Merge tag 'v5.15.57' into rpi-5.15.y
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / vc4 / vc4_gem.c
1 /*
2  * Copyright © 2014 Broadcom
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/device.h>
28 #include <linux/io.h>
29 #include <linux/sched/signal.h>
30 #include <linux/dma-fence-array.h>
31
32 #include <drm/drm_syncobj.h>
33
34 #include "uapi/drm/vc4_drm.h"
35 #include "vc4_drv.h"
36 #include "vc4_regs.h"
37 #include "vc4_trace.h"
38
39 static void
40 vc4_queue_hangcheck(struct drm_device *dev)
41 {
42         struct vc4_dev *vc4 = to_vc4_dev(dev);
43
44         mod_timer(&vc4->hangcheck.timer,
45                   round_jiffies_up(jiffies + msecs_to_jiffies(100)));
46 }
47
48 struct vc4_hang_state {
49         struct drm_vc4_get_hang_state user_state;
50
51         u32 bo_count;
52         struct drm_gem_object **bo;
53 };
54
55 static void
56 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state)
57 {
58         unsigned int i;
59
60         for (i = 0; i < state->user_state.bo_count; i++)
61                 drm_gem_object_put(state->bo[i]);
62
63         kfree(state);
64 }
65
66 int
67 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
68                          struct drm_file *file_priv)
69 {
70         struct drm_vc4_get_hang_state *get_state = data;
71         struct drm_vc4_get_hang_state_bo *bo_state;
72         struct vc4_hang_state *kernel_state;
73         struct drm_vc4_get_hang_state *state;
74         struct vc4_dev *vc4 = to_vc4_dev(dev);
75         unsigned long irqflags;
76         u32 i;
77         int ret = 0;
78
79         if (WARN_ON_ONCE(vc4->is_vc5))
80                 return -ENODEV;
81
82         if (!vc4->v3d) {
83                 DRM_DEBUG("VC4_GET_HANG_STATE with no VC4 V3D probed\n");
84                 return -ENODEV;
85         }
86
87         spin_lock_irqsave(&vc4->job_lock, irqflags);
88         kernel_state = vc4->hang_state;
89         if (!kernel_state) {
90                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
91                 return -ENOENT;
92         }
93         state = &kernel_state->user_state;
94
95         /* If the user's array isn't big enough, just return the
96          * required array size.
97          */
98         if (get_state->bo_count < state->bo_count) {
99                 get_state->bo_count = state->bo_count;
100                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
101                 return 0;
102         }
103
104         vc4->hang_state = NULL;
105         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
106
107         /* Save the user's BO pointer, so we don't stomp it with the memcpy. */
108         state->bo = get_state->bo;
109         memcpy(get_state, state, sizeof(*state));
110
111         bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL);
112         if (!bo_state) {
113                 ret = -ENOMEM;
114                 goto err_free;
115         }
116
117         for (i = 0; i < state->bo_count; i++) {
118                 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]);
119                 u32 handle;
120
121                 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i],
122                                             &handle);
123
124                 if (ret) {
125                         state->bo_count = i;
126                         goto err_delete_handle;
127                 }
128                 bo_state[i].handle = handle;
129                 bo_state[i].paddr = vc4_bo->base.paddr;
130                 bo_state[i].size = vc4_bo->base.base.size;
131         }
132
133         if (copy_to_user(u64_to_user_ptr(get_state->bo),
134                          bo_state,
135                          state->bo_count * sizeof(*bo_state)))
136                 ret = -EFAULT;
137
138 err_delete_handle:
139         if (ret) {
140                 for (i = 0; i < state->bo_count; i++)
141                         drm_gem_handle_delete(file_priv, bo_state[i].handle);
142         }
143
144 err_free:
145         vc4_free_hang_state(dev, kernel_state);
146         kfree(bo_state);
147
148         return ret;
149 }
150
151 static void
152 vc4_save_hang_state(struct drm_device *dev)
153 {
154         struct vc4_dev *vc4 = to_vc4_dev(dev);
155         struct drm_vc4_get_hang_state *state;
156         struct vc4_hang_state *kernel_state;
157         struct vc4_exec_info *exec[2];
158         struct vc4_bo *bo;
159         unsigned long irqflags;
160         unsigned int i, j, k, unref_list_count;
161
162         kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL);
163         if (!kernel_state)
164                 return;
165
166         state = &kernel_state->user_state;
167
168         spin_lock_irqsave(&vc4->job_lock, irqflags);
169         exec[0] = vc4_first_bin_job(vc4);
170         exec[1] = vc4_first_render_job(vc4);
171         if (!exec[0] && !exec[1]) {
172                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
173                 return;
174         }
175
176         /* Get the bos from both binner and renderer into hang state. */
177         state->bo_count = 0;
178         for (i = 0; i < 2; i++) {
179                 if (!exec[i])
180                         continue;
181
182                 unref_list_count = 0;
183                 list_for_each_entry(bo, &exec[i]->unref_list, unref_head)
184                         unref_list_count++;
185                 state->bo_count += exec[i]->bo_count + unref_list_count;
186         }
187
188         kernel_state->bo = kcalloc(state->bo_count,
189                                    sizeof(*kernel_state->bo), GFP_ATOMIC);
190
191         if (!kernel_state->bo) {
192                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
193                 return;
194         }
195
196         k = 0;
197         for (i = 0; i < 2; i++) {
198                 if (!exec[i])
199                         continue;
200
201                 for (j = 0; j < exec[i]->bo_count; j++) {
202                         bo = to_vc4_bo(&exec[i]->bo[j]->base);
203
204                         /* Retain BOs just in case they were marked purgeable.
205                          * This prevents the BO from being purged before
206                          * someone had a chance to dump the hang state.
207                          */
208                         WARN_ON(!refcount_read(&bo->usecnt));
209                         refcount_inc(&bo->usecnt);
210                         drm_gem_object_get(&exec[i]->bo[j]->base);
211                         kernel_state->bo[k++] = &exec[i]->bo[j]->base;
212                 }
213
214                 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) {
215                         /* No need to retain BOs coming from the ->unref_list
216                          * because they are naturally unpurgeable.
217                          */
218                         drm_gem_object_get(&bo->base.base);
219                         kernel_state->bo[k++] = &bo->base.base;
220                 }
221         }
222
223         WARN_ON_ONCE(k != state->bo_count);
224
225         if (exec[0])
226                 state->start_bin = exec[0]->ct0ca;
227         if (exec[1])
228                 state->start_render = exec[1]->ct1ca;
229
230         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
231
232         state->ct0ca = V3D_READ(V3D_CTNCA(0));
233         state->ct0ea = V3D_READ(V3D_CTNEA(0));
234
235         state->ct1ca = V3D_READ(V3D_CTNCA(1));
236         state->ct1ea = V3D_READ(V3D_CTNEA(1));
237
238         state->ct0cs = V3D_READ(V3D_CTNCS(0));
239         state->ct1cs = V3D_READ(V3D_CTNCS(1));
240
241         state->ct0ra0 = V3D_READ(V3D_CT00RA0);
242         state->ct1ra0 = V3D_READ(V3D_CT01RA0);
243
244         state->bpca = V3D_READ(V3D_BPCA);
245         state->bpcs = V3D_READ(V3D_BPCS);
246         state->bpoa = V3D_READ(V3D_BPOA);
247         state->bpos = V3D_READ(V3D_BPOS);
248
249         state->vpmbase = V3D_READ(V3D_VPMBASE);
250
251         state->dbge = V3D_READ(V3D_DBGE);
252         state->fdbgo = V3D_READ(V3D_FDBGO);
253         state->fdbgb = V3D_READ(V3D_FDBGB);
254         state->fdbgr = V3D_READ(V3D_FDBGR);
255         state->fdbgs = V3D_READ(V3D_FDBGS);
256         state->errstat = V3D_READ(V3D_ERRSTAT);
257
258         /* We need to turn purgeable BOs into unpurgeable ones so that
259          * userspace has a chance to dump the hang state before the kernel
260          * decides to purge those BOs.
261          * Note that BO consistency at dump time cannot be guaranteed. For
262          * example, if the owner of these BOs decides to re-use them or mark
263          * them purgeable again there's nothing we can do to prevent it.
264          */
265         for (i = 0; i < kernel_state->user_state.bo_count; i++) {
266                 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]);
267
268                 if (bo->madv == __VC4_MADV_NOTSUPP)
269                         continue;
270
271                 mutex_lock(&bo->madv_lock);
272                 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED))
273                         bo->madv = VC4_MADV_WILLNEED;
274                 refcount_dec(&bo->usecnt);
275                 mutex_unlock(&bo->madv_lock);
276         }
277
278         spin_lock_irqsave(&vc4->job_lock, irqflags);
279         if (vc4->hang_state) {
280                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
281                 vc4_free_hang_state(dev, kernel_state);
282         } else {
283                 vc4->hang_state = kernel_state;
284                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
285         }
286 }
287
288 static void
289 vc4_reset(struct drm_device *dev)
290 {
291         struct vc4_dev *vc4 = to_vc4_dev(dev);
292
293         DRM_INFO("Resetting GPU.\n");
294
295         mutex_lock(&vc4->power_lock);
296         if (vc4->power_refcount) {
297                 /* Power the device off and back on the by dropping the
298                  * reference on runtime PM.
299                  */
300                 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev);
301                 pm_runtime_get_sync(&vc4->v3d->pdev->dev);
302         }
303         mutex_unlock(&vc4->power_lock);
304
305         vc4_irq_reset(dev);
306
307         /* Rearm the hangcheck -- another job might have been waiting
308          * for our hung one to get kicked off, and vc4_irq_reset()
309          * would have started it.
310          */
311         vc4_queue_hangcheck(dev);
312 }
313
314 static void
315 vc4_reset_work(struct work_struct *work)
316 {
317         struct vc4_dev *vc4 =
318                 container_of(work, struct vc4_dev, hangcheck.reset_work);
319
320         vc4_save_hang_state(&vc4->base);
321
322         vc4_reset(&vc4->base);
323 }
324
325 static void
326 vc4_hangcheck_elapsed(struct timer_list *t)
327 {
328         struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer);
329         struct drm_device *dev = &vc4->base;
330         uint32_t ct0ca, ct1ca;
331         unsigned long irqflags;
332         struct vc4_exec_info *bin_exec, *render_exec;
333
334         spin_lock_irqsave(&vc4->job_lock, irqflags);
335
336         bin_exec = vc4_first_bin_job(vc4);
337         render_exec = vc4_first_render_job(vc4);
338
339         /* If idle, we can stop watching for hangs. */
340         if (!bin_exec && !render_exec) {
341                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
342                 return;
343         }
344
345         ct0ca = V3D_READ(V3D_CTNCA(0));
346         ct1ca = V3D_READ(V3D_CTNCA(1));
347
348         /* If we've made any progress in execution, rearm the timer
349          * and wait.
350          */
351         if ((bin_exec && ct0ca != bin_exec->last_ct0ca) ||
352             (render_exec && ct1ca != render_exec->last_ct1ca)) {
353                 if (bin_exec)
354                         bin_exec->last_ct0ca = ct0ca;
355                 if (render_exec)
356                         render_exec->last_ct1ca = ct1ca;
357                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
358                 vc4_queue_hangcheck(dev);
359                 return;
360         }
361
362         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
363
364         /* We've gone too long with no progress, reset.  This has to
365          * be done from a work struct, since resetting can sleep and
366          * this timer hook isn't allowed to.
367          */
368         schedule_work(&vc4->hangcheck.reset_work);
369 }
370
371 static void
372 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end)
373 {
374         struct vc4_dev *vc4 = to_vc4_dev(dev);
375
376         /* Set the current and end address of the control list.
377          * Writing the end register is what starts the job.
378          */
379         V3D_WRITE(V3D_CTNCA(thread), start);
380         V3D_WRITE(V3D_CTNEA(thread), end);
381 }
382
383 int
384 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns,
385                    bool interruptible)
386 {
387         struct vc4_dev *vc4 = to_vc4_dev(dev);
388         int ret = 0;
389         unsigned long timeout_expire;
390         DEFINE_WAIT(wait);
391
392         if (WARN_ON_ONCE(vc4->is_vc5))
393                 return -ENODEV;
394
395         if (vc4->finished_seqno >= seqno)
396                 return 0;
397
398         if (timeout_ns == 0)
399                 return -ETIME;
400
401         timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns);
402
403         trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns);
404         for (;;) {
405                 prepare_to_wait(&vc4->job_wait_queue, &wait,
406                                 interruptible ? TASK_INTERRUPTIBLE :
407                                 TASK_UNINTERRUPTIBLE);
408
409                 if (interruptible && signal_pending(current)) {
410                         ret = -ERESTARTSYS;
411                         break;
412                 }
413
414                 if (vc4->finished_seqno >= seqno)
415                         break;
416
417                 if (timeout_ns != ~0ull) {
418                         if (time_after_eq(jiffies, timeout_expire)) {
419                                 ret = -ETIME;
420                                 break;
421                         }
422                         schedule_timeout(timeout_expire - jiffies);
423                 } else {
424                         schedule();
425                 }
426         }
427
428         finish_wait(&vc4->job_wait_queue, &wait);
429         trace_vc4_wait_for_seqno_end(dev, seqno);
430
431         return ret;
432 }
433
434 static void
435 vc4_flush_caches(struct drm_device *dev)
436 {
437         struct vc4_dev *vc4 = to_vc4_dev(dev);
438
439         /* Flush the GPU L2 caches.  These caches sit on top of system
440          * L3 (the 128kb or so shared with the CPU), and are
441          * non-allocating in the L3.
442          */
443         V3D_WRITE(V3D_L2CACTL,
444                   V3D_L2CACTL_L2CCLR);
445
446         V3D_WRITE(V3D_SLCACTL,
447                   VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
448                   VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) |
449                   VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) |
450                   VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC));
451 }
452
453 static void
454 vc4_flush_texture_caches(struct drm_device *dev)
455 {
456         struct vc4_dev *vc4 = to_vc4_dev(dev);
457
458         V3D_WRITE(V3D_L2CACTL,
459                   V3D_L2CACTL_L2CCLR);
460
461         V3D_WRITE(V3D_SLCACTL,
462                   VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
463                   VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC));
464 }
465
466 /* Sets the registers for the next job to be actually be executed in
467  * the hardware.
468  *
469  * The job_lock should be held during this.
470  */
471 void
472 vc4_submit_next_bin_job(struct drm_device *dev)
473 {
474         struct vc4_dev *vc4 = to_vc4_dev(dev);
475         struct vc4_exec_info *exec;
476
477         if (WARN_ON_ONCE(vc4->is_vc5))
478                 return;
479
480 again:
481         exec = vc4_first_bin_job(vc4);
482         if (!exec)
483                 return;
484
485         vc4_flush_caches(dev);
486
487         /* Only start the perfmon if it was not already started by a previous
488          * job.
489          */
490         if (exec->perfmon && vc4->active_perfmon != exec->perfmon)
491                 vc4_perfmon_start(vc4, exec->perfmon);
492
493         /* Either put the job in the binner if it uses the binner, or
494          * immediately move it to the to-be-rendered queue.
495          */
496         if (exec->ct0ca != exec->ct0ea) {
497                 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea);
498         } else {
499                 struct vc4_exec_info *next;
500
501                 vc4_move_job_to_render(dev, exec);
502                 next = vc4_first_bin_job(vc4);
503
504                 /* We can't start the next bin job if the previous job had a
505                  * different perfmon instance attached to it. The same goes
506                  * if one of them had a perfmon attached to it and the other
507                  * one doesn't.
508                  */
509                 if (next && next->perfmon == exec->perfmon)
510                         goto again;
511         }
512 }
513
514 void
515 vc4_submit_next_render_job(struct drm_device *dev)
516 {
517         struct vc4_dev *vc4 = to_vc4_dev(dev);
518         struct vc4_exec_info *exec = vc4_first_render_job(vc4);
519
520         if (!exec)
521                 return;
522
523         if (WARN_ON_ONCE(vc4->is_vc5))
524                 return;
525
526         /* A previous RCL may have written to one of our textures, and
527          * our full cache flush at bin time may have occurred before
528          * that RCL completed.  Flush the texture cache now, but not
529          * the instructions or uniforms (since we don't write those
530          * from an RCL).
531          */
532         vc4_flush_texture_caches(dev);
533
534         submit_cl(dev, 1, exec->ct1ca, exec->ct1ea);
535 }
536
537 void
538 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec)
539 {
540         struct vc4_dev *vc4 = to_vc4_dev(dev);
541         bool was_empty = list_empty(&vc4->render_job_list);
542
543         if (WARN_ON_ONCE(vc4->is_vc5))
544                 return;
545
546         list_move_tail(&exec->head, &vc4->render_job_list);
547         if (was_empty)
548                 vc4_submit_next_render_job(dev);
549 }
550
551 static void
552 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno)
553 {
554         struct vc4_bo *bo;
555         unsigned i;
556
557         for (i = 0; i < exec->bo_count; i++) {
558                 bo = to_vc4_bo(&exec->bo[i]->base);
559                 bo->seqno = seqno;
560
561                 dma_resv_add_shared_fence(bo->base.base.resv, exec->fence);
562         }
563
564         list_for_each_entry(bo, &exec->unref_list, unref_head) {
565                 bo->seqno = seqno;
566         }
567
568         for (i = 0; i < exec->rcl_write_bo_count; i++) {
569                 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base);
570                 bo->write_seqno = seqno;
571
572                 dma_resv_add_excl_fence(bo->base.base.resv, exec->fence);
573         }
574 }
575
576 static void
577 vc4_unlock_bo_reservations(struct drm_device *dev,
578                            struct vc4_exec_info *exec,
579                            struct ww_acquire_ctx *acquire_ctx)
580 {
581         int i;
582
583         for (i = 0; i < exec->bo_count; i++) {
584                 struct drm_gem_object *bo = &exec->bo[i]->base;
585
586                 dma_resv_unlock(bo->resv);
587         }
588
589         ww_acquire_fini(acquire_ctx);
590 }
591
592 /* Takes the reservation lock on all the BOs being referenced, so that
593  * at queue submit time we can update the reservations.
594  *
595  * We don't lock the RCL the tile alloc/state BOs, or overflow memory
596  * (all of which are on exec->unref_list).  They're entirely private
597  * to vc4, so we don't attach dma-buf fences to them.
598  */
599 static int
600 vc4_lock_bo_reservations(struct drm_device *dev,
601                          struct vc4_exec_info *exec,
602                          struct ww_acquire_ctx *acquire_ctx)
603 {
604         int contended_lock = -1;
605         int i, ret;
606         struct drm_gem_object *bo;
607
608         ww_acquire_init(acquire_ctx, &reservation_ww_class);
609
610 retry:
611         if (contended_lock != -1) {
612                 bo = &exec->bo[contended_lock]->base;
613                 ret = dma_resv_lock_slow_interruptible(bo->resv, acquire_ctx);
614                 if (ret) {
615                         ww_acquire_done(acquire_ctx);
616                         return ret;
617                 }
618         }
619
620         for (i = 0; i < exec->bo_count; i++) {
621                 if (i == contended_lock)
622                         continue;
623
624                 bo = &exec->bo[i]->base;
625
626                 ret = dma_resv_lock_interruptible(bo->resv, acquire_ctx);
627                 if (ret) {
628                         int j;
629
630                         for (j = 0; j < i; j++) {
631                                 bo = &exec->bo[j]->base;
632                                 dma_resv_unlock(bo->resv);
633                         }
634
635                         if (contended_lock != -1 && contended_lock >= i) {
636                                 bo = &exec->bo[contended_lock]->base;
637
638                                 dma_resv_unlock(bo->resv);
639                         }
640
641                         if (ret == -EDEADLK) {
642                                 contended_lock = i;
643                                 goto retry;
644                         }
645
646                         ww_acquire_done(acquire_ctx);
647                         return ret;
648                 }
649         }
650
651         ww_acquire_done(acquire_ctx);
652
653         /* Reserve space for our shared (read-only) fence references,
654          * before we commit the CL to the hardware.
655          */
656         for (i = 0; i < exec->bo_count; i++) {
657                 bo = &exec->bo[i]->base;
658
659                 ret = dma_resv_reserve_shared(bo->resv, 1);
660                 if (ret) {
661                         vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
662                         return ret;
663                 }
664         }
665
666         return 0;
667 }
668
669 /* Queues a struct vc4_exec_info for execution.  If no job is
670  * currently executing, then submits it.
671  *
672  * Unlike most GPUs, our hardware only handles one command list at a
673  * time.  To queue multiple jobs at once, we'd need to edit the
674  * previous command list to have a jump to the new one at the end, and
675  * then bump the end address.  That's a change for a later date,
676  * though.
677  */
678 static int
679 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec,
680                  struct ww_acquire_ctx *acquire_ctx,
681                  struct drm_syncobj *out_sync)
682 {
683         struct vc4_dev *vc4 = to_vc4_dev(dev);
684         struct vc4_exec_info *renderjob;
685         uint64_t seqno;
686         unsigned long irqflags;
687         struct vc4_fence *fence;
688
689         fence = kzalloc(sizeof(*fence), GFP_KERNEL);
690         if (!fence)
691                 return -ENOMEM;
692         fence->dev = dev;
693
694         spin_lock_irqsave(&vc4->job_lock, irqflags);
695
696         seqno = ++vc4->emit_seqno;
697         exec->seqno = seqno;
698
699         dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock,
700                        vc4->dma_fence_context, exec->seqno);
701         fence->seqno = exec->seqno;
702         exec->fence = &fence->base;
703
704         if (out_sync)
705                 drm_syncobj_replace_fence(out_sync, exec->fence);
706
707         vc4_update_bo_seqnos(exec, seqno);
708
709         vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
710
711         list_add_tail(&exec->head, &vc4->bin_job_list);
712
713         /* If no bin job was executing and if the render job (if any) has the
714          * same perfmon as our job attached to it (or if both jobs don't have
715          * perfmon activated), then kick ours off.  Otherwise, it'll get
716          * started when the previous job's flush/render done interrupt occurs.
717          */
718         renderjob = vc4_first_render_job(vc4);
719         if (vc4_first_bin_job(vc4) == exec &&
720             (!renderjob || renderjob->perfmon == exec->perfmon)) {
721                 vc4_submit_next_bin_job(dev);
722                 vc4_queue_hangcheck(dev);
723         }
724
725         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
726
727         return 0;
728 }
729
730 /**
731  * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects
732  * referenced by the job.
733  * @dev: DRM device
734  * @file_priv: DRM file for this fd
735  * @exec: V3D job being set up
736  *
737  * The command validator needs to reference BOs by their index within
738  * the submitted job's BO list.  This does the validation of the job's
739  * BO list and reference counting for the lifetime of the job.
740  */
741 static int
742 vc4_cl_lookup_bos(struct drm_device *dev,
743                   struct drm_file *file_priv,
744                   struct vc4_exec_info *exec)
745 {
746         struct drm_vc4_submit_cl *args = exec->args;
747         uint32_t *handles;
748         int ret = 0;
749         int i;
750
751         exec->bo_count = args->bo_handle_count;
752
753         if (!exec->bo_count) {
754                 /* See comment on bo_index for why we have to check
755                  * this.
756                  */
757                 DRM_DEBUG("Rendering requires BOs to validate\n");
758                 return -EINVAL;
759         }
760
761         exec->bo = kvmalloc_array(exec->bo_count,
762                                     sizeof(struct drm_gem_cma_object *),
763                                     GFP_KERNEL | __GFP_ZERO);
764         if (!exec->bo) {
765                 DRM_ERROR("Failed to allocate validated BO pointers\n");
766                 return -ENOMEM;
767         }
768
769         handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL);
770         if (!handles) {
771                 ret = -ENOMEM;
772                 DRM_ERROR("Failed to allocate incoming GEM handles\n");
773                 goto fail;
774         }
775
776         if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles),
777                            exec->bo_count * sizeof(uint32_t))) {
778                 ret = -EFAULT;
779                 DRM_ERROR("Failed to copy in GEM handles\n");
780                 goto fail;
781         }
782
783         spin_lock(&file_priv->table_lock);
784         for (i = 0; i < exec->bo_count; i++) {
785                 struct drm_gem_object *bo = idr_find(&file_priv->object_idr,
786                                                      handles[i]);
787                 if (!bo) {
788                         DRM_DEBUG("Failed to look up GEM BO %d: %d\n",
789                                   i, handles[i]);
790                         ret = -EINVAL;
791                         break;
792                 }
793
794                 drm_gem_object_get(bo);
795                 exec->bo[i] = (struct drm_gem_cma_object *)bo;
796         }
797         spin_unlock(&file_priv->table_lock);
798
799         if (ret)
800                 goto fail_put_bo;
801
802         for (i = 0; i < exec->bo_count; i++) {
803                 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base));
804                 if (ret)
805                         goto fail_dec_usecnt;
806         }
807
808         kvfree(handles);
809         return 0;
810
811 fail_dec_usecnt:
812         /* Decrease usecnt on acquired objects.
813          * We cannot rely on  vc4_complete_exec() to release resources here,
814          * because vc4_complete_exec() has no information about which BO has
815          * had its ->usecnt incremented.
816          * To make things easier we just free everything explicitly and set
817          * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release'
818          * step.
819          */
820         for (i-- ; i >= 0; i--)
821                 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base));
822
823 fail_put_bo:
824         /* Release any reference to acquired objects. */
825         for (i = 0; i < exec->bo_count && exec->bo[i]; i++)
826                 drm_gem_object_put(&exec->bo[i]->base);
827
828 fail:
829         kvfree(handles);
830         kvfree(exec->bo);
831         exec->bo = NULL;
832         return ret;
833 }
834
835 static int
836 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec)
837 {
838         struct drm_vc4_submit_cl *args = exec->args;
839         struct vc4_dev *vc4 = to_vc4_dev(dev);
840         void *temp = NULL;
841         void *bin;
842         int ret = 0;
843         uint32_t bin_offset = 0;
844         uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size,
845                                              16);
846         uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size;
847         uint32_t exec_size = uniforms_offset + args->uniforms_size;
848         uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) *
849                                           args->shader_rec_count);
850         struct vc4_bo *bo;
851
852         if (shader_rec_offset < args->bin_cl_size ||
853             uniforms_offset < shader_rec_offset ||
854             exec_size < uniforms_offset ||
855             args->shader_rec_count >= (UINT_MAX /
856                                           sizeof(struct vc4_shader_state)) ||
857             temp_size < exec_size) {
858                 DRM_DEBUG("overflow in exec arguments\n");
859                 ret = -EINVAL;
860                 goto fail;
861         }
862
863         /* Allocate space where we'll store the copied in user command lists
864          * and shader records.
865          *
866          * We don't just copy directly into the BOs because we need to
867          * read the contents back for validation, and I think the
868          * bo->vaddr is uncached access.
869          */
870         temp = kvmalloc_array(temp_size, 1, GFP_KERNEL);
871         if (!temp) {
872                 DRM_ERROR("Failed to allocate storage for copying "
873                           "in bin/render CLs.\n");
874                 ret = -ENOMEM;
875                 goto fail;
876         }
877         bin = temp + bin_offset;
878         exec->shader_rec_u = temp + shader_rec_offset;
879         exec->uniforms_u = temp + uniforms_offset;
880         exec->shader_state = temp + exec_size;
881         exec->shader_state_size = args->shader_rec_count;
882
883         if (copy_from_user(bin,
884                            u64_to_user_ptr(args->bin_cl),
885                            args->bin_cl_size)) {
886                 ret = -EFAULT;
887                 goto fail;
888         }
889
890         if (copy_from_user(exec->shader_rec_u,
891                            u64_to_user_ptr(args->shader_rec),
892                            args->shader_rec_size)) {
893                 ret = -EFAULT;
894                 goto fail;
895         }
896
897         if (copy_from_user(exec->uniforms_u,
898                            u64_to_user_ptr(args->uniforms),
899                            args->uniforms_size)) {
900                 ret = -EFAULT;
901                 goto fail;
902         }
903
904         bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL);
905         if (IS_ERR(bo)) {
906                 DRM_ERROR("Couldn't allocate BO for binning\n");
907                 ret = PTR_ERR(bo);
908                 goto fail;
909         }
910         exec->exec_bo = &bo->base;
911
912         list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head,
913                       &exec->unref_list);
914
915         exec->ct0ca = exec->exec_bo->paddr + bin_offset;
916
917         exec->bin_u = bin;
918
919         exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset;
920         exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset;
921         exec->shader_rec_size = args->shader_rec_size;
922
923         exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset;
924         exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset;
925         exec->uniforms_size = args->uniforms_size;
926
927         ret = vc4_validate_bin_cl(dev,
928                                   exec->exec_bo->vaddr + bin_offset,
929                                   bin,
930                                   exec);
931         if (ret)
932                 goto fail;
933
934         ret = vc4_validate_shader_recs(dev, exec);
935         if (ret)
936                 goto fail;
937
938         if (exec->found_tile_binning_mode_config_packet) {
939                 ret = vc4_v3d_bin_bo_get(vc4, &exec->bin_bo_used);
940                 if (ret)
941                         goto fail;
942         }
943
944         /* Block waiting on any previous rendering into the CS's VBO,
945          * IB, or textures, so that pixels are actually written by the
946          * time we try to read them.
947          */
948         ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true);
949
950 fail:
951         kvfree(temp);
952         return ret;
953 }
954
955 static void
956 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec)
957 {
958         struct vc4_dev *vc4 = to_vc4_dev(dev);
959         unsigned long irqflags;
960         unsigned i;
961
962         /* If we got force-completed because of GPU reset rather than
963          * through our IRQ handler, signal the fence now.
964          */
965         if (exec->fence) {
966                 dma_fence_signal(exec->fence);
967                 dma_fence_put(exec->fence);
968         }
969
970         if (exec->bo) {
971                 for (i = 0; i < exec->bo_count; i++) {
972                         struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
973
974                         vc4_bo_dec_usecnt(bo);
975                         drm_gem_object_put(&exec->bo[i]->base);
976                 }
977                 kvfree(exec->bo);
978         }
979
980         while (!list_empty(&exec->unref_list)) {
981                 struct vc4_bo *bo = list_first_entry(&exec->unref_list,
982                                                      struct vc4_bo, unref_head);
983                 list_del(&bo->unref_head);
984                 drm_gem_object_put(&bo->base.base);
985         }
986
987         /* Free up the allocation of any bin slots we used. */
988         spin_lock_irqsave(&vc4->job_lock, irqflags);
989         vc4->bin_alloc_used &= ~exec->bin_slots;
990         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
991
992         /* Release the reference on the binner BO if needed. */
993         if (exec->bin_bo_used)
994                 vc4_v3d_bin_bo_put(vc4);
995
996         /* Release the reference we had on the perf monitor. */
997         vc4_perfmon_put(exec->perfmon);
998
999         vc4_v3d_pm_put(vc4);
1000
1001         kfree(exec);
1002 }
1003
1004 void
1005 vc4_job_handle_completed(struct vc4_dev *vc4)
1006 {
1007         unsigned long irqflags;
1008         struct vc4_seqno_cb *cb, *cb_temp;
1009
1010         if (WARN_ON_ONCE(vc4->is_vc5))
1011                 return;
1012
1013         spin_lock_irqsave(&vc4->job_lock, irqflags);
1014         while (!list_empty(&vc4->job_done_list)) {
1015                 struct vc4_exec_info *exec =
1016                         list_first_entry(&vc4->job_done_list,
1017                                          struct vc4_exec_info, head);
1018                 list_del(&exec->head);
1019
1020                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1021                 vc4_complete_exec(&vc4->base, exec);
1022                 spin_lock_irqsave(&vc4->job_lock, irqflags);
1023         }
1024
1025         list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) {
1026                 if (cb->seqno <= vc4->finished_seqno) {
1027                         list_del_init(&cb->work.entry);
1028                         schedule_work(&cb->work);
1029                 }
1030         }
1031
1032         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1033 }
1034
1035 static void vc4_seqno_cb_work(struct work_struct *work)
1036 {
1037         struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work);
1038
1039         cb->func(cb);
1040 }
1041
1042 int vc4_queue_seqno_cb(struct drm_device *dev,
1043                        struct vc4_seqno_cb *cb, uint64_t seqno,
1044                        void (*func)(struct vc4_seqno_cb *cb))
1045 {
1046         struct vc4_dev *vc4 = to_vc4_dev(dev);
1047         unsigned long irqflags;
1048
1049         if (WARN_ON_ONCE(vc4->is_vc5))
1050                 return -ENODEV;
1051
1052         cb->func = func;
1053         INIT_WORK(&cb->work, vc4_seqno_cb_work);
1054
1055         spin_lock_irqsave(&vc4->job_lock, irqflags);
1056         if (seqno > vc4->finished_seqno) {
1057                 cb->seqno = seqno;
1058                 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list);
1059         } else {
1060                 schedule_work(&cb->work);
1061         }
1062         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1063
1064         return 0;
1065 }
1066
1067 /* Scheduled when any job has been completed, this walks the list of
1068  * jobs that had completed and unrefs their BOs and frees their exec
1069  * structs.
1070  */
1071 static void
1072 vc4_job_done_work(struct work_struct *work)
1073 {
1074         struct vc4_dev *vc4 =
1075                 container_of(work, struct vc4_dev, job_done_work);
1076
1077         vc4_job_handle_completed(vc4);
1078 }
1079
1080 static int
1081 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev,
1082                                 uint64_t seqno,
1083                                 uint64_t *timeout_ns)
1084 {
1085         unsigned long start = jiffies;
1086         int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true);
1087
1088         if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) {
1089                 uint64_t delta = jiffies_to_nsecs(jiffies - start);
1090
1091                 if (*timeout_ns >= delta)
1092                         *timeout_ns -= delta;
1093         }
1094
1095         return ret;
1096 }
1097
1098 int
1099 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
1100                      struct drm_file *file_priv)
1101 {
1102         struct vc4_dev *vc4 = to_vc4_dev(dev);
1103         struct drm_vc4_wait_seqno *args = data;
1104
1105         if (WARN_ON_ONCE(vc4->is_vc5))
1106                 return -ENODEV;
1107
1108         return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno,
1109                                                &args->timeout_ns);
1110 }
1111
1112 int
1113 vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
1114                   struct drm_file *file_priv)
1115 {
1116         struct vc4_dev *vc4 = to_vc4_dev(dev);
1117         int ret;
1118         struct drm_vc4_wait_bo *args = data;
1119         struct drm_gem_object *gem_obj;
1120         struct vc4_bo *bo;
1121
1122         if (WARN_ON_ONCE(vc4->is_vc5))
1123                 return -ENODEV;
1124
1125         if (args->pad != 0)
1126                 return -EINVAL;
1127
1128         gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1129         if (!gem_obj) {
1130                 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1131                 return -EINVAL;
1132         }
1133         bo = to_vc4_bo(gem_obj);
1134
1135         ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno,
1136                                               &args->timeout_ns);
1137
1138         drm_gem_object_put(gem_obj);
1139         return ret;
1140 }
1141
1142 /**
1143  * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4.
1144  * @dev: DRM device
1145  * @data: ioctl argument
1146  * @file_priv: DRM file for this fd
1147  *
1148  * This is the main entrypoint for userspace to submit a 3D frame to
1149  * the GPU.  Userspace provides the binner command list (if
1150  * applicable), and the kernel sets up the render command list to draw
1151  * to the framebuffer described in the ioctl, using the command lists
1152  * that the 3D engine's binner will produce.
1153  */
1154 int
1155 vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
1156                     struct drm_file *file_priv)
1157 {
1158         struct vc4_dev *vc4 = to_vc4_dev(dev);
1159         struct vc4_file *vc4file = file_priv->driver_priv;
1160         struct drm_vc4_submit_cl *args = data;
1161         struct drm_syncobj *out_sync = NULL;
1162         struct vc4_exec_info *exec;
1163         struct ww_acquire_ctx acquire_ctx;
1164         struct dma_fence *in_fence;
1165         int ret = 0;
1166
1167         if (WARN_ON_ONCE(vc4->is_vc5))
1168                 return -ENODEV;
1169
1170         if (!vc4->v3d) {
1171                 DRM_DEBUG("VC4_SUBMIT_CL with no VC4 V3D probed\n");
1172                 return -ENODEV;
1173         }
1174
1175         if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR |
1176                              VC4_SUBMIT_CL_FIXED_RCL_ORDER |
1177                              VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X |
1178                              VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) {
1179                 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags);
1180                 return -EINVAL;
1181         }
1182
1183         if (args->pad2 != 0) {
1184                 DRM_DEBUG("Invalid pad: 0x%08x\n", args->pad2);
1185                 return -EINVAL;
1186         }
1187
1188         exec = kcalloc(1, sizeof(*exec), GFP_KERNEL);
1189         if (!exec) {
1190                 DRM_ERROR("malloc failure on exec struct\n");
1191                 return -ENOMEM;
1192         }
1193         exec->dev = vc4;
1194
1195         ret = vc4_v3d_pm_get(vc4);
1196         if (ret) {
1197                 kfree(exec);
1198                 return ret;
1199         }
1200
1201         exec->args = args;
1202         INIT_LIST_HEAD(&exec->unref_list);
1203
1204         ret = vc4_cl_lookup_bos(dev, file_priv, exec);
1205         if (ret)
1206                 goto fail;
1207
1208         if (args->perfmonid) {
1209                 exec->perfmon = vc4_perfmon_find(vc4file,
1210                                                  args->perfmonid);
1211                 if (!exec->perfmon) {
1212                         ret = -ENOENT;
1213                         goto fail;
1214                 }
1215         }
1216
1217         if (args->in_sync) {
1218                 ret = drm_syncobj_find_fence(file_priv, args->in_sync,
1219                                              0, 0, &in_fence);
1220                 if (ret)
1221                         goto fail;
1222
1223                 /* When the fence (or fence array) is exclusively from our
1224                  * context we can skip the wait since jobs are executed in
1225                  * order of their submission through this ioctl and this can
1226                  * only have fences from a prior job.
1227                  */
1228                 if (!dma_fence_match_context(in_fence,
1229                                              vc4->dma_fence_context)) {
1230                         ret = dma_fence_wait(in_fence, true);
1231                         if (ret) {
1232                                 dma_fence_put(in_fence);
1233                                 goto fail;
1234                         }
1235                 }
1236
1237                 dma_fence_put(in_fence);
1238         }
1239
1240         if (exec->args->bin_cl_size != 0) {
1241                 ret = vc4_get_bcl(dev, exec);
1242                 if (ret)
1243                         goto fail;
1244         } else {
1245                 exec->ct0ca = 0;
1246                 exec->ct0ea = 0;
1247         }
1248
1249         ret = vc4_get_rcl(dev, exec);
1250         if (ret)
1251                 goto fail;
1252
1253         ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx);
1254         if (ret)
1255                 goto fail;
1256
1257         if (args->out_sync) {
1258                 out_sync = drm_syncobj_find(file_priv, args->out_sync);
1259                 if (!out_sync) {
1260                         ret = -EINVAL;
1261                         goto fail;
1262                 }
1263
1264                 /* We replace the fence in out_sync in vc4_queue_submit since
1265                  * the render job could execute immediately after that call.
1266                  * If it finishes before our ioctl processing resumes the
1267                  * render job fence could already have been freed.
1268                  */
1269         }
1270
1271         /* Clear this out of the struct we'll be putting in the queue,
1272          * since it's part of our stack.
1273          */
1274         exec->args = NULL;
1275
1276         ret = vc4_queue_submit(dev, exec, &acquire_ctx, out_sync);
1277
1278         /* The syncobj isn't part of the exec data and we need to free our
1279          * reference even if job submission failed.
1280          */
1281         if (out_sync)
1282                 drm_syncobj_put(out_sync);
1283
1284         if (ret)
1285                 goto fail;
1286
1287         /* Return the seqno for our job. */
1288         args->seqno = vc4->emit_seqno;
1289
1290         return 0;
1291
1292 fail:
1293         vc4_complete_exec(&vc4->base, exec);
1294
1295         return ret;
1296 }
1297
1298 static void vc4_gem_destroy(struct drm_device *dev, void *unused);
1299 int vc4_gem_init(struct drm_device *dev)
1300 {
1301         struct vc4_dev *vc4 = to_vc4_dev(dev);
1302
1303         if (WARN_ON_ONCE(vc4->is_vc5))
1304                 return -ENODEV;
1305
1306         vc4->dma_fence_context = dma_fence_context_alloc(1);
1307
1308         INIT_LIST_HEAD(&vc4->bin_job_list);
1309         INIT_LIST_HEAD(&vc4->render_job_list);
1310         INIT_LIST_HEAD(&vc4->job_done_list);
1311         INIT_LIST_HEAD(&vc4->seqno_cb_list);
1312         spin_lock_init(&vc4->job_lock);
1313
1314         INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work);
1315         timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0);
1316
1317         INIT_WORK(&vc4->job_done_work, vc4_job_done_work);
1318
1319         mutex_init(&vc4->power_lock);
1320
1321         INIT_LIST_HEAD(&vc4->purgeable.list);
1322         mutex_init(&vc4->purgeable.lock);
1323
1324         return drmm_add_action_or_reset(dev, vc4_gem_destroy, NULL);
1325 }
1326
1327 static void vc4_gem_destroy(struct drm_device *dev, void *unused)
1328 {
1329         struct vc4_dev *vc4 = to_vc4_dev(dev);
1330
1331         /* Waiting for exec to finish would need to be done before
1332          * unregistering V3D.
1333          */
1334         WARN_ON(vc4->emit_seqno != vc4->finished_seqno);
1335
1336         /* V3D should already have disabled its interrupt and cleared
1337          * the overflow allocation registers.  Now free the object.
1338          */
1339         if (vc4->bin_bo) {
1340                 drm_gem_object_put(&vc4->bin_bo->base.base);
1341                 vc4->bin_bo = NULL;
1342         }
1343
1344         if (vc4->hang_state)
1345                 vc4_free_hang_state(dev, vc4->hang_state);
1346 }
1347
1348 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data,
1349                           struct drm_file *file_priv)
1350 {
1351         struct vc4_dev *vc4 = to_vc4_dev(dev);
1352         struct drm_vc4_gem_madvise *args = data;
1353         struct drm_gem_object *gem_obj;
1354         struct vc4_bo *bo;
1355         int ret;
1356
1357         if (WARN_ON_ONCE(vc4->is_vc5))
1358                 return -ENODEV;
1359
1360         switch (args->madv) {
1361         case VC4_MADV_DONTNEED:
1362         case VC4_MADV_WILLNEED:
1363                 break;
1364         default:
1365                 return -EINVAL;
1366         }
1367
1368         if (args->pad != 0)
1369                 return -EINVAL;
1370
1371         gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1372         if (!gem_obj) {
1373                 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1374                 return -ENOENT;
1375         }
1376
1377         bo = to_vc4_bo(gem_obj);
1378
1379         /* Only BOs exposed to userspace can be purged. */
1380         if (bo->madv == __VC4_MADV_NOTSUPP) {
1381                 DRM_DEBUG("madvise not supported on this BO\n");
1382                 ret = -EINVAL;
1383                 goto out_put_gem;
1384         }
1385
1386         /* Not sure it's safe to purge imported BOs. Let's just assume it's
1387          * not until proven otherwise.
1388          */
1389         if (gem_obj->import_attach) {
1390                 DRM_DEBUG("madvise not supported on imported BOs\n");
1391                 ret = -EINVAL;
1392                 goto out_put_gem;
1393         }
1394
1395         mutex_lock(&bo->madv_lock);
1396
1397         if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED &&
1398             !refcount_read(&bo->usecnt)) {
1399                 /* If the BO is about to be marked as purgeable, is not used
1400                  * and is not already purgeable or purged, add it to the
1401                  * purgeable list.
1402                  */
1403                 vc4_bo_add_to_purgeable_pool(bo);
1404         } else if (args->madv == VC4_MADV_WILLNEED &&
1405                    bo->madv == VC4_MADV_DONTNEED &&
1406                    !refcount_read(&bo->usecnt)) {
1407                 /* The BO has not been purged yet, just remove it from
1408                  * the purgeable list.
1409                  */
1410                 vc4_bo_remove_from_purgeable_pool(bo);
1411         }
1412
1413         /* Save the purged state. */
1414         args->retained = bo->madv != __VC4_MADV_PURGED;
1415
1416         /* Update internal madv state only if the bo was not purged. */
1417         if (bo->madv != __VC4_MADV_PURGED)
1418                 bo->madv = args->madv;
1419
1420         mutex_unlock(&bo->madv_lock);
1421
1422         ret = 0;
1423
1424 out_put_gem:
1425         drm_gem_object_put(gem_obj);
1426
1427         return ret;
1428 }