1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2016 Broadcom
7 * DOC: VC4 DSI0/DSI1 module
9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
14 * while the compute module brings both DSI0 and DSI1 out.
16 * This driver has been tested for DSI1 video-mode display only
17 * currently, with most of the information necessary for DSI0
21 #include <linux/clk-provider.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/component.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/i2c.h>
29 #include <linux/of_address.h>
30 #include <linux/of_platform.h>
31 #include <linux/pm_runtime.h>
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_bridge.h>
35 #include <drm/drm_edid.h>
36 #include <drm/drm_mipi_dsi.h>
37 #include <drm/drm_of.h>
38 #include <drm/drm_panel.h>
39 #include <drm/drm_probe_helper.h>
40 #include <drm/drm_simple_kms_helper.h>
45 #define DSI_CMD_FIFO_DEPTH 16
46 #define DSI_PIX_FIFO_DEPTH 256
47 #define DSI_PIX_FIFO_WIDTH 4
49 #define DSI0_CTRL 0x00
51 /* Command packet control. */
52 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
53 #define DSI1_TXPKT1C 0x04
54 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
55 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
56 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
57 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
59 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
60 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
61 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
62 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
63 /* Primary display where cmdfifo provides part of the payload and
64 * pixelvalve the rest.
66 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
67 /* Secondary display where cmdfifo provides part of the payload and
70 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
72 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
73 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
75 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
76 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
77 /* Command only. Uses TXPKT1H and DISPLAY_NO */
78 # define DSI_TXPKT1C_CMD_CTRL_TX 0
79 /* Command with BTA for either ack or read data. */
80 # define DSI_TXPKT1C_CMD_CTRL_RX 1
81 /* Trigger according to TRIG_CMD */
82 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
83 /* BTA alone for getting error status after a command, or a TE trigger
84 * without a previous command.
86 # define DSI_TXPKT1C_CMD_CTRL_BTA 3
88 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
89 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
90 # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
91 # define DSI_TXPKT1C_CMD_EN BIT(0)
93 /* Command packet header. */
94 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
95 #define DSI1_TXPKT1H 0x08
96 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
97 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
98 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
99 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
100 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
101 # define DSI_TXPKT1H_BC_DT_SHIFT 0
103 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
104 #define DSI1_RXPKT1H 0x14
105 # define DSI_RXPKT1H_CRC_ERR BIT(31)
106 # define DSI_RXPKT1H_DET_ERR BIT(30)
107 # define DSI_RXPKT1H_ECC_ERR BIT(29)
108 # define DSI_RXPKT1H_COR_ERR BIT(28)
109 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
110 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
111 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
112 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
113 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
114 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
115 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
116 # define DSI_RXPKT1H_SHORT_1_SHIFT 16
117 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
118 # define DSI_RXPKT1H_SHORT_0_SHIFT 8
119 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
120 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
122 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
123 #define DSI1_RXPKT2H 0x18
124 # define DSI_RXPKT1H_DET_ERR BIT(30)
125 # define DSI_RXPKT1H_ECC_ERR BIT(29)
126 # define DSI_RXPKT1H_COR_ERR BIT(28)
127 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
128 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
129 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
130 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
131 # define DSI_RXPKT1H_DT_SHIFT 0
133 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
134 #define DSI1_TXPKT_CMD_FIFO 0x1c
136 #define DSI0_DISP0_CTRL 0x18
137 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
138 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
139 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
140 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
141 # define DSI_DISP0_LP_STOP_DISABLE 0
142 # define DSI_DISP0_LP_STOP_PERLINE 1
143 # define DSI_DISP0_LP_STOP_PERFRAME 2
145 /* Transmit RGB pixels and null packets only during HACTIVE, instead
146 * of going to LP-STOP.
148 # define DSI_DISP_HACTIVE_NULL BIT(10)
149 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
150 # define DSI_DISP_VBLP_CTRL BIT(9)
151 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
152 # define DSI_DISP_HFP_CTRL BIT(8)
153 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
154 # define DSI_DISP_HBP_CTRL BIT(7)
155 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
156 # define DSI_DISP0_CHANNEL_SHIFT 5
157 /* Enables end events for HSYNC/VSYNC, not just start events. */
158 # define DSI_DISP0_ST_END BIT(4)
159 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
160 # define DSI_DISP0_PFORMAT_SHIFT 2
161 # define DSI_PFORMAT_RGB565 0
162 # define DSI_PFORMAT_RGB666_PACKED 1
163 # define DSI_PFORMAT_RGB666 2
164 # define DSI_PFORMAT_RGB888 3
165 /* Default is VIDEO mode. */
166 # define DSI_DISP0_COMMAND_MODE BIT(1)
167 # define DSI_DISP0_ENABLE BIT(0)
169 #define DSI0_DISP1_CTRL 0x1c
170 #define DSI1_DISP1_CTRL 0x2c
171 /* Format of the data written to TXPKT_PIX_FIFO. */
172 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
173 # define DSI_DISP1_PFORMAT_SHIFT 1
174 # define DSI_DISP1_PFORMAT_16BIT 0
175 # define DSI_DISP1_PFORMAT_24BIT 1
176 # define DSI_DISP1_PFORMAT_32BIT_LE 2
177 # define DSI_DISP1_PFORMAT_32BIT_BE 3
179 /* DISP1 is always command mode. */
180 # define DSI_DISP1_ENABLE BIT(0)
182 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
184 #define DSI0_INT_STAT 0x24
185 #define DSI0_INT_EN 0x28
186 # define DSI1_INT_PHY_D3_ULPS BIT(30)
187 # define DSI1_INT_PHY_D3_STOP BIT(29)
188 # define DSI1_INT_PHY_D2_ULPS BIT(28)
189 # define DSI1_INT_PHY_D2_STOP BIT(27)
190 # define DSI1_INT_PHY_D1_ULPS BIT(26)
191 # define DSI1_INT_PHY_D1_STOP BIT(25)
192 # define DSI1_INT_PHY_D0_ULPS BIT(24)
193 # define DSI1_INT_PHY_D0_STOP BIT(23)
194 # define DSI1_INT_FIFO_ERR BIT(22)
195 # define DSI1_INT_PHY_DIR_RTF BIT(21)
196 # define DSI1_INT_PHY_RXLPDT BIT(20)
197 # define DSI1_INT_PHY_RXTRIG BIT(19)
198 # define DSI1_INT_PHY_D0_LPDT BIT(18)
199 # define DSI1_INT_PHY_DIR_FTR BIT(17)
201 /* Signaled when the clock lane enters the given state. */
202 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
203 # define DSI1_INT_PHY_CLOCK_HS BIT(15)
204 # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
206 /* Signaled on timeouts */
207 # define DSI1_INT_PR_TO BIT(13)
208 # define DSI1_INT_TA_TO BIT(12)
209 # define DSI1_INT_LPRX_TO BIT(11)
210 # define DSI1_INT_HSTX_TO BIT(10)
212 /* Contention on a line when trying to drive the line low */
213 # define DSI1_INT_ERR_CONT_LP1 BIT(9)
214 # define DSI1_INT_ERR_CONT_LP0 BIT(8)
216 /* Control error: incorrect line state sequence on data lane 0. */
217 # define DSI1_INT_ERR_CONTROL BIT(7)
218 /* LPDT synchronization error (bits received not a multiple of 8. */
220 # define DSI1_INT_ERR_SYNC_ESC BIT(6)
221 /* Signaled after receiving an error packet from the display in
222 * response to a read.
224 # define DSI1_INT_RXPKT2 BIT(5)
225 /* Signaled after receiving a packet. The header and optional short
226 * response will be in RXPKT1H, and a long response will be in the
229 # define DSI1_INT_RXPKT1 BIT(4)
230 # define DSI1_INT_TXPKT2_DONE BIT(3)
231 # define DSI1_INT_TXPKT2_END BIT(2)
232 /* Signaled after all repeats of TXPKT1 are transferred. */
233 # define DSI1_INT_TXPKT1_DONE BIT(1)
234 /* Signaled after each TXPKT1 repeat is scheduled. */
235 # define DSI1_INT_TXPKT1_END BIT(0)
237 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
238 DSI1_INT_ERR_CONTROL | \
239 DSI1_INT_ERR_CONT_LP0 | \
240 DSI1_INT_ERR_CONT_LP1 | \
246 #define DSI0_STAT 0x2c
247 #define DSI0_HSTX_TO_CNT 0x30
248 #define DSI0_LPRX_TO_CNT 0x34
249 #define DSI0_TA_TO_CNT 0x38
250 #define DSI0_PR_TO_CNT 0x3c
251 #define DSI0_PHYC 0x40
252 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
253 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
254 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
255 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
256 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
257 # define DSI1_PHYC_CLANE_ULPS BIT(17)
258 # define DSI1_PHYC_CLANE_ENABLE BIT(16)
259 # define DSI_PHYC_DLANE3_ULPS BIT(13)
260 # define DSI_PHYC_DLANE3_ENABLE BIT(12)
261 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
262 # define DSI0_PHYC_CLANE_ULPS BIT(9)
263 # define DSI_PHYC_DLANE2_ULPS BIT(9)
264 # define DSI0_PHYC_CLANE_ENABLE BIT(8)
265 # define DSI_PHYC_DLANE2_ENABLE BIT(8)
266 # define DSI_PHYC_DLANE1_ULPS BIT(5)
267 # define DSI_PHYC_DLANE1_ENABLE BIT(4)
268 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
269 # define DSI_PHYC_DLANE0_ULPS BIT(1)
270 # define DSI_PHYC_DLANE0_ENABLE BIT(0)
272 #define DSI0_HS_CLT0 0x44
273 #define DSI0_HS_CLT1 0x48
274 #define DSI0_HS_CLT2 0x4c
275 #define DSI0_HS_DLT3 0x50
276 #define DSI0_HS_DLT4 0x54
277 #define DSI0_HS_DLT5 0x58
278 #define DSI0_HS_DLT6 0x5c
279 #define DSI0_HS_DLT7 0x60
281 #define DSI0_PHY_AFEC0 0x64
282 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
283 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
284 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
285 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
286 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
287 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
288 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
289 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
290 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
291 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
292 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
293 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
294 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
295 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
296 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
297 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
298 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
299 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
300 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
301 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
302 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
303 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
304 # define DSI1_PHY_AFEC0_RESET BIT(13)
305 # define DSI1_PHY_AFEC0_PD BIT(12)
306 # define DSI0_PHY_AFEC0_RESET BIT(11)
307 # define DSI1_PHY_AFEC0_PD_BG BIT(11)
308 # define DSI0_PHY_AFEC0_PD BIT(10)
309 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(10)
310 # define DSI0_PHY_AFEC0_PD_BG BIT(9)
311 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
312 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
313 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(8)
314 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
315 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
316 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
317 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
319 #define DSI0_PHY_AFEC1 0x68
320 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
321 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
322 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
323 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
324 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
325 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
327 #define DSI0_TST_SEL 0x6c
328 #define DSI0_TST_MON 0x70
330 # define DSI_ID_VALUE 0x00647369
332 #define DSI1_CTRL 0x00
333 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
334 # define DSI_CTRL_HS_CLKC_SHIFT 14
335 # define DSI_CTRL_HS_CLKC_BYTE 0
336 # define DSI_CTRL_HS_CLKC_DDR2 1
337 # define DSI_CTRL_HS_CLKC_DDR 2
339 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
340 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
341 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
342 # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
343 # define DSI_CTRL_CAL_BYTE BIT(9)
344 # define DSI_CTRL_INV_BYTE BIT(8)
345 # define DSI_CTRL_CLR_LDF BIT(7)
346 # define DSI0_CTRL_CLR_PBCF BIT(6)
347 # define DSI1_CTRL_CLR_RXF BIT(6)
348 # define DSI0_CTRL_CLR_CPBCF BIT(5)
349 # define DSI1_CTRL_CLR_PDF BIT(5)
350 # define DSI0_CTRL_CLR_PDF BIT(4)
351 # define DSI1_CTRL_CLR_CDF BIT(4)
352 # define DSI0_CTRL_CLR_CDF BIT(3)
353 # define DSI0_CTRL_CTRL2 BIT(2)
354 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
355 # define DSI0_CTRL_CTRL1 BIT(1)
356 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
357 # define DSI0_CTRL_CTRL0 BIT(0)
358 # define DSI1_CTRL_EN BIT(0)
359 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
360 DSI0_CTRL_CLR_PBCF | \
361 DSI0_CTRL_CLR_CPBCF | \
362 DSI0_CTRL_CLR_PDF | \
364 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
365 DSI1_CTRL_CLR_RXF | \
366 DSI1_CTRL_CLR_PDF | \
369 #define DSI1_TXPKT2C 0x0c
370 #define DSI1_TXPKT2H 0x10
371 #define DSI1_TXPKT_PIX_FIFO 0x20
372 #define DSI1_RXPKT_FIFO 0x24
373 #define DSI1_DISP0_CTRL 0x28
374 #define DSI1_INT_STAT 0x30
375 #define DSI1_INT_EN 0x34
376 /* State reporting bits. These mostly behave like INT_STAT, where
377 * writing a 1 clears the bit.
379 #define DSI1_STAT 0x38
380 # define DSI1_STAT_PHY_D3_ULPS BIT(31)
381 # define DSI1_STAT_PHY_D3_STOP BIT(30)
382 # define DSI1_STAT_PHY_D2_ULPS BIT(29)
383 # define DSI1_STAT_PHY_D2_STOP BIT(28)
384 # define DSI1_STAT_PHY_D1_ULPS BIT(27)
385 # define DSI1_STAT_PHY_D1_STOP BIT(26)
386 # define DSI1_STAT_PHY_D0_ULPS BIT(25)
387 # define DSI1_STAT_PHY_D0_STOP BIT(24)
388 # define DSI1_STAT_FIFO_ERR BIT(23)
389 # define DSI1_STAT_PHY_RXLPDT BIT(22)
390 # define DSI1_STAT_PHY_RXTRIG BIT(21)
391 # define DSI1_STAT_PHY_D0_LPDT BIT(20)
392 /* Set when in forward direction */
393 # define DSI1_STAT_PHY_DIR BIT(19)
394 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
395 # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
396 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
397 # define DSI1_STAT_PR_TO BIT(15)
398 # define DSI1_STAT_TA_TO BIT(14)
399 # define DSI1_STAT_LPRX_TO BIT(13)
400 # define DSI1_STAT_HSTX_TO BIT(12)
401 # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
402 # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
403 # define DSI1_STAT_ERR_CONTROL BIT(9)
404 # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
405 # define DSI1_STAT_RXPKT2 BIT(7)
406 # define DSI1_STAT_RXPKT1 BIT(6)
407 # define DSI1_STAT_TXPKT2_BUSY BIT(5)
408 # define DSI1_STAT_TXPKT2_DONE BIT(4)
409 # define DSI1_STAT_TXPKT2_END BIT(3)
410 # define DSI1_STAT_TXPKT1_BUSY BIT(2)
411 # define DSI1_STAT_TXPKT1_DONE BIT(1)
412 # define DSI1_STAT_TXPKT1_END BIT(0)
414 #define DSI1_HSTX_TO_CNT 0x3c
415 #define DSI1_LPRX_TO_CNT 0x40
416 #define DSI1_TA_TO_CNT 0x44
417 #define DSI1_PR_TO_CNT 0x48
418 #define DSI1_PHYC 0x4c
420 #define DSI1_HS_CLT0 0x50
421 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
422 # define DSI_HS_CLT0_CZERO_SHIFT 18
423 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
424 # define DSI_HS_CLT0_CPRE_SHIFT 9
425 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
426 # define DSI_HS_CLT0_CPREP_SHIFT 0
428 #define DSI1_HS_CLT1 0x54
429 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
430 # define DSI_HS_CLT1_CTRAIL_SHIFT 9
431 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
432 # define DSI_HS_CLT1_CPOST_SHIFT 0
434 #define DSI1_HS_CLT2 0x58
435 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
436 # define DSI_HS_CLT2_WUP_SHIFT 0
438 #define DSI1_HS_DLT3 0x5c
439 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
440 # define DSI_HS_DLT3_EXIT_SHIFT 18
441 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
442 # define DSI_HS_DLT3_ZERO_SHIFT 9
443 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
444 # define DSI_HS_DLT3_PRE_SHIFT 0
446 #define DSI1_HS_DLT4 0x60
447 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
448 # define DSI_HS_DLT4_ANLAT_SHIFT 18
449 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
450 # define DSI_HS_DLT4_TRAIL_SHIFT 9
451 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
452 # define DSI_HS_DLT4_LPX_SHIFT 0
454 #define DSI1_HS_DLT5 0x64
455 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
456 # define DSI_HS_DLT5_INIT_SHIFT 0
458 #define DSI1_HS_DLT6 0x68
459 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
460 # define DSI_HS_DLT6_TA_GET_SHIFT 24
461 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
462 # define DSI_HS_DLT6_TA_SURE_SHIFT 16
463 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
464 # define DSI_HS_DLT6_TA_GO_SHIFT 8
465 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
466 # define DSI_HS_DLT6_LP_LPX_SHIFT 0
468 #define DSI1_HS_DLT7 0x6c
469 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
470 # define DSI_HS_DLT7_LP_WUP_SHIFT 0
472 #define DSI1_PHY_AFEC0 0x70
474 #define DSI1_PHY_AFEC1 0x74
475 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
476 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
477 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
478 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
479 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
480 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
481 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
482 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
483 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
484 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
486 #define DSI1_TST_SEL 0x78
487 #define DSI1_TST_MON 0x7c
488 #define DSI1_PHY_TST1 0x80
489 #define DSI1_PHY_TST2 0x84
490 #define DSI1_PHY_FIFO_STAT 0x88
491 /* Actually, all registers in the range that aren't otherwise claimed
492 * will return the ID.
496 struct vc4_dsi_variant {
497 /* Whether we're on bcm2835's DSI0 or DSI1. */
500 bool broken_axi_workaround;
502 const char *debugfs_name;
503 const struct debugfs_reg32 *regs;
508 /* General DSI hardware state. */
510 struct platform_device *pdev;
512 struct mipi_dsi_host dsi_host;
513 struct drm_encoder *encoder;
514 struct drm_bridge *bridge;
515 struct list_head bridge_chain;
519 struct dma_chan *reg_dma_chan;
520 dma_addr_t reg_dma_paddr;
522 dma_addr_t reg_paddr;
524 const struct vc4_dsi_variant *variant;
526 /* DSI channel for the panel we're connected to. */
533 /* Input clock from CPRMAN to the digital PHY, for the DSI
536 struct clk *escape_clock;
538 /* Input clock to the analog PHY, used to generate the DSI bit
541 struct clk *pll_phy_clock;
543 /* HS Clocks generated within the DSI analog PHY. */
544 struct clk_fixed_factor phy_clocks[3];
546 struct clk_hw_onecell_data *clk_onecell;
548 /* Pixel clock output to the pixelvalve, generated from the HS
551 struct clk *pixel_clock;
553 struct completion xfer_completion;
556 struct debugfs_regset32 regset;
559 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
562 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
564 struct dma_chan *chan = dsi->reg_dma_chan;
565 struct dma_async_tx_descriptor *tx;
569 /* DSI0 should be able to write normally. */
571 writel(val, dsi->regs + offset);
575 *dsi->reg_dma_mem = val;
577 tx = chan->device->device_prep_dma_memcpy(chan,
578 dsi->reg_paddr + offset,
582 DRM_ERROR("Failed to set up DMA register write\n");
586 cookie = tx->tx_submit(tx);
587 ret = dma_submit_error(cookie);
589 DRM_ERROR("Failed to submit DMA: %d\n", ret);
592 ret = dma_sync_wait(chan, cookie);
594 DRM_ERROR("Failed to wait for DMA: %d\n", ret);
597 #define DSI_READ(offset) readl(dsi->regs + (offset))
598 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
599 #define DSI_PORT_READ(offset) \
600 DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset)
601 #define DSI_PORT_WRITE(offset, val) \
602 DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val)
603 #define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit)
605 /* VC4 DSI encoder KMS struct */
606 struct vc4_dsi_encoder {
607 struct vc4_encoder base;
611 static inline struct vc4_dsi_encoder *
612 to_vc4_dsi_encoder(struct drm_encoder *encoder)
614 return container_of(encoder, struct vc4_dsi_encoder, base.base);
617 static const struct debugfs_reg32 dsi0_regs[] = {
618 VC4_REG32(DSI0_CTRL),
619 VC4_REG32(DSI0_STAT),
620 VC4_REG32(DSI0_HSTX_TO_CNT),
621 VC4_REG32(DSI0_LPRX_TO_CNT),
622 VC4_REG32(DSI0_TA_TO_CNT),
623 VC4_REG32(DSI0_PR_TO_CNT),
624 VC4_REG32(DSI0_DISP0_CTRL),
625 VC4_REG32(DSI0_DISP1_CTRL),
626 VC4_REG32(DSI0_INT_STAT),
627 VC4_REG32(DSI0_INT_EN),
628 VC4_REG32(DSI0_PHYC),
629 VC4_REG32(DSI0_HS_CLT0),
630 VC4_REG32(DSI0_HS_CLT1),
631 VC4_REG32(DSI0_HS_CLT2),
632 VC4_REG32(DSI0_HS_DLT3),
633 VC4_REG32(DSI0_HS_DLT4),
634 VC4_REG32(DSI0_HS_DLT5),
635 VC4_REG32(DSI0_HS_DLT6),
636 VC4_REG32(DSI0_HS_DLT7),
637 VC4_REG32(DSI0_PHY_AFEC0),
638 VC4_REG32(DSI0_PHY_AFEC1),
642 static const struct debugfs_reg32 dsi1_regs[] = {
643 VC4_REG32(DSI1_CTRL),
644 VC4_REG32(DSI1_STAT),
645 VC4_REG32(DSI1_HSTX_TO_CNT),
646 VC4_REG32(DSI1_LPRX_TO_CNT),
647 VC4_REG32(DSI1_TA_TO_CNT),
648 VC4_REG32(DSI1_PR_TO_CNT),
649 VC4_REG32(DSI1_DISP0_CTRL),
650 VC4_REG32(DSI1_DISP1_CTRL),
651 VC4_REG32(DSI1_INT_STAT),
652 VC4_REG32(DSI1_INT_EN),
653 VC4_REG32(DSI1_PHYC),
654 VC4_REG32(DSI1_HS_CLT0),
655 VC4_REG32(DSI1_HS_CLT1),
656 VC4_REG32(DSI1_HS_CLT2),
657 VC4_REG32(DSI1_HS_DLT3),
658 VC4_REG32(DSI1_HS_DLT4),
659 VC4_REG32(DSI1_HS_DLT5),
660 VC4_REG32(DSI1_HS_DLT6),
661 VC4_REG32(DSI1_HS_DLT7),
662 VC4_REG32(DSI1_PHY_AFEC0),
663 VC4_REG32(DSI1_PHY_AFEC1),
667 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
669 u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
672 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
674 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
676 DSI_PORT_WRITE(PHY_AFEC0, afec0);
679 /* Enters or exits Ultra Low Power State. */
680 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
682 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
683 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
684 DSI_PHYC_DLANE0_ULPS |
685 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
686 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
687 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
688 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
689 DSI1_STAT_PHY_D0_ULPS |
690 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
691 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
692 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
693 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
694 DSI1_STAT_PHY_D0_STOP |
695 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
696 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
697 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
699 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
700 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
702 if (ulps == ulps_currently_enabled)
705 DSI_PORT_WRITE(STAT, stat_ulps);
706 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
707 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
709 dev_warn(&dsi->pdev->dev,
710 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
711 DSI_PORT_READ(STAT));
712 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
713 vc4_dsi_latch_ulps(dsi, false);
717 /* The DSI module can't be disabled while the module is
718 * generating ULPS state. So, to be able to disable the
719 * module, we have the AFE latch the ULPS state and continue
720 * on to having the module enter STOP.
722 vc4_dsi_latch_ulps(dsi, ulps);
724 DSI_PORT_WRITE(STAT, stat_stop);
725 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
726 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
728 dev_warn(&dsi->pdev->dev,
729 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
730 DSI_PORT_READ(STAT));
731 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
737 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
739 /* The HS timings have to be rounded up to a multiple of 8
740 * because we're using the byte clock.
742 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
745 /* ESC always runs at 100Mhz. */
746 #define ESC_TIME_NS 10
749 dsi_esc_timing(u32 ns)
751 return DIV_ROUND_UP(ns, ESC_TIME_NS);
754 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
756 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
757 struct vc4_dsi *dsi = vc4_encoder->dsi;
758 struct device *dev = &dsi->pdev->dev;
759 struct drm_bridge *iter;
761 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
762 if (iter->funcs->disable)
763 iter->funcs->disable(iter);
766 vc4_dsi_ulps(dsi, true);
768 list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) {
769 if (iter->funcs->post_disable)
770 iter->funcs->post_disable(iter);
773 clk_disable_unprepare(dsi->pll_phy_clock);
774 clk_disable_unprepare(dsi->escape_clock);
775 clk_disable_unprepare(dsi->pixel_clock);
780 /* Extends the mode's blank intervals to handle BCM2835's integer-only
783 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
784 * driver since most peripherals are hanging off of the PLLD_PER
785 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
786 * the pixel clock), only has an integer divider off of DSI.
788 * To get our panel mode to refresh at the expected 60Hz, we need to
789 * extend the horizontal blank time. This means we drive a
790 * higher-than-expected clock rate to the panel, but that's what the
793 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
794 const struct drm_display_mode *mode,
795 struct drm_display_mode *adjusted_mode)
797 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
798 struct vc4_dsi *dsi = vc4_encoder->dsi;
799 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
800 unsigned long parent_rate = clk_get_rate(phy_parent);
801 unsigned long pixel_clock_hz = mode->clock * 1000;
802 unsigned long pll_clock = pixel_clock_hz * dsi->divider;
805 /* Find what divider gets us a faster clock than the requested
808 for (divider = 1; divider < 8; divider++) {
809 if (parent_rate / divider < pll_clock) {
815 /* Now that we've picked a PLL divider, calculate back to its
818 pll_clock = parent_rate / divider;
819 pixel_clock_hz = pll_clock / dsi->divider;
821 adjusted_mode->clock = pixel_clock_hz / 1000;
823 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
824 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
826 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
827 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
832 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
834 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
835 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
836 struct vc4_dsi *dsi = vc4_encoder->dsi;
837 struct device *dev = &dsi->pdev->dev;
838 bool debug_dump_regs = false;
839 struct drm_bridge *iter;
840 unsigned long hs_clock;
842 /* Minimum LP state duration in escape clock cycles. */
843 u32 lpx = dsi_esc_timing(60);
844 unsigned long pixel_clock_hz = mode->clock * 1000;
845 unsigned long dsip_clock;
846 unsigned long phy_clock;
849 ret = pm_runtime_get_sync(dev);
851 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port);
855 if (debug_dump_regs) {
856 struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
857 dev_info(&dsi->pdev->dev, "DSI regs before:\n");
858 drm_print_regset32(&p, &dsi->regset);
861 /* Round up the clk_set_rate() request slightly, since
862 * PLLD_DSI1 is an integer divider and its rate selection will
865 phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
866 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
868 dev_err(&dsi->pdev->dev,
869 "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
872 /* Reset the DSI and all its fifos. */
874 DSI_CTRL_SOFT_RESET_CFG |
875 DSI_PORT_BIT(CTRL_RESET_FIFOS));
878 DSI_CTRL_HSDT_EOT_DISABLE |
879 DSI_CTRL_RX_LPDT_EOT_DISABLE);
881 /* Clear all stat bits so we see what has happened during enable. */
882 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
884 /* Set AFE CTR00/CTR1 to release powerdown of analog. */
885 if (dsi->variant->port == 0) {
886 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
887 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
890 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
892 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
893 afec0 |= DSI0_PHY_AFEC0_RESET;
895 DSI_PORT_WRITE(PHY_AFEC0, afec0);
897 DSI_PORT_WRITE(PHY_AFEC1,
898 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
899 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
900 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
902 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
903 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
904 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
905 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
906 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
907 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
908 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
911 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
913 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
915 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
917 afec0 |= DSI1_PHY_AFEC0_RESET;
919 DSI_PORT_WRITE(PHY_AFEC0, afec0);
921 DSI_PORT_WRITE(PHY_AFEC1, 0);
923 /* AFEC reset hold time */
927 ret = clk_prepare_enable(dsi->escape_clock);
929 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
933 ret = clk_prepare_enable(dsi->pll_phy_clock);
935 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
939 hs_clock = clk_get_rate(dsi->pll_phy_clock);
941 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
942 * not the pixel clock rate. DSIxP take from the APHY's byte,
943 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
944 * that rate. Separately, a value derived from PIX_CLK_DIV
945 * and HS_CLKC is fed into the PV to divide down to the actual
946 * pixel clock for pushing pixels into DSI.
948 dsip_clock = phy_clock / 8;
949 ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
951 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
955 ret = clk_prepare_enable(dsi->pixel_clock);
957 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
961 /* How many ns one DSI unit interval is. Note that the clock
962 * is DDR, so there's an extra divide by 2.
964 ui_ns = DIV_ROUND_UP(500000000, hs_clock);
966 DSI_PORT_WRITE(HS_CLT0,
967 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
969 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
971 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
974 DSI_PORT_WRITE(HS_CLT1,
975 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
976 DSI_HS_CLT1_CTRAIL) |
977 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
980 DSI_PORT_WRITE(HS_CLT2,
981 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
984 DSI_PORT_WRITE(HS_DLT3,
985 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
987 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
989 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
992 DSI_PORT_WRITE(HS_DLT4,
993 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
995 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
996 dsi_hs_timing(ui_ns, 60, 4)),
998 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1000 /* T_INIT is how long STOP is driven after power-up to
1001 * indicate to the slave (also coming out of power-up) that
1002 * master init is complete, and should be greater than the
1003 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
1004 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1005 * T_INIT,SLAVE, while allowing protocols on top of it to give
1006 * greater minimums. The vc4 firmware uses an extremely
1007 * conservative 5ms, and we maintain that here.
1009 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1010 5 * 1000 * 1000, 0),
1013 DSI_PORT_WRITE(HS_DLT6,
1014 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1015 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1016 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1017 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1019 DSI_PORT_WRITE(HS_DLT7,
1020 VC4_SET_FIELD(dsi_esc_timing(1000000),
1021 DSI_HS_DLT7_LP_WUP));
1023 DSI_PORT_WRITE(PHYC,
1024 DSI_PHYC_DLANE0_ENABLE |
1025 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1026 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1027 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1028 DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1029 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1030 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1031 (dsi->variant->port == 0 ?
1032 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1033 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1035 DSI_PORT_WRITE(CTRL,
1036 DSI_PORT_READ(CTRL) |
1039 /* HS timeout in HS clock cycles: disabled. */
1040 DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1041 /* LP receive timeout in HS clocks. */
1042 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1043 /* Bus turnaround timeout */
1044 DSI_PORT_WRITE(TA_TO_CNT, 100000);
1045 /* Display reset sequence timeout */
1046 DSI_PORT_WRITE(PR_TO_CNT, 100000);
1048 /* Set up DISP1 for transferring long command payloads through
1051 DSI_PORT_WRITE(DISP1_CTRL,
1052 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1053 DSI_DISP1_PFORMAT) |
1056 /* Ungate the block. */
1057 if (dsi->variant->port == 0)
1058 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1060 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1062 /* Bring AFE out of reset. */
1063 if (dsi->variant->port == 0) {
1065 DSI_PORT_WRITE(PHY_AFEC0,
1066 DSI_PORT_READ(PHY_AFEC0) &
1067 ~DSI1_PHY_AFEC0_RESET);
1070 vc4_dsi_ulps(dsi, false);
1072 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
1073 if (iter->funcs->pre_enable)
1074 iter->funcs->pre_enable(iter);
1077 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1078 DSI_PORT_WRITE(DISP0_CTRL,
1079 VC4_SET_FIELD(dsi->divider,
1080 DSI_DISP0_PIX_CLK_DIV) |
1081 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1082 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1083 DSI_DISP0_LP_STOP_CTRL) |
1087 DSI_PORT_WRITE(DISP0_CTRL,
1088 DSI_DISP0_COMMAND_MODE |
1092 list_for_each_entry(iter, &dsi->bridge_chain, chain_node) {
1093 if (iter->funcs->enable)
1094 iter->funcs->enable(iter);
1097 if (debug_dump_regs) {
1098 struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1099 dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1100 drm_print_regset32(&p, &dsi->regset);
1104 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1105 const struct mipi_dsi_msg *msg)
1107 struct vc4_dsi *dsi = host_to_dsi(host);
1108 struct mipi_dsi_packet packet;
1109 u32 pkth = 0, pktc = 0;
1111 bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1112 u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1114 mipi_dsi_create_packet(&packet, msg);
1116 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1117 pkth |= VC4_SET_FIELD(packet.header[1] |
1118 (packet.header[2] << 8),
1119 DSI_TXPKT1H_BC_PARAM);
1121 /* Divide data across the various FIFOs we have available.
1122 * The command FIFO takes byte-oriented data, but is of
1123 * limited size. The pixel FIFO (never actually used for
1124 * pixel data in reality) is word oriented, and substantially
1125 * larger. So, we use the pixel FIFO for most of the data,
1126 * sending the residual bytes in the command FIFO at the start.
1128 * With this arrangement, the command FIFO will never get full.
1130 if (packet.payload_length <= 16) {
1131 cmd_fifo_len = packet.payload_length;
1134 cmd_fifo_len = (packet.payload_length %
1135 DSI_PIX_FIFO_WIDTH);
1136 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1137 DSI_PIX_FIFO_WIDTH);
1140 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1142 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1146 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1147 DSI_TXPKT1C_CMD_CTRL);
1149 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1150 DSI_TXPKT1C_CMD_CTRL);
1153 for (i = 0; i < cmd_fifo_len; i++)
1154 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1155 for (i = 0; i < pix_fifo_len; i++) {
1156 const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1158 DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1165 if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1166 pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1168 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1170 /* Send one copy of the packet. Larger repeats are used for pixel
1171 * data in command mode.
1173 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1175 pktc |= DSI_TXPKT1C_CMD_EN;
1177 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1178 DSI_TXPKT1C_DISPLAY_NO);
1180 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1181 DSI_TXPKT1C_DISPLAY_NO);
1184 /* Enable the appropriate interrupt for the transfer completion. */
1185 dsi->xfer_result = 0;
1186 reinit_completion(&dsi->xfer_completion);
1187 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1189 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1190 DSI1_INT_PHY_DIR_RTF));
1192 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1193 DSI1_INT_TXPKT1_DONE));
1196 /* Send the packet. */
1197 DSI_PORT_WRITE(TXPKT1H, pkth);
1198 DSI_PORT_WRITE(TXPKT1C, pktc);
1200 if (!wait_for_completion_timeout(&dsi->xfer_completion,
1201 msecs_to_jiffies(1000))) {
1202 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1203 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1204 DSI_PORT_READ(INT_STAT));
1207 ret = dsi->xfer_result;
1210 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1213 goto reset_fifo_and_return;
1215 if (ret == 0 && msg->rx_len) {
1216 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1217 u8 *msg_rx = msg->rx_buf;
1219 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1220 u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1221 DSI_RXPKT1H_BC_PARAM);
1223 if (rxlen != msg->rx_len) {
1224 DRM_ERROR("DSI returned %db, expecting %db\n",
1225 rxlen, (int)msg->rx_len);
1227 goto reset_fifo_and_return;
1230 for (i = 0; i < msg->rx_len; i++)
1231 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1233 /* FINISHME: Handle AWER */
1235 msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1236 DSI_RXPKT1H_SHORT_0);
1237 if (msg->rx_len > 1) {
1238 msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1239 DSI_RXPKT1H_SHORT_1);
1246 reset_fifo_and_return:
1247 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1249 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1251 DSI_PORT_WRITE(CTRL,
1252 DSI_PORT_READ(CTRL) |
1253 DSI_PORT_BIT(CTRL_RESET_FIFOS));
1255 DSI_PORT_WRITE(TXPKT1C, 0);
1256 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1260 static const struct component_ops vc4_dsi_ops;
1261 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1262 struct mipi_dsi_device *device)
1264 struct vc4_dsi *dsi = host_to_dsi(host);
1267 dsi->lanes = device->lanes;
1268 dsi->channel = device->channel;
1269 dsi->mode_flags = device->mode_flags;
1271 switch (device->format) {
1272 case MIPI_DSI_FMT_RGB888:
1273 dsi->format = DSI_PFORMAT_RGB888;
1274 dsi->divider = 24 / dsi->lanes;
1276 case MIPI_DSI_FMT_RGB666:
1277 dsi->format = DSI_PFORMAT_RGB666;
1278 dsi->divider = 24 / dsi->lanes;
1280 case MIPI_DSI_FMT_RGB666_PACKED:
1281 dsi->format = DSI_PFORMAT_RGB666_PACKED;
1282 dsi->divider = 18 / dsi->lanes;
1284 case MIPI_DSI_FMT_RGB565:
1285 dsi->format = DSI_PFORMAT_RGB565;
1286 dsi->divider = 16 / dsi->lanes;
1289 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1294 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1295 dev_err(&dsi->pdev->dev,
1296 "Only VIDEO mode panels supported currently.\n");
1300 ret = component_add(&dsi->pdev->dev, &vc4_dsi_ops);
1302 mipi_dsi_host_unregister(&dsi->dsi_host);
1309 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1310 struct mipi_dsi_device *device)
1315 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1316 .attach = vc4_dsi_host_attach,
1317 .detach = vc4_dsi_host_detach,
1318 .transfer = vc4_dsi_host_transfer,
1321 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1322 .disable = vc4_dsi_encoder_disable,
1323 .enable = vc4_dsi_encoder_enable,
1324 .mode_fixup = vc4_dsi_encoder_mode_fixup,
1327 static const struct vc4_dsi_variant bcm2711_dsi1_variant = {
1329 .debugfs_name = "dsi1_regs",
1331 .nregs = ARRAY_SIZE(dsi1_regs),
1334 static const struct vc4_dsi_variant bcm2835_dsi0_variant = {
1336 .debugfs_name = "dsi0_regs",
1338 .nregs = ARRAY_SIZE(dsi0_regs),
1341 static const struct vc4_dsi_variant bcm2835_dsi1_variant = {
1343 .broken_axi_workaround = true,
1344 .debugfs_name = "dsi1_regs",
1346 .nregs = ARRAY_SIZE(dsi1_regs),
1349 static const struct of_device_id vc4_dsi_dt_match[] = {
1350 { .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant },
1351 { .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant },
1352 { .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant },
1356 static void dsi_handle_error(struct vc4_dsi *dsi,
1357 irqreturn_t *ret, u32 stat, u32 bit,
1363 DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type);
1368 * Initial handler for port 1 where we need the reg_dma workaround.
1369 * The register DMA writes sleep, so we can't do it in the top half.
1370 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1371 * parent interrupt contrller until our interrupt thread is done.
1373 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1375 struct vc4_dsi *dsi = data;
1376 u32 stat = DSI_PORT_READ(INT_STAT);
1381 return IRQ_WAKE_THREAD;
1385 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1386 * 1 where we need the reg_dma workaround.
1388 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1390 struct vc4_dsi *dsi = data;
1391 u32 stat = DSI_PORT_READ(INT_STAT);
1392 irqreturn_t ret = IRQ_NONE;
1394 DSI_PORT_WRITE(INT_STAT, stat);
1396 dsi_handle_error(dsi, &ret, stat,
1397 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1398 dsi_handle_error(dsi, &ret, stat,
1399 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1400 dsi_handle_error(dsi, &ret, stat,
1401 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1402 dsi_handle_error(dsi, &ret, stat,
1403 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1404 dsi_handle_error(dsi, &ret, stat,
1405 DSI1_INT_HSTX_TO, "HSTX timeout");
1406 dsi_handle_error(dsi, &ret, stat,
1407 DSI1_INT_LPRX_TO, "LPRX timeout");
1408 dsi_handle_error(dsi, &ret, stat,
1409 DSI1_INT_TA_TO, "turnaround timeout");
1410 dsi_handle_error(dsi, &ret, stat,
1411 DSI1_INT_PR_TO, "peripheral reset timeout");
1413 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1414 complete(&dsi->xfer_completion);
1416 } else if (stat & DSI1_INT_HSTX_TO) {
1417 complete(&dsi->xfer_completion);
1418 dsi->xfer_result = -ETIMEDOUT;
1426 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1427 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1431 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1433 struct device *dev = &dsi->pdev->dev;
1434 const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1435 static const struct {
1445 dsi->clk_onecell = devm_kzalloc(dev,
1446 sizeof(*dsi->clk_onecell) +
1447 ARRAY_SIZE(phy_clocks) *
1448 sizeof(struct clk_hw *),
1450 if (!dsi->clk_onecell)
1452 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1454 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1455 struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1456 struct clk_init_data init;
1460 snprintf(clk_name, sizeof(clk_name),
1461 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name);
1463 /* We just use core fixed factor clock ops for the PHY
1464 * clocks. The clocks are actually gated by the
1465 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1466 * setting if we use the DDR/DDR2 clocks. However,
1467 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1468 * setting both our parent DSI PLL's rate and this
1469 * clock's rate, so it knows if DDR/DDR2 are going to
1470 * be used and could enable the gates itself.
1473 fix->div = phy_clocks[i].div;
1474 fix->hw.init = &init;
1476 memset(&init, 0, sizeof(init));
1477 init.parent_names = &parent_name;
1478 init.num_parents = 1;
1479 init.name = clk_name;
1480 init.ops = &clk_fixed_factor_ops;
1482 ret = devm_clk_hw_register(dev, &fix->hw);
1486 dsi->clk_onecell->hws[i] = &fix->hw;
1489 return of_clk_add_hw_provider(dev->of_node,
1490 of_clk_hw_onecell_get,
1494 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1496 struct platform_device *pdev = to_platform_device(dev);
1497 struct drm_device *drm = dev_get_drvdata(master);
1498 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1499 struct vc4_dsi_encoder *vc4_dsi_encoder;
1500 struct drm_panel *panel;
1501 const struct of_device_id *match;
1502 dma_cap_mask_t dma_mask;
1505 match = of_match_device(vc4_dsi_dt_match, dev);
1509 dsi->variant = match->data;
1511 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1513 if (!vc4_dsi_encoder)
1516 INIT_LIST_HEAD(&dsi->bridge_chain);
1517 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1518 vc4_dsi_encoder->dsi = dsi;
1519 dsi->encoder = &vc4_dsi_encoder->base.base;
1521 dsi->regs = vc4_ioremap_regs(pdev, 0);
1522 if (IS_ERR(dsi->regs))
1523 return PTR_ERR(dsi->regs);
1525 dsi->regset.base = dsi->regs;
1526 dsi->regset.regs = dsi->variant->regs;
1527 dsi->regset.nregs = dsi->variant->nregs;
1529 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1530 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1531 DSI_PORT_READ(ID), DSI_ID_VALUE);
1535 /* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to
1536 * writes from the ARM. It does handle writes from the DMA engine,
1537 * so set up a channel for talking to it.
1539 if (dsi->variant->broken_axi_workaround) {
1540 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1541 &dsi->reg_dma_paddr,
1543 if (!dsi->reg_dma_mem) {
1544 DRM_ERROR("Failed to get DMA memory\n");
1548 dma_cap_zero(dma_mask);
1549 dma_cap_set(DMA_MEMCPY, dma_mask);
1550 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1551 if (IS_ERR(dsi->reg_dma_chan)) {
1552 ret = PTR_ERR(dsi->reg_dma_chan);
1553 if (ret != -EPROBE_DEFER)
1554 DRM_ERROR("Failed to get DMA channel: %d\n",
1559 /* Get the physical address of the device's registers. The
1560 * struct resource for the regs gives us the bus address
1563 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1567 init_completion(&dsi->xfer_completion);
1568 /* At startup enable error-reporting interrupts and nothing else. */
1569 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1570 /* Clear any existing interrupt state. */
1571 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1573 if (dsi->reg_dma_mem)
1574 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1575 vc4_dsi_irq_defer_to_thread_handler,
1576 vc4_dsi_irq_handler,
1580 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1581 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1583 if (ret != -EPROBE_DEFER)
1584 dev_err(dev, "Failed to get interrupt: %d\n", ret);
1588 dsi->escape_clock = devm_clk_get(dev, "escape");
1589 if (IS_ERR(dsi->escape_clock)) {
1590 ret = PTR_ERR(dsi->escape_clock);
1591 if (ret != -EPROBE_DEFER)
1592 dev_err(dev, "Failed to get escape clock: %d\n", ret);
1596 dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1597 if (IS_ERR(dsi->pll_phy_clock)) {
1598 ret = PTR_ERR(dsi->pll_phy_clock);
1599 if (ret != -EPROBE_DEFER)
1600 dev_err(dev, "Failed to get phy clock: %d\n", ret);
1604 dsi->pixel_clock = devm_clk_get(dev, "pixel");
1605 if (IS_ERR(dsi->pixel_clock)) {
1606 ret = PTR_ERR(dsi->pixel_clock);
1607 if (ret != -EPROBE_DEFER)
1608 dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1612 ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1613 &panel, &dsi->bridge);
1615 /* If the bridge or panel pointed by dev->of_node is not
1616 * enabled, just return 0 here so that we don't prevent the DRM
1617 * dev from being registered. Of course that means the DSI
1618 * encoder won't be exposed, but that's not a problem since
1619 * nothing is connected to it.
1628 dsi->bridge = devm_drm_panel_bridge_add_typed(dev, panel,
1629 DRM_MODE_CONNECTOR_DSI);
1630 if (IS_ERR(dsi->bridge))
1631 return PTR_ERR(dsi->bridge);
1634 /* The esc clock rate is supposed to always be 100Mhz. */
1635 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1637 dev_err(dev, "Failed to set esc clock: %d\n", ret);
1641 ret = vc4_dsi_init_phy_clocks(dsi);
1645 drm_simple_encoder_init(drm, dsi->encoder, DRM_MODE_ENCODER_DSI);
1646 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1648 ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL, 0);
1651 /* Disable the atomic helper calls into the bridge. We
1652 * manually call the bridge pre_enable / enable / etc. calls
1653 * from our driver, since we need to sequence them within the
1654 * encoder's enable/disable paths.
1656 list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain);
1658 vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset);
1660 pm_runtime_enable(dev);
1665 static void vc4_dsi_unbind(struct device *dev, struct device *master,
1668 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1671 pm_runtime_disable(dev);
1674 * Restore the bridge_chain so the bridge detach procedure can happen
1677 list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain);
1678 drm_encoder_cleanup(dsi->encoder);
1681 static const struct component_ops vc4_dsi_ops = {
1682 .bind = vc4_dsi_bind,
1683 .unbind = vc4_dsi_unbind,
1686 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1688 struct device *dev = &pdev->dev;
1689 struct vc4_dsi *dsi;
1691 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1694 dev_set_drvdata(dev, dsi);
1697 dsi->dsi_host.ops = &vc4_dsi_host_ops;
1698 dsi->dsi_host.dev = dev;
1699 mipi_dsi_host_register(&dsi->dsi_host);
1704 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1706 struct device *dev = &pdev->dev;
1707 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1709 component_del(&pdev->dev, &vc4_dsi_ops);
1710 mipi_dsi_host_unregister(&dsi->dsi_host);
1715 struct platform_driver vc4_dsi_driver = {
1716 .probe = vc4_dsi_dev_probe,
1717 .remove = vc4_dsi_dev_remove,
1720 .of_match_table = vc4_dsi_dt_match,