1 // SPDX-License-Identifier: GPL-2.0+
3 #include <linux/crc32.h>
5 #include <drm/drm_atomic.h>
6 #include <drm/drm_atomic_helper.h>
7 #include <drm/drm_blend.h>
8 #include <drm/drm_fourcc.h>
9 #include <drm/drm_fixed.h>
10 #include <drm/drm_gem_framebuffer_helper.h>
11 #include <drm/drm_vblank.h>
12 #include <linux/minmax.h>
16 static u16 pre_mul_blend_channel(u16 src, u16 dst, u16 alpha)
20 new_color = (src * 0xffff + dst * (0xffff - alpha));
22 return DIV_ROUND_CLOSEST(new_color, 0xffff);
26 * pre_mul_alpha_blend - alpha blending equation
27 * @frame_info: Source framebuffer's metadata
28 * @stage_buffer: The line with the pixels from src_plane
29 * @output_buffer: A line buffer that receives all the blends output
31 * Using the information from the `frame_info`, this blends only the
32 * necessary pixels from the `stage_buffer` to the `output_buffer`
33 * using premultiplied blend formula.
35 * The current DRM assumption is that pixel color values have been already
36 * pre-multiplied with the alpha channel values. See more
37 * drm_plane_create_blend_mode_property(). Also, this formula assumes a
38 * completely opaque background.
40 static void pre_mul_alpha_blend(struct vkms_frame_info *frame_info,
41 struct line_buffer *stage_buffer,
42 struct line_buffer *output_buffer)
44 int x_dst = frame_info->dst.x1;
45 struct pixel_argb_u16 *out = output_buffer->pixels + x_dst;
46 struct pixel_argb_u16 *in = stage_buffer->pixels;
47 int x_limit = min_t(size_t, drm_rect_width(&frame_info->dst),
48 stage_buffer->n_pixels);
50 for (int x = 0; x < x_limit; x++) {
51 out[x].a = (u16)0xffff;
52 out[x].r = pre_mul_blend_channel(in[x].r, out[x].r, in[x].a);
53 out[x].g = pre_mul_blend_channel(in[x].g, out[x].g, in[x].a);
54 out[x].b = pre_mul_blend_channel(in[x].b, out[x].b, in[x].a);
58 static int get_y_pos(struct vkms_frame_info *frame_info, int y)
60 if (frame_info->rotation & DRM_MODE_REFLECT_Y)
61 return drm_rect_height(&frame_info->rotated) - y - 1;
63 switch (frame_info->rotation & DRM_MODE_ROTATE_MASK) {
64 case DRM_MODE_ROTATE_90:
65 return frame_info->rotated.x2 - y - 1;
66 case DRM_MODE_ROTATE_270:
67 return y + frame_info->rotated.x1;
73 static bool check_limit(struct vkms_frame_info *frame_info, int pos)
75 if (drm_rotation_90_or_270(frame_info->rotation)) {
76 if (pos >= 0 && pos < drm_rect_width(&frame_info->rotated))
79 if (pos >= frame_info->rotated.y1 && pos < frame_info->rotated.y2)
86 static void fill_background(const struct pixel_argb_u16 *background_color,
87 struct line_buffer *output_buffer)
89 for (size_t i = 0; i < output_buffer->n_pixels; i++)
90 output_buffer->pixels[i] = *background_color;
93 // lerp(a, b, t) = a + (b - a) * t
94 static u16 lerp_u16(u16 a, u16 b, s64 t)
96 s64 a_fp = drm_int2fixp(a);
97 s64 b_fp = drm_int2fixp(b);
99 s64 delta = drm_fixp_mul(b_fp - a_fp, t);
101 return drm_fixp2int(a_fp + delta);
104 static s64 get_lut_index(const struct vkms_color_lut *lut, u16 channel_value)
106 s64 color_channel_fp = drm_int2fixp(channel_value);
108 return drm_fixp_mul(color_channel_fp, lut->channel_value2index_ratio);
112 * This enum is related to the positions of the variables inside
113 * `struct drm_color_lut`, so the order of both needs to be the same.
122 static u16 apply_lut_to_channel_value(const struct vkms_color_lut *lut, u16 channel_value,
123 enum lut_channel channel)
125 s64 lut_index = get_lut_index(lut, channel_value);
128 * This checks if `struct drm_color_lut` has any gap added by the compiler
129 * between the struct fields.
131 static_assert(sizeof(struct drm_color_lut) == sizeof(__u16) * 4);
133 u16 *floor_lut_value = (__u16 *)&lut->base[drm_fixp2int(lut_index)];
134 u16 *ceil_lut_value = (__u16 *)&lut->base[drm_fixp2int_ceil(lut_index)];
136 u16 floor_channel_value = floor_lut_value[channel];
137 u16 ceil_channel_value = ceil_lut_value[channel];
139 return lerp_u16(floor_channel_value, ceil_channel_value,
140 lut_index & DRM_FIXED_DECIMAL_MASK);
143 static void apply_lut(const struct vkms_crtc_state *crtc_state, struct line_buffer *output_buffer)
145 if (!crtc_state->gamma_lut.base)
148 if (!crtc_state->gamma_lut.lut_length)
151 for (size_t x = 0; x < output_buffer->n_pixels; x++) {
152 struct pixel_argb_u16 *pixel = &output_buffer->pixels[x];
154 pixel->r = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->r, LUT_RED);
155 pixel->g = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->g, LUT_GREEN);
156 pixel->b = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->b, LUT_BLUE);
161 * blend - blend the pixels from all planes and compute crc
162 * @wb: The writeback frame buffer metadata
163 * @crtc_state: The crtc state
164 * @crc32: The crc output of the final frame
165 * @output_buffer: A buffer of a row that will receive the result of the blend(s)
166 * @stage_buffer: The line with the pixels from plane being blend to the output
167 * @row_size: The size, in bytes, of a single row
169 * This function blends the pixels (Using the `pre_mul_alpha_blend`)
170 * from all planes, calculates the crc32 of the output from the former step,
171 * and, if necessary, convert and store the output to the writeback buffer.
173 static void blend(struct vkms_writeback_job *wb,
174 struct vkms_crtc_state *crtc_state,
175 u32 *crc32, struct line_buffer *stage_buffer,
176 struct line_buffer *output_buffer, size_t row_size)
178 struct vkms_plane_state **plane = crtc_state->active_planes;
179 u32 n_active_planes = crtc_state->num_active_planes;
182 const struct pixel_argb_u16 background_color = { .a = 0xffff };
184 size_t crtc_y_limit = crtc_state->base.crtc->mode.vdisplay;
186 for (size_t y = 0; y < crtc_y_limit; y++) {
187 fill_background(&background_color, output_buffer);
189 /* The active planes are composed associatively in z-order. */
190 for (size_t i = 0; i < n_active_planes; i++) {
191 y_pos = get_y_pos(plane[i]->frame_info, y);
193 if (!check_limit(plane[i]->frame_info, y_pos))
196 vkms_compose_row(stage_buffer, plane[i], y_pos);
197 pre_mul_alpha_blend(plane[i]->frame_info, stage_buffer,
201 apply_lut(crtc_state, output_buffer);
203 *crc32 = crc32_le(*crc32, (void *)output_buffer->pixels, row_size);
206 vkms_writeback_row(wb, output_buffer, y_pos);
210 static int check_format_funcs(struct vkms_crtc_state *crtc_state,
211 struct vkms_writeback_job *active_wb)
213 struct vkms_plane_state **planes = crtc_state->active_planes;
214 u32 n_active_planes = crtc_state->num_active_planes;
216 for (size_t i = 0; i < n_active_planes; i++)
217 if (!planes[i]->pixel_read)
220 if (active_wb && !active_wb->pixel_write)
226 static int check_iosys_map(struct vkms_crtc_state *crtc_state)
228 struct vkms_plane_state **plane_state = crtc_state->active_planes;
229 u32 n_active_planes = crtc_state->num_active_planes;
231 for (size_t i = 0; i < n_active_planes; i++)
232 if (iosys_map_is_null(&plane_state[i]->frame_info->map[0]))
238 static int compose_active_planes(struct vkms_writeback_job *active_wb,
239 struct vkms_crtc_state *crtc_state,
242 size_t line_width, pixel_size = sizeof(struct pixel_argb_u16);
243 struct line_buffer output_buffer, stage_buffer;
247 * This check exists so we can call `crc32_le` for the entire line
248 * instead doing it for each channel of each pixel in case
249 * `struct `pixel_argb_u16` had any gap added by the compiler
250 * between the struct fields.
252 static_assert(sizeof(struct pixel_argb_u16) == 8);
254 if (WARN_ON(check_iosys_map(crtc_state)))
257 if (WARN_ON(check_format_funcs(crtc_state, active_wb)))
260 line_width = crtc_state->base.crtc->mode.hdisplay;
261 stage_buffer.n_pixels = line_width;
262 output_buffer.n_pixels = line_width;
264 stage_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL);
265 if (!stage_buffer.pixels) {
266 DRM_ERROR("Cannot allocate memory for the output line buffer");
270 output_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL);
271 if (!output_buffer.pixels) {
272 DRM_ERROR("Cannot allocate memory for intermediate line buffer");
274 goto free_stage_buffer;
277 blend(active_wb, crtc_state, crc32, &stage_buffer,
278 &output_buffer, line_width * pixel_size);
280 kvfree(output_buffer.pixels);
282 kvfree(stage_buffer.pixels);
288 * vkms_composer_worker - ordered work_struct to compute CRC
292 * Work handler for composing and computing CRCs. work_struct scheduled in
293 * an ordered workqueue that's periodically scheduled to run by
294 * vkms_vblank_simulate() and flushed at vkms_atomic_commit_tail().
296 void vkms_composer_worker(struct work_struct *work)
298 struct vkms_crtc_state *crtc_state = container_of(work,
299 struct vkms_crtc_state,
301 struct drm_crtc *crtc = crtc_state->base.crtc;
302 struct vkms_writeback_job *active_wb = crtc_state->active_writeback;
303 struct vkms_output *out = drm_crtc_to_vkms_output(crtc);
304 bool crc_pending, wb_pending;
305 u64 frame_start, frame_end;
309 spin_lock_irq(&out->composer_lock);
310 frame_start = crtc_state->frame_start;
311 frame_end = crtc_state->frame_end;
312 crc_pending = crtc_state->crc_pending;
313 wb_pending = crtc_state->wb_pending;
314 crtc_state->frame_start = 0;
315 crtc_state->frame_end = 0;
316 crtc_state->crc_pending = false;
318 if (crtc->state->gamma_lut) {
319 s64 max_lut_index_fp;
320 s64 u16_max_fp = drm_int2fixp(0xffff);
322 crtc_state->gamma_lut.base = (struct drm_color_lut *)crtc->state->gamma_lut->data;
323 crtc_state->gamma_lut.lut_length =
324 crtc->state->gamma_lut->length / sizeof(struct drm_color_lut);
325 max_lut_index_fp = drm_int2fixp(crtc_state->gamma_lut.lut_length - 1);
326 crtc_state->gamma_lut.channel_value2index_ratio = drm_fixp_div(max_lut_index_fp,
330 crtc_state->gamma_lut.base = NULL;
333 spin_unlock_irq(&out->composer_lock);
336 * We raced with the vblank hrtimer and previous work already computed
337 * the crc, nothing to do.
343 ret = compose_active_planes(active_wb, crtc_state, &crc32);
345 ret = compose_active_planes(NULL, crtc_state, &crc32);
351 drm_writeback_signal_completion(&out->wb_connector, 0);
352 spin_lock_irq(&out->composer_lock);
353 crtc_state->wb_pending = false;
354 spin_unlock_irq(&out->composer_lock);
358 * The worker can fall behind the vblank hrtimer, make sure we catch up.
360 while (frame_start <= frame_end)
361 drm_crtc_add_crc_entry(crtc, true, frame_start++, &crc32);
364 static const char * const pipe_crc_sources[] = {"auto"};
366 const char *const *vkms_get_crc_sources(struct drm_crtc *crtc,
369 *count = ARRAY_SIZE(pipe_crc_sources);
370 return pipe_crc_sources;
373 static int vkms_crc_parse_source(const char *src_name, bool *enabled)
379 } else if (strcmp(src_name, "auto") == 0) {
389 int vkms_verify_crc_source(struct drm_crtc *crtc, const char *src_name,
394 if (vkms_crc_parse_source(src_name, &enabled) < 0) {
395 DRM_DEBUG_DRIVER("unknown source %s\n", src_name);
404 void vkms_set_composer(struct vkms_output *out, bool enabled)
409 drm_crtc_vblank_get(&out->crtc);
411 spin_lock_irq(&out->lock);
412 old_enabled = out->composer_enabled;
413 out->composer_enabled = enabled;
414 spin_unlock_irq(&out->lock);
417 drm_crtc_vblank_put(&out->crtc);
420 int vkms_set_crc_source(struct drm_crtc *crtc, const char *src_name)
422 struct vkms_output *out = drm_crtc_to_vkms_output(crtc);
423 bool enabled = false;
426 ret = vkms_crc_parse_source(src_name, &enabled);
428 vkms_set_composer(out, enabled);