Linux 5.15.57
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / vc4 / vc4_kms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 KMS
8  *
9  * This is the general code for implementing KMS mode setting that
10  * doesn't clearly associate with any of the other objects (plane,
11  * crtc, HDMI encoder).
12  */
13
14 #include <linux/clk.h>
15
16 #include <drm/drm_atomic.h>
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_gem_framebuffer_helper.h>
20 #include <drm/drm_plane_helper.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_vblank.h>
23
24 #include "vc4_drv.h"
25 #include "vc4_regs.h"
26
27 #define HVS_NUM_CHANNELS 3
28
29 struct vc4_ctm_state {
30         struct drm_private_state base;
31         struct drm_color_ctm *ctm;
32         int fifo;
33 };
34
35 static struct vc4_ctm_state *to_vc4_ctm_state(struct drm_private_state *priv)
36 {
37         return container_of(priv, struct vc4_ctm_state, base);
38 }
39
40 struct vc4_hvs_state {
41         struct drm_private_state base;
42
43         struct {
44                 unsigned in_use: 1;
45                 struct drm_crtc_commit *pending_commit;
46         } fifo_state[HVS_NUM_CHANNELS];
47 };
48
49 static struct vc4_hvs_state *
50 to_vc4_hvs_state(struct drm_private_state *priv)
51 {
52         return container_of(priv, struct vc4_hvs_state, base);
53 }
54
55 struct vc4_load_tracker_state {
56         struct drm_private_state base;
57         u64 hvs_load;
58         u64 membus_load;
59 };
60
61 static struct vc4_load_tracker_state *
62 to_vc4_load_tracker_state(struct drm_private_state *priv)
63 {
64         return container_of(priv, struct vc4_load_tracker_state, base);
65 }
66
67 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
68                                                struct drm_private_obj *manager)
69 {
70         struct drm_device *dev = state->dev;
71         struct vc4_dev *vc4 = to_vc4_dev(dev);
72         struct drm_private_state *priv_state;
73         int ret;
74
75         ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
76         if (ret)
77                 return ERR_PTR(ret);
78
79         priv_state = drm_atomic_get_private_obj_state(state, manager);
80         if (IS_ERR(priv_state))
81                 return ERR_CAST(priv_state);
82
83         return to_vc4_ctm_state(priv_state);
84 }
85
86 static struct drm_private_state *
87 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
88 {
89         struct vc4_ctm_state *state;
90
91         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
92         if (!state)
93                 return NULL;
94
95         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
96
97         return &state->base;
98 }
99
100 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
101                                   struct drm_private_state *state)
102 {
103         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
104
105         kfree(ctm_state);
106 }
107
108 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
109         .atomic_duplicate_state = vc4_ctm_duplicate_state,
110         .atomic_destroy_state = vc4_ctm_destroy_state,
111 };
112
113 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
114 {
115         struct vc4_dev *vc4 = to_vc4_dev(dev);
116
117         drm_atomic_private_obj_fini(&vc4->ctm_manager);
118 }
119
120 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
121 {
122         struct vc4_ctm_state *ctm_state;
123
124         drm_modeset_lock_init(&vc4->ctm_state_lock);
125
126         ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
127         if (!ctm_state)
128                 return -ENOMEM;
129
130         drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
131                                     &vc4_ctm_state_funcs);
132
133         return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
134 }
135
136 /* Converts a DRM S31.32 value to the HW S0.9 format. */
137 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
138 {
139         u16 r;
140
141         /* Sign bit. */
142         r = in & BIT_ULL(63) ? BIT(9) : 0;
143
144         if ((in & GENMASK_ULL(62, 32)) > 0) {
145                 /* We have zero integer bits so we can only saturate here. */
146                 r |= GENMASK(8, 0);
147         } else {
148                 /* Otherwise take the 9 most important fractional bits. */
149                 r |= (in >> 23) & GENMASK(8, 0);
150         }
151
152         return r;
153 }
154
155 static void
156 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
157 {
158         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
159         struct drm_color_ctm *ctm = ctm_state->ctm;
160
161         if (ctm_state->fifo) {
162                 HVS_WRITE(SCALER_OLEDCOEF2,
163                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
164                                         SCALER_OLEDCOEF2_R_TO_R) |
165                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
166                                         SCALER_OLEDCOEF2_R_TO_G) |
167                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
168                                         SCALER_OLEDCOEF2_R_TO_B));
169                 HVS_WRITE(SCALER_OLEDCOEF1,
170                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
171                                         SCALER_OLEDCOEF1_G_TO_R) |
172                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
173                                         SCALER_OLEDCOEF1_G_TO_G) |
174                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
175                                         SCALER_OLEDCOEF1_G_TO_B));
176                 HVS_WRITE(SCALER_OLEDCOEF0,
177                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
178                                         SCALER_OLEDCOEF0_B_TO_R) |
179                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
180                                         SCALER_OLEDCOEF0_B_TO_G) |
181                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
182                                         SCALER_OLEDCOEF0_B_TO_B));
183         }
184
185         HVS_WRITE(SCALER_OLEDOFFS,
186                   VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
187 }
188
189 static struct vc4_hvs_state *
190 vc4_hvs_get_new_global_state(struct drm_atomic_state *state)
191 {
192         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
193         struct drm_private_state *priv_state;
194
195         priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
196         if (IS_ERR(priv_state))
197                 return ERR_CAST(priv_state);
198
199         return to_vc4_hvs_state(priv_state);
200 }
201
202 static struct vc4_hvs_state *
203 vc4_hvs_get_old_global_state(struct drm_atomic_state *state)
204 {
205         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
206         struct drm_private_state *priv_state;
207
208         priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
209         if (IS_ERR(priv_state))
210                 return ERR_CAST(priv_state);
211
212         return to_vc4_hvs_state(priv_state);
213 }
214
215 static struct vc4_hvs_state *
216 vc4_hvs_get_global_state(struct drm_atomic_state *state)
217 {
218         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
219         struct drm_private_state *priv_state;
220
221         priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
222         if (IS_ERR(priv_state))
223                 return ERR_CAST(priv_state);
224
225         return to_vc4_hvs_state(priv_state);
226 }
227
228 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
229                                      struct drm_atomic_state *state)
230 {
231         struct drm_crtc_state *crtc_state;
232         struct drm_crtc *crtc;
233         unsigned int i;
234
235         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
236                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
237                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
238                 u32 dispctrl;
239                 u32 dsp3_mux;
240
241                 if (!crtc_state->active)
242                         continue;
243
244                 if (vc4_state->assigned_channel != 2)
245                         continue;
246
247                 /*
248                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
249                  * FIFO X'.
250                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
251                  *
252                  * DSP3 is connected to FIFO2 unless the transposer is
253                  * enabled. In this case, FIFO 2 is directly accessed by the
254                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
255                  * route.
256                  */
257                 if (vc4_crtc->feeds_txp)
258                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
259                 else
260                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
261
262                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
263                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
264                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
265         }
266 }
267
268 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
269                                      struct drm_atomic_state *state)
270 {
271         struct drm_crtc_state *crtc_state;
272         struct drm_crtc *crtc;
273         unsigned char mux;
274         unsigned int i;
275         u32 reg;
276
277         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
278                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
279                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
280
281                 if (!vc4_state->update_muxing)
282                         continue;
283
284                 switch (vc4_crtc->data->hvs_output) {
285                 case 2:
286                         mux = (vc4_state->assigned_channel == 2) ? 0 : 1;
287                         reg = HVS_READ(SCALER_DISPECTRL);
288                         HVS_WRITE(SCALER_DISPECTRL,
289                                   (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
290                                   VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
291                         break;
292
293                 case 3:
294                         if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
295                                 mux = 3;
296                         else
297                                 mux = vc4_state->assigned_channel;
298
299                         reg = HVS_READ(SCALER_DISPCTRL);
300                         HVS_WRITE(SCALER_DISPCTRL,
301                                   (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
302                                   VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
303                         break;
304
305                 case 4:
306                         if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
307                                 mux = 3;
308                         else
309                                 mux = vc4_state->assigned_channel;
310
311                         reg = HVS_READ(SCALER_DISPEOLN);
312                         HVS_WRITE(SCALER_DISPEOLN,
313                                   (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
314                                   VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
315
316                         break;
317
318                 case 5:
319                         if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
320                                 mux = 3;
321                         else
322                                 mux = vc4_state->assigned_channel;
323
324                         reg = HVS_READ(SCALER_DISPDITHER);
325                         HVS_WRITE(SCALER_DISPDITHER,
326                                   (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
327                                   VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
328                         break;
329
330                 default:
331                         break;
332                 }
333         }
334 }
335
336 static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
337 {
338         struct drm_device *dev = state->dev;
339         struct vc4_dev *vc4 = to_vc4_dev(dev);
340         struct vc4_hvs *hvs = vc4->hvs;
341         struct drm_crtc_state *new_crtc_state;
342         struct drm_crtc *crtc;
343         struct vc4_hvs_state *old_hvs_state;
344         unsigned int channel;
345         int i;
346
347         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
348                 struct vc4_crtc_state *vc4_crtc_state;
349
350                 if (!new_crtc_state->commit)
351                         continue;
352
353                 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
354                 vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel);
355         }
356
357         old_hvs_state = vc4_hvs_get_old_global_state(state);
358         if (IS_ERR(old_hvs_state))
359                 return;
360
361         for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) {
362                 struct drm_crtc_commit *commit;
363                 int ret;
364
365                 if (!old_hvs_state->fifo_state[channel].in_use)
366                         continue;
367
368                 commit = old_hvs_state->fifo_state[channel].pending_commit;
369                 if (!commit)
370                         continue;
371
372                 ret = drm_crtc_commit_wait(commit);
373                 if (ret)
374                         drm_err(dev, "Timed out waiting for commit\n");
375
376                 drm_crtc_commit_put(commit);
377                 old_hvs_state->fifo_state[channel].pending_commit = NULL;
378         }
379
380         if (vc4->hvs->hvs5)
381                 clk_set_min_rate(hvs->core_clk, 500000000);
382
383         drm_atomic_helper_commit_modeset_disables(dev, state);
384
385         vc4_ctm_commit(vc4, state);
386
387         if (vc4->hvs->hvs5)
388                 vc5_hvs_pv_muxing_commit(vc4, state);
389         else
390                 vc4_hvs_pv_muxing_commit(vc4, state);
391
392         drm_atomic_helper_commit_planes(dev, state, 0);
393
394         drm_atomic_helper_commit_modeset_enables(dev, state);
395
396         drm_atomic_helper_fake_vblank(state);
397
398         drm_atomic_helper_commit_hw_done(state);
399
400         drm_atomic_helper_wait_for_flip_done(dev, state);
401
402         drm_atomic_helper_cleanup_planes(dev, state);
403
404         if (vc4->hvs->hvs5)
405                 clk_set_min_rate(hvs->core_clk, 0);
406 }
407
408 static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
409 {
410         struct drm_crtc_state *crtc_state;
411         struct vc4_hvs_state *hvs_state;
412         struct drm_crtc *crtc;
413         unsigned int i;
414
415         hvs_state = vc4_hvs_get_new_global_state(state);
416         if (WARN_ON(IS_ERR(hvs_state)))
417                 return PTR_ERR(hvs_state);
418
419         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
420                 struct vc4_crtc_state *vc4_crtc_state =
421                         to_vc4_crtc_state(crtc_state);
422                 unsigned int channel =
423                         vc4_crtc_state->assigned_channel;
424
425                 if (channel == VC4_HVS_CHANNEL_DISABLED)
426                         continue;
427
428                 if (!hvs_state->fifo_state[channel].in_use)
429                         continue;
430
431                 hvs_state->fifo_state[channel].pending_commit =
432                         drm_crtc_commit_get(crtc_state->commit);
433         }
434
435         return 0;
436 }
437
438 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
439                                              struct drm_file *file_priv,
440                                              const struct drm_mode_fb_cmd2 *mode_cmd)
441 {
442         struct drm_mode_fb_cmd2 mode_cmd_local;
443
444         /* If the user didn't specify a modifier, use the
445          * vc4_set_tiling_ioctl() state for the BO.
446          */
447         if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
448                 struct drm_gem_object *gem_obj;
449                 struct vc4_bo *bo;
450
451                 gem_obj = drm_gem_object_lookup(file_priv,
452                                                 mode_cmd->handles[0]);
453                 if (!gem_obj) {
454                         DRM_DEBUG("Failed to look up GEM BO %d\n",
455                                   mode_cmd->handles[0]);
456                         return ERR_PTR(-ENOENT);
457                 }
458                 bo = to_vc4_bo(gem_obj);
459
460                 mode_cmd_local = *mode_cmd;
461
462                 if (bo->t_format) {
463                         mode_cmd_local.modifier[0] =
464                                 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
465                 } else {
466                         mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
467                 }
468
469                 drm_gem_object_put(gem_obj);
470
471                 mode_cmd = &mode_cmd_local;
472         }
473
474         return drm_gem_fb_create(dev, file_priv, mode_cmd);
475 }
476
477 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
478  * at a time and the HW only supports S0.9 scalars. To account for the latter,
479  * we don't allow userland to set a CTM that we have no hope of approximating.
480  */
481 static int
482 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
483 {
484         struct vc4_dev *vc4 = to_vc4_dev(dev);
485         struct vc4_ctm_state *ctm_state = NULL;
486         struct drm_crtc *crtc;
487         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
488         struct drm_color_ctm *ctm;
489         int i;
490
491         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
492                 /* CTM is being disabled. */
493                 if (!new_crtc_state->ctm && old_crtc_state->ctm) {
494                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
495                         if (IS_ERR(ctm_state))
496                                 return PTR_ERR(ctm_state);
497                         ctm_state->fifo = 0;
498                 }
499         }
500
501         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
502                 if (new_crtc_state->ctm == old_crtc_state->ctm)
503                         continue;
504
505                 if (!ctm_state) {
506                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
507                         if (IS_ERR(ctm_state))
508                                 return PTR_ERR(ctm_state);
509                 }
510
511                 /* CTM is being enabled or the matrix changed. */
512                 if (new_crtc_state->ctm) {
513                         struct vc4_crtc_state *vc4_crtc_state =
514                                 to_vc4_crtc_state(new_crtc_state);
515
516                         /* fifo is 1-based since 0 disables CTM. */
517                         int fifo = vc4_crtc_state->assigned_channel + 1;
518
519                         /* Check userland isn't trying to turn on CTM for more
520                          * than one CRTC at a time.
521                          */
522                         if (ctm_state->fifo && ctm_state->fifo != fifo) {
523                                 DRM_DEBUG_DRIVER("Too many CTM configured\n");
524                                 return -EINVAL;
525                         }
526
527                         /* Check we can approximate the specified CTM.
528                          * We disallow scalars |c| > 1.0 since the HW has
529                          * no integer bits.
530                          */
531                         ctm = new_crtc_state->ctm->data;
532                         for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
533                                 u64 val = ctm->matrix[i];
534
535                                 val &= ~BIT_ULL(63);
536                                 if (val > BIT_ULL(32))
537                                         return -EINVAL;
538                         }
539
540                         ctm_state->fifo = fifo;
541                         ctm_state->ctm = ctm;
542                 }
543         }
544
545         return 0;
546 }
547
548 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
549 {
550         struct drm_plane_state *old_plane_state, *new_plane_state;
551         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
552         struct vc4_load_tracker_state *load_state;
553         struct drm_private_state *priv_state;
554         struct drm_plane *plane;
555         int i;
556
557         if (!vc4->load_tracker_available)
558                 return 0;
559
560         priv_state = drm_atomic_get_private_obj_state(state,
561                                                       &vc4->load_tracker);
562         if (IS_ERR(priv_state))
563                 return PTR_ERR(priv_state);
564
565         load_state = to_vc4_load_tracker_state(priv_state);
566         for_each_oldnew_plane_in_state(state, plane, old_plane_state,
567                                        new_plane_state, i) {
568                 struct vc4_plane_state *vc4_plane_state;
569
570                 if (old_plane_state->fb && old_plane_state->crtc) {
571                         vc4_plane_state = to_vc4_plane_state(old_plane_state);
572                         load_state->membus_load -= vc4_plane_state->membus_load;
573                         load_state->hvs_load -= vc4_plane_state->hvs_load;
574                 }
575
576                 if (new_plane_state->fb && new_plane_state->crtc) {
577                         vc4_plane_state = to_vc4_plane_state(new_plane_state);
578                         load_state->membus_load += vc4_plane_state->membus_load;
579                         load_state->hvs_load += vc4_plane_state->hvs_load;
580                 }
581         }
582
583         /* Don't check the load when the tracker is disabled. */
584         if (!vc4->load_tracker_enabled)
585                 return 0;
586
587         /* The absolute limit is 2Gbyte/sec, but let's take a margin to let
588          * the system work when other blocks are accessing the memory.
589          */
590         if (load_state->membus_load > SZ_1G + SZ_512M)
591                 return -ENOSPC;
592
593         /* HVS clock is supposed to run @ 250Mhz, let's take a margin and
594          * consider the maximum number of cycles is 240M.
595          */
596         if (load_state->hvs_load > 240000000ULL)
597                 return -ENOSPC;
598
599         return 0;
600 }
601
602 static struct drm_private_state *
603 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
604 {
605         struct vc4_load_tracker_state *state;
606
607         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
608         if (!state)
609                 return NULL;
610
611         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
612
613         return &state->base;
614 }
615
616 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
617                                            struct drm_private_state *state)
618 {
619         struct vc4_load_tracker_state *load_state;
620
621         load_state = to_vc4_load_tracker_state(state);
622         kfree(load_state);
623 }
624
625 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
626         .atomic_duplicate_state = vc4_load_tracker_duplicate_state,
627         .atomic_destroy_state = vc4_load_tracker_destroy_state,
628 };
629
630 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
631 {
632         struct vc4_dev *vc4 = to_vc4_dev(dev);
633
634         if (!vc4->load_tracker_available)
635                 return;
636
637         drm_atomic_private_obj_fini(&vc4->load_tracker);
638 }
639
640 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
641 {
642         struct vc4_load_tracker_state *load_state;
643
644         if (!vc4->load_tracker_available)
645                 return 0;
646
647         load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
648         if (!load_state)
649                 return -ENOMEM;
650
651         drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
652                                     &load_state->base,
653                                     &vc4_load_tracker_state_funcs);
654
655         return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
656 }
657
658 static struct drm_private_state *
659 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
660 {
661         struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
662         struct vc4_hvs_state *state;
663         unsigned int i;
664
665         state = kzalloc(sizeof(*state), GFP_KERNEL);
666         if (!state)
667                 return NULL;
668
669         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
670
671
672         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
673                 state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
674         }
675
676         return &state->base;
677 }
678
679 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
680                                            struct drm_private_state *state)
681 {
682         struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
683         unsigned int i;
684
685         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
686                 if (!hvs_state->fifo_state[i].pending_commit)
687                         continue;
688
689                 drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
690         }
691
692         kfree(hvs_state);
693 }
694
695 static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
696         .atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
697         .atomic_destroy_state = vc4_hvs_channels_destroy_state,
698 };
699
700 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
701 {
702         struct vc4_dev *vc4 = to_vc4_dev(dev);
703
704         drm_atomic_private_obj_fini(&vc4->hvs_channels);
705 }
706
707 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
708 {
709         struct vc4_hvs_state *state;
710
711         state = kzalloc(sizeof(*state), GFP_KERNEL);
712         if (!state)
713                 return -ENOMEM;
714
715         drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
716                                     &state->base,
717                                     &vc4_hvs_state_funcs);
718
719         return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
720 }
721
722 /*
723  * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
724  * the TXP (and therefore all the CRTCs found on that platform).
725  *
726  * The naive (and our initial) implementation would just iterate over
727  * all the active CRTCs, try to find a suitable FIFO, and then remove it
728  * from the pool of available FIFOs. However, there are a few corner
729  * cases that need to be considered:
730  *
731  * - When running in a dual-display setup (so with two CRTCs involved),
732  *   we can update the state of a single CRTC (for example by changing
733  *   its mode using xrandr under X11) without affecting the other. In
734  *   this case, the other CRTC wouldn't be in the state at all, so we
735  *   need to consider all the running CRTCs in the DRM device to assign
736  *   a FIFO, not just the one in the state.
737  *
738  * - To fix the above, we can't use drm_atomic_get_crtc_state on all
739  *   enabled CRTCs to pull their CRTC state into the global state, since
740  *   a page flip would start considering their vblank to complete. Since
741  *   we don't have a guarantee that they are actually active, that
742  *   vblank might never happen, and shouldn't even be considered if we
743  *   want to do a page flip on a single CRTC. That can be tested by
744  *   doing a modetest -v first on HDMI1 and then on HDMI0.
745  *
746  * - Since we need the pixelvalve to be disabled and enabled back when
747  *   the FIFO is changed, we should keep the FIFO assigned for as long
748  *   as the CRTC is enabled, only considering it free again once that
749  *   CRTC has been disabled. This can be tested by booting X11 on a
750  *   single display, and changing the resolution down and then back up.
751  */
752 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
753                                       struct drm_atomic_state *state)
754 {
755         struct vc4_hvs_state *hvs_new_state;
756         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
757         struct drm_crtc *crtc;
758         unsigned int unassigned_channels = 0;
759         unsigned int i;
760
761         hvs_new_state = vc4_hvs_get_global_state(state);
762         if (IS_ERR(hvs_new_state))
763                 return PTR_ERR(hvs_new_state);
764
765         for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
766                 if (!hvs_new_state->fifo_state[i].in_use)
767                         unassigned_channels |= BIT(i);
768
769         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
770                 struct vc4_crtc_state *old_vc4_crtc_state =
771                         to_vc4_crtc_state(old_crtc_state);
772                 struct vc4_crtc_state *new_vc4_crtc_state =
773                         to_vc4_crtc_state(new_crtc_state);
774                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
775                 unsigned int matching_channels;
776                 unsigned int channel;
777
778                 /* Nothing to do here, let's skip it */
779                 if (old_crtc_state->enable == new_crtc_state->enable)
780                         continue;
781
782                 /* Muxing will need to be modified, mark it as such */
783                 new_vc4_crtc_state->update_muxing = true;
784
785                 /* If we're disabling our CRTC, we put back our channel */
786                 if (!new_crtc_state->enable) {
787                         channel = old_vc4_crtc_state->assigned_channel;
788                         hvs_new_state->fifo_state[channel].in_use = false;
789                         new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
790                         continue;
791                 }
792
793                 /*
794                  * The problem we have to solve here is that we have
795                  * up to 7 encoders, connected to up to 6 CRTCs.
796                  *
797                  * Those CRTCs, depending on the instance, can be
798                  * routed to 1, 2 or 3 HVS FIFOs, and we need to set
799                  * the change the muxing between FIFOs and outputs in
800                  * the HVS accordingly.
801                  *
802                  * It would be pretty hard to come up with an
803                  * algorithm that would generically solve
804                  * this. However, the current routing trees we support
805                  * allow us to simplify a bit the problem.
806                  *
807                  * Indeed, with the current supported layouts, if we
808                  * try to assign in the ascending crtc index order the
809                  * FIFOs, we can't fall into the situation where an
810                  * earlier CRTC that had multiple routes is assigned
811                  * one that was the only option for a later CRTC.
812                  *
813                  * If the layout changes and doesn't give us that in
814                  * the future, we will need to have something smarter,
815                  * but it works so far.
816                  */
817                 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
818                 if (!matching_channels)
819                         return -EINVAL;
820
821                 channel = ffs(matching_channels) - 1;
822                 new_vc4_crtc_state->assigned_channel = channel;
823                 unassigned_channels &= ~BIT(channel);
824                 hvs_new_state->fifo_state[channel].in_use = true;
825         }
826
827         return 0;
828 }
829
830 static int
831 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
832 {
833         int ret;
834
835         ret = vc4_pv_muxing_atomic_check(dev, state);
836         if (ret)
837                 return ret;
838
839         ret = vc4_ctm_atomic_check(dev, state);
840         if (ret < 0)
841                 return ret;
842
843         ret = drm_atomic_helper_check(dev, state);
844         if (ret)
845                 return ret;
846
847         return vc4_load_tracker_atomic_check(state);
848 }
849
850 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
851         .atomic_commit_setup    = vc4_atomic_commit_setup,
852         .atomic_commit_tail     = vc4_atomic_commit_tail,
853 };
854
855 static const struct drm_mode_config_funcs vc4_mode_funcs = {
856         .atomic_check = vc4_atomic_check,
857         .atomic_commit = drm_atomic_helper_commit,
858         .fb_create = vc4_fb_create,
859 };
860
861 int vc4_kms_load(struct drm_device *dev)
862 {
863         struct vc4_dev *vc4 = to_vc4_dev(dev);
864         bool is_vc5 = of_device_is_compatible(dev->dev->of_node,
865                                               "brcm,bcm2711-vc5");
866         int ret;
867
868         if (!is_vc5) {
869                 vc4->load_tracker_available = true;
870
871                 /* Start with the load tracker enabled. Can be
872                  * disabled through the debugfs load_tracker file.
873                  */
874                 vc4->load_tracker_enabled = true;
875         }
876
877         /* Set support for vblank irq fast disable, before drm_vblank_init() */
878         dev->vblank_disable_immediate = true;
879
880         ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
881         if (ret < 0) {
882                 dev_err(dev->dev, "failed to initialize vblank\n");
883                 return ret;
884         }
885
886         if (is_vc5) {
887                 dev->mode_config.max_width = 7680;
888                 dev->mode_config.max_height = 7680;
889         } else {
890                 dev->mode_config.max_width = 2048;
891                 dev->mode_config.max_height = 2048;
892         }
893
894         dev->mode_config.funcs = &vc4_mode_funcs;
895         dev->mode_config.helper_private = &vc4_mode_config_helpers;
896         dev->mode_config.preferred_depth = 24;
897         dev->mode_config.async_page_flip = true;
898
899         ret = vc4_ctm_obj_init(vc4);
900         if (ret)
901                 return ret;
902
903         ret = vc4_load_tracker_obj_init(vc4);
904         if (ret)
905                 return ret;
906
907         ret = vc4_hvs_channels_obj_init(vc4);
908         if (ret)
909                 return ret;
910
911         drm_mode_config_reset(dev);
912
913         drm_kms_helper_poll_init(dev);
914
915         return 0;
916 }