Merge tag 'v5.15.57' into rpi-5.15.y
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 #include <linux/pm_runtime.h>
36
37 #include <drm/drm_atomic.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_atomic_uapi.h>
40 #include <drm/drm_fb_cma_helper.h>
41 #include <drm/drm_print.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
44
45 #include "vc4_drv.h"
46 #include "vc4_hdmi.h"
47 #include "vc4_regs.h"
48
49 #define HVS_FIFO_LATENCY_PIX    6
50
51 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
52 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
53
54 static const struct debugfs_reg32 crtc_regs[] = {
55         VC4_REG32(PV_CONTROL),
56         VC4_REG32(PV_V_CONTROL),
57         VC4_REG32(PV_VSYNCD_EVEN),
58         VC4_REG32(PV_HORZA),
59         VC4_REG32(PV_HORZB),
60         VC4_REG32(PV_VERTA),
61         VC4_REG32(PV_VERTB),
62         VC4_REG32(PV_VERTA_EVEN),
63         VC4_REG32(PV_VERTB_EVEN),
64         VC4_REG32(PV_INTEN),
65         VC4_REG32(PV_INTSTAT),
66         VC4_REG32(PV_STAT),
67         VC4_REG32(PV_HACT_ACT),
68 };
69
70 static unsigned int
71 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
72 {
73         struct vc4_hvs *hvs = vc4->hvs;
74         u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
75         /* Top/base are supposed to be 4-pixel aligned, but the
76          * Raspberry Pi firmware fills the low bits (which are
77          * presumably ignored).
78          */
79         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
80         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
81
82         return top - base + 4;
83 }
84
85 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
86                                           bool in_vblank_irq,
87                                           int *vpos, int *hpos,
88                                           ktime_t *stime, ktime_t *etime,
89                                           const struct drm_display_mode *mode)
90 {
91         struct drm_device *dev = crtc->dev;
92         struct vc4_dev *vc4 = to_vc4_dev(dev);
93         struct vc4_hvs *hvs = vc4->hvs;
94         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
95         struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
96         unsigned int cob_size;
97         u32 val;
98         int fifo_lines;
99         int vblank_lines;
100         bool ret = false;
101
102         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
103
104         /* Get optional system timestamp before query. */
105         if (stime)
106                 *stime = ktime_get();
107
108         /*
109          * Read vertical scanline which is currently composed for our
110          * pixelvalve by the HVS, and also the scaler status.
111          */
112         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
113
114         /* Get optional system timestamp after query. */
115         if (etime)
116                 *etime = ktime_get();
117
118         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
119
120         /* Vertical position of hvs composed scanline. */
121         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
122         *hpos = 0;
123
124         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
125                 *vpos /= 2;
126
127                 /* Use hpos to correct for field offset in interlaced mode. */
128                 if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
129                         *hpos += mode->crtc_htotal / 2;
130         }
131
132         cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
133         /* This is the offset we need for translating hvs -> pv scanout pos. */
134         fifo_lines = cob_size / mode->crtc_hdisplay;
135
136         if (fifo_lines > 0)
137                 ret = true;
138
139         /* HVS more than fifo_lines into frame for compositing? */
140         if (*vpos > fifo_lines) {
141                 /*
142                  * We are in active scanout and can get some meaningful results
143                  * from HVS. The actual PV scanout can not trail behind more
144                  * than fifo_lines as that is the fifo's capacity. Assume that
145                  * in active scanout the HVS and PV work in lockstep wrt. HVS
146                  * refilling the fifo and PV consuming from the fifo, ie.
147                  * whenever the PV consumes and frees up a scanline in the
148                  * fifo, the HVS will immediately refill it, therefore
149                  * incrementing vpos. Therefore we choose HVS read position -
150                  * fifo size in scanlines as a estimate of the real scanout
151                  * position of the PV.
152                  */
153                 *vpos -= fifo_lines + 1;
154
155                 return ret;
156         }
157
158         /*
159          * Less: This happens when we are in vblank and the HVS, after getting
160          * the VSTART restart signal from the PV, just started refilling its
161          * fifo with new lines from the top-most lines of the new framebuffers.
162          * The PV does not scan out in vblank, so does not remove lines from
163          * the fifo, so the fifo will be full quickly and the HVS has to pause.
164          * We can't get meaningful readings wrt. scanline position of the PV
165          * and need to make things up in a approximative but consistent way.
166          */
167         vblank_lines = mode->vtotal - mode->vdisplay;
168
169         if (in_vblank_irq) {
170                 /*
171                  * Assume the irq handler got called close to first
172                  * line of vblank, so PV has about a full vblank
173                  * scanlines to go, and as a base timestamp use the
174                  * one taken at entry into vblank irq handler, so it
175                  * is not affected by random delays due to lock
176                  * contention on event_lock or vblank_time lock in
177                  * the core.
178                  */
179                 *vpos = -vblank_lines;
180
181                 if (stime)
182                         *stime = vc4_crtc->t_vblank;
183                 if (etime)
184                         *etime = vc4_crtc->t_vblank;
185
186                 /*
187                  * If the HVS fifo is not yet full then we know for certain
188                  * we are at the very beginning of vblank, as the hvs just
189                  * started refilling, and the stime and etime timestamps
190                  * truly correspond to start of vblank.
191                  *
192                  * Unfortunately there's no way to report this to upper levels
193                  * and make it more useful.
194                  */
195         } else {
196                 /*
197                  * No clue where we are inside vblank. Return a vpos of zero,
198                  * which will cause calling code to just return the etime
199                  * timestamp uncorrected. At least this is no worse than the
200                  * standard fallback.
201                  */
202                 *vpos = 0;
203         }
204
205         return ret;
206 }
207
208 void vc4_crtc_destroy(struct drm_crtc *crtc)
209 {
210         drm_crtc_cleanup(crtc);
211 }
212
213 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
214 {
215         const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
216         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
217         struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
218         u32 fifo_len_bytes = pv_data->fifo_depth;
219
220         /*
221          * Pixels are pulled from the HVS if the number of bytes is
222          * lower than the FIFO full level.
223          *
224          * The latency of the pixel fetch mechanism is 6 pixels, so we
225          * need to convert those 6 pixels in bytes, depending on the
226          * format, and then subtract that from the length of the FIFO
227          * to make sure we never end up in a situation where the FIFO
228          * is full.
229          */
230         switch (format) {
231         case PV_CONTROL_FORMAT_DSIV_16:
232         case PV_CONTROL_FORMAT_DSIC_16:
233                 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
234         case PV_CONTROL_FORMAT_DSIV_18:
235                 return fifo_len_bytes - 14;
236         case PV_CONTROL_FORMAT_24:
237         case PV_CONTROL_FORMAT_DSIV_24:
238         default:
239                 /*
240                  * For some reason, the pixelvalve4 doesn't work with
241                  * the usual formula and will only work with 32.
242                  */
243                 if (crtc_data->hvs_output == 5)
244                         return 32;
245
246                 /*
247                  * It looks like in some situations, we will overflow
248                  * the PixelValve FIFO (with the bit 10 of PV stat being
249                  * set) and stall the HVS / PV, eventually resulting in
250                  * a page flip timeout.
251                  *
252                  * Displaying the video overlay during a playback with
253                  * Kodi on an RPi3 seems to be a great solution with a
254                  * failure rate around 50%.
255                  *
256                  * Removing 1 from the FIFO full level however
257                  * seems to completely remove that issue.
258                  */
259                 if (!vc4->is_vc5)
260                         return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
261
262                 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
263         }
264 }
265
266 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
267                                              u32 format)
268 {
269         u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
270         u32 ret = 0;
271
272         ret |= VC4_SET_FIELD((level >> 6),
273                              PV5_CONTROL_FIFO_LEVEL_HIGH);
274
275         return ret | VC4_SET_FIELD(level & 0x3f,
276                                    PV_CONTROL_FIFO_LEVEL);
277 }
278
279 /*
280  * Returns the encoder attached to the CRTC.
281  *
282  * VC4 can only scan out to one encoder at a time, while the DRM core
283  * allows drivers to push pixels to more than one encoder from the
284  * same CRTC.
285  */
286 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
287                                          struct drm_crtc_state *state)
288 {
289         struct drm_encoder *encoder;
290
291         WARN_ON(hweight32(state->encoder_mask) > 1);
292
293         drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
294                 return encoder;
295
296         return NULL;
297 }
298
299 #define drm_for_each_connector_mask(connector, dev, connector_mask) \
300         list_for_each_entry((connector), &(dev)->mode_config.connector_list, head) \
301                 for_each_if ((connector_mask) & drm_connector_mask(connector))
302
303 struct drm_connector *vc4_get_crtc_connector(struct drm_crtc *crtc,
304                                              struct drm_crtc_state *state)
305 {
306         struct drm_connector *connector;
307
308         WARN_ON(hweight32(state->connector_mask) > 1);
309
310         drm_for_each_connector_mask(connector, crtc->dev, state->connector_mask)
311                 return connector;
312
313         return NULL;
314 }
315
316 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
317 {
318         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
319
320         /* The PV needs to be disabled before it can be flushed */
321         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
322         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
323 }
324
325 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
326                                struct drm_atomic_state *state)
327 {
328         struct drm_device *dev = crtc->dev;
329         struct vc4_dev *vc4 = to_vc4_dev(dev);
330         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
331         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
332         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
333         struct drm_crtc_state *crtc_state = crtc->state;
334         struct drm_display_mode *mode = &crtc_state->adjusted_mode;
335         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
336         bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
337                        vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
338         u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
339         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
340                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
341         bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
342         bool is_vec = vc4_encoder->type == VC4_ENCODER_TYPE_VEC;
343         u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
344         u8 ppc = pv_data->pixels_per_clock;
345
346         u16 vert_bp = mode->crtc_vtotal - mode->crtc_vsync_end;
347         u16 vert_sync = mode->crtc_vsync_end - mode->crtc_vsync_start;
348         u16 vert_fp = mode->crtc_vsync_start - mode->crtc_vdisplay;
349
350         bool debug_dump_regs = false;
351
352         if (debug_dump_regs) {
353                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
354                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
355                          drm_crtc_index(crtc));
356                 drm_print_regset32(&p, &vc4_crtc->regset);
357         }
358
359         vc4_crtc_pixelvalve_reset(crtc);
360
361         CRTC_WRITE(PV_HORZA,
362                    VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
363                                  PV_HORZA_HBP) |
364                    VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
365                                  PV_HORZA_HSYNC));
366
367         CRTC_WRITE(PV_HORZB,
368                    VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
369                                  PV_HORZB_HFP) |
370                    VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
371                                  PV_HORZB_HACTIVE));
372
373         if (interlace) {
374                 bool odd_field_first = false;
375                 u32 field_delay = mode->htotal * pixel_rep / (2 * ppc);
376                 u16 vert_bp_even = vert_bp;
377                 u16 vert_fp_even = vert_fp;
378
379                 if (is_vec) {
380                         /* VEC (composite output) */
381                         ++field_delay;
382                         if (mode->htotal == 858) {
383                                 /* 525-line mode (NTSC or PAL-M) */
384                                 odd_field_first = true;
385                         }
386                 }
387
388                 if (odd_field_first)
389                         ++vert_fp_even;
390                 else
391                         ++vert_bp;
392
393                 CRTC_WRITE(PV_VERTA_EVEN,
394                            VC4_SET_FIELD(vert_bp_even, PV_VERTA_VBP) |
395                            VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
396                 CRTC_WRITE(PV_VERTB_EVEN,
397                            VC4_SET_FIELD(vert_fp_even, PV_VERTB_VFP) |
398                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
399
400                 /* We set up first field even mode for HDMI and VEC's PAL.
401                  * For NTSC, we need first field odd.
402                  */
403                 CRTC_WRITE(PV_V_CONTROL,
404                            PV_VCONTROL_CONTINUOUS |
405                            (is_dsi ? PV_VCONTROL_DSI : 0) |
406                            PV_VCONTROL_INTERLACE |
407                            (odd_field_first
408                                    ? PV_VCONTROL_ODD_FIRST
409                                    : VC4_SET_FIELD(field_delay,
410                                                    PV_VCONTROL_ODD_DELAY)));
411                 CRTC_WRITE(PV_VSYNCD_EVEN,
412                            (odd_field_first ? field_delay : 0));
413         } else {
414                 CRTC_WRITE(PV_V_CONTROL,
415                            PV_VCONTROL_CONTINUOUS |
416                            (is_dsi ? PV_VCONTROL_DSI : 0));
417                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
418         }
419
420         CRTC_WRITE(PV_VERTA,
421                    VC4_SET_FIELD(vert_bp, PV_VERTA_VBP) |
422                    VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
423         CRTC_WRITE(PV_VERTB,
424                    VC4_SET_FIELD(vert_fp, PV_VERTB_VFP) |
425                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
426
427         if (is_dsi)
428                 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
429
430         if (vc4->is_vc5)
431                 CRTC_WRITE(PV_MUX_CFG,
432                            VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
433                                          PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
434
435         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
436                    vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
437                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
438                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
439                    PV_CONTROL_CLR_AT_START |
440                    PV_CONTROL_TRIGGER_UNDERFLOW |
441                    PV_CONTROL_WAIT_HSTART |
442                    VC4_SET_FIELD(vc4_encoder->clock_select,
443                                  PV_CONTROL_CLK_SELECT));
444
445         if (debug_dump_regs) {
446                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
447                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
448                          drm_crtc_index(crtc));
449                 drm_print_regset32(&p, &vc4_crtc->regset);
450         }
451 }
452
453 static void require_hvs_enabled(struct drm_device *dev)
454 {
455         struct vc4_dev *vc4 = to_vc4_dev(dev);
456         struct vc4_hvs *hvs = vc4->hvs;
457
458         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
459                      SCALER_DISPCTRL_ENABLE);
460 }
461
462 static int vc4_crtc_disable(struct drm_crtc *crtc,
463                             struct drm_encoder *encoder,
464                             struct drm_atomic_state *state,
465                             unsigned int channel)
466 {
467         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
468         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
469         struct drm_device *dev = crtc->dev;
470         struct vc4_dev *vc4 = to_vc4_dev(dev);
471         int ret;
472
473         CRTC_WRITE(PV_V_CONTROL,
474                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
475         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
476         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
477
478         /*
479          * This delay is needed to avoid to get a pixel stuck in an
480          * unflushable FIFO between the pixelvalve and the HDMI
481          * controllers on the BCM2711.
482          *
483          * Timing is fairly sensitive here, so mdelay is the safest
484          * approach.
485          *
486          * If it was to be reworked, the stuck pixel happens on a
487          * BCM2711 when changing mode with a good probability, so a
488          * script that changes mode on a regular basis should trigger
489          * the bug after less than 10 attempts. It manifests itself with
490          * every pixels being shifted by one to the right, and thus the
491          * last pixel of a line actually being displayed as the first
492          * pixel on the next line.
493          */
494         mdelay(20);
495
496         if (vc4_encoder && vc4_encoder->post_crtc_disable)
497                 vc4_encoder->post_crtc_disable(encoder, state);
498
499         vc4_crtc_pixelvalve_reset(crtc);
500         vc4_hvs_stop_channel(vc4->hvs, channel);
501
502         if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
503                 vc4_encoder->post_crtc_powerdown(encoder, state);
504
505         return 0;
506 }
507
508 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
509                                                         enum vc4_encoder_type type)
510 {
511         struct drm_encoder *encoder;
512
513         drm_for_each_encoder(encoder, crtc->dev) {
514                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
515
516                 if (vc4_encoder->type == type)
517                         return encoder;
518         }
519
520         return NULL;
521 }
522
523 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
524 {
525         struct drm_device *drm = crtc->dev;
526         struct vc4_dev *vc4 = to_vc4_dev(drm);
527         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
528         enum vc4_encoder_type encoder_type;
529         const struct vc4_pv_data *pv_data;
530         struct drm_encoder *encoder;
531         struct vc4_hdmi *vc4_hdmi;
532         unsigned encoder_sel;
533         int channel;
534         int ret;
535
536         if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
537                                       "brcm,bcm2711-pixelvalve2") ||
538               of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
539                                       "brcm,bcm2711-pixelvalve4")))
540                 return 0;
541
542         if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
543                 return 0;
544
545         if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
546                 return 0;
547
548         channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
549         if (channel < 0)
550                 return 0;
551
552         encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
553         if (WARN_ON(encoder_sel != 0))
554                 return 0;
555
556         pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
557         encoder_type = pv_data->encoder_types[encoder_sel];
558         encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
559         if (WARN_ON(!encoder))
560                 return 0;
561
562         vc4_hdmi = encoder_to_vc4_hdmi(encoder);
563         ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
564         if (ret)
565                 return ret;
566
567         ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
568         if (ret)
569                 return ret;
570
571         /*
572          * post_crtc_powerdown will have called pm_runtime_put, so we
573          * don't need it here otherwise we'll get the reference counting
574          * wrong.
575          */
576
577         return 0;
578 }
579
580 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
581                                     struct drm_atomic_state *state)
582 {
583         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
584                                                                          crtc);
585         struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
586         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
587         struct drm_device *dev = crtc->dev;
588
589         drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
590                 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
591
592         require_hvs_enabled(dev);
593
594         /* Disable vblank irq handling before crtc is disabled. */
595         drm_crtc_vblank_off(crtc);
596
597         vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
598
599         /*
600          * Make sure we issue a vblank event after disabling the CRTC if
601          * someone was waiting it.
602          */
603         if (crtc->state->event) {
604                 unsigned long flags;
605
606                 spin_lock_irqsave(&dev->event_lock, flags);
607                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
608                 crtc->state->event = NULL;
609                 spin_unlock_irqrestore(&dev->event_lock, flags);
610         }
611 }
612
613 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
614                                    struct drm_atomic_state *state)
615 {
616         struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
617                                                                          crtc);
618         struct drm_device *dev = crtc->dev;
619         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
620         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
621         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
622
623         drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
624                 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
625
626         require_hvs_enabled(dev);
627
628         /* Enable vblank irq handling before crtc is started otherwise
629          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
630          */
631         drm_crtc_vblank_on(crtc);
632
633         vc4_hvs_atomic_enable(crtc, state);
634
635         if (vc4_encoder->pre_crtc_configure)
636                 vc4_encoder->pre_crtc_configure(encoder, state);
637
638         vc4_crtc_config_pv(crtc, encoder, state);
639
640         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
641
642         if (vc4_encoder->pre_crtc_enable)
643                 vc4_encoder->pre_crtc_enable(encoder, state);
644
645         /* When feeding the transposer block the pixelvalve is unneeded and
646          * should not be enabled.
647          */
648         CRTC_WRITE(PV_V_CONTROL,
649                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
650
651         if (vc4_encoder->post_crtc_enable)
652                 vc4_encoder->post_crtc_enable(encoder, state);
653 }
654
655 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
656                                                 const struct drm_display_mode *mode)
657 {
658         /* Do not allow doublescan modes from user space */
659         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
660                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
661                               crtc->base.id);
662                 return MODE_NO_DBLESCAN;
663         }
664
665         return MODE_OK;
666 }
667
668 void vc4_crtc_get_margins(struct drm_crtc_state *state,
669                           unsigned int *left, unsigned int *right,
670                           unsigned int *top, unsigned int *bottom)
671 {
672         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
673         struct drm_connector_state *conn_state;
674         struct drm_connector *conn;
675         int i;
676
677         *left = vc4_state->margins.left;
678         *right = vc4_state->margins.right;
679         *top = vc4_state->margins.top;
680         *bottom = vc4_state->margins.bottom;
681
682         /* We have to interate over all new connector states because
683          * vc4_crtc_get_margins() might be called before
684          * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
685          * might be outdated.
686          */
687         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
688                 if (conn_state->crtc != state->crtc)
689                         continue;
690
691                 *left = conn_state->tv.margins.left;
692                 *right = conn_state->tv.margins.right;
693                 *top = conn_state->tv.margins.top;
694                 *bottom = conn_state->tv.margins.bottom;
695                 break;
696         }
697 }
698
699 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
700                                  struct drm_atomic_state *state)
701 {
702         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
703                                                                           crtc);
704         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
705         struct drm_connector *conn;
706         struct drm_connector_state *conn_state;
707         struct drm_encoder *encoder;
708         int ret, i;
709
710         ret = vc4_hvs_atomic_check(crtc, state);
711         if (ret)
712                 return ret;
713
714         encoder = vc4_get_crtc_encoder(crtc, crtc_state);
715         if (encoder) {
716                 const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
717                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
718
719                 mode = &crtc_state->adjusted_mode;
720                 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
721                         vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 1000,
722                                                   mode->clock * 9 / 10) * 1000;
723                 } else {
724                         vc4_state->hvs_load = mode->clock * 1000;
725                 }
726         }
727
728         for_each_new_connector_in_state(state, conn, conn_state,
729                                         i) {
730                 if (conn_state->crtc != crtc)
731                         continue;
732
733                 if (memcmp(&vc4_state->margins, &conn_state->tv.margins,
734                            sizeof(vc4_state->margins))) {
735                         memcpy(&vc4_state->margins, &conn_state->tv.margins,
736                                sizeof(vc4_state->margins));
737
738                         /* Need to force the dlist entries for all planes to be
739                          * updated so that the dest rectangles are changed.
740                          */
741                         crtc_state->zpos_changed = true;
742                 }
743                 break;
744         }
745
746         return 0;
747 }
748
749 static int vc4_enable_vblank(struct drm_crtc *crtc)
750 {
751         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
752
753         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
754
755         return 0;
756 }
757
758 static void vc4_disable_vblank(struct drm_crtc *crtc)
759 {
760         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
761
762         CRTC_WRITE(PV_INTEN, 0);
763 }
764
765 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
766 {
767         struct drm_crtc *crtc = &vc4_crtc->base;
768         struct drm_device *dev = crtc->dev;
769         struct vc4_dev *vc4 = to_vc4_dev(dev);
770         struct vc4_hvs *hvs = vc4->hvs;
771         u32 chan = vc4_crtc->current_hvs_channel;
772         unsigned long flags;
773
774         spin_lock_irqsave(&dev->event_lock, flags);
775         spin_lock(&vc4_crtc->irq_lock);
776         if (vc4_crtc->event &&
777             (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
778              vc4_crtc->feeds_txp)) {
779                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
780                 vc4_crtc->event = NULL;
781                 drm_crtc_vblank_put(crtc);
782
783                 /* Wait for the page flip to unmask the underrun to ensure that
784                  * the display list was updated by the hardware. Before that
785                  * happens, the HVS will be using the previous display list with
786                  * the CRTC and encoder already reconfigured, leading to
787                  * underruns. This can be seen when reconfiguring the CRTC.
788                  */
789                 vc4_hvs_unmask_underrun(hvs, chan);
790         }
791         spin_unlock(&vc4_crtc->irq_lock);
792         spin_unlock_irqrestore(&dev->event_lock, flags);
793 }
794
795 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
796 {
797         crtc->t_vblank = ktime_get();
798         drm_crtc_handle_vblank(&crtc->base);
799         vc4_crtc_handle_page_flip(crtc);
800 }
801
802 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
803 {
804         struct vc4_crtc *vc4_crtc = data;
805         u32 stat = CRTC_READ(PV_INTSTAT);
806         irqreturn_t ret = IRQ_NONE;
807
808         if (stat & PV_INT_VFP_START) {
809                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
810                 vc4_crtc_handle_vblank(vc4_crtc);
811                 ret = IRQ_HANDLED;
812         }
813
814         return ret;
815 }
816
817 struct vc4_async_flip_state {
818         struct drm_crtc *crtc;
819         struct drm_framebuffer *fb;
820         struct drm_framebuffer *old_fb;
821         struct drm_pending_vblank_event *event;
822
823         union {
824                 struct dma_fence_cb fence;
825                 struct vc4_seqno_cb seqno;
826         } cb;
827 };
828
829 /* Called when the V3D execution for the BO being flipped to is done, so that
830  * we can actually update the plane's address to point to it.
831  */
832 static void
833 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
834 {
835         struct drm_crtc *crtc = flip_state->crtc;
836         struct drm_device *dev = crtc->dev;
837         struct drm_plane *plane = crtc->primary;
838
839         vc4_plane_async_set_fb(plane, flip_state->fb);
840         if (flip_state->event) {
841                 unsigned long flags;
842
843                 spin_lock_irqsave(&dev->event_lock, flags);
844                 drm_crtc_send_vblank_event(crtc, flip_state->event);
845                 spin_unlock_irqrestore(&dev->event_lock, flags);
846         }
847
848         drm_crtc_vblank_put(crtc);
849         drm_framebuffer_put(flip_state->fb);
850
851         if (flip_state->old_fb)
852                 drm_framebuffer_put(flip_state->old_fb);
853
854         kfree(flip_state);
855 }
856
857 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
858 {
859         struct vc4_async_flip_state *flip_state =
860                 container_of(cb, struct vc4_async_flip_state, cb.seqno);
861         struct vc4_bo *bo = NULL;
862
863         if (flip_state->old_fb) {
864                 struct drm_gem_cma_object *cma_bo =
865                         drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
866                 bo = to_vc4_bo(&cma_bo->base);
867         }
868
869         vc4_async_page_flip_complete(flip_state);
870
871         /*
872          * Decrement the BO usecnt in order to keep the inc/dec
873          * calls balanced when the planes are updated through
874          * the async update path.
875          *
876          * FIXME: we should move to generic async-page-flip when
877          * it's available, so that we can get rid of this
878          * hand-made cleanup_fb() logic.
879          */
880         if (bo)
881                 vc4_bo_dec_usecnt(bo);
882 }
883
884 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
885                                                struct dma_fence_cb *cb)
886 {
887         struct vc4_async_flip_state *flip_state =
888                 container_of(cb, struct vc4_async_flip_state, cb.fence);
889
890         vc4_async_page_flip_complete(flip_state);
891         dma_fence_put(fence);
892 }
893
894 static int vc4_async_set_fence_cb(struct drm_device *dev,
895                                   struct vc4_async_flip_state *flip_state)
896 {
897         struct drm_framebuffer *fb = flip_state->fb;
898         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
899         struct vc4_dev *vc4 = to_vc4_dev(dev);
900         struct dma_fence *fence;
901
902         if (!vc4->is_vc5) {
903                 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
904
905                 return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
906                                           vc4_async_page_flip_seqno_complete);
907         }
908
909         fence = dma_fence_get(dma_resv_excl_fence(cma_bo->base.resv));
910         if (dma_fence_add_callback(fence, &flip_state->cb.fence,
911                                    vc4_async_page_flip_fence_complete))
912                 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
913
914         return 0;
915 }
916
917 static int
918 vc4_async_page_flip_common(struct drm_crtc *crtc,
919                            struct drm_framebuffer *fb,
920                            struct drm_pending_vblank_event *event,
921                            uint32_t flags)
922 {
923         struct drm_device *dev = crtc->dev;
924         struct drm_plane *plane = crtc->primary;
925         struct vc4_async_flip_state *flip_state;
926
927         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
928         if (!flip_state)
929                 return -ENOMEM;
930
931         drm_framebuffer_get(fb);
932         flip_state->fb = fb;
933         flip_state->crtc = crtc;
934         flip_state->event = event;
935
936         /* Save the current FB before it's replaced by the new one in
937          * drm_atomic_set_fb_for_plane(). We'll need the old FB in
938          * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
939          * it consistent.
940          * FIXME: we should move to generic async-page-flip when it's
941          * available, so that we can get rid of this hand-made cleanup_fb()
942          * logic.
943          */
944         flip_state->old_fb = plane->state->fb;
945         if (flip_state->old_fb)
946                 drm_framebuffer_get(flip_state->old_fb);
947
948         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
949
950         /* Immediately update the plane's legacy fb pointer, so that later
951          * modeset prep sees the state that will be present when the semaphore
952          * is released.
953          */
954         drm_atomic_set_fb_for_plane(plane->state, fb);
955
956         vc4_async_set_fence_cb(dev, flip_state);
957
958         /* Driver takes ownership of state on successful async commit. */
959         return 0;
960 }
961
962 /* Implements async (non-vblank-synced) page flips.
963  *
964  * The page flip ioctl needs to return immediately, so we grab the
965  * modeset semaphore on the pipe, and queue the address update for
966  * when V3D is done with the BO being flipped to.
967  */
968 static int vc4_async_page_flip(struct drm_crtc *crtc,
969                                struct drm_framebuffer *fb,
970                                struct drm_pending_vblank_event *event,
971                                uint32_t flags)
972 {
973         struct drm_device *dev = crtc->dev;
974         struct vc4_dev *vc4 = to_vc4_dev(dev);
975         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
976         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
977         int ret;
978
979         if (WARN_ON_ONCE(vc4->is_vc5))
980                 return -ENODEV;
981
982         /*
983          * Increment the BO usecnt here, so that we never end up with an
984          * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
985          * plane is later updated through the non-async path.
986          *
987          * FIXME: we should move to generic async-page-flip when
988          * it's available, so that we can get rid of this
989          * hand-made prepare_fb() logic.
990          */
991         ret = vc4_bo_inc_usecnt(bo);
992         if (ret)
993                 return ret;
994
995         ret = vc4_async_page_flip_common(crtc, fb, event, flags);
996         if (ret) {
997                 vc4_bo_dec_usecnt(bo);
998                 return ret;
999         }
1000
1001         return 0;
1002 }
1003
1004 static int vc5_async_page_flip(struct drm_crtc *crtc,
1005                                struct drm_framebuffer *fb,
1006                                struct drm_pending_vblank_event *event,
1007                                uint32_t flags)
1008 {
1009         return vc4_async_page_flip_common(crtc, fb, event, flags);
1010 }
1011
1012 int vc4_page_flip(struct drm_crtc *crtc,
1013                   struct drm_framebuffer *fb,
1014                   struct drm_pending_vblank_event *event,
1015                   uint32_t flags,
1016                   struct drm_modeset_acquire_ctx *ctx)
1017 {
1018         if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
1019                 struct drm_device *dev = crtc->dev;
1020                 struct vc4_dev *vc4 = to_vc4_dev(dev);
1021
1022                 if (vc4->is_vc5)
1023                         return vc5_async_page_flip(crtc, fb, event, flags);
1024                 else
1025                         return vc4_async_page_flip(crtc, fb, event, flags);
1026         } else {
1027                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1028         }
1029 }
1030
1031 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1032 {
1033         struct vc4_crtc_state *vc4_state, *old_vc4_state;
1034
1035         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1036         if (!vc4_state)
1037                 return NULL;
1038
1039         old_vc4_state = to_vc4_crtc_state(crtc->state);
1040         vc4_state->margins = old_vc4_state->margins;
1041         vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1042
1043         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1044         return &vc4_state->base;
1045 }
1046
1047 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1048                             struct drm_crtc_state *state)
1049 {
1050         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1051         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1052
1053         if (drm_mm_node_allocated(&vc4_state->mm)) {
1054                 unsigned long flags;
1055
1056                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1057                 drm_mm_remove_node(&vc4_state->mm);
1058                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1059
1060         }
1061
1062         drm_atomic_helper_crtc_destroy_state(crtc, state);
1063 }
1064
1065 void vc4_crtc_reset(struct drm_crtc *crtc)
1066 {
1067         struct vc4_crtc_state *vc4_crtc_state;
1068
1069         if (crtc->state)
1070                 vc4_crtc_destroy_state(crtc, crtc->state);
1071
1072         vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1073         if (!vc4_crtc_state) {
1074                 crtc->state = NULL;
1075                 return;
1076         }
1077
1078         vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1079         __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1080 }
1081
1082 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1083         .set_config = drm_atomic_helper_set_config,
1084         .destroy = vc4_crtc_destroy,
1085         .page_flip = vc4_page_flip,
1086         .set_property = NULL,
1087         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1088         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1089         .reset = vc4_crtc_reset,
1090         .atomic_duplicate_state = vc4_crtc_duplicate_state,
1091         .atomic_destroy_state = vc4_crtc_destroy_state,
1092         .enable_vblank = vc4_enable_vblank,
1093         .disable_vblank = vc4_disable_vblank,
1094         .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1095 };
1096
1097 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1098         .mode_valid = vc4_crtc_mode_valid,
1099         .atomic_check = vc4_crtc_atomic_check,
1100         .atomic_begin = vc4_hvs_atomic_begin,
1101         .atomic_flush = vc4_hvs_atomic_flush,
1102         .atomic_enable = vc4_crtc_atomic_enable,
1103         .atomic_disable = vc4_crtc_atomic_disable,
1104         .get_scanout_position = vc4_crtc_get_scanout_position,
1105 };
1106
1107 static const struct vc4_pv_data bcm2835_pv0_data = {
1108         .base = {
1109                 .hvs_available_channels = BIT(0),
1110                 .hvs_output = 0,
1111         },
1112         .debugfs_name = "crtc0_regs",
1113         .fifo_depth = 64,
1114         .pixels_per_clock = 1,
1115         .encoder_types = {
1116                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1117                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1118         },
1119 };
1120
1121 static const struct vc4_pv_data bcm2835_pv1_data = {
1122         .base = {
1123                 .hvs_available_channels = BIT(2),
1124                 .hvs_output = 2,
1125         },
1126         .debugfs_name = "crtc1_regs",
1127         .fifo_depth = 64,
1128         .pixels_per_clock = 1,
1129         .encoder_types = {
1130                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1131                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1132         },
1133 };
1134
1135 static const struct vc4_pv_data bcm2835_pv2_data = {
1136         .base = {
1137                 .hvs_available_channels = BIT(1),
1138                 .hvs_output = 1,
1139         },
1140         .debugfs_name = "crtc2_regs",
1141         .fifo_depth = 64,
1142         .pixels_per_clock = 1,
1143         .encoder_types = {
1144                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1145                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1146         },
1147 };
1148
1149 static const struct vc4_pv_data bcm2711_pv0_data = {
1150         .base = {
1151                 .hvs_available_channels = BIT(0),
1152                 .hvs_output = 0,
1153         },
1154         .debugfs_name = "crtc0_regs",
1155         .fifo_depth = 64,
1156         .pixels_per_clock = 1,
1157         .encoder_types = {
1158                 [0] = VC4_ENCODER_TYPE_DSI0,
1159                 [1] = VC4_ENCODER_TYPE_DPI,
1160         },
1161 };
1162
1163 static const struct vc4_pv_data bcm2711_pv1_data = {
1164         .base = {
1165                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1166                 .hvs_output = 3,
1167         },
1168         .debugfs_name = "crtc1_regs",
1169         .fifo_depth = 64,
1170         .pixels_per_clock = 1,
1171         .encoder_types = {
1172                 [0] = VC4_ENCODER_TYPE_DSI1,
1173                 [1] = VC4_ENCODER_TYPE_SMI,
1174         },
1175 };
1176
1177 static const struct vc4_pv_data bcm2711_pv2_data = {
1178         .base = {
1179                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1180                 .hvs_output = 4,
1181         },
1182         .debugfs_name = "crtc2_regs",
1183         .fifo_depth = 256,
1184         .pixels_per_clock = 2,
1185         .encoder_types = {
1186                 [0] = VC4_ENCODER_TYPE_HDMI0,
1187         },
1188 };
1189
1190 static const struct vc4_pv_data bcm2711_pv3_data = {
1191         .base = {
1192                 .hvs_available_channels = BIT(1),
1193                 .hvs_output = 1,
1194         },
1195         .debugfs_name = "crtc3_regs",
1196         .fifo_depth = 64,
1197         .pixels_per_clock = 1,
1198         .encoder_types = {
1199                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1200         },
1201 };
1202
1203 static const struct vc4_pv_data bcm2711_pv4_data = {
1204         .base = {
1205                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1206                 .hvs_output = 5,
1207         },
1208         .debugfs_name = "crtc4_regs",
1209         .fifo_depth = 64,
1210         .pixels_per_clock = 2,
1211         .encoder_types = {
1212                 [0] = VC4_ENCODER_TYPE_HDMI1,
1213         },
1214 };
1215
1216 static const struct of_device_id vc4_crtc_dt_match[] = {
1217         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1218         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1219         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1220         { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1221         { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1222         { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1223         { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1224         { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1225         {}
1226 };
1227
1228 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1229                                         struct drm_crtc *crtc)
1230 {
1231         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1232         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1233         const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1234         struct drm_encoder *encoder;
1235
1236         drm_for_each_encoder(encoder, drm) {
1237                 struct vc4_encoder *vc4_encoder;
1238                 int i;
1239
1240                 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1241                         continue;
1242
1243                 vc4_encoder = to_vc4_encoder(encoder);
1244                 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1245                         if (vc4_encoder->type == encoder_types[i]) {
1246                                 vc4_encoder->clock_select = i;
1247                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1248                                 break;
1249                         }
1250                 }
1251         }
1252 }
1253
1254 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1255                   const struct drm_crtc_funcs *crtc_funcs,
1256                   const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1257 {
1258         struct vc4_dev *vc4 = to_vc4_dev(drm);
1259         struct drm_crtc *crtc = &vc4_crtc->base;
1260         struct drm_plane *primary_plane;
1261         unsigned int i;
1262
1263         /* For now, we create just the primary and the legacy cursor
1264          * planes.  We should be able to stack more planes on easily,
1265          * but to do that we would need to compute the bandwidth
1266          * requirement of the plane configuration, and reject ones
1267          * that will take too much.
1268          */
1269         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1270         if (IS_ERR(primary_plane)) {
1271                 dev_err(drm->dev, "failed to construct primary plane\n");
1272                 return PTR_ERR(primary_plane);
1273         }
1274
1275         spin_lock_init(&vc4_crtc->irq_lock);
1276         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1277                                   crtc_funcs, NULL);
1278         drm_crtc_helper_add(crtc, crtc_helper_funcs);
1279
1280         if (!vc4->is_vc5) {
1281                 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1282                 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1283         }
1284
1285
1286         if (!vc4->is_vc5) {
1287                 /* We support CTM, but only for one CRTC at a time. It's therefore
1288                  * implemented as private driver state in vc4_kms, not here.
1289                  */
1290                 drm_crtc_enable_color_mgmt(crtc, 0, true, 0);
1291
1292                 /* Initialize the VC4 gamma LUTs */
1293                 for (i = 0; i < crtc->gamma_size; i++) {
1294                         vc4_crtc->lut_r[i] = i;
1295                         vc4_crtc->lut_g[i] = i;
1296                         vc4_crtc->lut_b[i] = i;
1297                 }
1298         } else {
1299                 /* Initialize the VC5 gamma PWL entries. Assume 12-bit pipeline,
1300                  * evenly spread over full range.
1301                  */
1302                 for (i = 0; i < SCALER5_DSPGAMMA_NUM_POINTS; i++) {
1303                         vc4_crtc->pwl_r[i] =
1304                                 VC5_HVS_SET_GAMMA_ENTRY(i << 8, i << 12, 1 << 8);
1305                         vc4_crtc->pwl_g[i] =
1306                                 VC5_HVS_SET_GAMMA_ENTRY(i << 8, i << 12, 1 << 8);
1307                         vc4_crtc->pwl_b[i] =
1308                                 VC5_HVS_SET_GAMMA_ENTRY(i << 8, i << 12, 1 << 8);
1309                         vc4_crtc->pwl_a[i] =
1310                                 VC5_HVS_SET_GAMMA_ENTRY(i << 8, i << 12, 1 << 8);
1311                 }
1312         }
1313
1314         return 0;
1315 }
1316
1317 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1318 {
1319         struct platform_device *pdev = to_platform_device(dev);
1320         struct drm_device *drm = dev_get_drvdata(master);
1321         const struct vc4_pv_data *pv_data;
1322         struct vc4_crtc *vc4_crtc;
1323         struct drm_crtc *crtc;
1324         struct drm_plane *destroy_plane, *temp;
1325         int ret;
1326
1327         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1328         if (!vc4_crtc)
1329                 return -ENOMEM;
1330         crtc = &vc4_crtc->base;
1331
1332         pv_data = of_device_get_match_data(dev);
1333         if (!pv_data)
1334                 return -ENODEV;
1335         vc4_crtc->data = &pv_data->base;
1336         vc4_crtc->pdev = pdev;
1337
1338         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1339         if (IS_ERR(vc4_crtc->regs))
1340                 return PTR_ERR(vc4_crtc->regs);
1341
1342         vc4_crtc->regset.base = vc4_crtc->regs;
1343         vc4_crtc->regset.regs = crtc_regs;
1344         vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1345
1346         ret = vc4_crtc_init(drm, vc4_crtc,
1347                             &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1348         if (ret)
1349                 return ret;
1350         vc4_set_crtc_possible_masks(drm, crtc);
1351
1352         CRTC_WRITE(PV_INTEN, 0);
1353         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1354         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1355                                vc4_crtc_irq_handler,
1356                                IRQF_SHARED,
1357                                "vc4 crtc", vc4_crtc);
1358         if (ret)
1359                 goto err_destroy_planes;
1360
1361         platform_set_drvdata(pdev, vc4_crtc);
1362
1363         vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1364                                  &vc4_crtc->regset);
1365
1366         return 0;
1367
1368 err_destroy_planes:
1369         list_for_each_entry_safe(destroy_plane, temp,
1370                                  &drm->mode_config.plane_list, head) {
1371                 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1372                     destroy_plane->funcs->destroy(destroy_plane);
1373         }
1374
1375         return ret;
1376 }
1377
1378 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1379                             void *data)
1380 {
1381         struct platform_device *pdev = to_platform_device(dev);
1382         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1383
1384         vc4_crtc_destroy(&vc4_crtc->base);
1385
1386         CRTC_WRITE(PV_INTEN, 0);
1387
1388         platform_set_drvdata(pdev, NULL);
1389 }
1390
1391 static const struct component_ops vc4_crtc_ops = {
1392         .bind   = vc4_crtc_bind,
1393         .unbind = vc4_crtc_unbind,
1394 };
1395
1396 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1397 {
1398         return component_add(&pdev->dev, &vc4_crtc_ops);
1399 }
1400
1401 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1402 {
1403         component_del(&pdev->dev, &vc4_crtc_ops);
1404         return 0;
1405 }
1406
1407 struct platform_driver vc4_crtc_driver = {
1408         .probe = vc4_crtc_dev_probe,
1409         .remove = vc4_crtc_dev_remove,
1410         .driver = {
1411                 .name = "vc4_crtc",
1412                 .of_match_table = vc4_crtc_dt_match,
1413         },
1414 };