drm/vmwgfx: Add the possibility to validate a buffer as a MOB
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / gpu / drm / vmwgfx / vmwgfx_resource.c
1 /**************************************************************************
2  *
3  * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34
35 #define VMW_RES_EVICT_ERR_COUNT 10
36
37 struct vmw_user_dma_buffer {
38         struct ttm_prime_object prime;
39         struct vmw_dma_buffer dma;
40 };
41
42 struct vmw_bo_user_rep {
43         uint32_t handle;
44         uint64_t map_handle;
45 };
46
47 struct vmw_stream {
48         struct vmw_resource res;
49         uint32_t stream_id;
50 };
51
52 struct vmw_user_stream {
53         struct ttm_base_object base;
54         struct vmw_stream stream;
55 };
56
57
58 static uint64_t vmw_user_stream_size;
59
60 static const struct vmw_res_func vmw_stream_func = {
61         .res_type = vmw_res_stream,
62         .needs_backup = false,
63         .may_evict = false,
64         .type_name = "video streams",
65         .backup_placement = NULL,
66         .create = NULL,
67         .destroy = NULL,
68         .bind = NULL,
69         .unbind = NULL
70 };
71
72 static inline struct vmw_dma_buffer *
73 vmw_dma_buffer(struct ttm_buffer_object *bo)
74 {
75         return container_of(bo, struct vmw_dma_buffer, base);
76 }
77
78 static inline struct vmw_user_dma_buffer *
79 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
80 {
81         struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
82         return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
83 }
84
85 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
86 {
87         kref_get(&res->kref);
88         return res;
89 }
90
91
92 /**
93  * vmw_resource_release_id - release a resource id to the id manager.
94  *
95  * @res: Pointer to the resource.
96  *
97  * Release the resource id to the resource id manager and set it to -1
98  */
99 void vmw_resource_release_id(struct vmw_resource *res)
100 {
101         struct vmw_private *dev_priv = res->dev_priv;
102         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
103
104         write_lock(&dev_priv->resource_lock);
105         if (res->id != -1)
106                 idr_remove(idr, res->id);
107         res->id = -1;
108         write_unlock(&dev_priv->resource_lock);
109 }
110
111 static void vmw_resource_release(struct kref *kref)
112 {
113         struct vmw_resource *res =
114             container_of(kref, struct vmw_resource, kref);
115         struct vmw_private *dev_priv = res->dev_priv;
116         int id;
117         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
118
119         res->avail = false;
120         list_del_init(&res->lru_head);
121         write_unlock(&dev_priv->resource_lock);
122         if (res->backup) {
123                 struct ttm_buffer_object *bo = &res->backup->base;
124
125                 ttm_bo_reserve(bo, false, false, false, 0);
126                 if (!list_empty(&res->mob_head) &&
127                     res->func->unbind != NULL) {
128                         struct ttm_validate_buffer val_buf;
129
130                         val_buf.bo = bo;
131                         res->func->unbind(res, false, &val_buf);
132                 }
133                 res->backup_dirty = false;
134                 list_del_init(&res->mob_head);
135                 ttm_bo_unreserve(bo);
136                 vmw_dmabuf_unreference(&res->backup);
137         }
138
139         if (likely(res->hw_destroy != NULL))
140                 res->hw_destroy(res);
141
142         id = res->id;
143         if (res->res_free != NULL)
144                 res->res_free(res);
145         else
146                 kfree(res);
147
148         write_lock(&dev_priv->resource_lock);
149
150         if (id != -1)
151                 idr_remove(idr, id);
152 }
153
154 void vmw_resource_unreference(struct vmw_resource **p_res)
155 {
156         struct vmw_resource *res = *p_res;
157         struct vmw_private *dev_priv = res->dev_priv;
158
159         *p_res = NULL;
160         write_lock(&dev_priv->resource_lock);
161         kref_put(&res->kref, vmw_resource_release);
162         write_unlock(&dev_priv->resource_lock);
163 }
164
165
166 /**
167  * vmw_resource_alloc_id - release a resource id to the id manager.
168  *
169  * @res: Pointer to the resource.
170  *
171  * Allocate the lowest free resource from the resource manager, and set
172  * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
173  */
174 int vmw_resource_alloc_id(struct vmw_resource *res)
175 {
176         struct vmw_private *dev_priv = res->dev_priv;
177         int ret;
178         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
179
180         BUG_ON(res->id != -1);
181
182         idr_preload(GFP_KERNEL);
183         write_lock(&dev_priv->resource_lock);
184
185         ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
186         if (ret >= 0)
187                 res->id = ret;
188
189         write_unlock(&dev_priv->resource_lock);
190         idr_preload_end();
191         return ret < 0 ? ret : 0;
192 }
193
194 /**
195  * vmw_resource_init - initialize a struct vmw_resource
196  *
197  * @dev_priv:       Pointer to a device private struct.
198  * @res:            The struct vmw_resource to initialize.
199  * @obj_type:       Resource object type.
200  * @delay_id:       Boolean whether to defer device id allocation until
201  *                  the first validation.
202  * @res_free:       Resource destructor.
203  * @func:           Resource function table.
204  */
205 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
206                       bool delay_id,
207                       void (*res_free) (struct vmw_resource *res),
208                       const struct vmw_res_func *func)
209 {
210         kref_init(&res->kref);
211         res->hw_destroy = NULL;
212         res->res_free = res_free;
213         res->avail = false;
214         res->dev_priv = dev_priv;
215         res->func = func;
216         INIT_LIST_HEAD(&res->lru_head);
217         INIT_LIST_HEAD(&res->mob_head);
218         res->id = -1;
219         res->backup = NULL;
220         res->backup_offset = 0;
221         res->backup_dirty = false;
222         res->res_dirty = false;
223         if (delay_id)
224                 return 0;
225         else
226                 return vmw_resource_alloc_id(res);
227 }
228
229 /**
230  * vmw_resource_activate
231  *
232  * @res:        Pointer to the newly created resource
233  * @hw_destroy: Destroy function. NULL if none.
234  *
235  * Activate a resource after the hardware has been made aware of it.
236  * Set tye destroy function to @destroy. Typically this frees the
237  * resource and destroys the hardware resources associated with it.
238  * Activate basically means that the function vmw_resource_lookup will
239  * find it.
240  */
241 void vmw_resource_activate(struct vmw_resource *res,
242                            void (*hw_destroy) (struct vmw_resource *))
243 {
244         struct vmw_private *dev_priv = res->dev_priv;
245
246         write_lock(&dev_priv->resource_lock);
247         res->avail = true;
248         res->hw_destroy = hw_destroy;
249         write_unlock(&dev_priv->resource_lock);
250 }
251
252 struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
253                                          struct idr *idr, int id)
254 {
255         struct vmw_resource *res;
256
257         read_lock(&dev_priv->resource_lock);
258         res = idr_find(idr, id);
259         if (res && res->avail)
260                 kref_get(&res->kref);
261         else
262                 res = NULL;
263         read_unlock(&dev_priv->resource_lock);
264
265         if (unlikely(res == NULL))
266                 return NULL;
267
268         return res;
269 }
270
271 /**
272  * vmw_user_resource_lookup_handle - lookup a struct resource from a
273  * TTM user-space handle and perform basic type checks
274  *
275  * @dev_priv:     Pointer to a device private struct
276  * @tfile:        Pointer to a struct ttm_object_file identifying the caller
277  * @handle:       The TTM user-space handle
278  * @converter:    Pointer to an object describing the resource type
279  * @p_res:        On successful return the location pointed to will contain
280  *                a pointer to a refcounted struct vmw_resource.
281  *
282  * If the handle can't be found or is associated with an incorrect resource
283  * type, -EINVAL will be returned.
284  */
285 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
286                                     struct ttm_object_file *tfile,
287                                     uint32_t handle,
288                                     const struct vmw_user_resource_conv
289                                     *converter,
290                                     struct vmw_resource **p_res)
291 {
292         struct ttm_base_object *base;
293         struct vmw_resource *res;
294         int ret = -EINVAL;
295
296         base = ttm_base_object_lookup(tfile, handle);
297         if (unlikely(base == NULL))
298                 return -EINVAL;
299
300         if (unlikely(ttm_base_object_type(base) != converter->object_type))
301                 goto out_bad_resource;
302
303         res = converter->base_obj_to_res(base);
304
305         read_lock(&dev_priv->resource_lock);
306         if (!res->avail || res->res_free != converter->res_free) {
307                 read_unlock(&dev_priv->resource_lock);
308                 goto out_bad_resource;
309         }
310
311         kref_get(&res->kref);
312         read_unlock(&dev_priv->resource_lock);
313
314         *p_res = res;
315         ret = 0;
316
317 out_bad_resource:
318         ttm_base_object_unref(&base);
319
320         return ret;
321 }
322
323 /**
324  * Helper function that looks either a surface or dmabuf.
325  *
326  * The pointer this pointed at by out_surf and out_buf needs to be null.
327  */
328 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
329                            struct ttm_object_file *tfile,
330                            uint32_t handle,
331                            struct vmw_surface **out_surf,
332                            struct vmw_dma_buffer **out_buf)
333 {
334         struct vmw_resource *res;
335         int ret;
336
337         BUG_ON(*out_surf || *out_buf);
338
339         ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
340                                               user_surface_converter,
341                                               &res);
342         if (!ret) {
343                 *out_surf = vmw_res_to_srf(res);
344                 return 0;
345         }
346
347         *out_surf = NULL;
348         ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf);
349         return ret;
350 }
351
352 /**
353  * Buffer management.
354  */
355
356 /**
357  * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
358  *
359  * @dev_priv: Pointer to a struct vmw_private identifying the device.
360  * @size: The requested buffer size.
361  * @user: Whether this is an ordinary dma buffer or a user dma buffer.
362  */
363 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
364                                   bool user)
365 {
366         static size_t struct_size, user_struct_size;
367         size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
368         size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
369
370         if (unlikely(struct_size == 0)) {
371                 size_t backend_size = ttm_round_pot(vmw_tt_size);
372
373                 struct_size = backend_size +
374                         ttm_round_pot(sizeof(struct vmw_dma_buffer));
375                 user_struct_size = backend_size +
376                         ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
377         }
378
379         if (dev_priv->map_mode == vmw_dma_alloc_coherent)
380                 page_array_size +=
381                         ttm_round_pot(num_pages * sizeof(dma_addr_t));
382
383         return ((user) ? user_struct_size : struct_size) +
384                 page_array_size;
385 }
386
387 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
388 {
389         struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
390
391         kfree(vmw_bo);
392 }
393
394 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
395 {
396         struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
397
398         ttm_prime_object_kfree(vmw_user_bo, prime);
399 }
400
401 int vmw_dmabuf_init(struct vmw_private *dev_priv,
402                     struct vmw_dma_buffer *vmw_bo,
403                     size_t size, struct ttm_placement *placement,
404                     bool interruptible,
405                     void (*bo_free) (struct ttm_buffer_object *bo))
406 {
407         struct ttm_bo_device *bdev = &dev_priv->bdev;
408         size_t acc_size;
409         int ret;
410         bool user = (bo_free == &vmw_user_dmabuf_destroy);
411
412         BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
413
414         acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
415         memset(vmw_bo, 0, sizeof(*vmw_bo));
416
417         INIT_LIST_HEAD(&vmw_bo->res_list);
418
419         ret = ttm_bo_init(bdev, &vmw_bo->base, size,
420                           (user) ? ttm_bo_type_device :
421                           ttm_bo_type_kernel, placement,
422                           0, interruptible,
423                           NULL, acc_size, NULL, bo_free);
424         return ret;
425 }
426
427 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
428 {
429         struct vmw_user_dma_buffer *vmw_user_bo;
430         struct ttm_base_object *base = *p_base;
431         struct ttm_buffer_object *bo;
432
433         *p_base = NULL;
434
435         if (unlikely(base == NULL))
436                 return;
437
438         vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
439                                    prime.base);
440         bo = &vmw_user_bo->dma.base;
441         ttm_bo_unref(&bo);
442 }
443
444 /**
445  * vmw_user_dmabuf_alloc - Allocate a user dma buffer
446  *
447  * @dev_priv: Pointer to a struct device private.
448  * @tfile: Pointer to a struct ttm_object_file on which to register the user
449  * object.
450  * @size: Size of the dma buffer.
451  * @shareable: Boolean whether the buffer is shareable with other open files.
452  * @handle: Pointer to where the handle value should be assigned.
453  * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
454  * should be assigned.
455  */
456 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
457                           struct ttm_object_file *tfile,
458                           uint32_t size,
459                           bool shareable,
460                           uint32_t *handle,
461                           struct vmw_dma_buffer **p_dma_buf)
462 {
463         struct vmw_user_dma_buffer *user_bo;
464         struct ttm_buffer_object *tmp;
465         int ret;
466
467         user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
468         if (unlikely(user_bo == NULL)) {
469                 DRM_ERROR("Failed to allocate a buffer.\n");
470                 return -ENOMEM;
471         }
472
473         ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
474                               (dev_priv->has_mob) ?
475                               &vmw_sys_placement :
476                               &vmw_vram_sys_placement, true,
477                               &vmw_user_dmabuf_destroy);
478         if (unlikely(ret != 0))
479                 return ret;
480
481         tmp = ttm_bo_reference(&user_bo->dma.base);
482         ret = ttm_prime_object_init(tfile,
483                                     size,
484                                     &user_bo->prime,
485                                     shareable,
486                                     ttm_buffer_type,
487                                     &vmw_user_dmabuf_release, NULL);
488         if (unlikely(ret != 0)) {
489                 ttm_bo_unref(&tmp);
490                 goto out_no_base_object;
491         }
492
493         *p_dma_buf = &user_bo->dma;
494         *handle = user_bo->prime.base.hash.key;
495
496 out_no_base_object:
497         return ret;
498 }
499
500 /**
501  * vmw_user_dmabuf_verify_access - verify access permissions on this
502  * buffer object.
503  *
504  * @bo: Pointer to the buffer object being accessed
505  * @tfile: Identifying the caller.
506  */
507 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
508                                   struct ttm_object_file *tfile)
509 {
510         struct vmw_user_dma_buffer *vmw_user_bo;
511
512         if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
513                 return -EPERM;
514
515         vmw_user_bo = vmw_user_dma_buffer(bo);
516         return (vmw_user_bo->prime.base.tfile == tfile ||
517                 vmw_user_bo->prime.base.shareable) ? 0 : -EPERM;
518 }
519
520 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
521                            struct drm_file *file_priv)
522 {
523         struct vmw_private *dev_priv = vmw_priv(dev);
524         union drm_vmw_alloc_dmabuf_arg *arg =
525             (union drm_vmw_alloc_dmabuf_arg *)data;
526         struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
527         struct drm_vmw_dmabuf_rep *rep = &arg->rep;
528         struct vmw_dma_buffer *dma_buf;
529         uint32_t handle;
530         struct vmw_master *vmaster = vmw_master(file_priv->master);
531         int ret;
532
533         ret = ttm_read_lock(&vmaster->lock, true);
534         if (unlikely(ret != 0))
535                 return ret;
536
537         ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
538                                     req->size, false, &handle, &dma_buf);
539         if (unlikely(ret != 0))
540                 goto out_no_dmabuf;
541
542         rep->handle = handle;
543         rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
544         rep->cur_gmr_id = handle;
545         rep->cur_gmr_offset = 0;
546
547         vmw_dmabuf_unreference(&dma_buf);
548
549 out_no_dmabuf:
550         ttm_read_unlock(&vmaster->lock);
551
552         return ret;
553 }
554
555 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
556                            struct drm_file *file_priv)
557 {
558         struct drm_vmw_unref_dmabuf_arg *arg =
559             (struct drm_vmw_unref_dmabuf_arg *)data;
560
561         return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
562                                          arg->handle,
563                                          TTM_REF_USAGE);
564 }
565
566 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
567                            uint32_t handle, struct vmw_dma_buffer **out)
568 {
569         struct vmw_user_dma_buffer *vmw_user_bo;
570         struct ttm_base_object *base;
571
572         base = ttm_base_object_lookup(tfile, handle);
573         if (unlikely(base == NULL)) {
574                 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
575                        (unsigned long)handle);
576                 return -ESRCH;
577         }
578
579         if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
580                 ttm_base_object_unref(&base);
581                 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
582                        (unsigned long)handle);
583                 return -EINVAL;
584         }
585
586         vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
587                                    prime.base);
588         (void)ttm_bo_reference(&vmw_user_bo->dma.base);
589         ttm_base_object_unref(&base);
590         *out = &vmw_user_bo->dma;
591
592         return 0;
593 }
594
595 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
596                               struct vmw_dma_buffer *dma_buf)
597 {
598         struct vmw_user_dma_buffer *user_bo;
599
600         if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
601                 return -EINVAL;
602
603         user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
604         return ttm_ref_object_add(tfile, &user_bo->prime.base,
605                                   TTM_REF_USAGE, NULL);
606 }
607
608 /*
609  * Stream management
610  */
611
612 static void vmw_stream_destroy(struct vmw_resource *res)
613 {
614         struct vmw_private *dev_priv = res->dev_priv;
615         struct vmw_stream *stream;
616         int ret;
617
618         DRM_INFO("%s: unref\n", __func__);
619         stream = container_of(res, struct vmw_stream, res);
620
621         ret = vmw_overlay_unref(dev_priv, stream->stream_id);
622         WARN_ON(ret != 0);
623 }
624
625 static int vmw_stream_init(struct vmw_private *dev_priv,
626                            struct vmw_stream *stream,
627                            void (*res_free) (struct vmw_resource *res))
628 {
629         struct vmw_resource *res = &stream->res;
630         int ret;
631
632         ret = vmw_resource_init(dev_priv, res, false, res_free,
633                                 &vmw_stream_func);
634
635         if (unlikely(ret != 0)) {
636                 if (res_free == NULL)
637                         kfree(stream);
638                 else
639                         res_free(&stream->res);
640                 return ret;
641         }
642
643         ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
644         if (ret) {
645                 vmw_resource_unreference(&res);
646                 return ret;
647         }
648
649         DRM_INFO("%s: claimed\n", __func__);
650
651         vmw_resource_activate(&stream->res, vmw_stream_destroy);
652         return 0;
653 }
654
655 static void vmw_user_stream_free(struct vmw_resource *res)
656 {
657         struct vmw_user_stream *stream =
658             container_of(res, struct vmw_user_stream, stream.res);
659         struct vmw_private *dev_priv = res->dev_priv;
660
661         ttm_base_object_kfree(stream, base);
662         ttm_mem_global_free(vmw_mem_glob(dev_priv),
663                             vmw_user_stream_size);
664 }
665
666 /**
667  * This function is called when user space has no more references on the
668  * base object. It releases the base-object's reference on the resource object.
669  */
670
671 static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
672 {
673         struct ttm_base_object *base = *p_base;
674         struct vmw_user_stream *stream =
675             container_of(base, struct vmw_user_stream, base);
676         struct vmw_resource *res = &stream->stream.res;
677
678         *p_base = NULL;
679         vmw_resource_unreference(&res);
680 }
681
682 int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
683                            struct drm_file *file_priv)
684 {
685         struct vmw_private *dev_priv = vmw_priv(dev);
686         struct vmw_resource *res;
687         struct vmw_user_stream *stream;
688         struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
689         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
690         struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
691         int ret = 0;
692
693
694         res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
695         if (unlikely(res == NULL))
696                 return -EINVAL;
697
698         if (res->res_free != &vmw_user_stream_free) {
699                 ret = -EINVAL;
700                 goto out;
701         }
702
703         stream = container_of(res, struct vmw_user_stream, stream.res);
704         if (stream->base.tfile != tfile) {
705                 ret = -EINVAL;
706                 goto out;
707         }
708
709         ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
710 out:
711         vmw_resource_unreference(&res);
712         return ret;
713 }
714
715 int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
716                            struct drm_file *file_priv)
717 {
718         struct vmw_private *dev_priv = vmw_priv(dev);
719         struct vmw_user_stream *stream;
720         struct vmw_resource *res;
721         struct vmw_resource *tmp;
722         struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
723         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
724         struct vmw_master *vmaster = vmw_master(file_priv->master);
725         int ret;
726
727         /*
728          * Approximate idr memory usage with 128 bytes. It will be limited
729          * by maximum number_of streams anyway?
730          */
731
732         if (unlikely(vmw_user_stream_size == 0))
733                 vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
734
735         ret = ttm_read_lock(&vmaster->lock, true);
736         if (unlikely(ret != 0))
737                 return ret;
738
739         ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
740                                    vmw_user_stream_size,
741                                    false, true);
742         if (unlikely(ret != 0)) {
743                 if (ret != -ERESTARTSYS)
744                         DRM_ERROR("Out of graphics memory for stream"
745                                   " creation.\n");
746                 goto out_unlock;
747         }
748
749
750         stream = kmalloc(sizeof(*stream), GFP_KERNEL);
751         if (unlikely(stream == NULL)) {
752                 ttm_mem_global_free(vmw_mem_glob(dev_priv),
753                                     vmw_user_stream_size);
754                 ret = -ENOMEM;
755                 goto out_unlock;
756         }
757
758         res = &stream->stream.res;
759         stream->base.shareable = false;
760         stream->base.tfile = NULL;
761
762         /*
763          * From here on, the destructor takes over resource freeing.
764          */
765
766         ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
767         if (unlikely(ret != 0))
768                 goto out_unlock;
769
770         tmp = vmw_resource_reference(res);
771         ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
772                                    &vmw_user_stream_base_release, NULL);
773
774         if (unlikely(ret != 0)) {
775                 vmw_resource_unreference(&tmp);
776                 goto out_err;
777         }
778
779         arg->stream_id = res->id;
780 out_err:
781         vmw_resource_unreference(&res);
782 out_unlock:
783         ttm_read_unlock(&vmaster->lock);
784         return ret;
785 }
786
787 int vmw_user_stream_lookup(struct vmw_private *dev_priv,
788                            struct ttm_object_file *tfile,
789                            uint32_t *inout_id, struct vmw_resource **out)
790 {
791         struct vmw_user_stream *stream;
792         struct vmw_resource *res;
793         int ret;
794
795         res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
796                                   *inout_id);
797         if (unlikely(res == NULL))
798                 return -EINVAL;
799
800         if (res->res_free != &vmw_user_stream_free) {
801                 ret = -EINVAL;
802                 goto err_ref;
803         }
804
805         stream = container_of(res, struct vmw_user_stream, stream.res);
806         if (stream->base.tfile != tfile) {
807                 ret = -EPERM;
808                 goto err_ref;
809         }
810
811         *inout_id = stream->stream.stream_id;
812         *out = res;
813         return 0;
814 err_ref:
815         vmw_resource_unreference(&res);
816         return ret;
817 }
818
819
820 /**
821  * vmw_dumb_create - Create a dumb kms buffer
822  *
823  * @file_priv: Pointer to a struct drm_file identifying the caller.
824  * @dev: Pointer to the drm device.
825  * @args: Pointer to a struct drm_mode_create_dumb structure
826  *
827  * This is a driver callback for the core drm create_dumb functionality.
828  * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
829  * that the arguments have a different format.
830  */
831 int vmw_dumb_create(struct drm_file *file_priv,
832                     struct drm_device *dev,
833                     struct drm_mode_create_dumb *args)
834 {
835         struct vmw_private *dev_priv = vmw_priv(dev);
836         struct vmw_master *vmaster = vmw_master(file_priv->master);
837         struct vmw_dma_buffer *dma_buf;
838         int ret;
839
840         args->pitch = args->width * ((args->bpp + 7) / 8);
841         args->size = args->pitch * args->height;
842
843         ret = ttm_read_lock(&vmaster->lock, true);
844         if (unlikely(ret != 0))
845                 return ret;
846
847         ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
848                                     args->size, false, &args->handle,
849                                     &dma_buf);
850         if (unlikely(ret != 0))
851                 goto out_no_dmabuf;
852
853         vmw_dmabuf_unreference(&dma_buf);
854 out_no_dmabuf:
855         ttm_read_unlock(&vmaster->lock);
856         return ret;
857 }
858
859 /**
860  * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
861  *
862  * @file_priv: Pointer to a struct drm_file identifying the caller.
863  * @dev: Pointer to the drm device.
864  * @handle: Handle identifying the dumb buffer.
865  * @offset: The address space offset returned.
866  *
867  * This is a driver callback for the core drm dumb_map_offset functionality.
868  */
869 int vmw_dumb_map_offset(struct drm_file *file_priv,
870                         struct drm_device *dev, uint32_t handle,
871                         uint64_t *offset)
872 {
873         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
874         struct vmw_dma_buffer *out_buf;
875         int ret;
876
877         ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf);
878         if (ret != 0)
879                 return -EINVAL;
880
881         *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
882         vmw_dmabuf_unreference(&out_buf);
883         return 0;
884 }
885
886 /**
887  * vmw_dumb_destroy - Destroy a dumb boffer
888  *
889  * @file_priv: Pointer to a struct drm_file identifying the caller.
890  * @dev: Pointer to the drm device.
891  * @handle: Handle identifying the dumb buffer.
892  *
893  * This is a driver callback for the core drm dumb_destroy functionality.
894  */
895 int vmw_dumb_destroy(struct drm_file *file_priv,
896                      struct drm_device *dev,
897                      uint32_t handle)
898 {
899         return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
900                                          handle, TTM_REF_USAGE);
901 }
902
903 /**
904  * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
905  *
906  * @res:            The resource for which to allocate a backup buffer.
907  * @interruptible:  Whether any sleeps during allocation should be
908  *                  performed while interruptible.
909  */
910 static int vmw_resource_buf_alloc(struct vmw_resource *res,
911                                   bool interruptible)
912 {
913         unsigned long size =
914                 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
915         struct vmw_dma_buffer *backup;
916         int ret;
917
918         if (likely(res->backup)) {
919                 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
920                 return 0;
921         }
922
923         backup = kzalloc(sizeof(*backup), GFP_KERNEL);
924         if (unlikely(backup == NULL))
925                 return -ENOMEM;
926
927         ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
928                               res->func->backup_placement,
929                               interruptible,
930                               &vmw_dmabuf_bo_free);
931         if (unlikely(ret != 0))
932                 goto out_no_dmabuf;
933
934         res->backup = backup;
935
936 out_no_dmabuf:
937         return ret;
938 }
939
940 /**
941  * vmw_resource_do_validate - Make a resource up-to-date and visible
942  *                            to the device.
943  *
944  * @res:            The resource to make visible to the device.
945  * @val_buf:        Information about a buffer possibly
946  *                  containing backup data if a bind operation is needed.
947  *
948  * On hardware resource shortage, this function returns -EBUSY and
949  * should be retried once resources have been freed up.
950  */
951 static int vmw_resource_do_validate(struct vmw_resource *res,
952                                     struct ttm_validate_buffer *val_buf)
953 {
954         int ret = 0;
955         const struct vmw_res_func *func = res->func;
956
957         if (unlikely(res->id == -1)) {
958                 ret = func->create(res);
959                 if (unlikely(ret != 0))
960                         return ret;
961         }
962
963         if (func->bind &&
964             ((func->needs_backup && list_empty(&res->mob_head) &&
965               val_buf->bo != NULL) ||
966              (!func->needs_backup && val_buf->bo != NULL))) {
967                 ret = func->bind(res, val_buf);
968                 if (unlikely(ret != 0))
969                         goto out_bind_failed;
970                 if (func->needs_backup)
971                         list_add_tail(&res->mob_head, &res->backup->res_list);
972         }
973
974         /*
975          * Only do this on write operations, and move to
976          * vmw_resource_unreserve if it can be called after
977          * backup buffers have been unreserved. Otherwise
978          * sort out locking.
979          */
980         res->res_dirty = true;
981
982         return 0;
983
984 out_bind_failed:
985         func->destroy(res);
986
987         return ret;
988 }
989
990 /**
991  * vmw_resource_unreserve - Unreserve a resource previously reserved for
992  * command submission.
993  *
994  * @res:               Pointer to the struct vmw_resource to unreserve.
995  * @new_backup:        Pointer to new backup buffer if command submission
996  *                     switched.
997  * @new_backup_offset: New backup offset if @new_backup is !NULL.
998  *
999  * Currently unreserving a resource means putting it back on the device's
1000  * resource lru list, so that it can be evicted if necessary.
1001  */
1002 void vmw_resource_unreserve(struct vmw_resource *res,
1003                             struct vmw_dma_buffer *new_backup,
1004                             unsigned long new_backup_offset)
1005 {
1006         struct vmw_private *dev_priv = res->dev_priv;
1007
1008         if (!list_empty(&res->lru_head))
1009                 return;
1010
1011         if (new_backup && new_backup != res->backup) {
1012
1013                 if (res->backup) {
1014                         lockdep_assert_held(&res->backup->base.resv->lock.base);
1015                         list_del_init(&res->mob_head);
1016                         vmw_dmabuf_unreference(&res->backup);
1017                 }
1018
1019                 res->backup = vmw_dmabuf_reference(new_backup);
1020                 lockdep_assert_held(&new_backup->base.resv->lock.base);
1021                 list_add_tail(&res->mob_head, &new_backup->res_list);
1022         }
1023         if (new_backup)
1024                 res->backup_offset = new_backup_offset;
1025
1026         if (!res->func->may_evict || res->id == -1)
1027                 return;
1028
1029         write_lock(&dev_priv->resource_lock);
1030         list_add_tail(&res->lru_head,
1031                       &res->dev_priv->res_lru[res->func->res_type]);
1032         write_unlock(&dev_priv->resource_lock);
1033 }
1034
1035 /**
1036  * vmw_resource_check_buffer - Check whether a backup buffer is needed
1037  *                             for a resource and in that case, allocate
1038  *                             one, reserve and validate it.
1039  *
1040  * @res:            The resource for which to allocate a backup buffer.
1041  * @interruptible:  Whether any sleeps during allocation should be
1042  *                  performed while interruptible.
1043  * @val_buf:        On successful return contains data about the
1044  *                  reserved and validated backup buffer.
1045  */
1046 static int
1047 vmw_resource_check_buffer(struct vmw_resource *res,
1048                           bool interruptible,
1049                           struct ttm_validate_buffer *val_buf)
1050 {
1051         struct list_head val_list;
1052         bool backup_dirty = false;
1053         int ret;
1054
1055         if (unlikely(res->backup == NULL)) {
1056                 ret = vmw_resource_buf_alloc(res, interruptible);
1057                 if (unlikely(ret != 0))
1058                         return ret;
1059         }
1060
1061         INIT_LIST_HEAD(&val_list);
1062         val_buf->bo = ttm_bo_reference(&res->backup->base);
1063         list_add_tail(&val_buf->head, &val_list);
1064         ret = ttm_eu_reserve_buffers(NULL, &val_list);
1065         if (unlikely(ret != 0))
1066                 goto out_no_reserve;
1067
1068         if (res->func->needs_backup && list_empty(&res->mob_head))
1069                 return 0;
1070
1071         backup_dirty = res->backup_dirty;
1072         ret = ttm_bo_validate(&res->backup->base,
1073                               res->func->backup_placement,
1074                               true, false);
1075
1076         if (unlikely(ret != 0))
1077                 goto out_no_validate;
1078
1079         return 0;
1080
1081 out_no_validate:
1082         ttm_eu_backoff_reservation(NULL, &val_list);
1083 out_no_reserve:
1084         ttm_bo_unref(&val_buf->bo);
1085         if (backup_dirty)
1086                 vmw_dmabuf_unreference(&res->backup);
1087
1088         return ret;
1089 }
1090
1091 /**
1092  * vmw_resource_reserve - Reserve a resource for command submission
1093  *
1094  * @res:            The resource to reserve.
1095  *
1096  * This function takes the resource off the LRU list and make sure
1097  * a backup buffer is present for guest-backed resources. However,
1098  * the buffer may not be bound to the resource at this point.
1099  *
1100  */
1101 int vmw_resource_reserve(struct vmw_resource *res, bool no_backup)
1102 {
1103         struct vmw_private *dev_priv = res->dev_priv;
1104         int ret;
1105
1106         write_lock(&dev_priv->resource_lock);
1107         list_del_init(&res->lru_head);
1108         write_unlock(&dev_priv->resource_lock);
1109
1110         if (res->func->needs_backup && res->backup == NULL &&
1111             !no_backup) {
1112                 ret = vmw_resource_buf_alloc(res, true);
1113                 if (unlikely(ret != 0))
1114                         return ret;
1115         }
1116
1117         return 0;
1118 }
1119
1120 /**
1121  * vmw_resource_backoff_reservation - Unreserve and unreference a
1122  *                                    backup buffer
1123  *.
1124  * @val_buf:        Backup buffer information.
1125  */
1126 static void
1127 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1128 {
1129         struct list_head val_list;
1130
1131         if (likely(val_buf->bo == NULL))
1132                 return;
1133
1134         INIT_LIST_HEAD(&val_list);
1135         list_add_tail(&val_buf->head, &val_list);
1136         ttm_eu_backoff_reservation(NULL, &val_list);
1137         ttm_bo_unref(&val_buf->bo);
1138 }
1139
1140 /**
1141  * vmw_resource_do_evict - Evict a resource, and transfer its data
1142  *                         to a backup buffer.
1143  *
1144  * @res:            The resource to evict.
1145  * @interruptible:  Whether to wait interruptible.
1146  */
1147 int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1148 {
1149         struct ttm_validate_buffer val_buf;
1150         const struct vmw_res_func *func = res->func;
1151         int ret;
1152
1153         BUG_ON(!func->may_evict);
1154
1155         val_buf.bo = NULL;
1156         ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1157         if (unlikely(ret != 0))
1158                 return ret;
1159
1160         if (unlikely(func->unbind != NULL &&
1161                      (!func->needs_backup || !list_empty(&res->mob_head)))) {
1162                 ret = func->unbind(res, res->res_dirty, &val_buf);
1163                 if (unlikely(ret != 0))
1164                         goto out_no_unbind;
1165                 list_del_init(&res->mob_head);
1166         }
1167         ret = func->destroy(res);
1168         res->backup_dirty = true;
1169         res->res_dirty = false;
1170 out_no_unbind:
1171         vmw_resource_backoff_reservation(&val_buf);
1172
1173         return ret;
1174 }
1175
1176
1177 /**
1178  * vmw_resource_validate - Make a resource up-to-date and visible
1179  *                         to the device.
1180  *
1181  * @res:            The resource to make visible to the device.
1182  *
1183  * On succesful return, any backup DMA buffer pointed to by @res->backup will
1184  * be reserved and validated.
1185  * On hardware resource shortage, this function will repeatedly evict
1186  * resources of the same type until the validation succeeds.
1187  */
1188 int vmw_resource_validate(struct vmw_resource *res)
1189 {
1190         int ret;
1191         struct vmw_resource *evict_res;
1192         struct vmw_private *dev_priv = res->dev_priv;
1193         struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1194         struct ttm_validate_buffer val_buf;
1195         unsigned err_count = 0;
1196
1197         if (likely(!res->func->may_evict))
1198                 return 0;
1199
1200         val_buf.bo = NULL;
1201         if (res->backup)
1202                 val_buf.bo = &res->backup->base;
1203         do {
1204                 ret = vmw_resource_do_validate(res, &val_buf);
1205                 if (likely(ret != -EBUSY))
1206                         break;
1207
1208                 write_lock(&dev_priv->resource_lock);
1209                 if (list_empty(lru_list) || !res->func->may_evict) {
1210                         DRM_ERROR("Out of device device resources "
1211                                   "for %s.\n", res->func->type_name);
1212                         ret = -EBUSY;
1213                         write_unlock(&dev_priv->resource_lock);
1214                         break;
1215                 }
1216
1217                 evict_res = vmw_resource_reference
1218                         (list_first_entry(lru_list, struct vmw_resource,
1219                                           lru_head));
1220                 list_del_init(&evict_res->lru_head);
1221
1222                 write_unlock(&dev_priv->resource_lock);
1223
1224                 ret = vmw_resource_do_evict(evict_res, true);
1225                 if (unlikely(ret != 0)) {
1226                         write_lock(&dev_priv->resource_lock);
1227                         list_add_tail(&evict_res->lru_head, lru_list);
1228                         write_unlock(&dev_priv->resource_lock);
1229                         if (ret == -ERESTARTSYS ||
1230                             ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1231                                 vmw_resource_unreference(&evict_res);
1232                                 goto out_no_validate;
1233                         }
1234                 }
1235
1236                 vmw_resource_unreference(&evict_res);
1237         } while (1);
1238
1239         if (unlikely(ret != 0))
1240                 goto out_no_validate;
1241         else if (!res->func->needs_backup && res->backup) {
1242                 list_del_init(&res->mob_head);
1243                 vmw_dmabuf_unreference(&res->backup);
1244         }
1245
1246         return 0;
1247
1248 out_no_validate:
1249         return ret;
1250 }
1251
1252 /**
1253  * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1254  *                       object without unreserving it.
1255  *
1256  * @bo:             Pointer to the struct ttm_buffer_object to fence.
1257  * @fence:          Pointer to the fence. If NULL, this function will
1258  *                  insert a fence into the command stream..
1259  *
1260  * Contrary to the ttm_eu version of this function, it takes only
1261  * a single buffer object instead of a list, and it also doesn't
1262  * unreserve the buffer object, which needs to be done separately.
1263  */
1264 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1265                          struct vmw_fence_obj *fence)
1266 {
1267         struct ttm_bo_device *bdev = bo->bdev;
1268         struct ttm_bo_driver *driver = bdev->driver;
1269         struct vmw_fence_obj *old_fence_obj;
1270         struct vmw_private *dev_priv =
1271                 container_of(bdev, struct vmw_private, bdev);
1272
1273         if (fence == NULL)
1274                 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1275         else
1276                 driver->sync_obj_ref(fence);
1277
1278         spin_lock(&bdev->fence_lock);
1279
1280         old_fence_obj = bo->sync_obj;
1281         bo->sync_obj = fence;
1282
1283         spin_unlock(&bdev->fence_lock);
1284
1285         if (old_fence_obj)
1286                 vmw_fence_obj_unreference(&old_fence_obj);
1287 }
1288
1289 /**
1290  * vmw_resource_move_notify - TTM move_notify_callback
1291  *
1292  * @bo:             The TTM buffer object about to move.
1293  * @mem:            The truct ttm_mem_reg indicating to what memory
1294  *                  region the move is taking place.
1295  *
1296  * For now does nothing.
1297  */
1298 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1299                               struct ttm_mem_reg *mem)
1300 {
1301 }
1302
1303 /**
1304  * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1305  *
1306  * @res:            The resource being queried.
1307  */
1308 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1309 {
1310         return res->func->needs_backup;
1311 }
1312
1313 /**
1314  * vmw_resource_evict_type - Evict all resources of a specific type
1315  *
1316  * @dev_priv:       Pointer to a device private struct
1317  * @type:           The resource type to evict
1318  *
1319  * To avoid thrashing starvation or as part of the hibernation sequence,
1320  * try to evict all evictable resources of a specific type.
1321  */
1322 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1323                                     enum vmw_res_type type)
1324 {
1325         struct list_head *lru_list = &dev_priv->res_lru[type];
1326         struct vmw_resource *evict_res;
1327         unsigned err_count = 0;
1328         int ret;
1329
1330         do {
1331                 write_lock(&dev_priv->resource_lock);
1332
1333                 if (list_empty(lru_list))
1334                         goto out_unlock;
1335
1336                 evict_res = vmw_resource_reference(
1337                         list_first_entry(lru_list, struct vmw_resource,
1338                                          lru_head));
1339                 list_del_init(&evict_res->lru_head);
1340                 write_unlock(&dev_priv->resource_lock);
1341
1342                 ret = vmw_resource_do_evict(evict_res, false);
1343                 if (unlikely(ret != 0)) {
1344                         write_lock(&dev_priv->resource_lock);
1345                         list_add_tail(&evict_res->lru_head, lru_list);
1346                         write_unlock(&dev_priv->resource_lock);
1347                         if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1348                                 vmw_resource_unreference(&evict_res);
1349                                 return;
1350                         }
1351                 }
1352
1353                 vmw_resource_unreference(&evict_res);
1354         } while (1);
1355
1356 out_unlock:
1357         write_unlock(&dev_priv->resource_lock);
1358 }
1359
1360 /**
1361  * vmw_resource_evict_all - Evict all evictable resources
1362  *
1363  * @dev_priv:       Pointer to a device private struct
1364  *
1365  * To avoid thrashing starvation or as part of the hibernation sequence,
1366  * evict all evictable resources. In particular this means that all
1367  * guest-backed resources that are registered with the device are
1368  * evicted and the OTable becomes clean.
1369  */
1370 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1371 {
1372         enum vmw_res_type type;
1373
1374         mutex_lock(&dev_priv->cmdbuf_mutex);
1375
1376         for (type = 0; type < vmw_res_max; ++type)
1377                 vmw_resource_evict_type(dev_priv, type);
1378
1379         mutex_unlock(&dev_priv->cmdbuf_mutex);
1380 }