drm/vc4: kms: Fix VBLANK reporting on a disabled CRTC
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / vc4 / vc4_kms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 KMS
8  *
9  * This is the general code for implementing KMS mode setting that
10  * doesn't clearly associate with any of the other objects (plane,
11  * crtc, HDMI encoder).
12  */
13
14 #include <linux/bitfield.h>
15 #include <linux/bitops.h>
16 #include <linux/clk.h>
17
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_crtc.h>
21 #include <drm/drm_gem_framebuffer_helper.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_probe_helper.h>
24 #include <drm/drm_vblank.h>
25 #include <drm/drm_drv.h>
26
27 #include "vc4_drv.h"
28 #include "vc4_regs.h"
29
30 struct vc4_ctm_state {
31         struct drm_private_state base;
32         struct drm_color_ctm *ctm;
33         int fifo;
34 };
35
36 static struct vc4_ctm_state *to_vc4_ctm_state(struct drm_private_state *priv)
37 {
38         return container_of(priv, struct vc4_ctm_state, base);
39 }
40
41 struct vc4_load_tracker_state {
42         struct drm_private_state base;
43         u64 hvs_load;
44         u64 membus_load;
45 };
46
47 static struct vc4_load_tracker_state *
48 to_vc4_load_tracker_state(struct drm_private_state *priv)
49 {
50         return container_of(priv, struct vc4_load_tracker_state, base);
51 }
52
53 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
54                                                struct drm_private_obj *manager)
55 {
56         struct drm_device *dev = state->dev;
57         struct vc4_dev *vc4 = dev->dev_private;
58         struct drm_private_state *priv_state;
59         int ret;
60
61         ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
62         if (ret)
63                 return ERR_PTR(ret);
64
65         priv_state = drm_atomic_get_private_obj_state(state, manager);
66         if (IS_ERR(priv_state))
67                 return ERR_CAST(priv_state);
68
69         return to_vc4_ctm_state(priv_state);
70 }
71
72 static struct drm_private_state *
73 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
74 {
75         struct vc4_ctm_state *state;
76
77         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
78         if (!state)
79                 return NULL;
80
81         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
82
83         return &state->base;
84 }
85
86 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
87                                   struct drm_private_state *state)
88 {
89         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
90
91         kfree(ctm_state);
92 }
93
94 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
95         .atomic_duplicate_state = vc4_ctm_duplicate_state,
96         .atomic_destroy_state = vc4_ctm_destroy_state,
97 };
98
99 /* Converts a DRM S31.32 value to the HW S0.9 format. */
100 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
101 {
102         u16 r;
103
104         /* Sign bit. */
105         r = in & BIT_ULL(63) ? BIT(9) : 0;
106
107         if ((in & GENMASK_ULL(62, 32)) > 0) {
108                 /* We have zero integer bits so we can only saturate here. */
109                 r |= GENMASK(8, 0);
110         } else {
111                 /* Otherwise take the 9 most important fractional bits. */
112                 r |= (in >> 23) & GENMASK(8, 0);
113         }
114
115         return r;
116 }
117
118 static void
119 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
120 {
121         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
122         struct drm_color_ctm *ctm = ctm_state->ctm;
123
124         if (vc4->firmware_kms)
125                 return;
126
127         if (ctm_state->fifo) {
128                 HVS_WRITE(SCALER_OLEDCOEF2,
129                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
130                                         SCALER_OLEDCOEF2_R_TO_R) |
131                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
132                                         SCALER_OLEDCOEF2_R_TO_G) |
133                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
134                                         SCALER_OLEDCOEF2_R_TO_B));
135                 HVS_WRITE(SCALER_OLEDCOEF1,
136                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
137                                         SCALER_OLEDCOEF1_G_TO_R) |
138                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
139                                         SCALER_OLEDCOEF1_G_TO_G) |
140                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
141                                         SCALER_OLEDCOEF1_G_TO_B));
142                 HVS_WRITE(SCALER_OLEDCOEF0,
143                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
144                                         SCALER_OLEDCOEF0_B_TO_R) |
145                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
146                                         SCALER_OLEDCOEF0_B_TO_G) |
147                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
148                                         SCALER_OLEDCOEF0_B_TO_B));
149         }
150
151         HVS_WRITE(SCALER_OLEDOFFS,
152                   VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
153 }
154
155 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
156                                      struct drm_atomic_state *state)
157 {
158         struct drm_crtc_state *crtc_state;
159         struct drm_crtc *crtc;
160         unsigned int i;
161
162         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
163                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
164                 u32 dispctrl;
165                 u32 dsp3_mux;
166
167                 if (!crtc_state->active)
168                         continue;
169
170                 if (vc4_state->assigned_channel != 2)
171                         continue;
172
173                 /*
174                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
175                  * FIFO X'.
176                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
177                  *
178                  * DSP3 is connected to FIFO2 unless the transposer is
179                  * enabled. In this case, FIFO 2 is directly accessed by the
180                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
181                  * route.
182                  */
183                 if (vc4_state->feed_txp)
184                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
185                 else
186                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
187
188                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
189                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
190                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
191         }
192 }
193
194 static struct drm_crtc_state *
195 drm_atomic_get_new_or_current_crtc_state(struct drm_atomic_state *state,
196                                          struct drm_crtc *crtc)
197 {
198         struct drm_crtc_state *crtc_state;
199
200         crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
201         if (crtc_state)
202                 return crtc_state;
203
204         return crtc->state;
205 }
206
207 #define for_each_new_or_current_crtc_state(__state, crtc, crtc_state)   \
208         list_for_each_entry(crtc, &__state->dev->mode_config.crtc_list, head) \
209                 for_each_if(crtc_state = drm_atomic_get_new_or_current_crtc_state(__state, crtc))
210
211 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
212                                      struct drm_atomic_state *state)
213 {
214         struct drm_crtc_state *crtc_state;
215         struct drm_crtc *crtc;
216         unsigned char dsp2_mux = 0;
217         unsigned char dsp3_mux = 3;
218         unsigned char dsp4_mux = 3;
219         unsigned char dsp5_mux = 3;
220         u32 reg;
221
222         for_each_new_or_current_crtc_state(state, crtc, crtc_state) {
223                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
224                 struct vc4_crtc_state *vc4_state;
225
226                 if (!crtc_state->active)
227                         continue;
228
229                 vc4_state = to_vc4_crtc_state(crtc_state);
230                 switch (vc4_crtc->data->hvs_output) {
231                 case 2:
232                         dsp2_mux = (vc4_state->assigned_channel == 2) ? 0 : 1;
233                         break;
234
235                 case 3:
236                         dsp3_mux = vc4_state->assigned_channel;
237                         break;
238
239                 case 4:
240                         dsp4_mux = vc4_state->assigned_channel;
241                         break;
242
243                 case 5:
244                         dsp5_mux = vc4_state->assigned_channel;
245                         break;
246
247                 default:
248                         break;
249                 }
250         }
251
252         reg = HVS_READ(SCALER_DISPECTRL);
253         HVS_WRITE(SCALER_DISPECTRL,
254                   (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
255                   VC4_SET_FIELD(dsp2_mux, SCALER_DISPECTRL_DSP2_MUX));
256
257         reg = HVS_READ(SCALER_DISPCTRL);
258         HVS_WRITE(SCALER_DISPCTRL,
259                   (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
260                   VC4_SET_FIELD(dsp3_mux, SCALER_DISPCTRL_DSP3_MUX));
261
262         reg = HVS_READ(SCALER_DISPEOLN);
263         HVS_WRITE(SCALER_DISPEOLN,
264                   (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
265                   VC4_SET_FIELD(dsp4_mux, SCALER_DISPEOLN_DSP4_MUX));
266
267         reg = HVS_READ(SCALER_DISPDITHER);
268         HVS_WRITE(SCALER_DISPDITHER,
269                   (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
270                   VC4_SET_FIELD(dsp5_mux, SCALER_DISPDITHER_DSP5_MUX));
271 }
272
273
274 static void
275 vc4_atomic_complete_commit(struct drm_atomic_state *state)
276 {
277         struct drm_device *dev = state->dev;
278         struct vc4_dev *vc4 = to_vc4_dev(dev);
279         struct vc4_hvs *hvs = vc4->hvs;
280         struct vc4_crtc *vc4_crtc;
281         int i;
282
283         for (i = 0; vc4->hvs && i < dev->mode_config.num_crtc; i++) {
284                 struct __drm_crtcs_state *_state = &state->crtcs[i];
285                 struct vc4_crtc_state *vc4_crtc_state;
286
287                 if (!_state->ptr || !_state->commit)
288                         continue;
289
290                 vc4_crtc = to_vc4_crtc(_state->ptr);
291                 vc4_crtc_state = to_vc4_crtc_state(_state->state);
292                 vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel);
293         }
294
295         if (vc4->hvs->hvs5)
296                 clk_set_min_rate(hvs->core_clk, 500000000);
297
298         drm_atomic_helper_wait_for_fences(dev, state, false);
299
300         drm_atomic_helper_wait_for_dependencies(state);
301
302         drm_atomic_helper_commit_modeset_disables(dev, state);
303
304         vc4_ctm_commit(vc4, state);
305
306         if (vc4->hvs->hvs5)
307                 vc5_hvs_pv_muxing_commit(vc4, state);
308         else
309                 vc4_hvs_pv_muxing_commit(vc4, state);
310
311         drm_atomic_helper_commit_planes(dev, state, 0);
312
313         drm_atomic_helper_commit_modeset_enables(dev, state);
314
315         drm_atomic_helper_fake_vblank(state);
316
317         drm_atomic_helper_commit_hw_done(state);
318
319         drm_atomic_helper_wait_for_flip_done(dev, state);
320
321         drm_atomic_helper_cleanup_planes(dev, state);
322
323         drm_atomic_helper_commit_cleanup_done(state);
324
325         drm_atomic_state_put(state);
326
327         up(&vc4->async_modeset);
328 }
329
330 static void commit_work(struct work_struct *work)
331 {
332         struct drm_atomic_state *state = container_of(work,
333                                                       struct drm_atomic_state,
334                                                       commit_work);
335         vc4_atomic_complete_commit(state);
336 }
337
338 /**
339  * vc4_atomic_commit - commit validated state object
340  * @dev: DRM device
341  * @state: the driver state object
342  * @nonblock: nonblocking commit
343  *
344  * This function commits a with drm_atomic_helper_check() pre-validated state
345  * object. This can still fail when e.g. the framebuffer reservation fails. For
346  * now this doesn't implement asynchronous commits.
347  *
348  * RETURNS
349  * Zero for success or -errno.
350  */
351 static int vc4_atomic_commit(struct drm_device *dev,
352                              struct drm_atomic_state *state,
353                              bool nonblock)
354 {
355         struct vc4_dev *vc4 = to_vc4_dev(dev);
356         int ret;
357
358         if (state->async_update) {
359                 ret = down_interruptible(&vc4->async_modeset);
360                 if (ret)
361                         return ret;
362
363                 ret = drm_atomic_helper_prepare_planes(dev, state);
364                 if (ret) {
365                         up(&vc4->async_modeset);
366                         return ret;
367                 }
368
369                 drm_atomic_helper_async_commit(dev, state);
370
371                 drm_atomic_helper_cleanup_planes(dev, state);
372
373                 up(&vc4->async_modeset);
374
375                 return 0;
376         }
377
378         /* We know for sure we don't want an async update here. Set
379          * state->legacy_cursor_update to false to prevent
380          * drm_atomic_helper_setup_commit() from auto-completing
381          * commit->flip_done.
382          */
383         if (!vc4->firmware_kms)
384                 state->legacy_cursor_update = false;
385         ret = drm_atomic_helper_setup_commit(state, nonblock);
386         if (ret)
387                 return ret;
388
389         INIT_WORK(&state->commit_work, commit_work);
390
391         ret = down_interruptible(&vc4->async_modeset);
392         if (ret)
393                 return ret;
394
395         ret = drm_atomic_helper_prepare_planes(dev, state);
396         if (ret) {
397                 up(&vc4->async_modeset);
398                 return ret;
399         }
400
401         if (!nonblock) {
402                 ret = drm_atomic_helper_wait_for_fences(dev, state, true);
403                 if (ret) {
404                         drm_atomic_helper_cleanup_planes(dev, state);
405                         up(&vc4->async_modeset);
406                         return ret;
407                 }
408         }
409
410         /*
411          * This is the point of no return - everything below never fails except
412          * when the hw goes bonghits. Which means we can commit the new state on
413          * the software side now.
414          */
415
416         BUG_ON(drm_atomic_helper_swap_state(state, false) < 0);
417
418         /*
419          * Everything below can be run asynchronously without the need to grab
420          * any modeset locks at all under one condition: It must be guaranteed
421          * that the asynchronous work has either been cancelled (if the driver
422          * supports it, which at least requires that the framebuffers get
423          * cleaned up with drm_atomic_helper_cleanup_planes()) or completed
424          * before the new state gets committed on the software side with
425          * drm_atomic_helper_swap_state().
426          *
427          * This scheme allows new atomic state updates to be prepared and
428          * checked in parallel to the asynchronous completion of the previous
429          * update. Which is important since compositors need to figure out the
430          * composition of the next frame right after having submitted the
431          * current layout.
432          */
433
434         drm_atomic_state_get(state);
435         if (nonblock)
436                 queue_work(system_unbound_wq, &state->commit_work);
437         else
438                 vc4_atomic_complete_commit(state);
439
440         return 0;
441 }
442
443 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
444                                              struct drm_file *file_priv,
445                                              const struct drm_mode_fb_cmd2 *mode_cmd)
446 {
447         struct drm_mode_fb_cmd2 mode_cmd_local;
448
449         /* If the user didn't specify a modifier, use the
450          * vc4_set_tiling_ioctl() state for the BO.
451          */
452         if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
453                 struct drm_gem_object *gem_obj;
454                 struct vc4_bo *bo;
455
456                 gem_obj = drm_gem_object_lookup(file_priv,
457                                                 mode_cmd->handles[0]);
458                 if (!gem_obj) {
459                         DRM_DEBUG("Failed to look up GEM BO %d\n",
460                                   mode_cmd->handles[0]);
461                         return ERR_PTR(-ENOENT);
462                 }
463                 bo = to_vc4_bo(gem_obj);
464
465                 mode_cmd_local = *mode_cmd;
466
467                 if (bo->t_format) {
468                         mode_cmd_local.modifier[0] =
469                                 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
470                 } else {
471                         mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
472                 }
473
474                 drm_gem_object_put_unlocked(gem_obj);
475
476                 mode_cmd = &mode_cmd_local;
477         }
478
479         return drm_gem_fb_create(dev, file_priv, mode_cmd);
480 }
481
482 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
483  * at a time and the HW only supports S0.9 scalars. To account for the latter,
484  * we don't allow userland to set a CTM that we have no hope of approximating.
485  */
486 static int
487 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
488 {
489         struct vc4_dev *vc4 = to_vc4_dev(dev);
490         struct vc4_ctm_state *ctm_state = NULL;
491         struct drm_crtc *crtc;
492         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
493         struct drm_color_ctm *ctm;
494         int i;
495
496         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
497                 /* CTM is being disabled. */
498                 if (!new_crtc_state->ctm && old_crtc_state->ctm) {
499                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
500                         if (IS_ERR(ctm_state))
501                                 return PTR_ERR(ctm_state);
502                         ctm_state->fifo = 0;
503                 }
504         }
505
506         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
507                 if (new_crtc_state->ctm == old_crtc_state->ctm)
508                         continue;
509
510                 if (!ctm_state) {
511                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
512                         if (IS_ERR(ctm_state))
513                                 return PTR_ERR(ctm_state);
514                 }
515
516                 /* CTM is being enabled or the matrix changed. */
517                 if (new_crtc_state->ctm) {
518                         struct vc4_crtc_state *vc4_crtc_state =
519                                 to_vc4_crtc_state(new_crtc_state);
520
521                         /* fifo is 1-based since 0 disables CTM. */
522                         int fifo = vc4_crtc_state->assigned_channel + 1;
523
524                         /* Check userland isn't trying to turn on CTM for more
525                          * than one CRTC at a time.
526                          */
527                         if (ctm_state->fifo && ctm_state->fifo != fifo) {
528                                 DRM_DEBUG_DRIVER("Too many CTM configured\n");
529                                 return -EINVAL;
530                         }
531
532                         /* Check we can approximate the specified CTM.
533                          * We disallow scalars |c| > 1.0 since the HW has
534                          * no integer bits.
535                          */
536                         ctm = new_crtc_state->ctm->data;
537                         for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
538                                 u64 val = ctm->matrix[i];
539
540                                 val &= ~BIT_ULL(63);
541                                 if (val > BIT_ULL(32))
542                                         return -EINVAL;
543                         }
544
545                         ctm_state->fifo = fifo;
546                         ctm_state->ctm = ctm;
547                 }
548         }
549
550         return 0;
551 }
552
553 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
554 {
555         struct drm_plane_state *old_plane_state, *new_plane_state;
556         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
557         struct vc4_load_tracker_state *load_state;
558         struct drm_private_state *priv_state;
559         struct drm_plane *plane;
560         int i;
561
562         if (!vc4->load_tracker_available)
563                 return 0;
564
565         priv_state = drm_atomic_get_private_obj_state(state,
566                                                       &vc4->load_tracker);
567         if (IS_ERR(priv_state))
568                 return PTR_ERR(priv_state);
569
570         load_state = to_vc4_load_tracker_state(priv_state);
571         for_each_oldnew_plane_in_state(state, plane, old_plane_state,
572                                        new_plane_state, i) {
573                 struct vc4_plane_state *vc4_plane_state;
574
575                 if (old_plane_state->fb && old_plane_state->crtc) {
576                         vc4_plane_state = to_vc4_plane_state(old_plane_state);
577                         load_state->membus_load -= vc4_plane_state->membus_load;
578                         load_state->hvs_load -= vc4_plane_state->hvs_load;
579                 }
580
581                 if (new_plane_state->fb && new_plane_state->crtc) {
582                         vc4_plane_state = to_vc4_plane_state(new_plane_state);
583                         load_state->membus_load += vc4_plane_state->membus_load;
584                         load_state->hvs_load += vc4_plane_state->hvs_load;
585                 }
586         }
587
588         /* Don't check the load when the tracker is disabled. */
589         if (!vc4->load_tracker_enabled)
590                 return 0;
591
592         /* The absolute limit is 2Gbyte/sec, but let's take a margin to let
593          * the system work when other blocks are accessing the memory.
594          */
595         if (load_state->membus_load > SZ_1G + SZ_512M)
596                 return -ENOSPC;
597
598         /* HVS clock is supposed to run @ 250Mhz, let's take a margin and
599          * consider the maximum number of cycles is 240M.
600          */
601         if (load_state->hvs_load > 240000000ULL)
602                 return -ENOSPC;
603
604         return 0;
605 }
606
607 static struct drm_private_state *
608 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
609 {
610         struct vc4_load_tracker_state *state;
611
612         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
613         if (!state)
614                 return NULL;
615
616         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
617
618         return &state->base;
619 }
620
621 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
622                                            struct drm_private_state *state)
623 {
624         struct vc4_load_tracker_state *load_state;
625
626         load_state = to_vc4_load_tracker_state(state);
627         kfree(load_state);
628 }
629
630 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
631         .atomic_duplicate_state = vc4_load_tracker_duplicate_state,
632         .atomic_destroy_state = vc4_load_tracker_destroy_state,
633 };
634
635 #define NUM_OUTPUTS  6
636 #define NUM_CHANNELS 3
637
638 /*
639  * The BCM2711 HVS has up to 7 output connected to the pixelvalves and
640  * the TXP (and therefore all the CRTCs found on that platform).
641  *
642  * The naive (and our initial) implementation would just iterate over
643  * all the active CRTCs, try to find a suitable FIFO, and then remove it
644  * from the available FIFOs pool. However, there's a few corner cases
645  * that need to be considered:
646  *
647  * - When running in a dual-display setup (so with two CRTCs involved),
648  *   we can update the state of a single CRTC (for example by changing
649  *   its mode using xrandr under X11) without affecting the other. In
650  *   this case, the other CRTC wouldn't be in the state at all, so we
651  *   need to consider all the running CRTCs in the DRM device to assign
652  *   a FIFO, not just the one in the state.
653  *
654  * - To fix the above, we can't use drm_atomic_get_crtc_state on all
655  *   enabled CRTCs to pull their CRTC state into the global state, since
656  *   a page flip would start considering their vblank to complete. Since
657  *   we don't have a guarantee that they are actually active, that
658  *   vblank might never happen, and shouldn't even be considered if we
659  *   want to do a page flip on a single CRTC. That can be tested by
660  *   doing a modetest -v first on HDMI1 and then on HDMI0.
661  *
662  * - Since we need the pixelvalve to be disabled and enabled back when
663  *   the FIFO is changed, we should keep the FIFO assigned for as long
664  *   as the CRTC is enabled, only considering it free again once that
665  *   CRTC has been disabled. This can be tested by booting X11 on a
666  *   single display, and changing the resolution down and then back up.
667  */
668 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
669                                       struct drm_atomic_state *state)
670 {
671         unsigned long unassigned_channels = GENMASK(NUM_CHANNELS - 1, 0);
672         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
673         struct drm_crtc_state *crtc_state;
674         struct drm_crtc *crtc;
675         unsigned int i;
676
677         /*
678          * Since the HVS FIFOs are shared across all the pixelvalves and
679          * the TXP (and thus all the CRTCs), we need to pull the current
680          * state of all the enabled CRTCs so that an update to a single
681          * CRTC still keeps the previous FIFOs enabled and assigned to
682          * the same CRTCs, instead of evaluating only the CRTC being
683          * modified.
684          */
685         for_each_new_or_current_crtc_state(state, crtc, crtc_state) {
686                 struct vc4_crtc_state *vc4_crtc_state;
687                 if (!crtc_state->enable)
688                         continue;
689
690                 vc4_crtc_state = to_vc4_crtc_state(crtc_state);
691                 unassigned_channels &= ~BIT(vc4_crtc_state->assigned_channel);
692         }
693
694         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
695                 struct vc4_crtc_state *new_vc4_crtc_state =
696                         to_vc4_crtc_state(new_crtc_state);
697                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
698                 bool is_assigned = false;
699                 unsigned int channel;
700
701                 if (old_crtc_state->enable && !new_crtc_state->enable)
702                         new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
703
704                 if (!new_crtc_state->enable)
705                         continue;
706
707                 if (new_vc4_crtc_state->assigned_channel != VC4_HVS_CHANNEL_DISABLED)
708                         continue;
709
710                 /*
711                  * The problem we have to solve here is that we have
712                  * up to 7 encoders, connected to up to 6 CRTCs.
713                  *
714                  * Those CRTCs, depending on the instance, can be
715                  * routed to 1, 2 or 3 HVS FIFOs, and we need to set
716                  * the change the muxing between FIFOs and outputs in
717                  * the HVS accordingly.
718                  *
719                  * It would be pretty hard to come up with an
720                  * algorithm that would generically solve
721                  * this. However, the current routing trees we support
722                  * allow us to simplify a bit the problem.
723                  *
724                  * Indeed, with the current supported layouts, if we
725                  * try to assign in the ascending crtc index order the
726                  * FIFOs, we can't fall into the situation where an
727                  * earlier CRTC that had multiple routes is assigned
728                  * one that was the only option for a later CRTC.
729                  *
730                  * If the layout changes and doesn't give us that in
731                  * the future, we will need to have something smarter,
732                  * but it works so far.
733                  */
734                 for_each_set_bit(channel, &unassigned_channels,
735                                  sizeof(unassigned_channels)) {
736
737                         if (!(BIT(channel) & vc4_crtc->data->hvs_available_channels))
738                                 continue;
739
740                         new_vc4_crtc_state->assigned_channel = channel;
741                         unassigned_channels &= ~BIT(channel);
742                         is_assigned = true;
743                         break;
744                 }
745
746                 if (!is_assigned)
747                         return -EINVAL;
748         }
749
750         return 0;
751 }
752
753 static int
754 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
755 {
756         int ret;
757
758         ret = vc4_pv_muxing_atomic_check(dev, state);
759         if (ret)
760                 return ret;
761
762         ret = vc4_ctm_atomic_check(dev, state);
763         if (ret < 0)
764                 return ret;
765
766         ret = drm_atomic_helper_check(dev, state);
767         if (ret)
768                 return ret;
769
770         return vc4_load_tracker_atomic_check(state);
771 }
772
773 static const struct drm_mode_config_funcs vc4_mode_funcs = {
774         .atomic_check = vc4_atomic_check,
775         .atomic_commit = vc4_atomic_commit,
776         .fb_create = vc4_fb_create,
777 };
778
779 int vc4_kms_load(struct drm_device *dev)
780 {
781         struct vc4_dev *vc4 = to_vc4_dev(dev);
782         struct vc4_ctm_state *ctm_state;
783         struct vc4_load_tracker_state *load_state;
784         int ret;
785
786         if (!of_device_is_compatible(dev->dev->of_node, "brcm,bcm2711-vc5")) {
787                 vc4->load_tracker_available = true;
788
789                 /* Start with the load tracker enabled. Can be
790                  * disabled through the debugfs load_tracker file.
791                  */
792                 vc4->load_tracker_enabled = true;
793         }
794
795         sema_init(&vc4->async_modeset, 1);
796
797         /* Set support for vblank irq fast disable, before drm_vblank_init() */
798         dev->vblank_disable_immediate = true;
799
800         dev->irq_enabled = true;
801         ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
802         if (ret < 0) {
803                 dev_err(dev->dev, "failed to initialize vblank\n");
804                 return ret;
805         }
806
807         if (!drm_core_check_feature(dev, DRIVER_RENDER)) {
808                 /* No V3D as part of vc4. Assume this is Pi4. */
809                 dev->mode_config.max_width = 7680;
810                 dev->mode_config.max_height = 7680;
811         } else {
812                 dev->mode_config.max_width = 2048;
813                 dev->mode_config.max_height = 2048;
814         }
815         dev->mode_config.funcs = &vc4_mode_funcs;
816         dev->mode_config.preferred_depth = 24;
817         dev->mode_config.async_page_flip = true;
818         dev->mode_config.allow_fb_modifiers = true;
819         dev->mode_config.normalize_zpos = true;
820
821         drm_modeset_lock_init(&vc4->ctm_state_lock);
822
823         ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
824         if (!ctm_state)
825                 return -ENOMEM;
826
827         drm_atomic_private_obj_init(dev, &vc4->ctm_manager, &ctm_state->base,
828                                     &vc4_ctm_state_funcs);
829
830         if (vc4->load_tracker_available) {
831                 load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
832                 if (!load_state) {
833                         drm_atomic_private_obj_fini(&vc4->ctm_manager);
834                         return -ENOMEM;
835                 }
836
837                 drm_atomic_private_obj_init(dev, &vc4->load_tracker,
838                                             &load_state->base,
839                                             &vc4_load_tracker_state_funcs);
840         }
841
842         drm_mode_config_reset(dev);
843
844         drm_kms_helper_poll_init(dev);
845
846         return 0;
847 }