 VM_PKT_DATA_INBAND, 0);
1406
1407         dm->state = DM_INITIALIZED;
1408 }
1409
1410 static void balloon_onchannelcallback(void *context);
1411
1412 static int dm_thread_func(void *dm_dev)
1413 {
1414         struct hv_dynmem_device *dm = dm_dev;
1415
1416         while (!kthread_should_stop()) {
1417                 wait_for_completion_interruptible_timeout(
1418                                                 &dm_device.config_event, 1*HZ);
1419                 /*
1420                  * The host expects us to post information on the memory
1421                  * pressure every second.
1422                  */
1423                 reinit_completion(&dm_device.config_event);
1424                 post_status(dm);
1425                 /*
1426                  * disable free page reporting if multiple hypercall
1427                  * failure flag set. It is not done in the page_reporting
1428                  * callback context as that causes a deadlock between
1429                  * page_reporting_process() and page_reporting_unregister()
1430                  */
1431                 if (hv_hypercall_multi_failure >= HV_MAX_FAILURES) {
1432                         pr_err("Multiple failures in cold memory discard hypercall, disabling page reporting\n");
1433                         disable_page_reporting();
1434                         /* Reset the flag after disabling reporting */
1435                         hv_hypercall_multi_failure = 0;
1436                 }
1437         }
1438
1439         return 0;
1440 }
1441
1442
1443 static void version_resp(struct hv_dynmem_device *dm,
1444                         struct dm_version_response *vresp)
1445 {
1446         struct dm_version_request version_req;
1447         int ret;
1448
1449         if (vresp->is_accepted) {
1450                 /*
1451                  * We are done; wakeup the
1452                  * context waiting for version
1453                  * negotiation.
1454                  */
1455                 complete(&dm->host_event);
1456                 return;
1457         }
1458         /*
1459          * If there are more versions to try, continue
1460          * with negotiations; if not
1461          * shutdown the service since we are not able
1462          * to negotiate a suitable version number
1463          * with the host.
1464          */
1465         if (dm->next_version == 0)
1466                 goto version_error;
1467
1468         memset(&version_req, 0, sizeof(struct dm_version_request));
1469         version_req.hdr.type = DM_VERSION_REQUEST;
1470         version_req.hdr.size = sizeof(struct dm_version_request);
1471         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1472         version_req.version.version = dm->next_version;
1473         dm->version = version_req.version.version;
1474
1475         /*
1476          * Set the next version to try in case current version fails.
1477          * Win7 protocol ought to be the last one to try.
1478          */
1479         switch (version_req.version.version) {
1480         case DYNMEM_PROTOCOL_VERSION_WIN8:
1481                 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1482                 version_req.is_last_attempt = 0;
1483                 break;
1484         default:
1485                 dm->next_version = 0;
1486                 version_req.is_last_attempt = 1;
1487         }
1488
1489         ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1490                                 sizeof(struct dm_version_request),
1491                                 (unsigned long)NULL,
1492                                 VM_PKT_DATA_INBAND, 0);
1493
1494         if (ret)
1495                 goto version_error;
1496
1497         return;
1498
1499 version_error:
1500         dm->state = DM_INIT_ERROR;
1501         complete(&dm->host_event);
1502 }
1503
1504 static void cap_resp(struct hv_dynmem_device *dm,
1505                         struct dm_capabilities_resp_msg *cap_resp)
1506 {
1507         if (!cap_resp->is_accepted) {
1508                 pr_err("Capabilities not accepted by host\n");
1509                 dm->state = DM_INIT_ERROR;
1510         }
1511         complete(&dm->host_event);
1512 }
1513
1514 static void balloon_onchannelcallback(void *context)
1515 {
1516         struct hv_device *dev = context;
1517         u32 recvlen;
1518         u64 requestid;
1519         struct dm_message *dm_msg;
1520         struct dm_header *dm_hdr;
1521         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1522         struct dm_balloon *bal_msg;
1523         struct dm_hot_add *ha_msg;
1524         union dm_mem_page_range *ha_pg_range;
1525         union dm_mem_page_range *ha_region;
1526
1527         memset(recv_buffer, 0, sizeof(recv_buffer));
1528         vmbus_recvpacket(dev->channel, recv_buffer,
1529                          HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1530
1531         if (recvlen > 0) {
1532                 dm_msg = (struct dm_message *)recv_buffer;
1533                 dm_hdr = &dm_msg->hdr;
1534
1535                 switch (dm_hdr->type) {
1536                 case DM_VERSION_RESPONSE:
1537                         version_resp(dm,
1538                                  (struct dm_version_response *)dm_msg);
1539                         break;
1540
1541                 case DM_CAPABILITIES_RESPONSE:
1542                         cap_resp(dm,
1543                                  (struct dm_capabilities_resp_msg *)dm_msg);
1544                         break;
1545
1546                 case DM_BALLOON_REQUEST:
1547                         if (allow_hibernation) {
1548                                 pr_info("Ignore balloon-up request!\n");
1549                                 break;
1550                         }
1551
1552                         if (dm->state == DM_BALLOON_UP)
1553                                 pr_warn("Currently ballooning\n");
1554                         bal_msg = (struct dm_balloon *)recv_buffer;
1555                         dm->state = DM_BALLOON_UP;
1556                         dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1557                         schedule_work(&dm_device.balloon_wrk.wrk);
1558                         break;
1559
1560                 case DM_UNBALLOON_REQUEST:
1561                         if (allow_hibernation) {
1562                                 pr_info("Ignore balloon-down request!\n");
1563                                 break;
1564                         }
1565
1566                         dm->state = DM_BALLOON_DOWN;
1567                         balloon_down(dm,
1568                                  (struct dm_unballoon_request *)recv_buffer);
1569                         break;
1570
1571                 case DM_MEM_HOT_ADD_REQUEST:
1572                         if (dm->state == DM_HOT_ADD)
1573                                 pr_warn("Currently hot-adding\n");
1574                         dm->state = DM_HOT_ADD;
1575                         ha_msg = (struct dm_hot_add *)recv_buffer;
1576                         if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1577                                 /*
1578                                  * This is a normal hot-add request specifying
1579                                  * hot-add memory.
1580                                  */
1581                                 dm->host_specified_ha_region = false;
1582                                 ha_pg_range = &ha_msg->range;
1583                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1584                                 dm->ha_wrk.ha_region_range.page_range = 0;
1585                         } else {
1586                                 /*
1587                                  * Host is specifying that we first hot-add
1588                                  * a region and then partially populate this
1589                                  * region.
1590                                  */
1591                                 dm->host_specified_ha_region = true;
1592                                 ha_pg_range = &ha_msg->range;
1593                                 ha_region = &ha_pg_range[1];
1594                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1595                                 dm->ha_wrk.ha_region_range = *ha_region;
1596                         }
1597                         schedule_work(&dm_device.ha_wrk.wrk);
1598                         break;
1599
1600                 case DM_INFO_MESSAGE:
1601                         process_info(dm, (struct dm_info_msg *)dm_msg);
1602                         break;
1603
1604                 default:
1605                         pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type);
1606
1607                 }
1608         }
1609
1610 }
1611
1612 #define HV_LARGE_REPORTING_ORDER        9
1613 #define HV_LARGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << \
1614                 HV_LARGE_REPORTING_ORDER)
1615 static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
1616                     struct scatterlist *sgl, unsigned int nents)
1617 {
1618         unsigned long flags;
1619         struct hv_memory_hint *hint;
1620         int i, order;
1621         u64 status;
1622         struct scatterlist *sg;
1623
1624         WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1625         WARN_ON_ONCE(sgl->length < (HV_HYP_PAGE_SIZE << page_reporting_order));
1626         local_irq_save(flags);
1627         hint = *this_cpu_ptr(hyperv_pcpu_input_arg);
1628         if (!hint) {
1629                 local_irq_restore(flags);
1630                 return -ENOSPC;
1631         }
1632
1633         hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
1634         hint->reserved = 0;
1635         for_each_sg(sgl, sg, nents, i) {
1636                 union hv_gpa_page_range *range;
1637
1638                 range = &hint->ranges[i];
1639                 range->address_space = 0;
1640                 order = get_order(sg->length);
1641                 /*
1642                  * Hyper-V expects the additional_pages field in the units
1643                  * of one of these 3 sizes, 4Kbytes, 2Mbytes or 1Gbytes.
1644                  * This is dictated by the values of the fields page.largesize
1645                  * and page_size.
1646                  * This code however, only uses 4Kbytes and 2Mbytes units
1647                  * and not 1Gbytes unit.
1648                  */
1649
1650                 /* page reporting for pages 2MB or higher */
1651                 if (order >= HV_LARGE_REPORTING_ORDER ) {
1652                         range->page.largepage = 1;
1653                         range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
1654                         range->base_large_pfn = page_to_hvpfn(
1655                                         sg_page(sg)) >> HV_LARGE_REPORTING_ORDER;
1656                         range->page.additional_pages =
1657                                 (sg->length / HV_LARGE_REPORTING_LEN) - 1;
1658                 } else {
1659                         /* Page reporting for pages below 2MB */
1660                         range->page.basepfn = page_to_hvpfn(sg_page(sg));
1661                         range->page.largepage = false;
1662                         range->page.additional_pages =
1663                                 (sg->length / HV_HYP_PAGE_SIZE) - 1;
1664                 }
1665
1666         }
1667
1668         status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
1669                                      hint, NULL);
1670         local_irq_restore(flags);
1671         if (!hv_result_success(status)) {
1672
1673                 pr_err("Cold memory discard hypercall failed with status %llx\n",
1674                                 status);
1675                 if (hv_hypercall_multi_failure > 0)
1676                         hv_hypercall_multi_failure++;
1677
1678                 if (hv_result(status) == HV_STATUS_INVALID_PARAMETER) {
1679                         pr_err("Underlying Hyper-V does not support order less than 9. Hypercall failed\n");
1680                         pr_err("Defaulting to page_reporting_order %d\n",
1681                                         pageblock_order);
1682                         page_reporting_order = pageblock_order;
1683                         hv_hypercall_multi_failure++;
1684                         return -EINVAL;
1685                 }
1686
1687                 return -EINVAL;
1688         }
1689
1690         return 0;
1691 }
1692
1693 static void enable_page_reporting(void)
1694 {
1695         int ret;
1696
1697         if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
1698                 pr_debug("Cold memory discard hint not supported by Hyper-V\n");
1699                 return;
1700         }
1701
1702         BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1703         dm_device.pr_dev_info.report = hv_free_page_report;
1704         /*
1705          * We let the page_reporting_order parameter decide the order
1706          * in the page_reporting code
1707          */
1708         dm_device.pr_dev_info.order = 0;
1709         ret = page_reporting_register(&dm_device.pr_dev_info);
1710         if (ret < 0) {
1711                 dm_device.pr_dev_info.report = NULL;
1712                 pr_err("Failed to enable cold memory discard: %d\n", ret);
1713         } else {
1714                 pr_info("Cold memory discard hint enabled with order %d\n",
1715                                 page_reporting_order);
1716         }
1717 }
1718
1719 static void disable_page_reporting(void)
1720 {
1721         if (dm_device.pr_dev_info.report) {
1722                 page_reporting_unregister(&dm_device.pr_dev_info);
1723                 dm_device.pr_dev_info.report = NULL;
1724         }
1725 }
1726
1727 static int ballooning_enabled(void)
1728 {
1729         /*
1730          * Disable ballooning if the page size is not 4k (HV_HYP_PAGE_SIZE),
1731          * since currently it's unclear to us whether an unballoon request can
1732          * make sure all page ranges are guest page size aligned.
1733          */
1734         if (PAGE_SIZE != HV_HYP_PAGE_SIZE) {
1735                 pr_info("Ballooning disabled because page size is not 4096 bytes\n");
1736                 return 0;
1737         }
1738
1739         return 1;
1740 }
1741
1742 static int hot_add_enabled(void)
1743 {
1744         /*
1745          * Disable hot add on ARM64, because we currently rely on
1746          * memory_add_physaddr_to_nid() to get a node id of a hot add range,
1747          * however ARM64's memory_add_physaddr_to_nid() always return 0 and
1748          * DM_MEM_HOT_ADD_REQUEST doesn't have the NUMA node information for
1749          * add_memory().
1750          */
1751         if (IS_ENABLED(CONFIG_ARM64)) {
1752                 pr_info("Memory hot add disabled on ARM64\n");
1753                 return 0;
1754         }
1755
1756         return 1;
1757 }
1758
1759 static int balloon_connect_vsp(struct hv_device *dev)
1760 {
1761         struct dm_version_request version_req;
1762         struct dm_capabilities cap_msg;
1763         unsigned long t;
1764         int ret;
1765
1766         /*
1767          * max_pkt_size should be large enough for one vmbus packet header plus
1768          * our receive buffer size. Hyper-V sends messages up to
1769          * HV_HYP_PAGE_SIZE bytes long on balloon channel.
1770          */
1771         dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2;
1772
1773         ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1774                          balloon_onchannelcallback, dev);
1775         if (ret)
1776                 return ret;
1777
1778         /*
1779          * Initiate the hand shake with the host and negotiate
1780          * a version that the host can support. We start with the
1781          * highest version number and go down if the host cannot
1782          * support it.
1783          */
1784         memset(&version_req, 0, sizeof(struct dm_version_request));
1785         version_req.hdr.type = DM_VERSION_REQUEST;
1786         version_req.hdr.size = sizeof(struct dm_version_request);
1787         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1788         version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1789         version_req.is_last_attempt = 0;
1790         dm_device.version = version_req.version.version;
1791
1792         ret = vmbus_sendpacket(dev->channel, &version_req,
1793                                sizeof(struct dm_version_request),
1794                                (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1795         if (ret)
1796                 goto out;
1797
1798         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1799         if (t == 0) {
1800                 ret = -ETIMEDOUT;
1801                 goto out;
1802         }
1803
1804         /*
1805          * If we could not negotiate a compatible version with the host
1806          * fail the probe function.
1807          */
1808         if (dm_device.state == DM_INIT_ERROR) {
1809                 ret = -EPROTO;
1810                 goto out;
1811         }
1812
1813         pr_info("Using Dynamic Memory protocol version %u.%u\n",
1814                 DYNMEM_MAJOR_VERSION(dm_device.version),
1815                 DYNMEM_MINOR_VERSION(dm_device.version));
1816
1817         /*
1818          * Now submit our capabilities to the host.
1819          */
1820         memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1821         cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1822         cap_msg.hdr.size = sizeof(struct dm_capabilities);
1823         cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1824
1825         /*
1826          * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1827          * currently still requires the bits to be set, so we have to add code
1828          * to fail the host's hot-add and balloon up/down requests, if any.
1829          */
1830         cap_msg.caps.cap_bits.balloon = ballooning_enabled();
1831         cap_msg.caps.cap_bits.hot_add = hot_add_enabled();
1832
1833         /*
1834          * Specify our alignment requirements as it relates
1835          * memory hot-add. Specify 128MB alignment.
1836          */
1837         cap_msg.caps.cap_bits.hot_add_alignment = 7;
1838
1839         /*
1840          * Currently the host does not use these
1841          * values and we set them to what is done in the
1842          * Windows driver.
1843          */
1844         cap_msg.min_page_cnt = 0;
1845         cap_msg.max_page_number = -1;
1846
1847         ret = vmbus_sendpacket(dev->channel, &cap_msg,
1848                                sizeof(struct dm_capabilities),
1849                                (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1850         if (ret)
1851                 goto out;
1852
1853         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1854         if (t == 0) {
1855                 ret = -ETIMEDOUT;
1856                 goto out;
1857         }
1858
1859         /*
1860          * If the host does not like our capabilities,
1861          * fail the probe function.
1862          */
1863         if (dm_device.state == DM_INIT_ERROR) {
1864                 ret = -EPROTO;
1865                 goto out;
1866         }
1867
1868         return 0;
1869 out:
1870         vmbus_close(dev->channel);
1871         return ret;
1872 }
1873
1874 /*
1875  * DEBUGFS Interface
1876  */
1877 #ifdef CONFIG_DEBUG_FS
1878
1879 /**
1880  * hv_balloon_debug_show - shows statistics of balloon operations.
1881  * @f: pointer to the &struct seq_file.
1882  * @offset: ignored.
1883  *
1884  * Provides the statistics that can be accessed in hv-balloon in the debugfs.
1885  *
1886  * Return: zero on success or an error code.
1887  */
1888 static int hv_balloon_debug_show(struct seq_file *f, void *offset)
1889 {
1890         struct hv_dynmem_device *dm = f->private;
1891         char *sname;
1892
1893         seq_printf(f, "%-22s: %u.%u\n", "host_version",
1894                                 DYNMEM_MAJOR_VERSION(dm->version),
1895                                 DYNMEM_MINOR_VERSION(dm->version));
1896
1897         seq_printf(f, "%-22s:", "capabilities");
1898         if (ballooning_enabled())
1899                 seq_puts(f, " enabled");
1900
1901         if (hot_add_enabled())
1902                 seq_puts(f, " hot_add");
1903
1904         seq_puts(f, "\n");
1905
1906         seq_printf(f, "%-22s: %u", "state", dm->state);
1907         switch (dm->state) {
1908         case DM_INITIALIZING:
1909                         sname = "Initializing";
1910                         break;
1911         case DM_INITIALIZED:
1912                         sname = "Initialized";
1913                         break;
1914         case DM_BALLOON_UP:
1915                         sname = "Balloon Up";
1916                         break;
1917         case DM_BALLOON_DOWN:
1918                         sname = "Balloon Down";
1919                         break;
1920         case DM_HOT_ADD:
1921                         sname = "Hot Add";
1922                         break;
1923         case DM_INIT_ERROR:
1924                         sname = "Error";
1925                         break;
1926         default:
1927                         sname = "Unknown";
1928         }
1929         seq_printf(f, " (%s)\n", sname);
1930
1931         /* HV Page Size */
1932         seq_printf(f, "%-22s: %ld\n", "page_size", HV_HYP_PAGE_SIZE);
1933
1934         /* Pages added with hot_add */
1935         seq_printf(f, "%-22s: %u\n", "pages_added", dm->num_pages_added);
1936
1937         /* pages that are "onlined"/used from pages_added */
1938         seq_printf(f, "%-22s: %u\n", "pages_onlined", dm->num_pages_onlined);
1939
1940         /* pages we have given back to host */
1941         seq_printf(f, "%-22s: %u\n", "pages_ballooned", dm->num_pages_ballooned);
1942
1943         seq_printf(f, "%-22s: %lu\n", "total_pages_committed",
1944                                 get_pages_committed(dm));
1945
1946         seq_printf(f, "%-22s: %llu\n", "max_dynamic_page_count",
1947                                 dm->max_dynamic_page_count);
1948
1949         return 0;
1950 }
1951
1952 DEFINE_SHOW_ATTRIBUTE(hv_balloon_debug);
1953
1954 static void  hv_balloon_debugfs_init(struct hv_dynmem_device *b)
1955 {
1956         debugfs_create_file("hv-balloon", 0444, NULL, b,
1957                         &hv_balloon_debug_fops);
1958 }
1959
1960 static void  hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1961 {
1962         debugfs_lookup_and_remove("hv-balloon", NULL);
1963 }
1964
1965 #else
1966
1967 static inline void hv_balloon_debugfs_init(struct hv_dynmem_device  *b)
1968 {
1969 }
1970
1971 static inline void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1972 {
1973 }
1974
1975 #endif  /* CONFIG_DEBUG_FS */
1976
1977 static int balloon_probe(struct hv_device *dev,
1978                          const struct hv_vmbus_device_id *dev_id)
1979 {
1980         int ret;
1981
1982         allow_hibernation = hv_is_hibernation_supported();
1983         if (allow_hibernation)
1984                 hot_add = false;
1985
1986 #ifdef CONFIG_MEMORY_HOTPLUG
1987         do_hot_add = hot_add;
1988 #else
1989         do_hot_add = false;
1990 #endif
1991         dm_device.dev = dev;
1992         dm_device.state = DM_INITIALIZING;
1993         dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1994         init_completion(&dm_device.host_event);
1995         init_completion(&dm_device.config_event);
1996         INIT_LIST_HEAD(&dm_device.ha_region_list);
1997         spin_lock_init(&dm_device.ha_lock);
1998         INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1999         INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
2000         dm_device.host_specified_ha_region = false;
2001
2002 #ifdef CONFIG_MEMORY_HOTPLUG
2003         set_online_page_callback(&hv_online_page);
2004         init_completion(&dm_device.ol_waitevent);
2005         register_memory_notifier(&hv_memory_nb);
2006 #endif
2007
2008         hv_set_drvdata(dev, &dm_device);
2009
2010         ret = balloon_connect_vsp(dev);
2011         if (ret != 0)
2012                 goto connect_error;
2013
2014         enable_page_reporting();
2015         dm_device.state = DM_INITIALIZED;
2016
2017         dm_device.thread =
2018                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2019         if (IS_ERR(dm_device.thread)) {
2020                 ret = PTR_ERR(dm_device.thread);
2021                 goto probe_error;
2022         }
2023
2024         hv_balloon_debugfs_init(&dm_device);
2025
2026         return 0;
2027
2028 probe_error:
2029         dm_device.state = DM_INIT_ERROR;
2030         dm_device.thread  = NULL;
2031         disable_page_reporting();
2032         vmbus_close(dev->channel);
2033 connect_error:
2034 #ifdef CONFIG_MEMORY_HOTPLUG
2035         unregister_memory_notifier(&hv_memory_nb);
2036         restore_online_page_callback(&hv_online_page);
2037 #endif
2038         return ret;
2039 }
2040
2041 static void balloon_remove(struct hv_device *dev)
2042 {
2043         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
2044         struct hv_hotadd_state *has, *tmp;
2045         struct hv_hotadd_gap *gap, *tmp_gap;
2046
2047         if (dm->num_pages_ballooned != 0)
2048                 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
2049
2050         hv_balloon_debugfs_exit(dm);
2051
2052         cancel_work_sync(&dm->balloon_wrk.wrk);
2053         cancel_work_sync(&dm->ha_wrk.wrk);
2054
2055         kthread_stop(dm->thread);
2056
2057         /*
2058          * This is to handle the case when balloon_resume()
2059          * call has failed and some cleanup has been done as
2060          * a part of the error handling.
2061          */
2062         if (dm_device.state != DM_INIT_ERROR) {
2063                 disable_page_reporting();
2064                 vmbus_close(dev->channel);
2065 #ifdef CONFIG_MEMORY_HOTPLUG
2066                 unregister_memory_notifier(&hv_memory_nb);
2067                 restore_online_page_callback(&hv_online_page);
2068 #endif
2069         }
2070
2071         guard(spinlock_irqsave)(&dm_device.ha_lock);
2072         list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
2073                 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
2074                         list_del(&gap->list);
2075                         kfree(gap);
2076                 }
2077                 list_del(&has->list);
2078                 kfree(has);
2079         }
2080 }
2081
2082 static int balloon_suspend(struct hv_device *hv_dev)
2083 {
2084         struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
2085
2086         tasklet_disable(&hv_dev->channel->callback_event);
2087
2088         cancel_work_sync(&dm->balloon_wrk.wrk);
2089         cancel_work_sync(&dm->ha_wrk.wrk);
2090
2091         if (dm->thread) {
2092                 kthread_stop(dm->thread);
2093                 dm->thread = NULL;
2094                 vmbus_close(hv_dev->channel);
2095         }
2096
2097         tasklet_enable(&hv_dev->channel->callback_event);
2098
2099         return 0;
2100
2101 }
2102
2103 static int balloon_resume(struct hv_device *dev)
2104 {
2105         int ret;
2106
2107         dm_device.state = DM_INITIALIZING;
2108
2109         ret = balloon_connect_vsp(dev);
2110
2111         if (ret != 0)
2112                 goto out;
2113
2114         dm_device.thread =
2115                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2116         if (IS_ERR(dm_device.thread)) {
2117                 ret = PTR_ERR(dm_device.thread);
2118                 dm_device.thread = NULL;
2119                 goto close_channel;
2120         }
2121
2122         dm_device.state = DM_INITIALIZED;
2123         return 0;
2124 close_channel:
2125         vmbus_close(dev->channel);
2126 out:
2127         dm_device.state = DM_INIT_ERROR;
2128         disable_page_reporting();
2129 #ifdef CONFIG_MEMORY_HOTPLUG
2130         unregister_memory_notifier(&hv_memory_nb);
2131         restore_online_page_callback(&hv_online_page);
2132 #endif
2133         return ret;
2134 }
2135
2136 static const struct hv_vmbus_device_id id_table[] = {
2137         /* Dynamic Memory Class ID */
2138         /* 525074DC-8985-46e2-8057-A307DC18A502 */
2139         { HV_DM_GUID, },
2140         { },
2141 };
2142
2143 MODULE_DEVICE_TABLE(vmbus, id_table);
2144
2145 static  struct hv_driver balloon_drv = {
2146         .name = "hv_balloon",
2147         .id_table = id_table,
2148         .probe =  balloon_probe,
2149         .remove =  balloon_remove,
2150         .suspend = balloon_suspend,
2151         .resume = balloon_resume,
2152         .driver = {
2153                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2154         },
2155 };
2156
2157 static int __init init_balloon_drv(void)
2158 {
2159
2160         return vmbus_driver_register(&balloon_drv);
2161 }
2162
2163 module_init(init_balloon_drv);
2164
2165 MODULE_DESCRIPTION("Hyper-V Balloon");
2166 MODULE_LICENSE("GPL");