a62f222255ce76d5439c630c1f27c57f99f26be2
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / vc4 / vc4_hvs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 HVS module.
8  *
9  * The Hardware Video Scaler (HVS) is the piece of hardware that does
10  * translation, scaling, colorspace conversion, and compositing of
11  * pixels stored in framebuffers into a FIFO of pixels going out to
12  * the Pixel Valve (CRTC).  It operates at the system clock rate (the
13  * system audio clock gate, specifically), which is much higher than
14  * the pixel clock rate.
15  *
16  * There is a single global HVS, with multiple output FIFOs that can
17  * be consumed by the PVs.  This file just manages the resources for
18  * the HVS, while the vc4_crtc.c code actually drives HVS setup for
19  * each CRTC.
20  */
21
22 #include <linux/bitfield.h>
23 #include <linux/clk.h>
24 #include <linux/component.h>
25 #include <linux/platform_device.h>
26
27 #include <drm/drm_atomic_helper.h>
28 #include <drm/drm_drv.h>
29 #include <drm/drm_vblank.h>
30
31 #include "vc4_drv.h"
32 #include "vc4_regs.h"
33
34 static const struct debugfs_reg32 hvs_regs[] = {
35         VC4_REG32(SCALER_DISPCTRL),
36         VC4_REG32(SCALER_DISPSTAT),
37         VC4_REG32(SCALER_DISPID),
38         VC4_REG32(SCALER_DISPECTRL),
39         VC4_REG32(SCALER_DISPPROF),
40         VC4_REG32(SCALER_DISPDITHER),
41         VC4_REG32(SCALER_DISPEOLN),
42         VC4_REG32(SCALER_DISPLIST0),
43         VC4_REG32(SCALER_DISPLIST1),
44         VC4_REG32(SCALER_DISPLIST2),
45         VC4_REG32(SCALER_DISPLSTAT),
46         VC4_REG32(SCALER_DISPLACT0),
47         VC4_REG32(SCALER_DISPLACT1),
48         VC4_REG32(SCALER_DISPLACT2),
49         VC4_REG32(SCALER_DISPCTRL0),
50         VC4_REG32(SCALER_DISPBKGND0),
51         VC4_REG32(SCALER_DISPSTAT0),
52         VC4_REG32(SCALER_DISPBASE0),
53         VC4_REG32(SCALER_DISPCTRL1),
54         VC4_REG32(SCALER_DISPBKGND1),
55         VC4_REG32(SCALER_DISPSTAT1),
56         VC4_REG32(SCALER_DISPBASE1),
57         VC4_REG32(SCALER_DISPCTRL2),
58         VC4_REG32(SCALER_DISPBKGND2),
59         VC4_REG32(SCALER_DISPSTAT2),
60         VC4_REG32(SCALER_DISPBASE2),
61         VC4_REG32(SCALER_DISPALPHA2),
62         VC4_REG32(SCALER_OLEDOFFS),
63         VC4_REG32(SCALER_OLEDCOEF0),
64         VC4_REG32(SCALER_OLEDCOEF1),
65         VC4_REG32(SCALER_OLEDCOEF2),
66 };
67
68 void vc4_hvs_dump_state(struct vc4_hvs *hvs)
69 {
70         struct drm_device *drm = &hvs->vc4->base;
71         struct drm_printer p = drm_info_printer(&hvs->pdev->dev);
72         int idx, i;
73
74         drm_print_regset32(&p, &hvs->regset);
75
76         if (!drm_dev_enter(drm, &idx))
77                 return;
78
79         DRM_INFO("HVS ctx:\n");
80         for (i = 0; i < 64; i += 4) {
81                 DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
82                          i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
83                          readl((u32 __iomem *)hvs->dlist + i + 0),
84                          readl((u32 __iomem *)hvs->dlist + i + 1),
85                          readl((u32 __iomem *)hvs->dlist + i + 2),
86                          readl((u32 __iomem *)hvs->dlist + i + 3));
87         }
88
89         drm_dev_exit(idx);
90 }
91
92 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
93 {
94         struct drm_info_node *node = m->private;
95         struct drm_device *dev = node->minor->dev;
96         struct vc4_dev *vc4 = to_vc4_dev(dev);
97         struct drm_printer p = drm_seq_file_printer(m);
98
99         drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
100
101         return 0;
102 }
103
104 static int vc4_hvs_debugfs_dlist(struct seq_file *m, void *data)
105 {
106         struct drm_info_node *node = m->private;
107         struct drm_device *dev = node->minor->dev;
108         struct vc4_dev *vc4 = to_vc4_dev(dev);
109         struct vc4_hvs *hvs = vc4->hvs;
110         struct drm_printer p = drm_seq_file_printer(m);
111         unsigned int next_entry_start = 0;
112         unsigned int i, j;
113         u32 dlist_word, dispstat;
114
115         for (i = 0; i < SCALER_CHANNELS_COUNT; i++) {
116                 dispstat = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(i)),
117                                          SCALER_DISPSTATX_MODE);
118                 if (dispstat == SCALER_DISPSTATX_MODE_DISABLED ||
119                     dispstat == SCALER_DISPSTATX_MODE_EOF) {
120                         drm_printf(&p, "HVS chan %u disabled\n", i);
121                         continue;
122                 }
123
124                 drm_printf(&p, "HVS chan %u:\n", i);
125
126                 for (j = HVS_READ(SCALER_DISPLISTX(i)); j < 256; j++) {
127                         dlist_word = readl((u32 __iomem *)vc4->hvs->dlist + j);
128                         drm_printf(&p, "dlist: %02d: 0x%08x\n", j,
129                                    dlist_word);
130                         if (!next_entry_start ||
131                             next_entry_start == j) {
132                                 if (dlist_word & SCALER_CTL0_END)
133                                         break;
134                                 next_entry_start = j +
135                                         VC4_GET_FIELD(dlist_word,
136                                                       SCALER_CTL0_SIZE);
137                         }
138                 }
139         }
140
141         return 0;
142 }
143
144 /* The filter kernel is composed of dwords each containing 3 9-bit
145  * signed integers packed next to each other.
146  */
147 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
148 #define VC4_PPF_FILTER_WORD(c0, c1, c2)                         \
149         ((((c0) & 0x1ff) << 0) |                                \
150          (((c1) & 0x1ff) << 9) |                                \
151          (((c2) & 0x1ff) << 18))
152
153 /* The whole filter kernel is arranged as the coefficients 0-16 going
154  * up, then a pad, then 17-31 going down and reversed within the
155  * dwords.  This means that a linear phase kernel (where it's
156  * symmetrical at the boundary between 15 and 16) has the last 5
157  * dwords matching the first 5, but reversed.
158  */
159 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,     \
160                                 c9, c10, c11, c12, c13, c14, c15)       \
161         {VC4_PPF_FILTER_WORD(c0, c1, c2),                               \
162          VC4_PPF_FILTER_WORD(c3, c4, c5),                               \
163          VC4_PPF_FILTER_WORD(c6, c7, c8),                               \
164          VC4_PPF_FILTER_WORD(c9, c10, c11),                             \
165          VC4_PPF_FILTER_WORD(c12, c13, c14),                            \
166          VC4_PPF_FILTER_WORD(c15, c15, 0)}
167
168 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
169 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
170
171 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
172  * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
173  */
174 static const u32 mitchell_netravali_1_3_1_3_kernel[] =
175         VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
176                                 50, 82, 119, 155, 187, 213, 227);
177
178 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
179                                         struct drm_mm_node *space,
180                                         const u32 *kernel)
181 {
182         int ret, i;
183         u32 __iomem *dst_kernel;
184
185         /*
186          * NOTE: We don't need a call to drm_dev_enter()/drm_dev_exit()
187          * here since that function is only called from vc4_hvs_bind().
188          */
189
190         ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
191         if (ret) {
192                 DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
193                           ret);
194                 return ret;
195         }
196
197         dst_kernel = hvs->dlist + space->start;
198
199         for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
200                 if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
201                         writel(kernel[i], &dst_kernel[i]);
202                 else {
203                         writel(kernel[VC4_KERNEL_DWORDS - i - 1],
204                                &dst_kernel[i]);
205                 }
206         }
207
208         return 0;
209 }
210
211 static void vc4_hvs_lut_load(struct vc4_hvs *hvs,
212                              struct vc4_crtc *vc4_crtc)
213 {
214         struct drm_device *drm = &hvs->vc4->base;
215         struct drm_crtc *crtc = &vc4_crtc->base;
216         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
217         int idx;
218         u32 i;
219
220         if (!drm_dev_enter(drm, &idx))
221                 return;
222
223         /* The LUT memory is laid out with each HVS channel in order,
224          * each of which takes 256 writes for R, 256 for G, then 256
225          * for B.
226          */
227         HVS_WRITE(SCALER_GAMADDR,
228                   SCALER_GAMADDR_AUTOINC |
229                   (vc4_state->assigned_channel * 3 * crtc->gamma_size));
230
231         for (i = 0; i < crtc->gamma_size; i++)
232                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
233         for (i = 0; i < crtc->gamma_size; i++)
234                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
235         for (i = 0; i < crtc->gamma_size; i++)
236                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
237
238         drm_dev_exit(idx);
239 }
240
241 static void vc4_hvs_update_gamma_lut(struct vc4_hvs *hvs,
242                                      struct vc4_crtc *vc4_crtc)
243 {
244         struct drm_crtc_state *crtc_state = vc4_crtc->base.state;
245         struct drm_color_lut *lut = crtc_state->gamma_lut->data;
246         u32 length = drm_color_lut_size(crtc_state->gamma_lut);
247         u32 i;
248
249         for (i = 0; i < length; i++) {
250                 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
251                 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
252                 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
253         }
254
255         vc4_hvs_lut_load(hvs, vc4_crtc);
256 }
257
258 u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo)
259 {
260         struct drm_device *drm = &hvs->vc4->base;
261         u8 field = 0;
262         int idx;
263
264         if (!drm_dev_enter(drm, &idx))
265                 return 0;
266
267         switch (fifo) {
268         case 0:
269                 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
270                                       SCALER_DISPSTAT1_FRCNT0);
271                 break;
272         case 1:
273                 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
274                                       SCALER_DISPSTAT1_FRCNT1);
275                 break;
276         case 2:
277                 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
278                                       SCALER_DISPSTAT2_FRCNT2);
279                 break;
280         }
281
282         drm_dev_exit(idx);
283         return field;
284 }
285
286 int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output)
287 {
288         struct vc4_dev *vc4 = hvs->vc4;
289         u32 reg;
290         int ret;
291
292         if (!vc4->is_vc5)
293                 return output;
294
295         /*
296          * NOTE: We should probably use drm_dev_enter()/drm_dev_exit()
297          * here, but this function is only used during the DRM device
298          * initialization, so we should be fine.
299          */
300
301         switch (output) {
302         case 0:
303                 return 0;
304
305         case 1:
306                 return 1;
307
308         case 2:
309                 reg = HVS_READ(SCALER_DISPECTRL);
310                 ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
311                 if (ret == 0)
312                         return 2;
313
314                 return 0;
315
316         case 3:
317                 reg = HVS_READ(SCALER_DISPCTRL);
318                 ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
319                 if (ret == 3)
320                         return -EPIPE;
321
322                 return ret;
323
324         case 4:
325                 reg = HVS_READ(SCALER_DISPEOLN);
326                 ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
327                 if (ret == 3)
328                         return -EPIPE;
329
330                 return ret;
331
332         case 5:
333                 reg = HVS_READ(SCALER_DISPDITHER);
334                 ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
335                 if (ret == 3)
336                         return -EPIPE;
337
338                 return ret;
339
340         default:
341                 return -EPIPE;
342         }
343 }
344
345 static int vc4_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc,
346                                 struct drm_display_mode *mode, bool oneshot)
347 {
348         struct vc4_dev *vc4 = hvs->vc4;
349         struct drm_device *drm = &vc4->base;
350         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
351         struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
352         unsigned int chan = vc4_crtc_state->assigned_channel;
353         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
354         u32 dispbkgndx;
355         u32 dispctrl;
356         int idx;
357
358         if (!drm_dev_enter(drm, &idx))
359                 return -ENODEV;
360
361         HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
362         HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
363         HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
364
365         /* Turn on the scaler, which will wait for vstart to start
366          * compositing.
367          * When feeding the transposer, we should operate in oneshot
368          * mode.
369          */
370         dispctrl = SCALER_DISPCTRLX_ENABLE;
371
372         if (!vc4->is_vc5)
373                 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
374                                           SCALER_DISPCTRLX_WIDTH) |
375                             VC4_SET_FIELD(mode->vdisplay,
376                                           SCALER_DISPCTRLX_HEIGHT) |
377                             (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
378         else
379                 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
380                                           SCALER5_DISPCTRLX_WIDTH) |
381                             VC4_SET_FIELD(mode->vdisplay,
382                                           SCALER5_DISPCTRLX_HEIGHT) |
383                             (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
384
385         HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
386
387         dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
388         dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
389         dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
390
391         HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
392                   SCALER_DISPBKGND_AUTOHS |
393                   ((!vc4->is_vc5) ? SCALER_DISPBKGND_GAMMA : 0) |
394                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
395
396         /* Reload the LUT, since the SRAMs would have been disabled if
397          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
398          */
399         vc4_hvs_lut_load(hvs, vc4_crtc);
400
401         drm_dev_exit(idx);
402
403         return 0;
404 }
405
406 void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
407 {
408         struct drm_device *drm = &hvs->vc4->base;
409         int idx;
410
411         if (!drm_dev_enter(drm, &idx))
412                 return;
413
414         if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE)
415                 goto out;
416
417         HVS_WRITE(SCALER_DISPCTRLX(chan),
418                   HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET);
419         HVS_WRITE(SCALER_DISPCTRLX(chan),
420                   HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE);
421
422         /* Once we leave, the scaler should be disabled and its fifo empty. */
423         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
424
425         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
426                                    SCALER_DISPSTATX_MODE) !=
427                      SCALER_DISPSTATX_MODE_DISABLED);
428
429         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
430                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
431                      SCALER_DISPSTATX_EMPTY);
432
433 out:
434         drm_dev_exit(idx);
435 }
436
437 int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
438 {
439         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
440         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
441         struct drm_device *dev = crtc->dev;
442         struct vc4_dev *vc4 = to_vc4_dev(dev);
443         struct drm_plane *plane;
444         unsigned long flags;
445         const struct drm_plane_state *plane_state;
446         u32 dlist_count = 0;
447         int ret;
448
449         /* The pixelvalve can only feed one encoder (and encoders are
450          * 1:1 with connectors.)
451          */
452         if (hweight32(crtc_state->connector_mask) > 1)
453                 return -EINVAL;
454
455         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state)
456                 dlist_count += vc4_plane_dlist_size(plane_state);
457
458         dlist_count++; /* Account for SCALER_CTL0_END. */
459
460         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
461         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
462                                  dlist_count);
463         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
464         if (ret)
465                 return ret;
466
467         return 0;
468 }
469
470 static void vc4_hvs_install_dlist(struct drm_crtc *crtc)
471 {
472         struct drm_device *dev = crtc->dev;
473         struct vc4_dev *vc4 = to_vc4_dev(dev);
474         struct vc4_hvs *hvs = vc4->hvs;
475         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
476         int idx;
477
478         if (!drm_dev_enter(dev, &idx))
479                 return;
480
481         HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
482                   vc4_state->mm.start);
483
484         drm_dev_exit(idx);
485 }
486
487 static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
488 {
489         struct drm_device *dev = crtc->dev;
490         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
491         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
492         unsigned long flags;
493
494         if (crtc->state->event) {
495                 crtc->state->event->pipe = drm_crtc_index(crtc);
496
497                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
498
499                 spin_lock_irqsave(&dev->event_lock, flags);
500
501                 if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
502                         vc4_crtc->event = crtc->state->event;
503                         crtc->state->event = NULL;
504                 }
505
506                 spin_unlock_irqrestore(&dev->event_lock, flags);
507         }
508
509         spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
510         vc4_crtc->current_dlist = vc4_state->mm.start;
511         spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
512 }
513
514 void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
515                           struct drm_atomic_state *state)
516 {
517         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
518         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
519         unsigned long flags;
520
521         spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
522         vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
523         spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
524 }
525
526 void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
527                            struct drm_atomic_state *state)
528 {
529         struct drm_device *dev = crtc->dev;
530         struct vc4_dev *vc4 = to_vc4_dev(dev);
531         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
532         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
533         bool oneshot = vc4_crtc->feeds_txp;
534
535         vc4_hvs_install_dlist(crtc);
536         vc4_hvs_update_dlist(crtc);
537         vc4_hvs_init_channel(vc4->hvs, crtc, mode, oneshot);
538 }
539
540 void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
541                             struct drm_atomic_state *state)
542 {
543         struct drm_device *dev = crtc->dev;
544         struct vc4_dev *vc4 = to_vc4_dev(dev);
545         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
546         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
547         unsigned int chan = vc4_state->assigned_channel;
548
549         vc4_hvs_stop_channel(vc4->hvs, chan);
550 }
551
552 void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
553                           struct drm_atomic_state *state)
554 {
555         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
556                                                                          crtc);
557         struct drm_device *dev = crtc->dev;
558         struct vc4_dev *vc4 = to_vc4_dev(dev);
559         struct vc4_hvs *hvs = vc4->hvs;
560         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
561         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
562         unsigned int channel = vc4_state->assigned_channel;
563         struct drm_plane *plane;
564         struct vc4_plane_state *vc4_plane_state;
565         bool debug_dump_regs = false;
566         bool enable_bg_fill = false;
567         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
568         u32 __iomem *dlist_next = dlist_start;
569         int idx;
570
571         if (!drm_dev_enter(dev, &idx)) {
572                 vc4_crtc_send_vblank(crtc);
573                 return;
574         }
575
576         if (debug_dump_regs) {
577                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
578                 vc4_hvs_dump_state(hvs);
579         }
580
581         /* Copy all the active planes' dlist contents to the hardware dlist. */
582         drm_atomic_crtc_for_each_plane(plane, crtc) {
583                 /* Is this the first active plane? */
584                 if (dlist_next == dlist_start) {
585                         /* We need to enable background fill when a plane
586                          * could be alpha blending from the background, i.e.
587                          * where no other plane is underneath. It suffices to
588                          * consider the first active plane here since we set
589                          * needs_bg_fill such that either the first plane
590                          * already needs it or all planes on top blend from
591                          * the first or a lower plane.
592                          */
593                         vc4_plane_state = to_vc4_plane_state(plane->state);
594                         enable_bg_fill = vc4_plane_state->needs_bg_fill;
595                 }
596
597                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
598         }
599
600         writel(SCALER_CTL0_END, dlist_next);
601         dlist_next++;
602
603         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
604
605         if (enable_bg_fill)
606                 /* This sets a black background color fill, as is the case
607                  * with other DRM drivers.
608                  */
609                 HVS_WRITE(SCALER_DISPBKGNDX(channel),
610                           HVS_READ(SCALER_DISPBKGNDX(channel)) |
611                           SCALER_DISPBKGND_FILL);
612
613         /* Only update DISPLIST if the CRTC was already running and is not
614          * being disabled.
615          * vc4_crtc_enable() takes care of updating the dlist just after
616          * re-enabling VBLANK interrupts and before enabling the engine.
617          * If the CRTC is being disabled, there's no point in updating this
618          * information.
619          */
620         if (crtc->state->active && old_state->active) {
621                 vc4_hvs_install_dlist(crtc);
622                 vc4_hvs_update_dlist(crtc);
623         }
624
625         if (crtc->state->color_mgmt_changed) {
626                 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(channel));
627
628                 if (crtc->state->gamma_lut) {
629                         vc4_hvs_update_gamma_lut(hvs, vc4_crtc);
630                         dispbkgndx |= SCALER_DISPBKGND_GAMMA;
631                 } else {
632                         /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
633                          * in hardware, which is the same as a linear lut that
634                          * DRM expects us to use in absence of a user lut.
635                          */
636                         dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
637                 }
638                 HVS_WRITE(SCALER_DISPBKGNDX(channel), dispbkgndx);
639         }
640
641         if (debug_dump_regs) {
642                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
643                 vc4_hvs_dump_state(hvs);
644         }
645
646         drm_dev_exit(idx);
647 }
648
649 void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel)
650 {
651         struct drm_device *drm = &hvs->vc4->base;
652         u32 dispctrl;
653         int idx;
654
655         if (!drm_dev_enter(drm, &idx))
656                 return;
657
658         dispctrl = HVS_READ(SCALER_DISPCTRL);
659         dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
660
661         HVS_WRITE(SCALER_DISPCTRL, dispctrl);
662
663         drm_dev_exit(idx);
664 }
665
666 void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel)
667 {
668         struct drm_device *drm = &hvs->vc4->base;
669         u32 dispctrl;
670         int idx;
671
672         if (!drm_dev_enter(drm, &idx))
673                 return;
674
675         dispctrl = HVS_READ(SCALER_DISPCTRL);
676         dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
677
678         HVS_WRITE(SCALER_DISPSTAT,
679                   SCALER_DISPSTAT_EUFLOW(channel));
680         HVS_WRITE(SCALER_DISPCTRL, dispctrl);
681
682         drm_dev_exit(idx);
683 }
684
685 static void vc4_hvs_report_underrun(struct drm_device *dev)
686 {
687         struct vc4_dev *vc4 = to_vc4_dev(dev);
688
689         atomic_inc(&vc4->underrun);
690         DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
691 }
692
693 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
694 {
695         struct drm_device *dev = data;
696         struct vc4_dev *vc4 = to_vc4_dev(dev);
697         struct vc4_hvs *hvs = vc4->hvs;
698         irqreturn_t irqret = IRQ_NONE;
699         int channel;
700         u32 control;
701         u32 status;
702
703         /*
704          * NOTE: We don't need to protect the register access using
705          * drm_dev_enter() there because the interrupt handler lifetime
706          * is tied to the device itself, and not to the DRM device.
707          *
708          * So when the device will be gone, one of the first thing we
709          * will be doing will be to unregister the interrupt handler,
710          * and then unregister the DRM device. drm_dev_enter() would
711          * thus always succeed if we are here.
712          */
713
714         status = HVS_READ(SCALER_DISPSTAT);
715         control = HVS_READ(SCALER_DISPCTRL);
716
717         for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
718                 /* Interrupt masking is not always honored, so check it here. */
719                 if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
720                     control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
721                         vc4_hvs_mask_underrun(hvs, channel);
722                         vc4_hvs_report_underrun(dev);
723
724                         irqret = IRQ_HANDLED;
725                 }
726         }
727
728         /* Clear every per-channel interrupt flag. */
729         HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
730                                    SCALER_DISPSTAT_IRQMASK(1) |
731                                    SCALER_DISPSTAT_IRQMASK(2));
732
733         return irqret;
734 }
735
736 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
737 {
738         struct platform_device *pdev = to_platform_device(dev);
739         struct drm_device *drm = dev_get_drvdata(master);
740         struct vc4_dev *vc4 = to_vc4_dev(drm);
741         struct vc4_hvs *hvs = NULL;
742         int ret;
743         u32 dispctrl;
744         u32 reg;
745
746         hvs = drmm_kzalloc(drm, sizeof(*hvs), GFP_KERNEL);
747         if (!hvs)
748                 return -ENOMEM;
749         hvs->vc4 = vc4;
750         hvs->pdev = pdev;
751
752         hvs->regs = vc4_ioremap_regs(pdev, 0);
753         if (IS_ERR(hvs->regs))
754                 return PTR_ERR(hvs->regs);
755
756         hvs->regset.base = hvs->regs;
757         hvs->regset.regs = hvs_regs;
758         hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
759
760         if (vc4->is_vc5) {
761                 hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
762                 if (IS_ERR(hvs->core_clk)) {
763                         dev_err(&pdev->dev, "Couldn't get core clock\n");
764                         return PTR_ERR(hvs->core_clk);
765                 }
766
767                 ret = clk_prepare_enable(hvs->core_clk);
768                 if (ret) {
769                         dev_err(&pdev->dev, "Couldn't enable the core clock\n");
770                         return ret;
771                 }
772         }
773
774         if (!vc4->is_vc5)
775                 hvs->dlist = hvs->regs + SCALER_DLIST_START;
776         else
777                 hvs->dlist = hvs->regs + SCALER5_DLIST_START;
778
779         spin_lock_init(&hvs->mm_lock);
780
781         /* Set up the HVS display list memory manager.  We never
782          * overwrite the setup from the bootloader (just 128b out of
783          * our 16K), since we don't want to scramble the screen when
784          * transitioning from the firmware's boot setup to runtime.
785          */
786         drm_mm_init(&hvs->dlist_mm,
787                     HVS_BOOTLOADER_DLIST_END,
788                     (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
789
790         /* Set up the HVS LBM memory manager.  We could have some more
791          * complicated data structure that allowed reuse of LBM areas
792          * between planes when they don't overlap on the screen, but
793          * for now we just allocate globally.
794          */
795         if (!vc4->is_vc5)
796                 /* 48k words of 2x12-bit pixels */
797                 drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
798         else
799                 /* 60k words of 4x12-bit pixels */
800                 drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
801
802         /* Upload filter kernels.  We only have the one for now, so we
803          * keep it around for the lifetime of the driver.
804          */
805         ret = vc4_hvs_upload_linear_kernel(hvs,
806                                            &hvs->mitchell_netravali_filter,
807                                            mitchell_netravali_1_3_1_3_kernel);
808         if (ret)
809                 return ret;
810
811         vc4->hvs = hvs;
812
813         reg = HVS_READ(SCALER_DISPECTRL);
814         reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
815         HVS_WRITE(SCALER_DISPECTRL,
816                   reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
817
818         reg = HVS_READ(SCALER_DISPCTRL);
819         reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
820         HVS_WRITE(SCALER_DISPCTRL,
821                   reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
822
823         reg = HVS_READ(SCALER_DISPEOLN);
824         reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
825         HVS_WRITE(SCALER_DISPEOLN,
826                   reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
827
828         reg = HVS_READ(SCALER_DISPDITHER);
829         reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
830         HVS_WRITE(SCALER_DISPDITHER,
831                   reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
832
833         dispctrl = HVS_READ(SCALER_DISPCTRL);
834
835         dispctrl |= SCALER_DISPCTRL_ENABLE;
836         dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
837                     SCALER_DISPCTRL_DISPEIRQ(1) |
838                     SCALER_DISPCTRL_DISPEIRQ(2);
839
840         dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
841                       SCALER_DISPCTRL_SLVWREIRQ |
842                       SCALER_DISPCTRL_SLVRDEIRQ |
843                       SCALER_DISPCTRL_DSPEIEOF(0) |
844                       SCALER_DISPCTRL_DSPEIEOF(1) |
845                       SCALER_DISPCTRL_DSPEIEOF(2) |
846                       SCALER_DISPCTRL_DSPEIEOLN(0) |
847                       SCALER_DISPCTRL_DSPEIEOLN(1) |
848                       SCALER_DISPCTRL_DSPEIEOLN(2) |
849                       SCALER_DISPCTRL_DSPEISLUR(0) |
850                       SCALER_DISPCTRL_DSPEISLUR(1) |
851                       SCALER_DISPCTRL_DSPEISLUR(2) |
852                       SCALER_DISPCTRL_SCLEIRQ);
853
854         HVS_WRITE(SCALER_DISPCTRL, dispctrl);
855
856         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
857                                vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
858         if (ret)
859                 return ret;
860
861         vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
862         vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun,
863                              NULL);
864         vc4_debugfs_add_file(drm, "hvs_dlists", vc4_hvs_debugfs_dlist,
865                              NULL);
866
867         return 0;
868 }
869
870 static void vc4_hvs_unbind(struct device *dev, struct device *master,
871                            void *data)
872 {
873         struct drm_device *drm = dev_get_drvdata(master);
874         struct vc4_dev *vc4 = to_vc4_dev(drm);
875         struct vc4_hvs *hvs = vc4->hvs;
876         struct drm_mm_node *node, *next;
877
878         if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
879                 drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
880
881         drm_mm_for_each_node_safe(node, next, &vc4->hvs->dlist_mm)
882                 drm_mm_remove_node(node);
883
884         drm_mm_takedown(&vc4->hvs->dlist_mm);
885
886         drm_mm_for_each_node_safe(node, next, &vc4->hvs->lbm_mm)
887                 drm_mm_remove_node(node);
888         drm_mm_takedown(&vc4->hvs->lbm_mm);
889
890         clk_disable_unprepare(hvs->core_clk);
891
892         vc4->hvs = NULL;
893 }
894
895 static const struct component_ops vc4_hvs_ops = {
896         .bind   = vc4_hvs_bind,
897         .unbind = vc4_hvs_unbind,
898 };
899
900 static int vc4_hvs_dev_probe(struct platform_device *pdev)
901 {
902         return component_add(&pdev->dev, &vc4_hvs_ops);
903 }
904
905 static int vc4_hvs_dev_remove(struct platform_device *pdev)
906 {
907         component_del(&pdev->dev, &vc4_hvs_ops);
908         return 0;
909 }
910
911 static const struct of_device_id vc4_hvs_dt_match[] = {
912         { .compatible = "brcm,bcm2711-hvs" },
913         { .compatible = "brcm,bcm2835-hvs" },
914         {}
915 };
916
917 struct platform_driver vc4_hvs_driver = {
918         .probe = vc4_hvs_dev_probe,
919         .remove = vc4_hvs_dev_remove,
920         .driver = {
921                 .name = "vc4_hvs",
922                 .of_match_table = vc4_hvs_dt_match,
923         },
924 };