1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2012-2016 Mentor Graphics Inc.
5 * Queued image conversion support, with tiling and rotation.
8 #include <linux/interrupt.h>
9 #include <linux/dma-mapping.h>
10 #include <video/imx-ipu-image-convert.h>
14 * The IC Resizer has a restriction that the output frame from the
15 * resizer must be 1024 or less in both width (pixels) and height
18 * The image converter attempts to split up a conversion when
19 * the desired output (converted) frame resolution exceeds the
20 * IC resizer limit of 1024 in either dimension.
22 * If either dimension of the output frame exceeds the limit, the
23 * dimension is split into 1, 2, or 4 equal stripes, for a maximum
24 * of 4*4 or 16 tiles. A conversion is then carried out for each
25 * tile (but taking care to pass the full frame stride length to
26 * the DMA channel's parameter memory!). IDMA double-buffering is used
27 * to convert each tile back-to-back when possible (see note below
28 * when double_buffering boolean is set).
30 * Note that the input frame must be split up into the same number
31 * of tiles as the output frame:
34 * +-----+---+ | A | B |
36 * +-----+---+ --> +---------+-----+
41 * Clockwise 90° rotations are handled by first rescaling into a
42 * reusable temporary tile buffer and then rotating with the 8x8
43 * block rotator, writing to the correct destination:
47 * +-----+---+ +---------+ | C | A |
48 * | A | B | | A,B, | | | | |
49 * +-----+---+ --> | C,D | | --> | | |
50 * | C | D | +---------+ +-----+-----+
51 * +-----+---+ | D | B |
55 * If the 8x8 block rotator is used, horizontal or vertical flipping
56 * is done during the rotation step, otherwise flipping is done
57 * during the scaling step.
58 * With rotation or flipping, tile order changes between input and
59 * output image. Tiles are numbered row major from top left to bottom
60 * right for both input and output image.
63 #define MAX_STRIPES_W 4
64 #define MAX_STRIPES_H 4
65 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
72 enum ipu_image_convert_type {
77 struct ipu_image_convert_dma_buf {
83 struct ipu_image_convert_dma_chan {
93 /* dimensions of one tile */
94 struct ipu_image_tile {
99 /* size and strides are in bytes */
103 /* start Y or packed offset of this tile */
105 /* offset from start to tile in U plane, for planar formats */
107 /* offset from start to tile in V plane, for planar formats */
111 struct ipu_image_convert_image {
112 struct ipu_image base;
113 enum ipu_image_convert_type type;
115 const struct ipu_image_pixfmt *fmt;
118 /* # of rows (horizontal stripes) if dest height is > 1024 */
119 unsigned int num_rows;
120 /* # of columns (vertical stripes) if dest width is > 1024 */
121 unsigned int num_cols;
123 struct ipu_image_tile tile[MAX_TILES];
126 struct ipu_image_pixfmt {
127 u32 fourcc; /* V4L2 fourcc */
128 int bpp; /* total bpp */
129 int uv_width_dec; /* decimation in width for U/V planes */
130 int uv_height_dec; /* decimation in height for U/V planes */
131 bool planar; /* planar format */
132 bool uv_swapped; /* U and V planes are swapped */
133 bool uv_packed; /* partial planar (U and V in same plane) */
136 struct ipu_image_convert_ctx;
137 struct ipu_image_convert_chan;
138 struct ipu_image_convert_priv;
142 EOF_IRQ_ROT_IN = BIT(1),
143 EOF_IRQ_OUT = BIT(2),
144 EOF_IRQ_ROT_OUT = BIT(3),
147 #define EOF_IRQ_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT)
148 #define EOF_IRQ_ROT_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT | \
149 EOF_IRQ_ROT_IN | EOF_IRQ_ROT_OUT)
151 struct ipu_image_convert_ctx {
152 struct ipu_image_convert_chan *chan;
154 ipu_image_convert_cb_t complete;
155 void *complete_context;
157 /* Source/destination image data and rotation mode */
158 struct ipu_image_convert_image in;
159 struct ipu_image_convert_image out;
160 struct ipu_ic_csc csc;
161 enum ipu_rotate_mode rot_mode;
162 u32 downsize_coeff_h;
163 u32 downsize_coeff_v;
164 u32 image_resize_coeff_h;
165 u32 image_resize_coeff_v;
166 u32 resize_coeffs_h[MAX_STRIPES_W];
167 u32 resize_coeffs_v[MAX_STRIPES_H];
169 /* intermediate buffer for rotation */
170 struct ipu_image_convert_dma_buf rot_intermediate[2];
172 /* current buffer number for double buffering */
176 struct completion aborted;
178 /* can we use double-buffering for this conversion operation? */
179 bool double_buffering;
180 /* num_rows * num_cols */
181 unsigned int num_tiles;
182 /* next tile to process */
183 unsigned int next_tile;
184 /* where to place converted tile in dest image */
185 unsigned int out_tile_map[MAX_TILES];
187 /* mask of completed EOF irqs at every tile conversion */
188 enum eof_irq_mask eof_mask;
190 struct list_head list;
193 struct ipu_image_convert_chan {
194 struct ipu_image_convert_priv *priv;
196 enum ipu_ic_task ic_task;
197 const struct ipu_image_convert_dma_chan *dma_ch;
200 struct ipuv3_channel *in_chan;
201 struct ipuv3_channel *out_chan;
202 struct ipuv3_channel *rotation_in_chan;
203 struct ipuv3_channel *rotation_out_chan;
205 /* the IPU end-of-frame irqs */
213 /* list of convert contexts */
214 struct list_head ctx_list;
215 /* queue of conversion runs */
216 struct list_head pending_q;
217 /* queue of completed runs */
218 struct list_head done_q;
220 /* the current conversion run */
221 struct ipu_image_convert_run *current_run;
224 struct ipu_image_convert_priv {
225 struct ipu_image_convert_chan chan[IC_NUM_TASKS];
229 static const struct ipu_image_convert_dma_chan
230 image_convert_dma_chan[IC_NUM_TASKS] = {
231 [IC_TASK_VIEWFINDER] = {
232 .in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
233 .out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
234 .rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
235 .rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
236 .vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
237 .vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
238 .vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
240 [IC_TASK_POST_PROCESSOR] = {
241 .in = IPUV3_CHANNEL_MEM_IC_PP,
242 .out = IPUV3_CHANNEL_IC_PP_MEM,
243 .rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
244 .rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
248 static const struct ipu_image_pixfmt image_convert_formats[] = {
250 .fourcc = V4L2_PIX_FMT_RGB565,
253 .fourcc = V4L2_PIX_FMT_RGB24,
256 .fourcc = V4L2_PIX_FMT_BGR24,
259 .fourcc = V4L2_PIX_FMT_RGB32,
262 .fourcc = V4L2_PIX_FMT_BGR32,
265 .fourcc = V4L2_PIX_FMT_XRGB32,
268 .fourcc = V4L2_PIX_FMT_XBGR32,
271 .fourcc = V4L2_PIX_FMT_BGRX32,
274 .fourcc = V4L2_PIX_FMT_RGBX32,
277 .fourcc = V4L2_PIX_FMT_YUYV,
282 .fourcc = V4L2_PIX_FMT_UYVY,
287 .fourcc = V4L2_PIX_FMT_YUV420,
293 .fourcc = V4L2_PIX_FMT_YVU420,
300 .fourcc = V4L2_PIX_FMT_NV12,
307 .fourcc = V4L2_PIX_FMT_YUV422P,
313 .fourcc = V4L2_PIX_FMT_NV16,
322 static const struct ipu_image_pixfmt *get_format(u32 fourcc)
324 const struct ipu_image_pixfmt *ret = NULL;
327 for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
328 if (image_convert_formats[i].fourcc == fourcc) {
329 ret = &image_convert_formats[i];
337 static void dump_format(struct ipu_image_convert_ctx *ctx,
338 struct ipu_image_convert_image *ic_image)
340 struct ipu_image_convert_chan *chan = ctx->chan;
341 struct ipu_image_convert_priv *priv = chan->priv;
343 dev_dbg(priv->ipu->dev,
344 "task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
346 ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
347 ic_image->base.pix.width, ic_image->base.pix.height,
348 ic_image->num_cols, ic_image->num_rows,
349 ic_image->fmt->fourcc & 0xff,
350 (ic_image->fmt->fourcc >> 8) & 0xff,
351 (ic_image->fmt->fourcc >> 16) & 0xff,
352 (ic_image->fmt->fourcc >> 24) & 0xff);
355 int ipu_image_convert_enum_format(int index, u32 *fourcc)
357 const struct ipu_image_pixfmt *fmt;
359 if (index >= (int)ARRAY_SIZE(image_convert_formats))
363 fmt = &image_convert_formats[index];
364 *fourcc = fmt->fourcc;
367 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
369 static void free_dma_buf(struct ipu_image_convert_priv *priv,
370 struct ipu_image_convert_dma_buf *buf)
373 dma_free_coherent(priv->ipu->dev,
374 buf->len, buf->virt, buf->phys);
379 static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
380 struct ipu_image_convert_dma_buf *buf,
383 buf->len = PAGE_ALIGN(size);
384 buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
385 GFP_DMA | GFP_KERNEL);
387 dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
394 static inline int num_stripes(int dim)
396 return (dim - 1) / 1024 + 1;
400 * Calculate downsizing coefficients, which are the same for all tiles,
401 * and initial bilinear resizing coefficients, which are used to find the
402 * best seam positions.
403 * Also determine the number of tiles necessary to guarantee that no tile
404 * is larger than 1024 pixels in either dimension at the output and between
405 * IC downsizing and main processing sections.
407 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
408 struct ipu_image *in,
409 struct ipu_image *out)
411 u32 downsized_width = in->rect.width;
412 u32 downsized_height = in->rect.height;
413 u32 downsize_coeff_v = 0;
414 u32 downsize_coeff_h = 0;
415 u32 resized_width = out->rect.width;
416 u32 resized_height = out->rect.height;
422 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
423 resized_width = out->rect.height;
424 resized_height = out->rect.width;
427 /* Do not let invalid input lead to an endless loop below */
428 if (WARN_ON(resized_width == 0 || resized_height == 0))
431 while (downsized_width >= resized_width * 2) {
432 downsized_width >>= 1;
436 while (downsized_height >= resized_height * 2) {
437 downsized_height >>= 1;
442 * Calculate the bilinear resizing coefficients that could be used if
443 * we were converting with a single tile. The bottom right output pixel
444 * should sample as close as possible to the bottom right input pixel
445 * out of the decimator, but not overshoot it:
447 resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
448 resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
451 * Both the output of the IC downsizing section before being passed to
452 * the IC main processing section and the final output of the IC main
453 * processing section must be <= 1024 pixels in both dimensions.
455 cols = num_stripes(max_t(u32, downsized_width, resized_width));
456 rows = num_stripes(max_t(u32, downsized_height, resized_height));
458 dev_dbg(ctx->chan->priv->ipu->dev,
459 "%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
460 __func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
461 resize_coeff_v, cols, rows);
463 if (downsize_coeff_h > 2 || downsize_coeff_v > 2 ||
464 resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
467 ctx->downsize_coeff_h = downsize_coeff_h;
468 ctx->downsize_coeff_v = downsize_coeff_v;
469 ctx->image_resize_coeff_h = resize_coeff_h;
470 ctx->image_resize_coeff_v = resize_coeff_v;
471 ctx->in.num_cols = cols;
472 ctx->in.num_rows = rows;
477 #define round_closest(x, y) round_down((x) + (y)/2, (y))
480 * Find the best aligned seam position for the given column / row index.
481 * Rotation and image offsets are out of scope.
483 * @index: column / row index, used to calculate valid interval
484 * @in_edge: input right / bottom edge
485 * @out_edge: output right / bottom edge
486 * @in_align: input alignment, either horizontal 8-byte line start address
487 * alignment, or pixel alignment due to image format
488 * @out_align: output alignment, either horizontal 8-byte line start address
489 * alignment, or pixel alignment due to image format or rotator
491 * @in_burst: horizontal input burst size in case of horizontal flip
492 * @out_burst: horizontal output burst size or rotator block size
493 * @downsize_coeff: downsizing section coefficient
494 * @resize_coeff: main processing section resizing coefficient
495 * @_in_seam: aligned input seam position return value
496 * @_out_seam: aligned output seam position return value
498 static void find_best_seam(struct ipu_image_convert_ctx *ctx,
500 unsigned int in_edge,
501 unsigned int out_edge,
502 unsigned int in_align,
503 unsigned int out_align,
504 unsigned int in_burst,
505 unsigned int out_burst,
506 unsigned int downsize_coeff,
507 unsigned int resize_coeff,
511 struct device *dev = ctx->chan->priv->ipu->dev;
512 unsigned int out_pos;
513 /* Input / output seam position candidates */
514 unsigned int out_seam = 0;
515 unsigned int in_seam = 0;
516 unsigned int min_diff = UINT_MAX;
517 unsigned int out_start;
518 unsigned int out_end;
519 unsigned int in_start;
522 /* Start within 1024 pixels of the right / bottom edge */
523 out_start = max_t(int, index * out_align, out_edge - 1024);
524 /* End before having to add more columns to the left / rows above */
525 out_end = min_t(unsigned int, out_edge, index * 1024 + 1);
528 * Limit input seam position to make sure that the downsized input tile
529 * to the right or bottom does not exceed 1024 pixels.
531 in_start = max_t(int, index * in_align,
532 in_edge - (1024 << downsize_coeff));
533 in_end = min_t(unsigned int, in_edge,
534 index * (1024 << downsize_coeff) + 1);
537 * Output tiles must start at a multiple of 8 bytes horizontally and
538 * possibly at an even line horizontally depending on the pixel format.
539 * Only consider output aligned positions for the seam.
541 out_start = round_up(out_start, out_align);
542 for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
544 unsigned int in_pos_aligned;
545 unsigned int in_pos_rounded;
546 unsigned int abs_diff;
549 * Tiles in the right row / bottom column may not be allowed to
550 * overshoot horizontally / vertically. out_burst may be the
551 * actual DMA burst size, or the rotator block size.
553 if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
557 * Input sample position, corresponding to out_pos, 19.13 fixed
560 in_pos = (out_pos * resize_coeff) << downsize_coeff;
562 * The closest input sample position that we could actually
563 * start the input tile at, 19.13 fixed point.
565 in_pos_aligned = round_closest(in_pos, 8192U * in_align);
566 /* Convert 19.13 fixed point to integer */
567 in_pos_rounded = in_pos_aligned / 8192U;
569 if (in_pos_rounded < in_start)
571 if (in_pos_rounded >= in_end)
574 if ((in_burst > 1) &&
575 (in_edge - in_pos_rounded) % in_burst)
578 if (in_pos < in_pos_aligned)
579 abs_diff = in_pos_aligned - in_pos;
581 abs_diff = in_pos - in_pos_aligned;
583 if (abs_diff < min_diff) {
584 in_seam = in_pos_rounded;
590 *_out_seam = out_seam;
593 dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n",
594 __func__, out_seam, out_align, out_start, out_end,
595 in_seam, in_align, in_start, in_end, min_diff / 8192,
596 DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
600 * Tile left edges are required to be aligned to multiples of 8 bytes
603 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
606 return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
608 return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
612 * Tile top edge alignment is only limited by chroma subsampling.
614 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
616 return fmt->uv_height_dec > 1 ? 2 : 1;
619 static inline u32 tile_width_align(enum ipu_image_convert_type type,
620 const struct ipu_image_pixfmt *fmt,
621 enum ipu_rotate_mode rot_mode)
623 if (type == IMAGE_CONVERT_IN) {
625 * The IC burst reads 8 pixels at a time. Reading beyond the
626 * end of the line is usually acceptable. Those pixels are
627 * ignored, unless the IC has to write the scaled line in
630 return (!ipu_rot_mode_is_irt(rot_mode) &&
631 (rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
635 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
636 * formats to guarantee 8-byte aligned line start addresses in the
637 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
638 * for all other formats.
640 return (ipu_rot_mode_is_irt(rot_mode) &&
641 fmt->planar && !fmt->uv_packed) ?
642 8 * fmt->uv_width_dec : 8;
645 static inline u32 tile_height_align(enum ipu_image_convert_type type,
646 const struct ipu_image_pixfmt *fmt,
647 enum ipu_rotate_mode rot_mode)
649 if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
653 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
654 * formats to guarantee 8-byte aligned line start addresses in the
655 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
656 * for all other formats.
658 return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
662 * Fill in left position and width and for all tiles in an input column, and
663 * for all corresponding output tiles. If the 90° rotator is used, the output
664 * tiles are in a row, and output tile top position and height are set.
666 static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
668 struct ipu_image_convert_image *in,
669 unsigned int in_left, unsigned int in_width,
670 struct ipu_image_convert_image *out,
671 unsigned int out_left, unsigned int out_width)
673 unsigned int row, tile_idx;
674 struct ipu_image_tile *in_tile, *out_tile;
676 for (row = 0; row < in->num_rows; row++) {
677 tile_idx = in->num_cols * row + col;
678 in_tile = &in->tile[tile_idx];
679 out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
681 in_tile->left = in_left;
682 in_tile->width = in_width;
684 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
685 out_tile->top = out_left;
686 out_tile->height = out_width;
688 out_tile->left = out_left;
689 out_tile->width = out_width;
695 * Fill in top position and height and for all tiles in an input row, and
696 * for all corresponding output tiles. If the 90° rotator is used, the output
697 * tiles are in a column, and output tile left position and width are set.
699 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
700 struct ipu_image_convert_image *in,
701 unsigned int in_top, unsigned int in_height,
702 struct ipu_image_convert_image *out,
703 unsigned int out_top, unsigned int out_height)
705 unsigned int col, tile_idx;
706 struct ipu_image_tile *in_tile, *out_tile;
708 for (col = 0; col < in->num_cols; col++) {
709 tile_idx = in->num_cols * row + col;
710 in_tile = &in->tile[tile_idx];
711 out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
713 in_tile->top = in_top;
714 in_tile->height = in_height;
716 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
717 out_tile->left = out_top;
718 out_tile->width = out_height;
720 out_tile->top = out_top;
721 out_tile->height = out_height;
727 * Find the best horizontal and vertical seam positions to split into tiles.
728 * Minimize the fractional part of the input sampling position for the
729 * top / left pixels of each tile.
731 static void find_seams(struct ipu_image_convert_ctx *ctx,
732 struct ipu_image_convert_image *in,
733 struct ipu_image_convert_image *out)
735 struct device *dev = ctx->chan->priv->ipu->dev;
736 unsigned int resized_width = out->base.rect.width;
737 unsigned int resized_height = out->base.rect.height;
740 unsigned int in_left_align = tile_left_align(in->fmt);
741 unsigned int in_top_align = tile_top_align(in->fmt);
742 unsigned int out_left_align = tile_left_align(out->fmt);
743 unsigned int out_top_align = tile_top_align(out->fmt);
744 unsigned int out_width_align = tile_width_align(out->type, out->fmt,
746 unsigned int out_height_align = tile_height_align(out->type, out->fmt,
748 unsigned int in_right = in->base.rect.width;
749 unsigned int in_bottom = in->base.rect.height;
750 unsigned int out_right = out->base.rect.width;
751 unsigned int out_bottom = out->base.rect.height;
752 unsigned int flipped_out_left;
753 unsigned int flipped_out_top;
755 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
756 /* Switch width/height and align top left to IRT block size */
757 resized_width = out->base.rect.height;
758 resized_height = out->base.rect.width;
759 out_left_align = out_height_align;
760 out_top_align = out_width_align;
761 out_width_align = out_left_align;
762 out_height_align = out_top_align;
763 out_right = out->base.rect.height;
764 out_bottom = out->base.rect.width;
767 for (col = in->num_cols - 1; col > 0; col--) {
768 bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
769 !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
770 bool allow_out_overshoot = (col < in->num_cols - 1) &&
771 !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
772 unsigned int in_left;
773 unsigned int out_left;
776 * Align input width to burst length if the scaling step flips
780 find_best_seam(ctx, col,
782 in_left_align, out_left_align,
783 allow_in_overshoot ? 1 : 8 /* burst length */,
784 allow_out_overshoot ? 1 : out_width_align,
785 ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
786 &in_left, &out_left);
788 if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
789 flipped_out_left = resized_width - out_right;
791 flipped_out_left = out_left;
793 fill_tile_column(ctx, col, in, in_left, in_right - in_left,
794 out, flipped_out_left, out_right - out_left);
796 dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
797 in_left, in_right - in_left,
798 flipped_out_left, out_right - out_left);
801 out_right = out_left;
804 flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
805 resized_width - out_right : 0;
807 fill_tile_column(ctx, 0, in, 0, in_right,
808 out, flipped_out_left, out_right);
810 dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
811 in_right, flipped_out_left, out_right);
813 for (row = in->num_rows - 1; row > 0; row--) {
814 bool allow_overshoot = row < in->num_rows - 1;
816 unsigned int out_top;
818 find_best_seam(ctx, row,
819 in_bottom, out_bottom,
820 in_top_align, out_top_align,
821 1, allow_overshoot ? 1 : out_height_align,
822 ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
825 if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
826 ipu_rot_mode_is_irt(ctx->rot_mode))
827 flipped_out_top = resized_height - out_bottom;
829 flipped_out_top = out_top;
831 fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
832 out, flipped_out_top, out_bottom - out_top);
834 dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
835 in_top, in_bottom - in_top,
836 flipped_out_top, out_bottom - out_top);
839 out_bottom = out_top;
842 if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
843 ipu_rot_mode_is_irt(ctx->rot_mode))
844 flipped_out_top = resized_height - out_bottom;
848 fill_tile_row(ctx, 0, in, 0, in_bottom,
849 out, flipped_out_top, out_bottom);
851 dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
852 in_bottom, flipped_out_top, out_bottom);
855 static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
856 struct ipu_image_convert_image *image)
858 struct ipu_image_convert_chan *chan = ctx->chan;
859 struct ipu_image_convert_priv *priv = chan->priv;
860 unsigned int max_width = 1024;
861 unsigned int max_height = 1024;
864 if (image->type == IMAGE_CONVERT_IN) {
865 /* Up to 4096x4096 input tile size */
866 max_width <<= ctx->downsize_coeff_h;
867 max_height <<= ctx->downsize_coeff_v;
870 for (i = 0; i < ctx->num_tiles; i++) {
871 struct ipu_image_tile *tile;
872 const unsigned int row = i / image->num_cols;
873 const unsigned int col = i % image->num_cols;
875 if (image->type == IMAGE_CONVERT_OUT)
876 tile = &image->tile[ctx->out_tile_map[i]];
878 tile = &image->tile[i];
880 tile->size = ((tile->height * image->fmt->bpp) >> 3) *
883 if (image->fmt->planar) {
884 tile->stride = tile->width;
885 tile->rot_stride = tile->height;
888 (image->fmt->bpp * tile->width) >> 3;
890 (image->fmt->bpp * tile->height) >> 3;
893 dev_dbg(priv->ipu->dev,
894 "task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
896 image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
898 tile->width, tile->height, tile->left, tile->top);
900 if (!tile->width || tile->width > max_width ||
901 !tile->height || tile->height > max_height) {
902 dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n",
903 image->type == IMAGE_CONVERT_IN ? "input" :
904 "output", tile->width, tile->height);
913 * Use the rotation transformation to find the tile coordinates
914 * (row, col) of a tile in the destination frame that corresponds
915 * to the given tile coordinates of a source frame. The destination
916 * coordinate is then converted to a tile index.
918 static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
919 int src_row, int src_col)
921 struct ipu_image_convert_chan *chan = ctx->chan;
922 struct ipu_image_convert_priv *priv = chan->priv;
923 struct ipu_image_convert_image *s_image = &ctx->in;
924 struct ipu_image_convert_image *d_image = &ctx->out;
925 int dst_row, dst_col;
927 /* with no rotation it's a 1:1 mapping */
928 if (ctx->rot_mode == IPU_ROTATE_NONE)
929 return src_row * s_image->num_cols + src_col;
932 * before doing the transform, first we have to translate
933 * source row,col for an origin in the center of s_image
935 src_row = src_row * 2 - (s_image->num_rows - 1);
936 src_col = src_col * 2 - (s_image->num_cols - 1);
938 /* do the rotation transform */
939 if (ctx->rot_mode & IPU_ROT_BIT_90) {
948 if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
950 if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
953 dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
954 chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
957 * finally translate dest row,col using an origin in upper
960 dst_row += d_image->num_rows - 1;
961 dst_col += d_image->num_cols - 1;
965 return dst_row * d_image->num_cols + dst_col;
969 * Fill the out_tile_map[] with transformed destination tile indeces.
971 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
973 struct ipu_image_convert_image *s_image = &ctx->in;
974 unsigned int row, col, tile = 0;
976 for (row = 0; row < s_image->num_rows; row++) {
977 for (col = 0; col < s_image->num_cols; col++) {
978 ctx->out_tile_map[tile] =
979 transform_tile_index(ctx, row, col);
985 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
986 struct ipu_image_convert_image *image)
988 struct ipu_image_convert_chan *chan = ctx->chan;
989 struct ipu_image_convert_priv *priv = chan->priv;
990 const struct ipu_image_pixfmt *fmt = image->fmt;
991 unsigned int row, col, tile = 0;
992 u32 H, top, y_stride, uv_stride;
993 u32 uv_row_off, uv_col_off, uv_off, u_off, v_off;
994 u32 y_row_off, y_col_off, y_off;
997 /* setup some convenience vars */
998 H = image->base.pix.height;
1000 y_stride = image->stride;
1001 uv_stride = y_stride / fmt->uv_width_dec;
1005 y_size = H * y_stride;
1006 uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
1008 for (row = 0; row < image->num_rows; row++) {
1009 top = image->tile[tile].top;
1010 y_row_off = top * y_stride;
1011 uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
1013 for (col = 0; col < image->num_cols; col++) {
1014 y_col_off = image->tile[tile].left;
1015 uv_col_off = y_col_off / fmt->uv_width_dec;
1019 y_off = y_row_off + y_col_off;
1020 uv_off = uv_row_off + uv_col_off;
1022 u_off = y_size - y_off + uv_off;
1023 v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
1024 if (fmt->uv_swapped)
1027 image->tile[tile].offset = y_off;
1028 image->tile[tile].u_off = u_off;
1029 image->tile[tile++].v_off = v_off;
1031 if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
1032 dev_err(priv->ipu->dev,
1033 "task %u: ctx %p: %s@[%d,%d]: "
1034 "y_off %08x, u_off %08x, v_off %08x\n",
1036 image->type == IMAGE_CONVERT_IN ?
1037 "Input" : "Output", row, col,
1038 y_off, u_off, v_off);
1047 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
1048 struct ipu_image_convert_image *image)
1050 struct ipu_image_convert_chan *chan = ctx->chan;
1051 struct ipu_image_convert_priv *priv = chan->priv;
1052 const struct ipu_image_pixfmt *fmt = image->fmt;
1053 unsigned int row, col, tile = 0;
1054 u32 bpp, stride, offset;
1055 u32 row_off, col_off;
1057 /* setup some convenience vars */
1058 stride = image->stride;
1061 for (row = 0; row < image->num_rows; row++) {
1062 row_off = image->tile[tile].top * stride;
1064 for (col = 0; col < image->num_cols; col++) {
1065 col_off = (image->tile[tile].left * bpp) >> 3;
1067 offset = row_off + col_off;
1069 image->tile[tile].offset = offset;
1070 image->tile[tile].u_off = 0;
1071 image->tile[tile++].v_off = 0;
1074 dev_err(priv->ipu->dev,
1075 "task %u: ctx %p: %s@[%d,%d]: "
1078 image->type == IMAGE_CONVERT_IN ?
1079 "Input" : "Output", row, col,
1089 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1090 struct ipu_image_convert_image *image)
1092 if (image->fmt->planar)
1093 return calc_tile_offsets_planar(ctx, image);
1095 return calc_tile_offsets_packed(ctx, image);
1099 * Calculate the resizing ratio for the IC main processing section given input
1100 * size, fixed downsizing coefficient, and output size.
1101 * Either round to closest for the next tile's first pixel to minimize seams
1102 * and distortion (for all but right column / bottom row), or round down to
1103 * avoid sampling beyond the edges of the input image for this tile's last
1105 * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1107 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1108 u32 output_size, bool allow_overshoot)
1110 u32 downsized = input_size >> downsize_coeff;
1112 if (allow_overshoot)
1113 return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1115 return 8192 * (downsized - 1) / (output_size - 1);
1119 * Slightly modify resize coefficients per tile to hide the bilinear
1120 * interpolator reset at tile borders, shifting the right / bottom edge
1121 * by up to a half input pixel. This removes noticeable seams between
1122 * tiles at higher upscaling factors.
1124 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1126 struct ipu_image_convert_chan *chan = ctx->chan;
1127 struct ipu_image_convert_priv *priv = chan->priv;
1128 struct ipu_image_tile *in_tile, *out_tile;
1129 unsigned int col, row, tile_idx;
1130 unsigned int last_output;
1132 for (col = 0; col < ctx->in.num_cols; col++) {
1133 bool closest = (col < ctx->in.num_cols - 1) &&
1134 !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1140 in_tile = &ctx->in.tile[tile_idx];
1141 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1143 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1144 resized_width = out_tile->height;
1146 resized_width = out_tile->width;
1148 resize_coeff_h = calc_resize_coeff(in_tile->width,
1149 ctx->downsize_coeff_h,
1150 resized_width, closest);
1152 dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1153 __func__, col, resize_coeff_h);
1156 * With the horizontal scaling factor known, round up resized
1157 * width (output width or height) to burst size.
1159 resized_width = round_up(resized_width, 8);
1162 * Calculate input width from the last accessed input pixel
1163 * given resized width and scaling coefficients. Round up to
1166 last_output = resized_width - 1;
1167 if (closest && ((last_output * resize_coeff_h) % 8192))
1169 in_width = round_up(
1170 (DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1)
1171 << ctx->downsize_coeff_h, 8);
1173 for (row = 0; row < ctx->in.num_rows; row++) {
1174 tile_idx = row * ctx->in.num_cols + col;
1175 in_tile = &ctx->in.tile[tile_idx];
1176 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1178 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1179 out_tile->height = resized_width;
1181 out_tile->width = resized_width;
1183 in_tile->width = in_width;
1186 ctx->resize_coeffs_h[col] = resize_coeff_h;
1189 for (row = 0; row < ctx->in.num_rows; row++) {
1190 bool closest = (row < ctx->in.num_rows - 1) &&
1191 !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1196 tile_idx = row * ctx->in.num_cols;
1197 in_tile = &ctx->in.tile[tile_idx];
1198 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1200 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1201 resized_height = out_tile->width;
1203 resized_height = out_tile->height;
1205 resize_coeff_v = calc_resize_coeff(in_tile->height,
1206 ctx->downsize_coeff_v,
1207 resized_height, closest);
1209 dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1210 __func__, row, resize_coeff_v);
1213 * With the vertical scaling factor known, round up resized
1214 * height (output width or height) to IDMAC limitations.
1216 resized_height = round_up(resized_height, 2);
1219 * Calculate input width from the last accessed input pixel
1220 * given resized height and scaling coefficients. Align to
1221 * IDMAC restrictions.
1223 last_output = resized_height - 1;
1224 if (closest && ((last_output * resize_coeff_v) % 8192))
1226 in_height = round_up(
1227 (DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1)
1228 << ctx->downsize_coeff_v, 2);
1230 for (col = 0; col < ctx->in.num_cols; col++) {
1231 tile_idx = row * ctx->in.num_cols + col;
1232 in_tile = &ctx->in.tile[tile_idx];
1233 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1235 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1236 out_tile->width = resized_height;
1238 out_tile->height = resized_height;
1240 in_tile->height = in_height;
1243 ctx->resize_coeffs_v[row] = resize_coeff_v;
1248 * return the number of runs in given queue (pending_q or done_q)
1249 * for this context. hold irqlock when calling.
1251 static int get_run_count(struct ipu_image_convert_ctx *ctx,
1252 struct list_head *q)
1254 struct ipu_image_convert_run *run;
1257 lockdep_assert_held(&ctx->chan->irqlock);
1259 list_for_each_entry(run, q, list) {
1260 if (run->ctx == ctx)
1267 static void convert_stop(struct ipu_image_convert_run *run)
1269 struct ipu_image_convert_ctx *ctx = run->ctx;
1270 struct ipu_image_convert_chan *chan = ctx->chan;
1271 struct ipu_image_convert_priv *priv = chan->priv;
1273 dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1274 __func__, chan->ic_task, ctx, run);
1276 /* disable IC tasks and the channels */
1277 ipu_ic_task_disable(chan->ic);
1278 ipu_idmac_disable_channel(chan->in_chan);
1279 ipu_idmac_disable_channel(chan->out_chan);
1281 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1282 ipu_idmac_disable_channel(chan->rotation_in_chan);
1283 ipu_idmac_disable_channel(chan->rotation_out_chan);
1284 ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1287 ipu_ic_disable(chan->ic);
1290 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1291 struct ipuv3_channel *channel,
1292 struct ipu_image_convert_image *image,
1293 enum ipu_rotate_mode rot_mode,
1294 bool rot_swap_width_height,
1297 struct ipu_image_convert_chan *chan = ctx->chan;
1298 unsigned int burst_size;
1299 u32 width, height, stride;
1300 dma_addr_t addr0, addr1 = 0;
1301 struct ipu_image tile_image;
1302 unsigned int tile_idx[2];
1304 if (image->type == IMAGE_CONVERT_OUT) {
1305 tile_idx[0] = ctx->out_tile_map[tile];
1306 tile_idx[1] = ctx->out_tile_map[1];
1312 if (rot_swap_width_height) {
1313 width = image->tile[tile_idx[0]].height;
1314 height = image->tile[tile_idx[0]].width;
1315 stride = image->tile[tile_idx[0]].rot_stride;
1316 addr0 = ctx->rot_intermediate[0].phys;
1317 if (ctx->double_buffering)
1318 addr1 = ctx->rot_intermediate[1].phys;
1320 width = image->tile[tile_idx[0]].width;
1321 height = image->tile[tile_idx[0]].height;
1322 stride = image->stride;
1323 addr0 = image->base.phys0 +
1324 image->tile[tile_idx[0]].offset;
1325 if (ctx->double_buffering)
1326 addr1 = image->base.phys0 +
1327 image->tile[tile_idx[1]].offset;
1330 ipu_cpmem_zero(channel);
1332 memset(&tile_image, 0, sizeof(tile_image));
1333 tile_image.pix.width = tile_image.rect.width = width;
1334 tile_image.pix.height = tile_image.rect.height = height;
1335 tile_image.pix.bytesperline = stride;
1336 tile_image.pix.pixelformat = image->fmt->fourcc;
1337 tile_image.phys0 = addr0;
1338 tile_image.phys1 = addr1;
1339 if (image->fmt->planar && !rot_swap_width_height) {
1340 tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1341 tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1344 ipu_cpmem_set_image(channel, &tile_image);
1347 ipu_cpmem_set_rotation(channel, rot_mode);
1350 * Skip writing U and V components to odd rows in the output
1351 * channels for planar 4:2:0.
1353 if ((channel == chan->out_chan ||
1354 channel == chan->rotation_out_chan) &&
1355 image->fmt->planar && image->fmt->uv_height_dec == 2)
1356 ipu_cpmem_skip_odd_chroma_rows(channel);
1358 if (channel == chan->rotation_in_chan ||
1359 channel == chan->rotation_out_chan) {
1361 ipu_cpmem_set_block_mode(channel);
1363 burst_size = (width % 16) ? 8 : 16;
1365 ipu_cpmem_set_burstsize(channel, burst_size);
1367 ipu_ic_task_idma_init(chan->ic, channel, width, height,
1368 burst_size, rot_mode);
1371 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1372 * only do this when there is no PRG present.
1374 if (!channel->ipu->prg_priv)
1375 ipu_cpmem_set_axi_id(channel, 1);
1377 ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1380 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1382 struct ipu_image_convert_ctx *ctx = run->ctx;
1383 struct ipu_image_convert_chan *chan = ctx->chan;
1384 struct ipu_image_convert_priv *priv = chan->priv;
1385 struct ipu_image_convert_image *s_image = &ctx->in;
1386 struct ipu_image_convert_image *d_image = &ctx->out;
1387 unsigned int dst_tile = ctx->out_tile_map[tile];
1388 unsigned int dest_width, dest_height;
1389 unsigned int col, row;
1393 dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1394 __func__, chan->ic_task, ctx, run, tile, dst_tile);
1396 /* clear EOF irq mask */
1399 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1400 /* swap width/height for resizer */
1401 dest_width = d_image->tile[dst_tile].height;
1402 dest_height = d_image->tile[dst_tile].width;
1404 dest_width = d_image->tile[dst_tile].width;
1405 dest_height = d_image->tile[dst_tile].height;
1408 row = tile / s_image->num_cols;
1409 col = tile % s_image->num_cols;
1411 rsc = (ctx->downsize_coeff_v << 30) |
1412 (ctx->resize_coeffs_v[row] << 16) |
1413 (ctx->downsize_coeff_h << 14) |
1414 (ctx->resize_coeffs_h[col]);
1416 dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1417 __func__, s_image->tile[tile].width,
1418 s_image->tile[tile].height, dest_width, dest_height, rsc);
1420 /* setup the IC resizer and CSC */
1421 ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
1422 s_image->tile[tile].width,
1423 s_image->tile[tile].height,
1428 dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1432 /* init the source MEM-->IC PP IDMAC channel */
1433 init_idmac_channel(ctx, chan->in_chan, s_image,
1434 IPU_ROTATE_NONE, false, tile);
1436 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1437 /* init the IC PP-->MEM IDMAC channel */
1438 init_idmac_channel(ctx, chan->out_chan, d_image,
1439 IPU_ROTATE_NONE, true, tile);
1441 /* init the MEM-->IC PP ROT IDMAC channel */
1442 init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1443 ctx->rot_mode, true, tile);
1445 /* init the destination IC PP ROT-->MEM IDMAC channel */
1446 init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1447 IPU_ROTATE_NONE, false, tile);
1449 /* now link IC PP-->MEM to MEM-->IC PP ROT */
1450 ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1452 /* init the destination IC PP-->MEM IDMAC channel */
1453 init_idmac_channel(ctx, chan->out_chan, d_image,
1454 ctx->rot_mode, false, tile);
1458 ipu_ic_enable(chan->ic);
1460 /* set buffers ready */
1461 ipu_idmac_select_buffer(chan->in_chan, 0);
1462 ipu_idmac_select_buffer(chan->out_chan, 0);
1463 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1464 ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1465 if (ctx->double_buffering) {
1466 ipu_idmac_select_buffer(chan->in_chan, 1);
1467 ipu_idmac_select_buffer(chan->out_chan, 1);
1468 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1469 ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1472 /* enable the channels! */
1473 ipu_idmac_enable_channel(chan->in_chan);
1474 ipu_idmac_enable_channel(chan->out_chan);
1475 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1476 ipu_idmac_enable_channel(chan->rotation_in_chan);
1477 ipu_idmac_enable_channel(chan->rotation_out_chan);
1480 ipu_ic_task_enable(chan->ic);
1482 ipu_cpmem_dump(chan->in_chan);
1483 ipu_cpmem_dump(chan->out_chan);
1484 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1485 ipu_cpmem_dump(chan->rotation_in_chan);
1486 ipu_cpmem_dump(chan->rotation_out_chan);
1489 ipu_dump(priv->ipu);
1494 /* hold irqlock when calling */
1495 static int do_run(struct ipu_image_convert_run *run)
1497 struct ipu_image_convert_ctx *ctx = run->ctx;
1498 struct ipu_image_convert_chan *chan = ctx->chan;
1500 lockdep_assert_held(&chan->irqlock);
1502 ctx->in.base.phys0 = run->in_phys;
1503 ctx->out.base.phys0 = run->out_phys;
1505 ctx->cur_buf_num = 0;
1508 /* remove run from pending_q and set as current */
1509 list_del(&run->list);
1510 chan->current_run = run;
1512 return convert_start(run, 0);
1515 /* hold irqlock when calling */
1516 static void run_next(struct ipu_image_convert_chan *chan)
1518 struct ipu_image_convert_priv *priv = chan->priv;
1519 struct ipu_image_convert_run *run, *tmp;
1522 lockdep_assert_held(&chan->irqlock);
1524 list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1525 /* skip contexts that are aborting */
1526 if (run->ctx->aborting) {
1527 dev_dbg(priv->ipu->dev,
1528 "%s: task %u: skipping aborting ctx %p run %p\n",
1529 __func__, chan->ic_task, run->ctx, run);
1538 * something went wrong with start, add the run
1539 * to done q and continue to the next run in the
1543 list_add_tail(&run->list, &chan->done_q);
1544 chan->current_run = NULL;
1548 static void empty_done_q(struct ipu_image_convert_chan *chan)
1550 struct ipu_image_convert_priv *priv = chan->priv;
1551 struct ipu_image_convert_run *run;
1552 unsigned long flags;
1554 spin_lock_irqsave(&chan->irqlock, flags);
1556 while (!list_empty(&chan->done_q)) {
1557 run = list_entry(chan->done_q.next,
1558 struct ipu_image_convert_run,
1561 list_del(&run->list);
1563 dev_dbg(priv->ipu->dev,
1564 "%s: task %u: completing ctx %p run %p with %d\n",
1565 __func__, chan->ic_task, run->ctx, run, run->status);
1567 /* call the completion callback and free the run */
1568 spin_unlock_irqrestore(&chan->irqlock, flags);
1569 run->ctx->complete(run, run->ctx->complete_context);
1570 spin_lock_irqsave(&chan->irqlock, flags);
1573 spin_unlock_irqrestore(&chan->irqlock, flags);
1577 * the bottom half thread clears out the done_q, calling the
1578 * completion handler for each.
1580 static irqreturn_t do_bh(int irq, void *dev_id)
1582 struct ipu_image_convert_chan *chan = dev_id;
1583 struct ipu_image_convert_priv *priv = chan->priv;
1584 struct ipu_image_convert_ctx *ctx;
1585 unsigned long flags;
1587 dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1592 spin_lock_irqsave(&chan->irqlock, flags);
1595 * the done_q is cleared out, signal any contexts
1596 * that are aborting that abort can complete.
1598 list_for_each_entry(ctx, &chan->ctx_list, list) {
1599 if (ctx->aborting) {
1600 dev_dbg(priv->ipu->dev,
1601 "%s: task %u: signaling abort for ctx %p\n",
1602 __func__, chan->ic_task, ctx);
1603 complete_all(&ctx->aborted);
1607 spin_unlock_irqrestore(&chan->irqlock, flags);
1609 dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1615 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1617 unsigned int cur_tile = ctx->next_tile - 1;
1618 unsigned int next_tile = ctx->next_tile;
1620 if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1621 ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1622 ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1623 ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1624 ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1625 ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1626 ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1627 ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1633 /* hold irqlock when calling */
1634 static irqreturn_t do_tile_complete(struct ipu_image_convert_run *run)
1636 struct ipu_image_convert_ctx *ctx = run->ctx;
1637 struct ipu_image_convert_chan *chan = ctx->chan;
1638 struct ipu_image_tile *src_tile, *dst_tile;
1639 struct ipu_image_convert_image *s_image = &ctx->in;
1640 struct ipu_image_convert_image *d_image = &ctx->out;
1641 struct ipuv3_channel *outch;
1642 unsigned int dst_idx;
1644 lockdep_assert_held(&chan->irqlock);
1646 outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1647 chan->rotation_out_chan : chan->out_chan;
1650 * It is difficult to stop the channel DMA before the channels
1651 * enter the paused state. Without double-buffering the channels
1652 * are always in a paused state when the EOF irq occurs, so it
1653 * is safe to stop the channels now. For double-buffering we
1654 * just ignore the abort until the operation completes, when it
1655 * is safe to shut down.
1657 if (ctx->aborting && !ctx->double_buffering) {
1663 if (ctx->next_tile == ctx->num_tiles) {
1665 * the conversion is complete
1673 * not done, place the next tile buffers.
1675 if (!ctx->double_buffering) {
1676 if (ic_settings_changed(ctx)) {
1678 convert_start(run, ctx->next_tile);
1680 src_tile = &s_image->tile[ctx->next_tile];
1681 dst_idx = ctx->out_tile_map[ctx->next_tile];
1682 dst_tile = &d_image->tile[dst_idx];
1684 ipu_cpmem_set_buffer(chan->in_chan, 0,
1685 s_image->base.phys0 +
1687 ipu_cpmem_set_buffer(outch, 0,
1688 d_image->base.phys0 +
1690 if (s_image->fmt->planar)
1691 ipu_cpmem_set_uv_offset(chan->in_chan,
1694 if (d_image->fmt->planar)
1695 ipu_cpmem_set_uv_offset(outch,
1699 ipu_idmac_select_buffer(chan->in_chan, 0);
1700 ipu_idmac_select_buffer(outch, 0);
1702 } else if (ctx->next_tile < ctx->num_tiles - 1) {
1704 src_tile = &s_image->tile[ctx->next_tile + 1];
1705 dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1706 dst_tile = &d_image->tile[dst_idx];
1708 ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1709 s_image->base.phys0 + src_tile->offset);
1710 ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1711 d_image->base.phys0 + dst_tile->offset);
1713 ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1714 ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1716 ctx->cur_buf_num ^= 1;
1719 ctx->eof_mask = 0; /* clear EOF irq mask for next tile */
1723 list_add_tail(&run->list, &chan->done_q);
1724 chan->current_run = NULL;
1726 return IRQ_WAKE_THREAD;
1729 static irqreturn_t eof_irq(int irq, void *data)
1731 struct ipu_image_convert_chan *chan = data;
1732 struct ipu_image_convert_priv *priv = chan->priv;
1733 struct ipu_image_convert_ctx *ctx;
1734 struct ipu_image_convert_run *run;
1735 irqreturn_t ret = IRQ_HANDLED;
1736 bool tile_complete = false;
1737 unsigned long flags;
1739 spin_lock_irqsave(&chan->irqlock, flags);
1741 /* get current run and its context */
1742 run = chan->current_run;
1750 if (irq == chan->in_eof_irq) {
1751 ctx->eof_mask |= EOF_IRQ_IN;
1752 } else if (irq == chan->out_eof_irq) {
1753 ctx->eof_mask |= EOF_IRQ_OUT;
1754 } else if (irq == chan->rot_in_eof_irq ||
1755 irq == chan->rot_out_eof_irq) {
1756 if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1757 /* this was NOT a rotation op, shouldn't happen */
1758 dev_err(priv->ipu->dev,
1759 "Unexpected rotation interrupt\n");
1762 ctx->eof_mask |= (irq == chan->rot_in_eof_irq) ?
1763 EOF_IRQ_ROT_IN : EOF_IRQ_ROT_OUT;
1765 dev_err(priv->ipu->dev, "Received unknown irq %d\n", irq);
1770 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1771 tile_complete = (ctx->eof_mask == EOF_IRQ_ROT_COMPLETE);
1773 tile_complete = (ctx->eof_mask == EOF_IRQ_COMPLETE);
1776 ret = do_tile_complete(run);
1778 spin_unlock_irqrestore(&chan->irqlock, flags);
1783 * try to force the completion of runs for this ctx. Called when
1784 * abort wait times out in ipu_image_convert_abort().
1786 static void force_abort(struct ipu_image_convert_ctx *ctx)
1788 struct ipu_image_convert_chan *chan = ctx->chan;
1789 struct ipu_image_convert_run *run;
1790 unsigned long flags;
1792 spin_lock_irqsave(&chan->irqlock, flags);
1794 run = chan->current_run;
1795 if (run && run->ctx == ctx) {
1798 list_add_tail(&run->list, &chan->done_q);
1799 chan->current_run = NULL;
1803 spin_unlock_irqrestore(&chan->irqlock, flags);
1808 static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1810 if (chan->in_eof_irq >= 0)
1811 free_irq(chan->in_eof_irq, chan);
1812 if (chan->rot_in_eof_irq >= 0)
1813 free_irq(chan->rot_in_eof_irq, chan);
1814 if (chan->out_eof_irq >= 0)
1815 free_irq(chan->out_eof_irq, chan);
1816 if (chan->rot_out_eof_irq >= 0)
1817 free_irq(chan->rot_out_eof_irq, chan);
1819 if (!IS_ERR_OR_NULL(chan->in_chan))
1820 ipu_idmac_put(chan->in_chan);
1821 if (!IS_ERR_OR_NULL(chan->out_chan))
1822 ipu_idmac_put(chan->out_chan);
1823 if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1824 ipu_idmac_put(chan->rotation_in_chan);
1825 if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1826 ipu_idmac_put(chan->rotation_out_chan);
1827 if (!IS_ERR_OR_NULL(chan->ic))
1828 ipu_ic_put(chan->ic);
1830 chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1831 chan->rotation_out_chan = NULL;
1832 chan->in_eof_irq = -1;
1833 chan->rot_in_eof_irq = -1;
1834 chan->out_eof_irq = -1;
1835 chan->rot_out_eof_irq = -1;
1838 static int get_eof_irq(struct ipu_image_convert_chan *chan,
1839 struct ipuv3_channel *channel)
1841 struct ipu_image_convert_priv *priv = chan->priv;
1844 irq = ipu_idmac_channel_irq(priv->ipu, channel, IPU_IRQ_EOF);
1846 ret = request_threaded_irq(irq, eof_irq, do_bh, 0, "ipu-ic", chan);
1848 dev_err(priv->ipu->dev, "could not acquire irq %d\n", irq);
1855 static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1857 const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1858 struct ipu_image_convert_priv *priv = chan->priv;
1862 chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1863 if (IS_ERR(chan->ic)) {
1864 dev_err(priv->ipu->dev, "could not acquire IC\n");
1865 ret = PTR_ERR(chan->ic);
1869 /* get IDMAC channels */
1870 chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1871 chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1872 if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1873 dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1878 chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1879 chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1880 if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1881 dev_err(priv->ipu->dev,
1882 "could not acquire idmac rotation channels\n");
1887 /* acquire the EOF interrupts */
1888 ret = get_eof_irq(chan, chan->in_chan);
1890 chan->in_eof_irq = -1;
1893 chan->in_eof_irq = ret;
1895 ret = get_eof_irq(chan, chan->rotation_in_chan);
1897 chan->rot_in_eof_irq = -1;
1900 chan->rot_in_eof_irq = ret;
1902 ret = get_eof_irq(chan, chan->out_chan);
1904 chan->out_eof_irq = -1;
1907 chan->out_eof_irq = ret;
1909 ret = get_eof_irq(chan, chan->rotation_out_chan);
1911 chan->rot_out_eof_irq = -1;
1914 chan->rot_out_eof_irq = ret;
1918 release_ipu_resources(chan);
1922 static int fill_image(struct ipu_image_convert_ctx *ctx,
1923 struct ipu_image_convert_image *ic_image,
1924 struct ipu_image *image,
1925 enum ipu_image_convert_type type)
1927 struct ipu_image_convert_priv *priv = ctx->chan->priv;
1929 ic_image->base = *image;
1930 ic_image->type = type;
1932 ic_image->fmt = get_format(image->pix.pixelformat);
1933 if (!ic_image->fmt) {
1934 dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1935 type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1939 if (ic_image->fmt->planar)
1940 ic_image->stride = ic_image->base.pix.width;
1942 ic_image->stride = ic_image->base.pix.bytesperline;
1947 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1948 static unsigned int clamp_align(unsigned int x, unsigned int min,
1949 unsigned int max, unsigned int align)
1951 /* Bits that must be zero to be aligned */
1952 unsigned int mask = ~((1 << align) - 1);
1954 /* Clamp to aligned min and max */
1955 x = clamp(x, (min + ~mask) & mask, max & mask);
1957 /* Round to nearest aligned value */
1959 x = (x + (1 << (align - 1))) & mask;
1964 /* Adjusts input/output images to IPU restrictions */
1965 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1966 enum ipu_rotate_mode rot_mode)
1968 const struct ipu_image_pixfmt *infmt, *outfmt;
1969 u32 w_align_out, h_align_out;
1970 u32 w_align_in, h_align_in;
1972 infmt = get_format(in->pix.pixelformat);
1973 outfmt = get_format(out->pix.pixelformat);
1975 /* set some default pixel formats if needed */
1977 in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1978 infmt = get_format(V4L2_PIX_FMT_RGB24);
1981 out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1982 outfmt = get_format(V4L2_PIX_FMT_RGB24);
1985 /* image converter does not handle fields */
1986 in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1988 /* resizer cannot downsize more than 4:1 */
1989 if (ipu_rot_mode_is_irt(rot_mode)) {
1990 out->pix.height = max_t(__u32, out->pix.height,
1992 out->pix.width = max_t(__u32, out->pix.width,
1993 in->pix.height / 4);
1995 out->pix.width = max_t(__u32, out->pix.width,
1997 out->pix.height = max_t(__u32, out->pix.height,
1998 in->pix.height / 4);
2001 /* align input width/height */
2002 w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
2004 h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
2006 in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
2008 in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
2011 /* align output width/height */
2012 w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
2014 h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
2016 out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
2018 out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
2021 /* set input/output strides and image sizes */
2022 in->pix.bytesperline = infmt->planar ?
2023 clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
2025 clamp_align((in->pix.width * infmt->bpp) >> 3,
2026 ((2 << w_align_in) * infmt->bpp) >> 3,
2027 (MAX_W * infmt->bpp) >> 3,
2029 in->pix.sizeimage = infmt->planar ?
2030 (in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
2031 in->pix.height * in->pix.bytesperline;
2032 out->pix.bytesperline = outfmt->planar ? out->pix.width :
2033 (out->pix.width * outfmt->bpp) >> 3;
2034 out->pix.sizeimage = outfmt->planar ?
2035 (out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
2036 out->pix.height * out->pix.bytesperline;
2038 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
2041 * this is used by ipu_image_convert_prepare() to verify set input and
2042 * output images are valid before starting the conversion. Clients can
2043 * also call it before calling ipu_image_convert_prepare().
2045 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
2046 enum ipu_rotate_mode rot_mode)
2048 struct ipu_image testin, testout;
2053 ipu_image_convert_adjust(&testin, &testout, rot_mode);
2055 if (testin.pix.width != in->pix.width ||
2056 testin.pix.height != in->pix.height ||
2057 testout.pix.width != out->pix.width ||
2058 testout.pix.height != out->pix.height)
2063 EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
2066 * Call ipu_image_convert_prepare() to prepare for the conversion of
2067 * given images and rotation mode. Returns a new conversion context.
2069 struct ipu_image_convert_ctx *
2070 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2071 struct ipu_image *in, struct ipu_image *out,
2072 enum ipu_rotate_mode rot_mode,
2073 ipu_image_convert_cb_t complete,
2074 void *complete_context)
2076 struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
2077 struct ipu_image_convert_image *s_image, *d_image;
2078 struct ipu_image_convert_chan *chan;
2079 struct ipu_image_convert_ctx *ctx;
2080 unsigned long flags;
2085 if (!in || !out || !complete ||
2086 (ic_task != IC_TASK_VIEWFINDER &&
2087 ic_task != IC_TASK_POST_PROCESSOR))
2088 return ERR_PTR(-EINVAL);
2090 /* verify the in/out images before continuing */
2091 ret = ipu_image_convert_verify(in, out, rot_mode);
2093 dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2095 return ERR_PTR(ret);
2098 chan = &priv->chan[ic_task];
2100 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2102 return ERR_PTR(-ENOMEM);
2104 dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2105 chan->ic_task, ctx);
2108 init_completion(&ctx->aborted);
2110 ctx->rot_mode = rot_mode;
2112 /* Sets ctx->in.num_rows/cols as well */
2113 ret = calc_image_resize_coefficients(ctx, in, out);
2118 d_image = &ctx->out;
2120 /* set tiling and rotation */
2121 if (ipu_rot_mode_is_irt(rot_mode)) {
2122 d_image->num_rows = s_image->num_cols;
2123 d_image->num_cols = s_image->num_rows;
2125 d_image->num_rows = s_image->num_rows;
2126 d_image->num_cols = s_image->num_cols;
2129 ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2131 ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2134 ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2138 calc_out_tile_map(ctx);
2140 find_seams(ctx, s_image, d_image);
2142 ret = calc_tile_dimensions(ctx, s_image);
2146 ret = calc_tile_offsets(ctx, s_image);
2150 calc_tile_dimensions(ctx, d_image);
2151 ret = calc_tile_offsets(ctx, d_image);
2155 calc_tile_resize_coefficients(ctx);
2157 ret = ipu_ic_calc_csc(&ctx->csc,
2158 s_image->base.pix.ycbcr_enc,
2159 s_image->base.pix.quantization,
2160 ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
2161 d_image->base.pix.ycbcr_enc,
2162 d_image->base.pix.quantization,
2163 ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
2167 dump_format(ctx, s_image);
2168 dump_format(ctx, d_image);
2170 ctx->complete = complete;
2171 ctx->complete_context = complete_context;
2174 * Can we use double-buffering for this operation? If there is
2175 * only one tile (the whole image can be converted in a single
2176 * operation) there's no point in using double-buffering. Also,
2177 * the IPU's IDMAC channels allow only a single U and V plane
2178 * offset shared between both buffers, but these offsets change
2179 * for every tile, and therefore would have to be updated for
2180 * each buffer which is not possible. So double-buffering is
2181 * impossible when either the source or destination images are
2182 * a planar format (YUV420, YUV422P, etc.). Further, differently
2183 * sized tiles or different resizing coefficients per tile
2184 * prevent double-buffering as well.
2186 ctx->double_buffering = (ctx->num_tiles > 1 &&
2187 !s_image->fmt->planar &&
2188 !d_image->fmt->planar);
2189 for (i = 1; i < ctx->num_tiles; i++) {
2190 if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2191 ctx->in.tile[i].height != ctx->in.tile[0].height ||
2192 ctx->out.tile[i].width != ctx->out.tile[0].width ||
2193 ctx->out.tile[i].height != ctx->out.tile[0].height) {
2194 ctx->double_buffering = false;
2198 for (i = 1; i < ctx->in.num_cols; i++) {
2199 if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2200 ctx->double_buffering = false;
2204 for (i = 1; i < ctx->in.num_rows; i++) {
2205 if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2206 ctx->double_buffering = false;
2211 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2212 unsigned long intermediate_size = d_image->tile[0].size;
2214 for (i = 1; i < ctx->num_tiles; i++) {
2215 if (d_image->tile[i].size > intermediate_size)
2216 intermediate_size = d_image->tile[i].size;
2219 ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2223 if (ctx->double_buffering) {
2224 ret = alloc_dma_buf(priv,
2225 &ctx->rot_intermediate[1],
2228 goto out_free_dmabuf0;
2232 spin_lock_irqsave(&chan->irqlock, flags);
2234 get_res = list_empty(&chan->ctx_list);
2236 list_add_tail(&ctx->list, &chan->ctx_list);
2238 spin_unlock_irqrestore(&chan->irqlock, flags);
2241 ret = get_ipu_resources(chan);
2243 goto out_free_dmabuf1;
2249 free_dma_buf(priv, &ctx->rot_intermediate[1]);
2250 spin_lock_irqsave(&chan->irqlock, flags);
2251 list_del(&ctx->list);
2252 spin_unlock_irqrestore(&chan->irqlock, flags);
2254 free_dma_buf(priv, &ctx->rot_intermediate[0]);
2257 return ERR_PTR(ret);
2259 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2262 * Carry out a single image conversion run. Only the physaddr's of the input
2263 * and output image buffers are needed. The conversion context must have
2264 * been created previously with ipu_image_convert_prepare().
2266 int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2268 struct ipu_image_convert_chan *chan;
2269 struct ipu_image_convert_priv *priv;
2270 struct ipu_image_convert_ctx *ctx;
2271 unsigned long flags;
2274 if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2281 dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2282 chan->ic_task, ctx, run);
2284 INIT_LIST_HEAD(&run->list);
2286 spin_lock_irqsave(&chan->irqlock, flags);
2288 if (ctx->aborting) {
2293 list_add_tail(&run->list, &chan->pending_q);
2295 if (!chan->current_run) {
2298 chan->current_run = NULL;
2301 spin_unlock_irqrestore(&chan->irqlock, flags);
2304 EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2306 /* Abort any active or pending conversions for this context */
2307 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2309 struct ipu_image_convert_chan *chan = ctx->chan;
2310 struct ipu_image_convert_priv *priv = chan->priv;
2311 struct ipu_image_convert_run *run, *active_run, *tmp;
2312 unsigned long flags;
2315 spin_lock_irqsave(&chan->irqlock, flags);
2317 /* move all remaining pending runs in this context to done_q */
2318 list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2319 if (run->ctx != ctx)
2322 list_move_tail(&run->list, &chan->done_q);
2325 run_count = get_run_count(ctx, &chan->done_q);
2326 active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2327 chan->current_run : NULL;
2330 reinit_completion(&ctx->aborted);
2332 ctx->aborting = true;
2334 spin_unlock_irqrestore(&chan->irqlock, flags);
2336 if (!run_count && !active_run) {
2337 dev_dbg(priv->ipu->dev,
2338 "%s: task %u: no abort needed for ctx %p\n",
2339 __func__, chan->ic_task, ctx);
2348 dev_dbg(priv->ipu->dev,
2349 "%s: task %u: wait for completion: %d runs\n",
2350 __func__, chan->ic_task, run_count);
2352 ret = wait_for_completion_timeout(&ctx->aborted,
2353 msecs_to_jiffies(10000));
2355 dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2360 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2362 __ipu_image_convert_abort(ctx);
2363 ctx->aborting = false;
2365 EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2367 /* Unprepare image conversion context */
2368 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2370 struct ipu_image_convert_chan *chan = ctx->chan;
2371 struct ipu_image_convert_priv *priv = chan->priv;
2372 unsigned long flags;
2375 /* make sure no runs are hanging around */
2376 __ipu_image_convert_abort(ctx);
2378 dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2379 chan->ic_task, ctx);
2381 spin_lock_irqsave(&chan->irqlock, flags);
2383 list_del(&ctx->list);
2385 put_res = list_empty(&chan->ctx_list);
2387 spin_unlock_irqrestore(&chan->irqlock, flags);
2390 release_ipu_resources(chan);
2392 free_dma_buf(priv, &ctx->rot_intermediate[1]);
2393 free_dma_buf(priv, &ctx->rot_intermediate[0]);
2397 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2400 * "Canned" asynchronous single image conversion. Allocates and returns
2401 * a new conversion run. On successful return the caller must free the
2402 * run and call ipu_image_convert_unprepare() after conversion completes.
2404 struct ipu_image_convert_run *
2405 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2406 struct ipu_image *in, struct ipu_image *out,
2407 enum ipu_rotate_mode rot_mode,
2408 ipu_image_convert_cb_t complete,
2409 void *complete_context)
2411 struct ipu_image_convert_ctx *ctx;
2412 struct ipu_image_convert_run *run;
2415 ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2416 complete, complete_context);
2418 return ERR_CAST(ctx);
2420 run = kzalloc(sizeof(*run), GFP_KERNEL);
2422 ipu_image_convert_unprepare(ctx);
2423 return ERR_PTR(-ENOMEM);
2427 run->in_phys = in->phys0;
2428 run->out_phys = out->phys0;
2430 ret = ipu_image_convert_queue(run);
2432 ipu_image_convert_unprepare(ctx);
2434 return ERR_PTR(ret);
2439 EXPORT_SYMBOL_GPL(ipu_image_convert);
2441 /* "Canned" synchronous single image conversion */
2442 static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2445 struct completion *comp = data;
2450 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2451 struct ipu_image *in, struct ipu_image *out,
2452 enum ipu_rotate_mode rot_mode)
2454 struct ipu_image_convert_run *run;
2455 struct completion comp;
2458 init_completion(&comp);
2460 run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2461 image_convert_sync_complete, &comp);
2463 return PTR_ERR(run);
2465 ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2466 ret = (ret == 0) ? -ETIMEDOUT : 0;
2468 ipu_image_convert_unprepare(run->ctx);
2473 EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2475 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2477 struct ipu_image_convert_priv *priv;
2480 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2484 ipu->image_convert_priv = priv;
2487 for (i = 0; i < IC_NUM_TASKS; i++) {
2488 struct ipu_image_convert_chan *chan = &priv->chan[i];
2492 chan->dma_ch = &image_convert_dma_chan[i];
2493 chan->in_eof_irq = -1;
2494 chan->rot_in_eof_irq = -1;
2495 chan->out_eof_irq = -1;
2496 chan->rot_out_eof_irq = -1;
2498 spin_lock_init(&chan->irqlock);
2499 INIT_LIST_HEAD(&chan->ctx_list);
2500 INIT_LIST_HEAD(&chan->pending_q);
2501 INIT_LIST_HEAD(&chan->done_q);
2507 void ipu_image_convert_exit(struct ipu_soc *ipu)