1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2009, Microsoft Corporation.
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/hyperv.h>
17 #include <linux/random.h>
18 #include <linux/clockchips.h>
19 #include <linux/delay.h>
20 #include <linux/interrupt.h>
21 #include <clocksource/hyperv_timer.h>
22 #include <asm/mshyperv.h>
23 #include <linux/set_memory.h>
24 #include "hyperv_vmbus.h"
26 /* The one and only */
27 struct hv_context hv_context;
30 * hv_init - Main initialization routine.
32 * This routine must be called before any other routines in here are called
36 hv_context.cpu_context = alloc_percpu(struct hv_per_cpu_context);
37 if (!hv_context.cpu_context)
43 * hv_post_message - Post a message using the hypervisor message IPC.
45 * This involves a hypercall.
47 int hv_post_message(union hv_connection_id connection_id,
48 enum hv_message_type message_type,
49 void *payload, size_t payload_size)
51 struct hv_input_post_message *aligned_msg;
55 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
58 local_irq_save(flags);
61 * A TDX VM with the paravisor must use the decrypted post_msg_page: see
62 * the comment in struct hv_per_cpu_context. A SNP VM with the paravisor
63 * can use the encrypted hyperv_pcpu_input_arg because it copies the
64 * input into the GHCB page, which has been decrypted by the paravisor.
66 if (hv_isolation_type_tdx() && ms_hyperv.paravisor_present)
67 aligned_msg = this_cpu_ptr(hv_context.cpu_context)->post_msg_page;
69 aligned_msg = *this_cpu_ptr(hyperv_pcpu_input_arg);
71 aligned_msg->connectionid = connection_id;
72 aligned_msg->reserved = 0;
73 aligned_msg->message_type = message_type;
74 aligned_msg->payload_size = payload_size;
75 memcpy((void *)aligned_msg->payload, payload, payload_size);
77 if (ms_hyperv.paravisor_present) {
78 if (hv_isolation_type_tdx())
79 status = hv_tdx_hypercall(HVCALL_POST_MESSAGE,
80 virt_to_phys(aligned_msg), 0);
81 else if (hv_isolation_type_snp())
82 status = hv_ghcb_hypercall(HVCALL_POST_MESSAGE,
84 sizeof(*aligned_msg));
86 status = HV_STATUS_INVALID_PARAMETER;
88 status = hv_do_hypercall(HVCALL_POST_MESSAGE,
92 local_irq_restore(flags);
94 return hv_result(status);
97 int hv_synic_alloc(void)
99 int cpu, ret = -ENOMEM;
100 struct hv_per_cpu_context *hv_cpu;
103 * First, zero all per-cpu memory areas so hv_synic_free() can
104 * detect what memory has been allocated and cleanup properly
105 * after any failures.
107 for_each_present_cpu(cpu) {
108 hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
109 memset(hv_cpu, 0, sizeof(*hv_cpu));
112 hv_context.hv_numa_map = kcalloc(nr_node_ids, sizeof(struct cpumask),
114 if (hv_context.hv_numa_map == NULL) {
115 pr_err("Unable to allocate NUMA map\n");
119 for_each_present_cpu(cpu) {
120 hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
122 tasklet_init(&hv_cpu->msg_dpc,
123 vmbus_on_msg_dpc, (unsigned long) hv_cpu);
125 if (ms_hyperv.paravisor_present && hv_isolation_type_tdx()) {
126 hv_cpu->post_msg_page = (void *)get_zeroed_page(GFP_ATOMIC);
127 if (hv_cpu->post_msg_page == NULL) {
128 pr_err("Unable to allocate post msg page\n");
132 ret = set_memory_decrypted((unsigned long)hv_cpu->post_msg_page, 1);
134 pr_err("Failed to decrypt post msg page: %d\n", ret);
135 /* Just leak the page, as it's unsafe to free the page. */
136 hv_cpu->post_msg_page = NULL;
140 memset(hv_cpu->post_msg_page, 0, PAGE_SIZE);
144 * Synic message and event pages are allocated by paravisor.
145 * Skip these pages allocation here.
147 if (!ms_hyperv.paravisor_present && !hv_root_partition) {
148 hv_cpu->synic_message_page =
149 (void *)get_zeroed_page(GFP_ATOMIC);
150 if (hv_cpu->synic_message_page == NULL) {
151 pr_err("Unable to allocate SYNIC message page\n");
155 hv_cpu->synic_event_page =
156 (void *)get_zeroed_page(GFP_ATOMIC);
157 if (hv_cpu->synic_event_page == NULL) {
158 pr_err("Unable to allocate SYNIC event page\n");
160 free_page((unsigned long)hv_cpu->synic_message_page);
161 hv_cpu->synic_message_page = NULL;
166 if (!ms_hyperv.paravisor_present &&
167 (hv_isolation_type_snp() || hv_isolation_type_tdx())) {
168 ret = set_memory_decrypted((unsigned long)
169 hv_cpu->synic_message_page, 1);
171 pr_err("Failed to decrypt SYNIC msg page: %d\n", ret);
172 hv_cpu->synic_message_page = NULL;
175 * Free the event page here so that hv_synic_free()
176 * won't later try to re-encrypt it.
178 free_page((unsigned long)hv_cpu->synic_event_page);
179 hv_cpu->synic_event_page = NULL;
183 ret = set_memory_decrypted((unsigned long)
184 hv_cpu->synic_event_page, 1);
186 pr_err("Failed to decrypt SYNIC event page: %d\n", ret);
187 hv_cpu->synic_event_page = NULL;
191 memset(hv_cpu->synic_message_page, 0, PAGE_SIZE);
192 memset(hv_cpu->synic_event_page, 0, PAGE_SIZE);
200 * Any memory allocations that succeeded will be freed when
201 * the caller cleans up by calling hv_synic_free()
207 void hv_synic_free(void)
211 for_each_present_cpu(cpu) {
212 struct hv_per_cpu_context *hv_cpu
213 = per_cpu_ptr(hv_context.cpu_context, cpu);
215 /* It's better to leak the page if the encryption fails. */
216 if (ms_hyperv.paravisor_present && hv_isolation_type_tdx()) {
217 if (hv_cpu->post_msg_page) {
218 ret = set_memory_encrypted((unsigned long)
219 hv_cpu->post_msg_page, 1);
221 pr_err("Failed to encrypt post msg page: %d\n", ret);
222 hv_cpu->post_msg_page = NULL;
227 if (!ms_hyperv.paravisor_present &&
228 (hv_isolation_type_snp() || hv_isolation_type_tdx())) {
229 if (hv_cpu->synic_message_page) {
230 ret = set_memory_encrypted((unsigned long)
231 hv_cpu->synic_message_page, 1);
233 pr_err("Failed to encrypt SYNIC msg page: %d\n", ret);
234 hv_cpu->synic_message_page = NULL;
238 if (hv_cpu->synic_event_page) {
239 ret = set_memory_encrypted((unsigned long)
240 hv_cpu->synic_event_page, 1);
242 pr_err("Failed to encrypt SYNIC event page: %d\n", ret);
243 hv_cpu->synic_event_page = NULL;
248 free_page((unsigned long)hv_cpu->post_msg_page);
249 free_page((unsigned long)hv_cpu->synic_event_page);
250 free_page((unsigned long)hv_cpu->synic_message_page);
253 kfree(hv_context.hv_numa_map);
257 * hv_synic_init - Initialize the Synthetic Interrupt Controller.
259 * If it is already initialized by another entity (ie x2v shim), we need to
260 * retrieve the initialized message and event pages. Otherwise, we create and
261 * initialize the message and event pages.
263 void hv_synic_enable_regs(unsigned int cpu)
265 struct hv_per_cpu_context *hv_cpu
266 = per_cpu_ptr(hv_context.cpu_context, cpu);
267 union hv_synic_simp simp;
268 union hv_synic_siefp siefp;
269 union hv_synic_sint shared_sint;
270 union hv_synic_scontrol sctrl;
272 /* Setup the Synic's message page */
273 simp.as_uint64 = hv_get_register(HV_REGISTER_SIMP);
274 simp.simp_enabled = 1;
276 if (ms_hyperv.paravisor_present || hv_root_partition) {
277 /* Mask out vTOM bit. ioremap_cache() maps decrypted */
278 u64 base = (simp.base_simp_gpa << HV_HYP_PAGE_SHIFT) &
279 ~ms_hyperv.shared_gpa_boundary;
280 hv_cpu->synic_message_page
281 = (void *)ioremap_cache(base, HV_HYP_PAGE_SIZE);
282 if (!hv_cpu->synic_message_page)
283 pr_err("Fail to map synic message page.\n");
285 simp.base_simp_gpa = virt_to_phys(hv_cpu->synic_message_page)
286 >> HV_HYP_PAGE_SHIFT;
289 hv_set_register(HV_REGISTER_SIMP, simp.as_uint64);
291 /* Setup the Synic's event page */
292 siefp.as_uint64 = hv_get_register(HV_REGISTER_SIEFP);
293 siefp.siefp_enabled = 1;
295 if (ms_hyperv.paravisor_present || hv_root_partition) {
296 /* Mask out vTOM bit. ioremap_cache() maps decrypted */
297 u64 base = (siefp.base_siefp_gpa << HV_HYP_PAGE_SHIFT) &
298 ~ms_hyperv.shared_gpa_boundary;
299 hv_cpu->synic_event_page
300 = (void *)ioremap_cache(base, HV_HYP_PAGE_SIZE);
301 if (!hv_cpu->synic_event_page)
302 pr_err("Fail to map synic event page.\n");
304 siefp.base_siefp_gpa = virt_to_phys(hv_cpu->synic_event_page)
305 >> HV_HYP_PAGE_SHIFT;
308 hv_set_register(HV_REGISTER_SIEFP, siefp.as_uint64);
310 /* Setup the shared SINT. */
312 enable_percpu_irq(vmbus_irq, 0);
313 shared_sint.as_uint64 = hv_get_register(HV_REGISTER_SINT0 +
316 shared_sint.vector = vmbus_interrupt;
317 shared_sint.masked = false;
320 * On architectures where Hyper-V doesn't support AEOI (e.g., ARM64),
321 * it doesn't provide a recommendation flag and AEOI must be disabled.
323 #ifdef HV_DEPRECATING_AEOI_RECOMMENDED
324 shared_sint.auto_eoi =
325 !(ms_hyperv.hints & HV_DEPRECATING_AEOI_RECOMMENDED);
327 shared_sint.auto_eoi = 0;
329 hv_set_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT,
330 shared_sint.as_uint64);
332 /* Enable the global synic bit */
333 sctrl.as_uint64 = hv_get_register(HV_REGISTER_SCONTROL);
336 hv_set_register(HV_REGISTER_SCONTROL, sctrl.as_uint64);
339 int hv_synic_init(unsigned int cpu)
341 hv_synic_enable_regs(cpu);
343 hv_stimer_legacy_init(cpu, VMBUS_MESSAGE_SINT);
349 * hv_synic_cleanup - Cleanup routine for hv_synic_init().
351 void hv_synic_disable_regs(unsigned int cpu)
353 struct hv_per_cpu_context *hv_cpu
354 = per_cpu_ptr(hv_context.cpu_context, cpu);
355 union hv_synic_sint shared_sint;
356 union hv_synic_simp simp;
357 union hv_synic_siefp siefp;
358 union hv_synic_scontrol sctrl;
360 shared_sint.as_uint64 = hv_get_register(HV_REGISTER_SINT0 +
363 shared_sint.masked = 1;
365 /* Need to correctly cleanup in the case of SMP!!! */
366 /* Disable the interrupt */
367 hv_set_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT,
368 shared_sint.as_uint64);
370 simp.as_uint64 = hv_get_register(HV_REGISTER_SIMP);
372 * In Isolation VM, sim and sief pages are allocated by
373 * paravisor. These pages also will be used by kdump
374 * kernel. So just reset enable bit here and keep page
377 simp.simp_enabled = 0;
378 if (ms_hyperv.paravisor_present || hv_root_partition) {
379 iounmap(hv_cpu->synic_message_page);
380 hv_cpu->synic_message_page = NULL;
382 simp.base_simp_gpa = 0;
385 hv_set_register(HV_REGISTER_SIMP, simp.as_uint64);
387 siefp.as_uint64 = hv_get_register(HV_REGISTER_SIEFP);
388 siefp.siefp_enabled = 0;
390 if (ms_hyperv.paravisor_present || hv_root_partition) {
391 iounmap(hv_cpu->synic_event_page);
392 hv_cpu->synic_event_page = NULL;
394 siefp.base_siefp_gpa = 0;
397 hv_set_register(HV_REGISTER_SIEFP, siefp.as_uint64);
399 /* Disable the global synic bit */
400 sctrl.as_uint64 = hv_get_register(HV_REGISTER_SCONTROL);
402 hv_set_register(HV_REGISTER_SCONTROL, sctrl.as_uint64);
405 disable_percpu_irq(vmbus_irq);
408 #define HV_MAX_TRIES 3
410 * Scan the event flags page of 'this' CPU looking for any bit that is set. If we find one
411 * bit set, then wait for a few milliseconds. Repeat these steps for a maximum of 3 times.
412 * Return 'true', if there is still any set bit after this operation; 'false', otherwise.
414 * If a bit is set, that means there is a pending channel interrupt. The expectation is
415 * that the normal interrupt handling mechanism will find and process the channel interrupt
416 * "very soon", and in the process clear the bit.
418 static bool hv_synic_event_pending(void)
420 struct hv_per_cpu_context *hv_cpu = this_cpu_ptr(hv_context.cpu_context);
421 union hv_synic_event_flags *event =
422 (union hv_synic_event_flags *)hv_cpu->synic_event_page + VMBUS_MESSAGE_SINT;
423 unsigned long *recv_int_page = event->flags; /* assumes VMBus version >= VERSION_WIN8 */
430 for_each_set_bit(relid, recv_int_page, HV_EVENT_FLAGS_COUNT) {
431 /* Special case - VMBus channel protocol messages */
437 if (pending && tries++ < HV_MAX_TRIES) {
438 usleep_range(10000, 20000);
444 int hv_synic_cleanup(unsigned int cpu)
446 struct vmbus_channel *channel, *sc;
447 bool channel_found = false;
449 if (vmbus_connection.conn_state != CONNECTED)
453 * Hyper-V does not provide a way to change the connect CPU once
454 * it is set; we must prevent the connect CPU from going offline
455 * while the VM is running normally. But in the panic or kexec()
456 * path where the vmbus is already disconnected, the CPU must be
457 * allowed to shut down.
459 if (cpu == VMBUS_CONNECT_CPU)
463 * Search for channels which are bound to the CPU we're about to
464 * cleanup. In case we find one and vmbus is still connected, we
465 * fail; this will effectively prevent CPU offlining.
467 * TODO: Re-bind the channels to different CPUs.
469 mutex_lock(&vmbus_connection.channel_mutex);
470 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
471 if (channel->target_cpu == cpu) {
472 channel_found = true;
475 list_for_each_entry(sc, &channel->sc_list, sc_list) {
476 if (sc->target_cpu == cpu) {
477 channel_found = true;
484 mutex_unlock(&vmbus_connection.channel_mutex);
490 * channel_found == false means that any channels that were previously
491 * assigned to the CPU have been reassigned elsewhere with a call of
492 * vmbus_send_modifychannel(). Scan the event flags page looking for
493 * bits that are set and waiting with a timeout for vmbus_chan_sched()
494 * to process such bits. If bits are still set after this operation
495 * and VMBus is connected, fail the CPU offlining operation.
497 if (vmbus_proto_version >= VERSION_WIN10_V4_1 && hv_synic_event_pending())
501 hv_stimer_legacy_cleanup(cpu);
503 hv_synic_disable_regs(cpu);