drm/vmwgfx: Implement a buffer object synccpu ioctl.
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / gpu / drm / vmwgfx / vmwgfx_resource.c
1 /**************************************************************************
2  *
3  * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34
35 #define VMW_RES_EVICT_ERR_COUNT 10
36
37 struct vmw_user_dma_buffer {
38         struct ttm_prime_object prime;
39         struct vmw_dma_buffer dma;
40 };
41
42 struct vmw_bo_user_rep {
43         uint32_t handle;
44         uint64_t map_handle;
45 };
46
47 struct vmw_stream {
48         struct vmw_resource res;
49         uint32_t stream_id;
50 };
51
52 struct vmw_user_stream {
53         struct ttm_base_object base;
54         struct vmw_stream stream;
55 };
56
57
58 static uint64_t vmw_user_stream_size;
59
60 static const struct vmw_res_func vmw_stream_func = {
61         .res_type = vmw_res_stream,
62         .needs_backup = false,
63         .may_evict = false,
64         .type_name = "video streams",
65         .backup_placement = NULL,
66         .create = NULL,
67         .destroy = NULL,
68         .bind = NULL,
69         .unbind = NULL
70 };
71
72 static inline struct vmw_dma_buffer *
73 vmw_dma_buffer(struct ttm_buffer_object *bo)
74 {
75         return container_of(bo, struct vmw_dma_buffer, base);
76 }
77
78 static inline struct vmw_user_dma_buffer *
79 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
80 {
81         struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
82         return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
83 }
84
85 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
86 {
87         kref_get(&res->kref);
88         return res;
89 }
90
91
92 /**
93  * vmw_resource_release_id - release a resource id to the id manager.
94  *
95  * @res: Pointer to the resource.
96  *
97  * Release the resource id to the resource id manager and set it to -1
98  */
99 void vmw_resource_release_id(struct vmw_resource *res)
100 {
101         struct vmw_private *dev_priv = res->dev_priv;
102         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
103
104         write_lock(&dev_priv->resource_lock);
105         if (res->id != -1)
106                 idr_remove(idr, res->id);
107         res->id = -1;
108         write_unlock(&dev_priv->resource_lock);
109 }
110
111 static void vmw_resource_release(struct kref *kref)
112 {
113         struct vmw_resource *res =
114             container_of(kref, struct vmw_resource, kref);
115         struct vmw_private *dev_priv = res->dev_priv;
116         int id;
117         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
118
119         res->avail = false;
120         list_del_init(&res->lru_head);
121         write_unlock(&dev_priv->resource_lock);
122         if (res->backup) {
123                 struct ttm_buffer_object *bo = &res->backup->base;
124
125                 ttm_bo_reserve(bo, false, false, false, 0);
126                 if (!list_empty(&res->mob_head) &&
127                     res->func->unbind != NULL) {
128                         struct ttm_validate_buffer val_buf;
129
130                         val_buf.bo = bo;
131                         res->func->unbind(res, false, &val_buf);
132                 }
133                 res->backup_dirty = false;
134                 list_del_init(&res->mob_head);
135                 ttm_bo_unreserve(bo);
136                 vmw_dmabuf_unreference(&res->backup);
137         }
138
139         if (likely(res->hw_destroy != NULL))
140                 res->hw_destroy(res);
141
142         id = res->id;
143         if (res->res_free != NULL)
144                 res->res_free(res);
145         else
146                 kfree(res);
147
148         write_lock(&dev_priv->resource_lock);
149
150         if (id != -1)
151                 idr_remove(idr, id);
152 }
153
154 void vmw_resource_unreference(struct vmw_resource **p_res)
155 {
156         struct vmw_resource *res = *p_res;
157         struct vmw_private *dev_priv = res->dev_priv;
158
159         *p_res = NULL;
160         write_lock(&dev_priv->resource_lock);
161         kref_put(&res->kref, vmw_resource_release);
162         write_unlock(&dev_priv->resource_lock);
163 }
164
165
166 /**
167  * vmw_resource_alloc_id - release a resource id to the id manager.
168  *
169  * @res: Pointer to the resource.
170  *
171  * Allocate the lowest free resource from the resource manager, and set
172  * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
173  */
174 int vmw_resource_alloc_id(struct vmw_resource *res)
175 {
176         struct vmw_private *dev_priv = res->dev_priv;
177         int ret;
178         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
179
180         BUG_ON(res->id != -1);
181
182         idr_preload(GFP_KERNEL);
183         write_lock(&dev_priv->resource_lock);
184
185         ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
186         if (ret >= 0)
187                 res->id = ret;
188
189         write_unlock(&dev_priv->resource_lock);
190         idr_preload_end();
191         return ret < 0 ? ret : 0;
192 }
193
194 /**
195  * vmw_resource_init - initialize a struct vmw_resource
196  *
197  * @dev_priv:       Pointer to a device private struct.
198  * @res:            The struct vmw_resource to initialize.
199  * @obj_type:       Resource object type.
200  * @delay_id:       Boolean whether to defer device id allocation until
201  *                  the first validation.
202  * @res_free:       Resource destructor.
203  * @func:           Resource function table.
204  */
205 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
206                       bool delay_id,
207                       void (*res_free) (struct vmw_resource *res),
208                       const struct vmw_res_func *func)
209 {
210         kref_init(&res->kref);
211         res->hw_destroy = NULL;
212         res->res_free = res_free;
213         res->avail = false;
214         res->dev_priv = dev_priv;
215         res->func = func;
216         INIT_LIST_HEAD(&res->lru_head);
217         INIT_LIST_HEAD(&res->mob_head);
218         res->id = -1;
219         res->backup = NULL;
220         res->backup_offset = 0;
221         res->backup_dirty = false;
222         res->res_dirty = false;
223         if (delay_id)
224                 return 0;
225         else
226                 return vmw_resource_alloc_id(res);
227 }
228
229 /**
230  * vmw_resource_activate
231  *
232  * @res:        Pointer to the newly created resource
233  * @hw_destroy: Destroy function. NULL if none.
234  *
235  * Activate a resource after the hardware has been made aware of it.
236  * Set tye destroy function to @destroy. Typically this frees the
237  * resource and destroys the hardware resources associated with it.
238  * Activate basically means that the function vmw_resource_lookup will
239  * find it.
240  */
241 void vmw_resource_activate(struct vmw_resource *res,
242                            void (*hw_destroy) (struct vmw_resource *))
243 {
244         struct vmw_private *dev_priv = res->dev_priv;
245
246         write_lock(&dev_priv->resource_lock);
247         res->avail = true;
248         res->hw_destroy = hw_destroy;
249         write_unlock(&dev_priv->resource_lock);
250 }
251
252 struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
253                                          struct idr *idr, int id)
254 {
255         struct vmw_resource *res;
256
257         read_lock(&dev_priv->resource_lock);
258         res = idr_find(idr, id);
259         if (res && res->avail)
260                 kref_get(&res->kref);
261         else
262                 res = NULL;
263         read_unlock(&dev_priv->resource_lock);
264
265         if (unlikely(res == NULL))
266                 return NULL;
267
268         return res;
269 }
270
271 /**
272  * vmw_user_resource_lookup_handle - lookup a struct resource from a
273  * TTM user-space handle and perform basic type checks
274  *
275  * @dev_priv:     Pointer to a device private struct
276  * @tfile:        Pointer to a struct ttm_object_file identifying the caller
277  * @handle:       The TTM user-space handle
278  * @converter:    Pointer to an object describing the resource type
279  * @p_res:        On successful return the location pointed to will contain
280  *                a pointer to a refcounted struct vmw_resource.
281  *
282  * If the handle can't be found or is associated with an incorrect resource
283  * type, -EINVAL will be returned.
284  */
285 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
286                                     struct ttm_object_file *tfile,
287                                     uint32_t handle,
288                                     const struct vmw_user_resource_conv
289                                     *converter,
290                                     struct vmw_resource **p_res)
291 {
292         struct ttm_base_object *base;
293         struct vmw_resource *res;
294         int ret = -EINVAL;
295
296         base = ttm_base_object_lookup(tfile, handle);
297         if (unlikely(base == NULL))
298                 return -EINVAL;
299
300         if (unlikely(ttm_base_object_type(base) != converter->object_type))
301                 goto out_bad_resource;
302
303         res = converter->base_obj_to_res(base);
304
305         read_lock(&dev_priv->resource_lock);
306         if (!res->avail || res->res_free != converter->res_free) {
307                 read_unlock(&dev_priv->resource_lock);
308                 goto out_bad_resource;
309         }
310
311         kref_get(&res->kref);
312         read_unlock(&dev_priv->resource_lock);
313
314         *p_res = res;
315         ret = 0;
316
317 out_bad_resource:
318         ttm_base_object_unref(&base);
319
320         return ret;
321 }
322
323 /**
324  * Helper function that looks either a surface or dmabuf.
325  *
326  * The pointer this pointed at by out_surf and out_buf needs to be null.
327  */
328 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
329                            struct ttm_object_file *tfile,
330                            uint32_t handle,
331                            struct vmw_surface **out_surf,
332                            struct vmw_dma_buffer **out_buf)
333 {
334         struct vmw_resource *res;
335         int ret;
336
337         BUG_ON(*out_surf || *out_buf);
338
339         ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
340                                               user_surface_converter,
341                                               &res);
342         if (!ret) {
343                 *out_surf = vmw_res_to_srf(res);
344                 return 0;
345         }
346
347         *out_surf = NULL;
348         ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf);
349         return ret;
350 }
351
352 /**
353  * Buffer management.
354  */
355
356 /**
357  * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
358  *
359  * @dev_priv: Pointer to a struct vmw_private identifying the device.
360  * @size: The requested buffer size.
361  * @user: Whether this is an ordinary dma buffer or a user dma buffer.
362  */
363 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
364                                   bool user)
365 {
366         static size_t struct_size, user_struct_size;
367         size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
368         size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
369
370         if (unlikely(struct_size == 0)) {
371                 size_t backend_size = ttm_round_pot(vmw_tt_size);
372
373                 struct_size = backend_size +
374                         ttm_round_pot(sizeof(struct vmw_dma_buffer));
375                 user_struct_size = backend_size +
376                         ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
377         }
378
379         if (dev_priv->map_mode == vmw_dma_alloc_coherent)
380                 page_array_size +=
381                         ttm_round_pot(num_pages * sizeof(dma_addr_t));
382
383         return ((user) ? user_struct_size : struct_size) +
384                 page_array_size;
385 }
386
387 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
388 {
389         struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
390
391         kfree(vmw_bo);
392 }
393
394 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
395 {
396         struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
397
398         ttm_prime_object_kfree(vmw_user_bo, prime);
399 }
400
401 int vmw_dmabuf_init(struct vmw_private *dev_priv,
402                     struct vmw_dma_buffer *vmw_bo,
403                     size_t size, struct ttm_placement *placement,
404                     bool interruptible,
405                     void (*bo_free) (struct ttm_buffer_object *bo))
406 {
407         struct ttm_bo_device *bdev = &dev_priv->bdev;
408         size_t acc_size;
409         int ret;
410         bool user = (bo_free == &vmw_user_dmabuf_destroy);
411
412         BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
413
414         acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
415         memset(vmw_bo, 0, sizeof(*vmw_bo));
416
417         INIT_LIST_HEAD(&vmw_bo->res_list);
418
419         ret = ttm_bo_init(bdev, &vmw_bo->base, size,
420                           (user) ? ttm_bo_type_device :
421                           ttm_bo_type_kernel, placement,
422                           0, interruptible,
423                           NULL, acc_size, NULL, bo_free);
424         return ret;
425 }
426
427 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
428 {
429         struct vmw_user_dma_buffer *vmw_user_bo;
430         struct ttm_base_object *base = *p_base;
431         struct ttm_buffer_object *bo;
432
433         *p_base = NULL;
434
435         if (unlikely(base == NULL))
436                 return;
437
438         vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
439                                    prime.base);
440         bo = &vmw_user_bo->dma.base;
441         ttm_bo_unref(&bo);
442 }
443
444 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
445                                             enum ttm_ref_type ref_type)
446 {
447         struct vmw_user_dma_buffer *user_bo;
448         user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
449
450         switch (ref_type) {
451         case TTM_REF_SYNCCPU_WRITE:
452                 ttm_bo_synccpu_write_release(&user_bo->dma.base);
453                 break;
454         default:
455                 BUG();
456         }
457 }
458
459 /**
460  * vmw_user_dmabuf_alloc - Allocate a user dma buffer
461  *
462  * @dev_priv: Pointer to a struct device private.
463  * @tfile: Pointer to a struct ttm_object_file on which to register the user
464  * object.
465  * @size: Size of the dma buffer.
466  * @shareable: Boolean whether the buffer is shareable with other open files.
467  * @handle: Pointer to where the handle value should be assigned.
468  * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
469  * should be assigned.
470  */
471 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
472                           struct ttm_object_file *tfile,
473                           uint32_t size,
474                           bool shareable,
475                           uint32_t *handle,
476                           struct vmw_dma_buffer **p_dma_buf)
477 {
478         struct vmw_user_dma_buffer *user_bo;
479         struct ttm_buffer_object *tmp;
480         int ret;
481
482         user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
483         if (unlikely(user_bo == NULL)) {
484                 DRM_ERROR("Failed to allocate a buffer.\n");
485                 return -ENOMEM;
486         }
487
488         ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
489                               (dev_priv->has_mob) ?
490                               &vmw_sys_placement :
491                               &vmw_vram_sys_placement, true,
492                               &vmw_user_dmabuf_destroy);
493         if (unlikely(ret != 0))
494                 return ret;
495
496         tmp = ttm_bo_reference(&user_bo->dma.base);
497         ret = ttm_prime_object_init(tfile,
498                                     size,
499                                     &user_bo->prime,
500                                     shareable,
501                                     ttm_buffer_type,
502                                     &vmw_user_dmabuf_release,
503                                     &vmw_user_dmabuf_ref_obj_release);
504         if (unlikely(ret != 0)) {
505                 ttm_bo_unref(&tmp);
506                 goto out_no_base_object;
507         }
508
509         *p_dma_buf = &user_bo->dma;
510         *handle = user_bo->prime.base.hash.key;
511
512 out_no_base_object:
513         return ret;
514 }
515
516 /**
517  * vmw_user_dmabuf_verify_access - verify access permissions on this
518  * buffer object.
519  *
520  * @bo: Pointer to the buffer object being accessed
521  * @tfile: Identifying the caller.
522  */
523 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
524                                   struct ttm_object_file *tfile)
525 {
526         struct vmw_user_dma_buffer *vmw_user_bo;
527
528         if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
529                 return -EPERM;
530
531         vmw_user_bo = vmw_user_dma_buffer(bo);
532         return (vmw_user_bo->prime.base.tfile == tfile ||
533                 vmw_user_bo->prime.base.shareable) ? 0 : -EPERM;
534 }
535
536 /**
537  * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
538  * access, idling previous GPU operations on the buffer and optionally
539  * blocking it for further command submissions.
540  *
541  * @user_bo: Pointer to the buffer object being grabbed for CPU access
542  * @tfile: Identifying the caller.
543  * @flags: Flags indicating how the grab should be performed.
544  *
545  * A blocking grab will be automatically released when @tfile is closed.
546  */
547 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
548                                         struct ttm_object_file *tfile,
549                                         uint32_t flags)
550 {
551         struct ttm_buffer_object *bo = &user_bo->dma.base;
552         bool existed;
553         int ret;
554
555         if (flags & drm_vmw_synccpu_allow_cs) {
556                 struct ttm_bo_device *bdev = bo->bdev;
557
558                 spin_lock(&bdev->fence_lock);
559                 ret = ttm_bo_wait(bo, false, true,
560                                   !!(flags & drm_vmw_synccpu_dontblock));
561                 spin_unlock(&bdev->fence_lock);
562                 return ret;
563         }
564
565         ret = ttm_bo_synccpu_write_grab
566                 (bo, !!(flags & drm_vmw_synccpu_dontblock));
567         if (unlikely(ret != 0))
568                 return ret;
569
570         ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
571                                  TTM_REF_SYNCCPU_WRITE, &existed);
572         if (ret != 0 || existed)
573                 ttm_bo_synccpu_write_release(&user_bo->dma.base);
574
575         return ret;
576 }
577
578 /**
579  * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
580  * and unblock command submission on the buffer if blocked.
581  *
582  * @handle: Handle identifying the buffer object.
583  * @tfile: Identifying the caller.
584  * @flags: Flags indicating the type of release.
585  */
586 static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
587                                            struct ttm_object_file *tfile,
588                                            uint32_t flags)
589 {
590         if (!(flags & drm_vmw_synccpu_allow_cs))
591                 return ttm_ref_object_base_unref(tfile, handle,
592                                                  TTM_REF_SYNCCPU_WRITE);
593
594         return 0;
595 }
596
597 /**
598  * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
599  * functionality.
600  *
601  * @dev: Identifies the drm device.
602  * @data: Pointer to the ioctl argument.
603  * @file_priv: Identifies the caller.
604  *
605  * This function checks the ioctl arguments for validity and calls the
606  * relevant synccpu functions.
607  */
608 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
609                                   struct drm_file *file_priv)
610 {
611         struct drm_vmw_synccpu_arg *arg =
612                 (struct drm_vmw_synccpu_arg *) data;
613         struct vmw_dma_buffer *dma_buf;
614         struct vmw_user_dma_buffer *user_bo;
615         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
616         int ret;
617
618         if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
619             || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
620                                drm_vmw_synccpu_dontblock |
621                                drm_vmw_synccpu_allow_cs)) != 0) {
622                 DRM_ERROR("Illegal synccpu flags.\n");
623                 return -EINVAL;
624         }
625
626         switch (arg->op) {
627         case drm_vmw_synccpu_grab:
628                 ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf);
629                 if (unlikely(ret != 0))
630                         return ret;
631
632                 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
633                                        dma);
634                 ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
635                 vmw_dmabuf_unreference(&dma_buf);
636                 if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
637                              ret != -EBUSY)) {
638                         DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
639                                   (unsigned int) arg->handle);
640                         return ret;
641                 }
642                 break;
643         case drm_vmw_synccpu_release:
644                 ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
645                                                       arg->flags);
646                 if (unlikely(ret != 0)) {
647                         DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
648                                   (unsigned int) arg->handle);
649                         return ret;
650                 }
651                 break;
652         default:
653                 DRM_ERROR("Invalid synccpu operation.\n");
654                 return -EINVAL;
655         }
656
657         return 0;
658 }
659
660 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
661                            struct drm_file *file_priv)
662 {
663         struct vmw_private *dev_priv = vmw_priv(dev);
664         union drm_vmw_alloc_dmabuf_arg *arg =
665             (union drm_vmw_alloc_dmabuf_arg *)data;
666         struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
667         struct drm_vmw_dmabuf_rep *rep = &arg->rep;
668         struct vmw_dma_buffer *dma_buf;
669         uint32_t handle;
670         struct vmw_master *vmaster = vmw_master(file_priv->master);
671         int ret;
672
673         ret = ttm_read_lock(&vmaster->lock, true);
674         if (unlikely(ret != 0))
675                 return ret;
676
677         ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
678                                     req->size, false, &handle, &dma_buf);
679         if (unlikely(ret != 0))
680                 goto out_no_dmabuf;
681
682         rep->handle = handle;
683         rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
684         rep->cur_gmr_id = handle;
685         rep->cur_gmr_offset = 0;
686
687         vmw_dmabuf_unreference(&dma_buf);
688
689 out_no_dmabuf:
690         ttm_read_unlock(&vmaster->lock);
691
692         return ret;
693 }
694
695 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
696                            struct drm_file *file_priv)
697 {
698         struct drm_vmw_unref_dmabuf_arg *arg =
699             (struct drm_vmw_unref_dmabuf_arg *)data;
700
701         return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
702                                          arg->handle,
703                                          TTM_REF_USAGE);
704 }
705
706 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
707                            uint32_t handle, struct vmw_dma_buffer **out)
708 {
709         struct vmw_user_dma_buffer *vmw_user_bo;
710         struct ttm_base_object *base;
711
712         base = ttm_base_object_lookup(tfile, handle);
713         if (unlikely(base == NULL)) {
714                 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
715                        (unsigned long)handle);
716                 return -ESRCH;
717         }
718
719         if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
720                 ttm_base_object_unref(&base);
721                 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
722                        (unsigned long)handle);
723                 return -EINVAL;
724         }
725
726         vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
727                                    prime.base);
728         (void)ttm_bo_reference(&vmw_user_bo->dma.base);
729         ttm_base_object_unref(&base);
730         *out = &vmw_user_bo->dma;
731
732         return 0;
733 }
734
735 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
736                               struct vmw_dma_buffer *dma_buf,
737                               uint32_t *handle)
738 {
739         struct vmw_user_dma_buffer *user_bo;
740
741         if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
742                 return -EINVAL;
743
744         user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
745
746         *handle = user_bo->prime.base.hash.key;
747         return ttm_ref_object_add(tfile, &user_bo->prime.base,
748                                   TTM_REF_USAGE, NULL);
749 }
750
751 /*
752  * Stream management
753  */
754
755 static void vmw_stream_destroy(struct vmw_resource *res)
756 {
757         struct vmw_private *dev_priv = res->dev_priv;
758         struct vmw_stream *stream;
759         int ret;
760
761         DRM_INFO("%s: unref\n", __func__);
762         stream = container_of(res, struct vmw_stream, res);
763
764         ret = vmw_overlay_unref(dev_priv, stream->stream_id);
765         WARN_ON(ret != 0);
766 }
767
768 static int vmw_stream_init(struct vmw_private *dev_priv,
769                            struct vmw_stream *stream,
770                            void (*res_free) (struct vmw_resource *res))
771 {
772         struct vmw_resource *res = &stream->res;
773         int ret;
774
775         ret = vmw_resource_init(dev_priv, res, false, res_free,
776                                 &vmw_stream_func);
777
778         if (unlikely(ret != 0)) {
779                 if (res_free == NULL)
780                         kfree(stream);
781                 else
782                         res_free(&stream->res);
783                 return ret;
784         }
785
786         ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
787         if (ret) {
788                 vmw_resource_unreference(&res);
789                 return ret;
790         }
791
792         DRM_INFO("%s: claimed\n", __func__);
793
794         vmw_resource_activate(&stream->res, vmw_stream_destroy);
795         return 0;
796 }
797
798 static void vmw_user_stream_free(struct vmw_resource *res)
799 {
800         struct vmw_user_stream *stream =
801             container_of(res, struct vmw_user_stream, stream.res);
802         struct vmw_private *dev_priv = res->dev_priv;
803
804         ttm_base_object_kfree(stream, base);
805         ttm_mem_global_free(vmw_mem_glob(dev_priv),
806                             vmw_user_stream_size);
807 }
808
809 /**
810  * This function is called when user space has no more references on the
811  * base object. It releases the base-object's reference on the resource object.
812  */
813
814 static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
815 {
816         struct ttm_base_object *base = *p_base;
817         struct vmw_user_stream *stream =
818             container_of(base, struct vmw_user_stream, base);
819         struct vmw_resource *res = &stream->stream.res;
820
821         *p_base = NULL;
822         vmw_resource_unreference(&res);
823 }
824
825 int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
826                            struct drm_file *file_priv)
827 {
828         struct vmw_private *dev_priv = vmw_priv(dev);
829         struct vmw_resource *res;
830         struct vmw_user_stream *stream;
831         struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
832         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
833         struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
834         int ret = 0;
835
836
837         res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
838         if (unlikely(res == NULL))
839                 return -EINVAL;
840
841         if (res->res_free != &vmw_user_stream_free) {
842                 ret = -EINVAL;
843                 goto out;
844         }
845
846         stream = container_of(res, struct vmw_user_stream, stream.res);
847         if (stream->base.tfile != tfile) {
848                 ret = -EINVAL;
849                 goto out;
850         }
851
852         ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
853 out:
854         vmw_resource_unreference(&res);
855         return ret;
856 }
857
858 int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
859                            struct drm_file *file_priv)
860 {
861         struct vmw_private *dev_priv = vmw_priv(dev);
862         struct vmw_user_stream *stream;
863         struct vmw_resource *res;
864         struct vmw_resource *tmp;
865         struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
866         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
867         struct vmw_master *vmaster = vmw_master(file_priv->master);
868         int ret;
869
870         /*
871          * Approximate idr memory usage with 128 bytes. It will be limited
872          * by maximum number_of streams anyway?
873          */
874
875         if (unlikely(vmw_user_stream_size == 0))
876                 vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
877
878         ret = ttm_read_lock(&vmaster->lock, true);
879         if (unlikely(ret != 0))
880                 return ret;
881
882         ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
883                                    vmw_user_stream_size,
884                                    false, true);
885         if (unlikely(ret != 0)) {
886                 if (ret != -ERESTARTSYS)
887                         DRM_ERROR("Out of graphics memory for stream"
888                                   " creation.\n");
889                 goto out_unlock;
890         }
891
892
893         stream = kmalloc(sizeof(*stream), GFP_KERNEL);
894         if (unlikely(stream == NULL)) {
895                 ttm_mem_global_free(vmw_mem_glob(dev_priv),
896                                     vmw_user_stream_size);
897                 ret = -ENOMEM;
898                 goto out_unlock;
899         }
900
901         res = &stream->stream.res;
902         stream->base.shareable = false;
903         stream->base.tfile = NULL;
904
905         /*
906          * From here on, the destructor takes over resource freeing.
907          */
908
909         ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
910         if (unlikely(ret != 0))
911                 goto out_unlock;
912
913         tmp = vmw_resource_reference(res);
914         ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
915                                    &vmw_user_stream_base_release, NULL);
916
917         if (unlikely(ret != 0)) {
918                 vmw_resource_unreference(&tmp);
919                 goto out_err;
920         }
921
922         arg->stream_id = res->id;
923 out_err:
924         vmw_resource_unreference(&res);
925 out_unlock:
926         ttm_read_unlock(&vmaster->lock);
927         return ret;
928 }
929
930 int vmw_user_stream_lookup(struct vmw_private *dev_priv,
931                            struct ttm_object_file *tfile,
932                            uint32_t *inout_id, struct vmw_resource **out)
933 {
934         struct vmw_user_stream *stream;
935         struct vmw_resource *res;
936         int ret;
937
938         res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
939                                   *inout_id);
940         if (unlikely(res == NULL))
941                 return -EINVAL;
942
943         if (res->res_free != &vmw_user_stream_free) {
944                 ret = -EINVAL;
945                 goto err_ref;
946         }
947
948         stream = container_of(res, struct vmw_user_stream, stream.res);
949         if (stream->base.tfile != tfile) {
950                 ret = -EPERM;
951                 goto err_ref;
952         }
953
954         *inout_id = stream->stream.stream_id;
955         *out = res;
956         return 0;
957 err_ref:
958         vmw_resource_unreference(&res);
959         return ret;
960 }
961
962
963 /**
964  * vmw_dumb_create - Create a dumb kms buffer
965  *
966  * @file_priv: Pointer to a struct drm_file identifying the caller.
967  * @dev: Pointer to the drm device.
968  * @args: Pointer to a struct drm_mode_create_dumb structure
969  *
970  * This is a driver callback for the core drm create_dumb functionality.
971  * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
972  * that the arguments have a different format.
973  */
974 int vmw_dumb_create(struct drm_file *file_priv,
975                     struct drm_device *dev,
976                     struct drm_mode_create_dumb *args)
977 {
978         struct vmw_private *dev_priv = vmw_priv(dev);
979         struct vmw_master *vmaster = vmw_master(file_priv->master);
980         struct vmw_dma_buffer *dma_buf;
981         int ret;
982
983         args->pitch = args->width * ((args->bpp + 7) / 8);
984         args->size = args->pitch * args->height;
985
986         ret = ttm_read_lock(&vmaster->lock, true);
987         if (unlikely(ret != 0))
988                 return ret;
989
990         ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
991                                     args->size, false, &args->handle,
992                                     &dma_buf);
993         if (unlikely(ret != 0))
994                 goto out_no_dmabuf;
995
996         vmw_dmabuf_unreference(&dma_buf);
997 out_no_dmabuf:
998         ttm_read_unlock(&vmaster->lock);
999         return ret;
1000 }
1001
1002 /**
1003  * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
1004  *
1005  * @file_priv: Pointer to a struct drm_file identifying the caller.
1006  * @dev: Pointer to the drm device.
1007  * @handle: Handle identifying the dumb buffer.
1008  * @offset: The address space offset returned.
1009  *
1010  * This is a driver callback for the core drm dumb_map_offset functionality.
1011  */
1012 int vmw_dumb_map_offset(struct drm_file *file_priv,
1013                         struct drm_device *dev, uint32_t handle,
1014                         uint64_t *offset)
1015 {
1016         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1017         struct vmw_dma_buffer *out_buf;
1018         int ret;
1019
1020         ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf);
1021         if (ret != 0)
1022                 return -EINVAL;
1023
1024         *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
1025         vmw_dmabuf_unreference(&out_buf);
1026         return 0;
1027 }
1028
1029 /**
1030  * vmw_dumb_destroy - Destroy a dumb boffer
1031  *
1032  * @file_priv: Pointer to a struct drm_file identifying the caller.
1033  * @dev: Pointer to the drm device.
1034  * @handle: Handle identifying the dumb buffer.
1035  *
1036  * This is a driver callback for the core drm dumb_destroy functionality.
1037  */
1038 int vmw_dumb_destroy(struct drm_file *file_priv,
1039                      struct drm_device *dev,
1040                      uint32_t handle)
1041 {
1042         return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1043                                          handle, TTM_REF_USAGE);
1044 }
1045
1046 /**
1047  * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
1048  *
1049  * @res:            The resource for which to allocate a backup buffer.
1050  * @interruptible:  Whether any sleeps during allocation should be
1051  *                  performed while interruptible.
1052  */
1053 static int vmw_resource_buf_alloc(struct vmw_resource *res,
1054                                   bool interruptible)
1055 {
1056         unsigned long size =
1057                 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
1058         struct vmw_dma_buffer *backup;
1059         int ret;
1060
1061         if (likely(res->backup)) {
1062                 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
1063                 return 0;
1064         }
1065
1066         backup = kzalloc(sizeof(*backup), GFP_KERNEL);
1067         if (unlikely(backup == NULL))
1068                 return -ENOMEM;
1069
1070         ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
1071                               res->func->backup_placement,
1072                               interruptible,
1073                               &vmw_dmabuf_bo_free);
1074         if (unlikely(ret != 0))
1075                 goto out_no_dmabuf;
1076
1077         res->backup = backup;
1078
1079 out_no_dmabuf:
1080         return ret;
1081 }
1082
1083 /**
1084  * vmw_resource_do_validate - Make a resource up-to-date and visible
1085  *                            to the device.
1086  *
1087  * @res:            The resource to make visible to the device.
1088  * @val_buf:        Information about a buffer possibly
1089  *                  containing backup data if a bind operation is needed.
1090  *
1091  * On hardware resource shortage, this function returns -EBUSY and
1092  * should be retried once resources have been freed up.
1093  */
1094 static int vmw_resource_do_validate(struct vmw_resource *res,
1095                                     struct ttm_validate_buffer *val_buf)
1096 {
1097         int ret = 0;
1098         const struct vmw_res_func *func = res->func;
1099
1100         if (unlikely(res->id == -1)) {
1101                 ret = func->create(res);
1102                 if (unlikely(ret != 0))
1103                         return ret;
1104         }
1105
1106         if (func->bind &&
1107             ((func->needs_backup && list_empty(&res->mob_head) &&
1108               val_buf->bo != NULL) ||
1109              (!func->needs_backup && val_buf->bo != NULL))) {
1110                 ret = func->bind(res, val_buf);
1111                 if (unlikely(ret != 0))
1112                         goto out_bind_failed;
1113                 if (func->needs_backup)
1114                         list_add_tail(&res->mob_head, &res->backup->res_list);
1115         }
1116
1117         /*
1118          * Only do this on write operations, and move to
1119          * vmw_resource_unreserve if it can be called after
1120          * backup buffers have been unreserved. Otherwise
1121          * sort out locking.
1122          */
1123         res->res_dirty = true;
1124
1125         return 0;
1126
1127 out_bind_failed:
1128         func->destroy(res);
1129
1130         return ret;
1131 }
1132
1133 /**
1134  * vmw_resource_unreserve - Unreserve a resource previously reserved for
1135  * command submission.
1136  *
1137  * @res:               Pointer to the struct vmw_resource to unreserve.
1138  * @new_backup:        Pointer to new backup buffer if command submission
1139  *                     switched.
1140  * @new_backup_offset: New backup offset if @new_backup is !NULL.
1141  *
1142  * Currently unreserving a resource means putting it back on the device's
1143  * resource lru list, so that it can be evicted if necessary.
1144  */
1145 void vmw_resource_unreserve(struct vmw_resource *res,
1146                             struct vmw_dma_buffer *new_backup,
1147                             unsigned long new_backup_offset)
1148 {
1149         struct vmw_private *dev_priv = res->dev_priv;
1150
1151         if (!list_empty(&res->lru_head))
1152                 return;
1153
1154         if (new_backup && new_backup != res->backup) {
1155
1156                 if (res->backup) {
1157                         lockdep_assert_held(&res->backup->base.resv->lock.base);
1158                         list_del_init(&res->mob_head);
1159                         vmw_dmabuf_unreference(&res->backup);
1160                 }
1161
1162                 res->backup = vmw_dmabuf_reference(new_backup);
1163                 lockdep_assert_held(&new_backup->base.resv->lock.base);
1164                 list_add_tail(&res->mob_head, &new_backup->res_list);
1165         }
1166         if (new_backup)
1167                 res->backup_offset = new_backup_offset;
1168
1169         if (!res->func->may_evict || res->id == -1)
1170                 return;
1171
1172         write_lock(&dev_priv->resource_lock);
1173         list_add_tail(&res->lru_head,
1174                       &res->dev_priv->res_lru[res->func->res_type]);
1175         write_unlock(&dev_priv->resource_lock);
1176 }
1177
1178 /**
1179  * vmw_resource_check_buffer - Check whether a backup buffer is needed
1180  *                             for a resource and in that case, allocate
1181  *                             one, reserve and validate it.
1182  *
1183  * @res:            The resource for which to allocate a backup buffer.
1184  * @interruptible:  Whether any sleeps during allocation should be
1185  *                  performed while interruptible.
1186  * @val_buf:        On successful return contains data about the
1187  *                  reserved and validated backup buffer.
1188  */
1189 static int
1190 vmw_resource_check_buffer(struct vmw_resource *res,
1191                           bool interruptible,
1192                           struct ttm_validate_buffer *val_buf)
1193 {
1194         struct list_head val_list;
1195         bool backup_dirty = false;
1196         int ret;
1197
1198         if (unlikely(res->backup == NULL)) {
1199                 ret = vmw_resource_buf_alloc(res, interruptible);
1200                 if (unlikely(ret != 0))
1201                         return ret;
1202         }
1203
1204         INIT_LIST_HEAD(&val_list);
1205         val_buf->bo = ttm_bo_reference(&res->backup->base);
1206         list_add_tail(&val_buf->head, &val_list);
1207         ret = ttm_eu_reserve_buffers(NULL, &val_list);
1208         if (unlikely(ret != 0))
1209                 goto out_no_reserve;
1210
1211         if (res->func->needs_backup && list_empty(&res->mob_head))
1212                 return 0;
1213
1214         backup_dirty = res->backup_dirty;
1215         ret = ttm_bo_validate(&res->backup->base,
1216                               res->func->backup_placement,
1217                               true, false);
1218
1219         if (unlikely(ret != 0))
1220                 goto out_no_validate;
1221
1222         return 0;
1223
1224 out_no_validate:
1225         ttm_eu_backoff_reservation(NULL, &val_list);
1226 out_no_reserve:
1227         ttm_bo_unref(&val_buf->bo);
1228         if (backup_dirty)
1229                 vmw_dmabuf_unreference(&res->backup);
1230
1231         return ret;
1232 }
1233
1234 /**
1235  * vmw_resource_reserve - Reserve a resource for command submission
1236  *
1237  * @res:            The resource to reserve.
1238  *
1239  * This function takes the resource off the LRU list and make sure
1240  * a backup buffer is present for guest-backed resources. However,
1241  * the buffer may not be bound to the resource at this point.
1242  *
1243  */
1244 int vmw_resource_reserve(struct vmw_resource *res, bool no_backup)
1245 {
1246         struct vmw_private *dev_priv = res->dev_priv;
1247         int ret;
1248
1249         write_lock(&dev_priv->resource_lock);
1250         list_del_init(&res->lru_head);
1251         write_unlock(&dev_priv->resource_lock);
1252
1253         if (res->func->needs_backup && res->backup == NULL &&
1254             !no_backup) {
1255                 ret = vmw_resource_buf_alloc(res, true);
1256                 if (unlikely(ret != 0))
1257                         return ret;
1258         }
1259
1260         return 0;
1261 }
1262
1263 /**
1264  * vmw_resource_backoff_reservation - Unreserve and unreference a
1265  *                                    backup buffer
1266  *.
1267  * @val_buf:        Backup buffer information.
1268  */
1269 static void
1270 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1271 {
1272         struct list_head val_list;
1273
1274         if (likely(val_buf->bo == NULL))
1275                 return;
1276
1277         INIT_LIST_HEAD(&val_list);
1278         list_add_tail(&val_buf->head, &val_list);
1279         ttm_eu_backoff_reservation(NULL, &val_list);
1280         ttm_bo_unref(&val_buf->bo);
1281 }
1282
1283 /**
1284  * vmw_resource_do_evict - Evict a resource, and transfer its data
1285  *                         to a backup buffer.
1286  *
1287  * @res:            The resource to evict.
1288  * @interruptible:  Whether to wait interruptible.
1289  */
1290 int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1291 {
1292         struct ttm_validate_buffer val_buf;
1293         const struct vmw_res_func *func = res->func;
1294         int ret;
1295
1296         BUG_ON(!func->may_evict);
1297
1298         val_buf.bo = NULL;
1299         ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1300         if (unlikely(ret != 0))
1301                 return ret;
1302
1303         if (unlikely(func->unbind != NULL &&
1304                      (!func->needs_backup || !list_empty(&res->mob_head)))) {
1305                 ret = func->unbind(res, res->res_dirty, &val_buf);
1306                 if (unlikely(ret != 0))
1307                         goto out_no_unbind;
1308                 list_del_init(&res->mob_head);
1309         }
1310         ret = func->destroy(res);
1311         res->backup_dirty = true;
1312         res->res_dirty = false;
1313 out_no_unbind:
1314         vmw_resource_backoff_reservation(&val_buf);
1315
1316         return ret;
1317 }
1318
1319
1320 /**
1321  * vmw_resource_validate - Make a resource up-to-date and visible
1322  *                         to the device.
1323  *
1324  * @res:            The resource to make visible to the device.
1325  *
1326  * On succesful return, any backup DMA buffer pointed to by @res->backup will
1327  * be reserved and validated.
1328  * On hardware resource shortage, this function will repeatedly evict
1329  * resources of the same type until the validation succeeds.
1330  */
1331 int vmw_resource_validate(struct vmw_resource *res)
1332 {
1333         int ret;
1334         struct vmw_resource *evict_res;
1335         struct vmw_private *dev_priv = res->dev_priv;
1336         struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1337         struct ttm_validate_buffer val_buf;
1338         unsigned err_count = 0;
1339
1340         if (likely(!res->func->may_evict))
1341                 return 0;
1342
1343         val_buf.bo = NULL;
1344         if (res->backup)
1345                 val_buf.bo = &res->backup->base;
1346         do {
1347                 ret = vmw_resource_do_validate(res, &val_buf);
1348                 if (likely(ret != -EBUSY))
1349                         break;
1350
1351                 write_lock(&dev_priv->resource_lock);
1352                 if (list_empty(lru_list) || !res->func->may_evict) {
1353                         DRM_ERROR("Out of device device resources "
1354                                   "for %s.\n", res->func->type_name);
1355                         ret = -EBUSY;
1356                         write_unlock(&dev_priv->resource_lock);
1357                         break;
1358                 }
1359
1360                 evict_res = vmw_resource_reference
1361                         (list_first_entry(lru_list, struct vmw_resource,
1362                                           lru_head));
1363                 list_del_init(&evict_res->lru_head);
1364
1365                 write_unlock(&dev_priv->resource_lock);
1366
1367                 ret = vmw_resource_do_evict(evict_res, true);
1368                 if (unlikely(ret != 0)) {
1369                         write_lock(&dev_priv->resource_lock);
1370                         list_add_tail(&evict_res->lru_head, lru_list);
1371                         write_unlock(&dev_priv->resource_lock);
1372                         if (ret == -ERESTARTSYS ||
1373                             ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1374                                 vmw_resource_unreference(&evict_res);
1375                                 goto out_no_validate;
1376                         }
1377                 }
1378
1379                 vmw_resource_unreference(&evict_res);
1380         } while (1);
1381
1382         if (unlikely(ret != 0))
1383                 goto out_no_validate;
1384         else if (!res->func->needs_backup && res->backup) {
1385                 list_del_init(&res->mob_head);
1386                 vmw_dmabuf_unreference(&res->backup);
1387         }
1388
1389         return 0;
1390
1391 out_no_validate:
1392         return ret;
1393 }
1394
1395 /**
1396  * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1397  *                       object without unreserving it.
1398  *
1399  * @bo:             Pointer to the struct ttm_buffer_object to fence.
1400  * @fence:          Pointer to the fence. If NULL, this function will
1401  *                  insert a fence into the command stream..
1402  *
1403  * Contrary to the ttm_eu version of this function, it takes only
1404  * a single buffer object instead of a list, and it also doesn't
1405  * unreserve the buffer object, which needs to be done separately.
1406  */
1407 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1408                          struct vmw_fence_obj *fence)
1409 {
1410         struct ttm_bo_device *bdev = bo->bdev;
1411         struct ttm_bo_driver *driver = bdev->driver;
1412         struct vmw_fence_obj *old_fence_obj;
1413         struct vmw_private *dev_priv =
1414                 container_of(bdev, struct vmw_private, bdev);
1415
1416         if (fence == NULL)
1417                 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1418         else
1419                 driver->sync_obj_ref(fence);
1420
1421         spin_lock(&bdev->fence_lock);
1422
1423         old_fence_obj = bo->sync_obj;
1424         bo->sync_obj = fence;
1425
1426         spin_unlock(&bdev->fence_lock);
1427
1428         if (old_fence_obj)
1429                 vmw_fence_obj_unreference(&old_fence_obj);
1430 }
1431
1432 /**
1433  * vmw_resource_move_notify - TTM move_notify_callback
1434  *
1435  * @bo:             The TTM buffer object about to move.
1436  * @mem:            The truct ttm_mem_reg indicating to what memory
1437  *                  region the move is taking place.
1438  *
1439  * Evicts the Guest Backed hardware resource if the backup
1440  * buffer is being moved out of MOB memory.
1441  * Note that this function should not race with the resource
1442  * validation code as long as it accesses only members of struct
1443  * resource that remain static while bo::res is !NULL and
1444  * while we have @bo reserved. struct resource::backup is *not* a
1445  * static member. The resource validation code will take care
1446  * to set @bo::res to NULL, while having @bo reserved when the
1447  * buffer is no longer bound to the resource, so @bo:res can be
1448  * used to determine whether there is a need to unbind and whether
1449  * it is safe to unbind.
1450  */
1451 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1452                               struct ttm_mem_reg *mem)
1453 {
1454         struct vmw_dma_buffer *dma_buf;
1455
1456         if (mem == NULL)
1457                 return;
1458
1459         if (bo->destroy != vmw_dmabuf_bo_free &&
1460             bo->destroy != vmw_user_dmabuf_destroy)
1461                 return;
1462
1463         dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1464
1465         if (mem->mem_type != VMW_PL_MOB) {
1466                 struct vmw_resource *res, *n;
1467                 struct ttm_bo_device *bdev = bo->bdev;
1468                 struct ttm_validate_buffer val_buf;
1469
1470                 val_buf.bo = bo;
1471
1472                 list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1473
1474                         if (unlikely(res->func->unbind == NULL))
1475                                 continue;
1476
1477                         (void) res->func->unbind(res, true, &val_buf);
1478                         res->backup_dirty = true;
1479                         res->res_dirty = false;
1480                         list_del_init(&res->mob_head);
1481                 }
1482
1483                 spin_lock(&bdev->fence_lock);
1484                 (void) ttm_bo_wait(bo, false, false, false);
1485                 spin_unlock(&bdev->fence_lock);
1486         }
1487 }
1488
1489 /**
1490  * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1491  *
1492  * @res:            The resource being queried.
1493  */
1494 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1495 {
1496         return res->func->needs_backup;
1497 }
1498
1499 /**
1500  * vmw_resource_evict_type - Evict all resources of a specific type
1501  *
1502  * @dev_priv:       Pointer to a device private struct
1503  * @type:           The resource type to evict
1504  *
1505  * To avoid thrashing starvation or as part of the hibernation sequence,
1506  * try to evict all evictable resources of a specific type.
1507  */
1508 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1509                                     enum vmw_res_type type)
1510 {
1511         struct list_head *lru_list = &dev_priv->res_lru[type];
1512         struct vmw_resource *evict_res;
1513         unsigned err_count = 0;
1514         int ret;
1515
1516         do {
1517                 write_lock(&dev_priv->resource_lock);
1518
1519                 if (list_empty(lru_list))
1520                         goto out_unlock;
1521
1522                 evict_res = vmw_resource_reference(
1523                         list_first_entry(lru_list, struct vmw_resource,
1524                                          lru_head));
1525                 list_del_init(&evict_res->lru_head);
1526                 write_unlock(&dev_priv->resource_lock);
1527
1528                 ret = vmw_resource_do_evict(evict_res, false);
1529                 if (unlikely(ret != 0)) {
1530                         write_lock(&dev_priv->resource_lock);
1531                         list_add_tail(&evict_res->lru_head, lru_list);
1532                         write_unlock(&dev_priv->resource_lock);
1533                         if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1534                                 vmw_resource_unreference(&evict_res);
1535                                 return;
1536                         }
1537                 }
1538
1539                 vmw_resource_unreference(&evict_res);
1540         } while (1);
1541
1542 out_unlock:
1543         write_unlock(&dev_priv->resource_lock);
1544 }
1545
1546 /**
1547  * vmw_resource_evict_all - Evict all evictable resources
1548  *
1549  * @dev_priv:       Pointer to a device private struct
1550  *
1551  * To avoid thrashing starvation or as part of the hibernation sequence,
1552  * evict all evictable resources. In particular this means that all
1553  * guest-backed resources that are registered with the device are
1554  * evicted and the OTable becomes clean.
1555  */
1556 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1557 {
1558         enum vmw_res_type type;
1559
1560         mutex_lock(&dev_priv->cmdbuf_mutex);
1561
1562         for (type = 0; type < vmw_res_max; ++type)
1563                 vmw_resource_evict_type(dev_priv, type);
1564
1565         mutex_unlock(&dev_priv->cmdbuf_mutex);
1566 }