112253246f0822628d1786a4f8ba693256950056
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / vmwgfx / vmwgfx_ttm_buffer.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 #include <drm/ttm/ttm_page_alloc.h>
32
33 static const struct ttm_place vram_placement_flags = {
34         .fpfn = 0,
35         .lpfn = 0,
36         .mem_type = TTM_PL_VRAM,
37         .flags = 0
38 };
39
40 static const struct ttm_place sys_placement_flags = {
41         .fpfn = 0,
42         .lpfn = 0,
43         .mem_type = TTM_PL_SYSTEM,
44         .flags = 0
45 };
46
47 static const struct ttm_place gmr_placement_flags = {
48         .fpfn = 0,
49         .lpfn = 0,
50         .mem_type = VMW_PL_GMR,
51         .flags = 0
52 };
53
54 static const struct ttm_place mob_placement_flags = {
55         .fpfn = 0,
56         .lpfn = 0,
57         .mem_type = VMW_PL_MOB,
58         .flags = 0
59 };
60
61 struct ttm_placement vmw_vram_placement = {
62         .num_placement = 1,
63         .placement = &vram_placement_flags,
64         .num_busy_placement = 1,
65         .busy_placement = &vram_placement_flags
66 };
67
68 static const struct ttm_place vram_gmr_placement_flags[] = {
69         {
70                 .fpfn = 0,
71                 .lpfn = 0,
72                 .mem_type = TTM_PL_VRAM,
73                 .flags = 0
74         }, {
75                 .fpfn = 0,
76                 .lpfn = 0,
77                 .mem_type = VMW_PL_GMR,
78                 .flags = 0
79         }
80 };
81
82 static const struct ttm_place gmr_vram_placement_flags[] = {
83         {
84                 .fpfn = 0,
85                 .lpfn = 0,
86                 .mem_type = VMW_PL_GMR,
87                 .flags = 0
88         }, {
89                 .fpfn = 0,
90                 .lpfn = 0,
91                 .mem_type = TTM_PL_VRAM,
92                 .flags = 0
93         }
94 };
95
96 struct ttm_placement vmw_vram_gmr_placement = {
97         .num_placement = 2,
98         .placement = vram_gmr_placement_flags,
99         .num_busy_placement = 1,
100         .busy_placement = &gmr_placement_flags
101 };
102
103 struct ttm_placement vmw_vram_sys_placement = {
104         .num_placement = 1,
105         .placement = &vram_placement_flags,
106         .num_busy_placement = 1,
107         .busy_placement = &sys_placement_flags
108 };
109
110 struct ttm_placement vmw_sys_placement = {
111         .num_placement = 1,
112         .placement = &sys_placement_flags,
113         .num_busy_placement = 1,
114         .busy_placement = &sys_placement_flags
115 };
116
117 static const struct ttm_place evictable_placement_flags[] = {
118         {
119                 .fpfn = 0,
120                 .lpfn = 0,
121                 .mem_type = TTM_PL_SYSTEM,
122                 .flags = 0
123         }, {
124                 .fpfn = 0,
125                 .lpfn = 0,
126                 .mem_type = TTM_PL_VRAM,
127                 .flags = 0
128         }, {
129                 .fpfn = 0,
130                 .lpfn = 0,
131                 .mem_type = VMW_PL_GMR,
132                 .flags = 0
133         }, {
134                 .fpfn = 0,
135                 .lpfn = 0,
136                 .mem_type = VMW_PL_MOB,
137                 .flags = 0
138         }
139 };
140
141 static const struct ttm_place nonfixed_placement_flags[] = {
142         {
143                 .fpfn = 0,
144                 .lpfn = 0,
145                 .mem_type = TTM_PL_SYSTEM,
146                 .flags = 0
147         }, {
148                 .fpfn = 0,
149                 .lpfn = 0,
150                 .mem_type = VMW_PL_GMR,
151                 .flags = 0
152         }, {
153                 .fpfn = 0,
154                 .lpfn = 0,
155                 .mem_type = VMW_PL_MOB,
156                 .flags = 0
157         }
158 };
159
160 struct ttm_placement vmw_evictable_placement = {
161         .num_placement = 4,
162         .placement = evictable_placement_flags,
163         .num_busy_placement = 1,
164         .busy_placement = &sys_placement_flags
165 };
166
167 struct ttm_placement vmw_srf_placement = {
168         .num_placement = 1,
169         .num_busy_placement = 2,
170         .placement = &gmr_placement_flags,
171         .busy_placement = gmr_vram_placement_flags
172 };
173
174 struct ttm_placement vmw_mob_placement = {
175         .num_placement = 1,
176         .num_busy_placement = 1,
177         .placement = &mob_placement_flags,
178         .busy_placement = &mob_placement_flags
179 };
180
181 struct ttm_placement vmw_nonfixed_placement = {
182         .num_placement = 3,
183         .placement = nonfixed_placement_flags,
184         .num_busy_placement = 1,
185         .busy_placement = &sys_placement_flags
186 };
187
188 struct vmw_ttm_tt {
189         struct ttm_dma_tt dma_ttm;
190         struct vmw_private *dev_priv;
191         int gmr_id;
192         struct vmw_mob *mob;
193         int mem_type;
194         struct sg_table sgt;
195         struct vmw_sg_table vsgt;
196         uint64_t sg_alloc_size;
197         bool mapped;
198         bool bound;
199 };
200
201 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
202
203 /**
204  * Helper functions to advance a struct vmw_piter iterator.
205  *
206  * @viter: Pointer to the iterator.
207  *
208  * These functions return false if past the end of the list,
209  * true otherwise. Functions are selected depending on the current
210  * DMA mapping mode.
211  */
212 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
213 {
214         return ++(viter->i) < viter->num_pages;
215 }
216
217 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
218 {
219         bool ret = __vmw_piter_non_sg_next(viter);
220
221         return __sg_page_iter_dma_next(&viter->iter) && ret;
222 }
223
224
225 /**
226  * Helper functions to return a pointer to the current page.
227  *
228  * @viter: Pointer to the iterator
229  *
230  * These functions return a pointer to the page currently
231  * pointed to by @viter. Functions are selected depending on the
232  * current mapping mode.
233  */
234 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
235 {
236         return viter->pages[viter->i];
237 }
238
239 /**
240  * Helper functions to return the DMA address of the current page.
241  *
242  * @viter: Pointer to the iterator
243  *
244  * These functions return the DMA address of the page currently
245  * pointed to by @viter. Functions are selected depending on the
246  * current mapping mode.
247  */
248 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
249 {
250         return page_to_phys(viter->pages[viter->i]);
251 }
252
253 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
254 {
255         return viter->addrs[viter->i];
256 }
257
258 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
259 {
260         return sg_page_iter_dma_address(&viter->iter);
261 }
262
263
264 /**
265  * vmw_piter_start - Initialize a struct vmw_piter.
266  *
267  * @viter: Pointer to the iterator to initialize
268  * @vsgt: Pointer to a struct vmw_sg_table to initialize from
269  *
270  * Note that we're following the convention of __sg_page_iter_start, so that
271  * the iterator doesn't point to a valid page after initialization; it has
272  * to be advanced one step first.
273  */
274 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
275                      unsigned long p_offset)
276 {
277         viter->i = p_offset - 1;
278         viter->num_pages = vsgt->num_pages;
279         viter->page = &__vmw_piter_non_sg_page;
280         viter->pages = vsgt->pages;
281         switch (vsgt->mode) {
282         case vmw_dma_phys:
283                 viter->next = &__vmw_piter_non_sg_next;
284                 viter->dma_address = &__vmw_piter_phys_addr;
285                 break;
286         case vmw_dma_alloc_coherent:
287                 viter->next = &__vmw_piter_non_sg_next;
288                 viter->dma_address = &__vmw_piter_dma_addr;
289                 viter->addrs = vsgt->addrs;
290                 break;
291         case vmw_dma_map_populate:
292         case vmw_dma_map_bind:
293                 viter->next = &__vmw_piter_sg_next;
294                 viter->dma_address = &__vmw_piter_sg_addr;
295                 __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
296                                      vsgt->sgt->orig_nents, p_offset);
297                 break;
298         default:
299                 BUG();
300         }
301 }
302
303 /**
304  * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
305  * TTM pages
306  *
307  * @vmw_tt: Pointer to a struct vmw_ttm_backend
308  *
309  * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
310  */
311 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
312 {
313         struct device *dev = vmw_tt->dev_priv->dev->dev;
314
315         dma_unmap_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.nents,
316                 DMA_BIDIRECTIONAL);
317         vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
318 }
319
320 /**
321  * vmw_ttm_map_for_dma - map TTM pages to get device addresses
322  *
323  * @vmw_tt: Pointer to a struct vmw_ttm_backend
324  *
325  * This function is used to get device addresses from the kernel DMA layer.
326  * However, it's violating the DMA API in that when this operation has been
327  * performed, it's illegal for the CPU to write to the pages without first
328  * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
329  * therefore only legal to call this function if we know that the function
330  * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
331  * a CPU write buffer flush.
332  */
333 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
334 {
335         struct device *dev = vmw_tt->dev_priv->dev->dev;
336         int ret;
337
338         ret = dma_map_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.orig_nents,
339                          DMA_BIDIRECTIONAL);
340         if (unlikely(ret == 0))
341                 return -ENOMEM;
342
343         vmw_tt->sgt.nents = ret;
344
345         return 0;
346 }
347
348 /**
349  * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
350  *
351  * @vmw_tt: Pointer to a struct vmw_ttm_tt
352  *
353  * Select the correct function for and make sure the TTM pages are
354  * visible to the device. Allocate storage for the device mappings.
355  * If a mapping has already been performed, indicated by the storage
356  * pointer being non NULL, the function returns success.
357  */
358 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
359 {
360         struct vmw_private *dev_priv = vmw_tt->dev_priv;
361         struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
362         struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
363         struct ttm_operation_ctx ctx = {
364                 .interruptible = true,
365                 .no_wait_gpu = false
366         };
367         struct vmw_piter iter;
368         dma_addr_t old;
369         int ret = 0;
370         static size_t sgl_size;
371         static size_t sgt_size;
372
373         if (vmw_tt->mapped)
374                 return 0;
375
376         vsgt->mode = dev_priv->map_mode;
377         vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
378         vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
379         vsgt->addrs = vmw_tt->dma_ttm.dma_address;
380         vsgt->sgt = &vmw_tt->sgt;
381
382         switch (dev_priv->map_mode) {
383         case vmw_dma_map_bind:
384         case vmw_dma_map_populate:
385                 if (unlikely(!sgl_size)) {
386                         sgl_size = ttm_round_pot(sizeof(struct scatterlist));
387                         sgt_size = ttm_round_pot(sizeof(struct sg_table));
388                 }
389                 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
390                 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
391                 if (unlikely(ret != 0))
392                         return ret;
393
394                 ret = __sg_alloc_table_from_pages
395                         (&vmw_tt->sgt, vsgt->pages, vsgt->num_pages, 0,
396                          (unsigned long) vsgt->num_pages << PAGE_SHIFT,
397                          dma_get_max_seg_size(dev_priv->dev->dev),
398                          GFP_KERNEL);
399                 if (unlikely(ret != 0))
400                         goto out_sg_alloc_fail;
401
402                 if (vsgt->num_pages > vmw_tt->sgt.nents) {
403                         uint64_t over_alloc =
404                                 sgl_size * (vsgt->num_pages -
405                                             vmw_tt->sgt.nents);
406
407                         ttm_mem_global_free(glob, over_alloc);
408                         vmw_tt->sg_alloc_size -= over_alloc;
409                 }
410
411                 ret = vmw_ttm_map_for_dma(vmw_tt);
412                 if (unlikely(ret != 0))
413                         goto out_map_fail;
414
415                 break;
416         default:
417                 break;
418         }
419
420         old = ~((dma_addr_t) 0);
421         vmw_tt->vsgt.num_regions = 0;
422         for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
423                 dma_addr_t cur = vmw_piter_dma_addr(&iter);
424
425                 if (cur != old + PAGE_SIZE)
426                         vmw_tt->vsgt.num_regions++;
427                 old = cur;
428         }
429
430         vmw_tt->mapped = true;
431         return 0;
432
433 out_map_fail:
434         sg_free_table(vmw_tt->vsgt.sgt);
435         vmw_tt->vsgt.sgt = NULL;
436 out_sg_alloc_fail:
437         ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
438         return ret;
439 }
440
441 /**
442  * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
443  *
444  * @vmw_tt: Pointer to a struct vmw_ttm_tt
445  *
446  * Tear down any previously set up device DMA mappings and free
447  * any storage space allocated for them. If there are no mappings set up,
448  * this function is a NOP.
449  */
450 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
451 {
452         struct vmw_private *dev_priv = vmw_tt->dev_priv;
453
454         if (!vmw_tt->vsgt.sgt)
455                 return;
456
457         switch (dev_priv->map_mode) {
458         case vmw_dma_map_bind:
459         case vmw_dma_map_populate:
460                 vmw_ttm_unmap_from_dma(vmw_tt);
461                 sg_free_table(vmw_tt->vsgt.sgt);
462                 vmw_tt->vsgt.sgt = NULL;
463                 ttm_mem_global_free(vmw_mem_glob(dev_priv),
464                                     vmw_tt->sg_alloc_size);
465                 break;
466         default:
467                 break;
468         }
469         vmw_tt->mapped = false;
470 }
471
472 /**
473  * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
474  * TTM buffer object
475  *
476  * @bo: Pointer to a struct ttm_buffer_object
477  *
478  * Returns a pointer to a struct vmw_sg_table object. The object should
479  * not be freed after use.
480  * Note that for the device addresses to be valid, the buffer object must
481  * either be reserved or pinned.
482  */
483 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
484 {
485         struct vmw_ttm_tt *vmw_tt =
486                 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
487
488         return &vmw_tt->vsgt;
489 }
490
491
492 static int vmw_ttm_bind(struct ttm_bo_device *bdev,
493                         struct ttm_tt *ttm, struct ttm_resource *bo_mem)
494 {
495         struct vmw_ttm_tt *vmw_be =
496                 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
497         int ret = 0;
498
499         if (!bo_mem)
500                 return -EINVAL;
501
502         if (vmw_be->bound)
503                 return 0;
504
505         ret = vmw_ttm_map_dma(vmw_be);
506         if (unlikely(ret != 0))
507                 return ret;
508
509         vmw_be->gmr_id = bo_mem->start;
510         vmw_be->mem_type = bo_mem->mem_type;
511
512         switch (bo_mem->mem_type) {
513         case VMW_PL_GMR:
514                 ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
515                                     ttm->num_pages, vmw_be->gmr_id);
516                 break;
517         case VMW_PL_MOB:
518                 if (unlikely(vmw_be->mob == NULL)) {
519                         vmw_be->mob =
520                                 vmw_mob_create(ttm->num_pages);
521                         if (unlikely(vmw_be->mob == NULL))
522                                 return -ENOMEM;
523                 }
524
525                 ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
526                                     &vmw_be->vsgt, ttm->num_pages,
527                                     vmw_be->gmr_id);
528                 break;
529         default:
530                 BUG();
531         }
532         vmw_be->bound = true;
533         return ret;
534 }
535
536 static void vmw_ttm_unbind(struct ttm_bo_device *bdev,
537                            struct ttm_tt *ttm)
538 {
539         struct vmw_ttm_tt *vmw_be =
540                 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
541
542         if (!vmw_be->bound)
543                 return;
544
545         switch (vmw_be->mem_type) {
546         case VMW_PL_GMR:
547                 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
548                 break;
549         case VMW_PL_MOB:
550                 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
551                 break;
552         default:
553                 BUG();
554         }
555
556         if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
557                 vmw_ttm_unmap_dma(vmw_be);
558         vmw_be->bound = false;
559 }
560
561
562 static void vmw_ttm_destroy(struct ttm_bo_device *bdev, struct ttm_tt *ttm)
563 {
564         struct vmw_ttm_tt *vmw_be =
565                 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
566
567         vmw_ttm_unbind(bdev, ttm);
568         ttm_tt_destroy_common(bdev, ttm);
569         vmw_ttm_unmap_dma(vmw_be);
570         if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
571                 ttm_dma_tt_fini(&vmw_be->dma_ttm);
572         else
573                 ttm_tt_fini(ttm);
574
575         if (vmw_be->mob)
576                 vmw_mob_destroy(vmw_be->mob);
577
578         kfree(vmw_be);
579 }
580
581
582 static int vmw_ttm_populate(struct ttm_bo_device *bdev,
583                             struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
584 {
585         struct vmw_ttm_tt *vmw_tt =
586                 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
587         struct vmw_private *dev_priv = vmw_tt->dev_priv;
588         struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
589         int ret;
590
591         if (ttm_tt_is_populated(ttm))
592                 return 0;
593
594         if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
595                 size_t size =
596                         ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
597                 ret = ttm_mem_global_alloc(glob, size, ctx);
598                 if (unlikely(ret != 0))
599                         return ret;
600
601                 ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev,
602                                         ctx);
603                 if (unlikely(ret != 0))
604                         ttm_mem_global_free(glob, size);
605         } else
606                 ret = ttm_pool_populate(ttm, ctx);
607
608         return ret;
609 }
610
611 static void vmw_ttm_unpopulate(struct ttm_bo_device *bdev,
612                                struct ttm_tt *ttm)
613 {
614         struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
615                                                  dma_ttm.ttm);
616         struct vmw_private *dev_priv = vmw_tt->dev_priv;
617         struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
618
619
620         if (vmw_tt->mob) {
621                 vmw_mob_destroy(vmw_tt->mob);
622                 vmw_tt->mob = NULL;
623         }
624
625         vmw_ttm_unmap_dma(vmw_tt);
626         if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
627                 size_t size =
628                         ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
629
630                 ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
631                 ttm_mem_global_free(glob, size);
632         } else
633                 ttm_pool_unpopulate(ttm);
634 }
635
636 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
637                                         uint32_t page_flags)
638 {
639         struct vmw_ttm_tt *vmw_be;
640         int ret;
641
642         vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
643         if (!vmw_be)
644                 return NULL;
645
646         vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
647         vmw_be->mob = NULL;
648
649         if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
650                 ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bo, page_flags,
651                                       ttm_cached);
652         else
653                 ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bo, page_flags,
654                                   ttm_cached);
655         if (unlikely(ret != 0))
656                 goto out_no_init;
657
658         return &vmw_be->dma_ttm.ttm;
659 out_no_init:
660         kfree(vmw_be);
661         return NULL;
662 }
663
664 static void vmw_evict_flags(struct ttm_buffer_object *bo,
665                      struct ttm_placement *placement)
666 {
667         *placement = vmw_sys_placement;
668 }
669
670 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
671 {
672         struct ttm_object_file *tfile =
673                 vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
674
675         return vmw_user_bo_verify_access(bo, tfile);
676 }
677
678 static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
679 {
680         struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
681
682         switch (mem->mem_type) {
683         case TTM_PL_SYSTEM:
684         case VMW_PL_GMR:
685         case VMW_PL_MOB:
686                 return 0;
687         case TTM_PL_VRAM:
688                 mem->bus.offset = (mem->start << PAGE_SHIFT) +
689                         dev_priv->vram_start;
690                 mem->bus.is_iomem = true;
691                 mem->bus.caching = ttm_cached;
692                 break;
693         default:
694                 return -EINVAL;
695         }
696         return 0;
697 }
698
699 /**
700  * vmw_move_notify - TTM move_notify_callback
701  *
702  * @bo: The TTM buffer object about to move.
703  * @mem: The struct ttm_resource indicating to what memory
704  *       region the move is taking place.
705  *
706  * Calls move_notify for all subsystems needing it.
707  * (currently only resources).
708  */
709 static void vmw_move_notify(struct ttm_buffer_object *bo,
710                             bool evict,
711                             struct ttm_resource *mem)
712 {
713         if (!mem)
714                 return;
715         vmw_bo_move_notify(bo, mem);
716         vmw_query_move_notify(bo, mem);
717 }
718
719
720 /**
721  * vmw_swap_notify - TTM move_notify_callback
722  *
723  * @bo: The TTM buffer object about to be swapped out.
724  */
725 static void vmw_swap_notify(struct ttm_buffer_object *bo)
726 {
727         vmw_bo_swap_notify(bo);
728         (void) ttm_bo_wait(bo, false, false);
729 }
730
731 static int vmw_move(struct ttm_buffer_object *bo,
732                     bool evict,
733                     struct ttm_operation_ctx *ctx,
734                     struct ttm_resource *new_mem)
735 {
736         struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->mem.mem_type);
737         struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
738
739         if (old_man->use_tt && new_man->use_tt) {
740                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
741                         ttm_bo_assign_mem(bo, new_mem);
742                         return 0;
743                 }
744                 return ttm_bo_move_ttm(bo, ctx, new_mem);
745         } else {
746                 return ttm_bo_move_memcpy(bo, ctx, new_mem);
747         }
748 }
749
750 struct ttm_bo_driver vmw_bo_driver = {
751         .ttm_tt_create = &vmw_ttm_tt_create,
752         .ttm_tt_populate = &vmw_ttm_populate,
753         .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
754         .ttm_tt_bind = &vmw_ttm_bind,
755         .ttm_tt_unbind = &vmw_ttm_unbind,
756         .ttm_tt_destroy = &vmw_ttm_destroy,
757         .eviction_valuable = ttm_bo_eviction_valuable,
758         .evict_flags = vmw_evict_flags,
759         .move = vmw_move,
760         .verify_access = vmw_verify_access,
761         .move_notify = vmw_move_notify,
762         .swap_notify = vmw_swap_notify,
763         .io_mem_reserve = &vmw_ttm_io_mem_reserve,
764 };
765
766 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
767                                unsigned long bo_size,
768                                struct ttm_buffer_object **bo_p)
769 {
770         struct ttm_operation_ctx ctx = {
771                 .interruptible = false,
772                 .no_wait_gpu = false
773         };
774         struct ttm_buffer_object *bo;
775         int ret;
776
777         ret = vmw_bo_create_kernel(dev_priv, bo_size,
778                                    &vmw_sys_placement,
779                                    &bo);
780         if (unlikely(ret != 0))
781                 return ret;
782
783         ret = ttm_bo_reserve(bo, false, true, NULL);
784         BUG_ON(ret != 0);
785         ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
786         if (likely(ret == 0)) {
787                 struct vmw_ttm_tt *vmw_tt =
788                         container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
789                 ret = vmw_ttm_map_dma(vmw_tt);
790         }
791
792         ttm_bo_unreserve(bo);
793
794         if (likely(ret == 0))
795                 *bo_p = bo;
796         return ret;
797 }