c230c0abd2c2dc42d42481a677441eafd7614df2
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
43
44 #include "vc4_drv.h"
45 #include "vc4_regs.h"
46
47 #define HVS_FIFO_LATENCY_PIX    6
48
49 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
50 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
51
52 static const struct debugfs_reg32 crtc_regs[] = {
53         VC4_REG32(PV_CONTROL),
54         VC4_REG32(PV_V_CONTROL),
55         VC4_REG32(PV_VSYNCD_EVEN),
56         VC4_REG32(PV_HORZA),
57         VC4_REG32(PV_HORZB),
58         VC4_REG32(PV_VERTA),
59         VC4_REG32(PV_VERTB),
60         VC4_REG32(PV_VERTA_EVEN),
61         VC4_REG32(PV_VERTB_EVEN),
62         VC4_REG32(PV_INTEN),
63         VC4_REG32(PV_INTSTAT),
64         VC4_REG32(PV_STAT),
65         VC4_REG32(PV_HACT_ACT),
66 };
67
68 static unsigned int
69 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc, unsigned int channel)
70 {
71         struct drm_device *drm = vc4_crtc->base.dev;
72         struct vc4_dev *vc4 = to_vc4_dev(drm);
73
74         u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
75         /* Top/base are supposed to be 4-pixel aligned, but the
76          * Raspberry Pi firmware fills the low bits (which are
77          * presumably ignored).
78          */
79         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
80         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
81
82         return top - base + 4;
83 }
84
85 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
86                              bool in_vblank_irq, int *vpos, int *hpos,
87                              ktime_t *stime, ktime_t *etime,
88                              const struct drm_display_mode *mode)
89 {
90         struct vc4_dev *vc4 = to_vc4_dev(dev);
91         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
92         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
93         struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
94         unsigned int cob_size;
95         u32 val;
96         int fifo_lines;
97         int vblank_lines;
98         bool ret = false;
99
100         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
101
102         /* Get optional system timestamp before query. */
103         if (stime)
104                 *stime = ktime_get();
105
106         /*
107          * Read vertical scanline which is currently composed for our
108          * pixelvalve by the HVS, and also the scaler status.
109          */
110         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
111
112         /* Get optional system timestamp after query. */
113         if (etime)
114                 *etime = ktime_get();
115
116         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
117
118         /* Vertical position of hvs composed scanline. */
119         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
120         *hpos = 0;
121
122         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
123                 *vpos /= 2;
124
125                 /* Use hpos to correct for field offset in interlaced mode. */
126                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
127                         *hpos += mode->crtc_htotal / 2;
128         }
129
130         cob_size = vc4_crtc_get_cob_allocation(vc4_crtc, vc4_crtc_state->assigned_channel);
131         /* This is the offset we need for translating hvs -> pv scanout pos. */
132         fifo_lines = cob_size / mode->crtc_hdisplay;
133
134         if (fifo_lines > 0)
135                 ret = true;
136
137         /* HVS more than fifo_lines into frame for compositing? */
138         if (*vpos > fifo_lines) {
139                 /*
140                  * We are in active scanout and can get some meaningful results
141                  * from HVS. The actual PV scanout can not trail behind more
142                  * than fifo_lines as that is the fifo's capacity. Assume that
143                  * in active scanout the HVS and PV work in lockstep wrt. HVS
144                  * refilling the fifo and PV consuming from the fifo, ie.
145                  * whenever the PV consumes and frees up a scanline in the
146                  * fifo, the HVS will immediately refill it, therefore
147                  * incrementing vpos. Therefore we choose HVS read position -
148                  * fifo size in scanlines as a estimate of the real scanout
149                  * position of the PV.
150                  */
151                 *vpos -= fifo_lines + 1;
152
153                 return ret;
154         }
155
156         /*
157          * Less: This happens when we are in vblank and the HVS, after getting
158          * the VSTART restart signal from the PV, just started refilling its
159          * fifo with new lines from the top-most lines of the new framebuffers.
160          * The PV does not scan out in vblank, so does not remove lines from
161          * the fifo, so the fifo will be full quickly and the HVS has to pause.
162          * We can't get meaningful readings wrt. scanline position of the PV
163          * and need to make things up in a approximative but consistent way.
164          */
165         vblank_lines = mode->vtotal - mode->vdisplay;
166
167         if (in_vblank_irq) {
168                 /*
169                  * Assume the irq handler got called close to first
170                  * line of vblank, so PV has about a full vblank
171                  * scanlines to go, and as a base timestamp use the
172                  * one taken at entry into vblank irq handler, so it
173                  * is not affected by random delays due to lock
174                  * contention on event_lock or vblank_time lock in
175                  * the core.
176                  */
177                 *vpos = -vblank_lines;
178
179                 if (stime)
180                         *stime = vc4_crtc->t_vblank;
181                 if (etime)
182                         *etime = vc4_crtc->t_vblank;
183
184                 /*
185                  * If the HVS fifo is not yet full then we know for certain
186                  * we are at the very beginning of vblank, as the hvs just
187                  * started refilling, and the stime and etime timestamps
188                  * truly correspond to start of vblank.
189                  *
190                  * Unfortunately there's no way to report this to upper levels
191                  * and make it more useful.
192                  */
193         } else {
194                 /*
195                  * No clue where we are inside vblank. Return a vpos of zero,
196                  * which will cause calling code to just return the etime
197                  * timestamp uncorrected. At least this is no worse than the
198                  * standard fallback.
199                  */
200                 *vpos = 0;
201         }
202
203         return ret;
204 }
205
206 static void vc4_crtc_destroy(struct drm_crtc *crtc)
207 {
208         drm_crtc_cleanup(crtc);
209 }
210
211 static void
212 vc4_crtc_lut_load(struct drm_crtc *crtc)
213 {
214         struct drm_device *dev = crtc->dev;
215         struct vc4_dev *vc4 = to_vc4_dev(dev);
216         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
217         struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
218         u32 i;
219
220         /* The LUT memory is laid out with each HVS channel in order,
221          * each of which takes 256 writes for R, 256 for G, then 256
222          * for B.
223          */
224         HVS_WRITE(SCALER_GAMADDR,
225                   SCALER_GAMADDR_AUTOINC |
226                   (vc4_crtc_state->assigned_channel * 3 * crtc->gamma_size));
227
228         for (i = 0; i < crtc->gamma_size; i++)
229                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
230         for (i = 0; i < crtc->gamma_size; i++)
231                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
232         for (i = 0; i < crtc->gamma_size; i++)
233                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
234 }
235
236 static void
237 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
238 {
239         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
240         struct drm_color_lut *lut = crtc->state->gamma_lut->data;
241         u32 length = drm_color_lut_size(crtc->state->gamma_lut);
242         u32 i;
243
244         for (i = 0; i < length; i++) {
245                 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
246                 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
247                 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
248         }
249
250         vc4_crtc_lut_load(crtc);
251 }
252
253 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
254 {
255         u32 fifo_len_bytes = vc4_crtc->data->fifo_depth;
256
257         /*
258          * Pixels are pulled from the HVS if the number of bytes is
259          * lower than the FIFO full level.
260          *
261          * The latency of the pixel fetch mechanism is 6 pixels, so we
262          * need to convert those 6 pixels in bytes, depending on the
263          * format, and then substract that from the length of the FIFO
264          * to make sure we never end up in a situation where the FIFO
265          * is full.
266          */
267         switch (format) {
268         case PV_CONTROL_FORMAT_DSIV_16:
269         case PV_CONTROL_FORMAT_DSIC_16:
270                 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
271         case PV_CONTROL_FORMAT_DSIV_18:
272                 return fifo_len_bytes - 14;
273         case PV_CONTROL_FORMAT_24:
274         case PV_CONTROL_FORMAT_DSIV_24:
275         default:
276                 /*
277                  * For some reason, the pixelvalve4 doesn't work with
278                  * the usual formula and will only work with 32.
279                  */
280                 if (vc4_crtc->data->hvs_output == 5)
281                         return 32;
282
283                 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
284         }
285 }
286
287 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
288                                              u32 format)
289 {
290         u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
291         u32 ret = 0;
292
293         if (level > 0x3f)
294                 ret |= VC4_SET_FIELD((level >> 6) & 0x3,
295                                      PV5_CONTROL_FIFO_LEVEL_HIGH);
296
297         return ret | VC4_SET_FIELD(level & 0x3f,
298                                    PV_CONTROL_FIFO_LEVEL);
299 }
300
301 /*
302  * Returns the encoder attached to the CRTC.
303  *
304  * VC4 can only scan out to one encoder at a time, while the DRM core
305  * allows drivers to push pixels to more than one encoder from the
306  * same CRTC.
307  */
308 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
309 {
310         struct drm_connector *connector;
311         struct drm_connector_list_iter conn_iter;
312
313         drm_connector_list_iter_begin(crtc->dev, &conn_iter);
314         drm_for_each_connector_iter(connector, &conn_iter) {
315                 if (connector->state->crtc == crtc) {
316                         drm_connector_list_iter_end(&conn_iter);
317                         return connector->encoder;
318                 }
319         }
320         drm_connector_list_iter_end(&conn_iter);
321
322         return NULL;
323 }
324
325 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
326 {
327         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
328         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
329         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
330         struct drm_crtc_state *state = crtc->state;
331         struct drm_display_mode *mode = &state->adjusted_mode;
332         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
333         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
334         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
335                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
336         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
337         u8 ppc = vc4_crtc->data->pixels_per_clock;
338
339         /* Reset the PV fifo. */
340         CRTC_WRITE(PV_CONTROL, 0);
341         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
342         CRTC_WRITE(PV_CONTROL, 0);
343
344         CRTC_WRITE(PV_MUX_CFG,
345                    VC4_SET_FIELD(8, PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
346
347         CRTC_WRITE(PV_HORZA,
348                    VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
349                                  PV_HORZA_HBP) |
350                    VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
351                                  PV_HORZA_HSYNC));
352
353         CRTC_WRITE(PV_HORZB,
354                    VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
355                                  PV_HORZB_HFP) |
356                    VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
357                                  PV_HORZB_HACTIVE));
358
359         CRTC_WRITE(PV_VERTA,
360                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
361                                  PV_VERTA_VBP) |
362                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
363                                  PV_VERTA_VSYNC));
364         CRTC_WRITE(PV_VERTB,
365                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
366                                  PV_VERTB_VFP) |
367                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
368
369         if (interlace) {
370                 CRTC_WRITE(PV_VERTA_EVEN,
371                            VC4_SET_FIELD(mode->crtc_vtotal -
372                                          mode->crtc_vsync_end - 1,
373                                          PV_VERTA_VBP) |
374                            VC4_SET_FIELD(mode->crtc_vsync_end -
375                                          mode->crtc_vsync_start,
376                                          PV_VERTA_VSYNC));
377                 CRTC_WRITE(PV_VERTB_EVEN,
378                            VC4_SET_FIELD(mode->crtc_vsync_start -
379                                          mode->crtc_vdisplay,
380                                          PV_VERTB_VFP) |
381                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
382
383                 /* We set up first field even mode for HDMI.  VEC's
384                  * NTSC mode would want first field odd instead, once
385                  * we support it (to do so, set ODD_FIRST and put the
386                  * delay in VSYNCD_EVEN instead).
387                  */
388                 CRTC_WRITE(PV_V_CONTROL,
389                            PV_VCONTROL_CONTINUOUS |
390                            (is_dsi ? PV_VCONTROL_DSI : 0) |
391                            PV_VCONTROL_INTERLACE |
392                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
393                                          PV_VCONTROL_ODD_DELAY));
394                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
395         } else {
396                 CRTC_WRITE(PV_V_CONTROL,
397                            PV_VCONTROL_CONTINUOUS |
398                            (is_dsi ? PV_VCONTROL_DSI : 0));
399         }
400
401         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
402
403         CRTC_WRITE(PV_CONTROL,
404                    vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
405                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
406                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
407                    PV_CONTROL_CLR_AT_START |
408                    PV_CONTROL_TRIGGER_UNDERFLOW |
409                    PV_CONTROL_WAIT_HSTART |
410                    VC4_SET_FIELD(vc4_encoder->clock_select,
411                                  PV_CONTROL_CLK_SELECT));
412 }
413
414 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
415 {
416         struct drm_device *dev = crtc->dev;
417         struct vc4_dev *vc4 = to_vc4_dev(dev);
418         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
419         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
420         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
421         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
422         bool debug_dump_regs = false;
423
424         if (debug_dump_regs) {
425                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
426                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
427                          drm_crtc_index(crtc));
428                 drm_print_regset32(&p, &vc4_crtc->regset);
429         }
430
431         if (vc4_crtc->data->hvs_output == 2) {
432                 u32 dispctrl;
433                 u32 dsp3_mux;
434
435                 /*
436                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
437                  * FIFO X'.
438                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
439                  *
440                  * DSP3 is connected to FIFO2 unless the transposer is
441                  * enabled. In this case, FIFO 2 is directly accessed by the
442                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
443                  * route.
444                  */
445                 if (vc4_state->feed_txp)
446                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
447                 else
448                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
449
450                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
451                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
452                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
453         }
454
455         if (!vc4_state->feed_txp)
456                 vc4_crtc_config_pv(crtc);
457
458         HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel),
459                   SCALER_DISPBKGND_AUTOHS |
460                   ((!vc4->hvs->hvs5) ? SCALER_DISPBKGND_GAMMA : 0) |
461                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
462
463         /* Reload the LUT, since the SRAMs would have been disabled if
464          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
465          */
466         vc4_crtc_lut_load(crtc);
467
468         if (debug_dump_regs) {
469                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
470                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
471                          drm_crtc_index(crtc));
472                 drm_print_regset32(&p, &vc4_crtc->regset);
473         }
474 }
475
476 static void require_hvs_enabled(struct drm_device *dev)
477 {
478         struct vc4_dev *vc4 = to_vc4_dev(dev);
479
480         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
481                      SCALER_DISPCTRL_ENABLE);
482 }
483
484 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
485                                     struct drm_crtc_state *old_state)
486 {
487         struct drm_device *dev = crtc->dev;
488         struct vc4_dev *vc4 = to_vc4_dev(dev);
489         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
490         struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(old_state);
491         u32 chan = vc4_crtc_state->assigned_channel;
492         int ret;
493         require_hvs_enabled(dev);
494
495         /* Disable vblank irq handling before crtc is disabled. */
496         drm_crtc_vblank_off(crtc);
497
498         CRTC_WRITE(PV_V_CONTROL,
499                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
500         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
501         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
502
503         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
504
505         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
506             SCALER_DISPCTRLX_ENABLE) {
507                 HVS_WRITE(SCALER_DISPCTRLX(chan),
508                           SCALER_DISPCTRLX_RESET);
509
510                 /* While the docs say that reset is self-clearing, it
511                  * seems it doesn't actually.
512                  */
513                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
514         }
515
516         /* Once we leave, the scaler should be disabled and its fifo empty. */
517
518         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
519
520         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
521                                    SCALER_DISPSTATX_MODE) !=
522                      SCALER_DISPSTATX_MODE_DISABLED);
523
524         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
525                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
526                      SCALER_DISPSTATX_EMPTY);
527
528         /*
529          * Make sure we issue a vblank event after disabling the CRTC if
530          * someone was waiting it.
531          */
532         if (crtc->state->event) {
533                 unsigned long flags;
534
535                 spin_lock_irqsave(&dev->event_lock, flags);
536                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
537                 crtc->state->event = NULL;
538                 spin_unlock_irqrestore(&dev->event_lock, flags);
539         }
540 }
541
542 void vc4_crtc_txp_armed(struct drm_crtc_state *state)
543 {
544         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
545
546         vc4_state->txp_armed = true;
547 }
548
549 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
550 {
551         struct drm_device *dev = crtc->dev;
552         struct vc4_dev *vc4 = to_vc4_dev(dev);
553         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
554         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
555
556         if (crtc->state->event) {
557                 unsigned long flags;
558
559                 crtc->state->event->pipe = drm_crtc_index(crtc);
560
561                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
562
563                 spin_lock_irqsave(&dev->event_lock, flags);
564
565                 if (!vc4_state->feed_txp || vc4_state->txp_armed) {
566                         vc4_crtc->event = crtc->state->event;
567                         crtc->state->event = NULL;
568                 }
569
570                 HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
571                           vc4_state->mm.start);
572
573                 spin_unlock_irqrestore(&dev->event_lock, flags);
574         } else {
575                 HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
576                           vc4_state->mm.start);
577         }
578 }
579
580 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
581                                    struct drm_crtc_state *old_state)
582 {
583         struct drm_device *dev = crtc->dev;
584         struct vc4_dev *vc4 = to_vc4_dev(dev);
585         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
586         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
587         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
588         u32 dispctrl;
589
590         require_hvs_enabled(dev);
591
592         /* Reset the PV fifo. */
593         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) |
594                    PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
595
596         /* Enable vblank irq handling before crtc is started otherwise
597          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
598          */
599         drm_crtc_vblank_on(crtc);
600         vc4_crtc_update_dlist(crtc);
601
602         /* Turn on the scaler, which will wait for vstart to start
603          * compositing.
604          * When feeding the transposer, we should operate in oneshot
605          * mode.
606          */
607         dispctrl = SCALER_DISPCTRLX_ENABLE;
608
609         if (!vc4->hvs->hvs5)
610                 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
611                                           SCALER_DISPCTRLX_WIDTH) |
612                             VC4_SET_FIELD(mode->vdisplay,
613                                           SCALER_DISPCTRLX_HEIGHT) |
614                             (vc4_state->feed_txp ?
615                                         SCALER_DISPCTRLX_ONESHOT : 0);
616         else
617                 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
618                                           SCALER5_DISPCTRLX_WIDTH) |
619                             VC4_SET_FIELD(mode->vdisplay,
620                                           SCALER5_DISPCTRLX_HEIGHT) |
621                             (vc4_state->feed_txp ?
622                                         SCALER5_DISPCTRLX_ONESHOT : 0);
623
624         HVS_WRITE(SCALER_DISPCTRLX(vc4_state->assigned_channel), dispctrl);
625
626         /* When feeding the transposer block the pixelvalve is unneeded and
627          * should not be enabled.
628          */
629         if (!vc4_state->feed_txp)
630                 CRTC_WRITE(PV_V_CONTROL,
631                            CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
632 }
633
634 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
635                                                 const struct drm_display_mode *mode)
636 {
637         /* Do not allow doublescan modes from user space */
638         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
639                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
640                               crtc->base.id);
641                 return MODE_NO_DBLESCAN;
642         }
643
644         return MODE_OK;
645 }
646
647 void vc4_crtc_get_margins(struct drm_crtc_state *state,
648                           unsigned int *left, unsigned int *right,
649                           unsigned int *top, unsigned int *bottom)
650 {
651         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
652         struct drm_connector_state *conn_state;
653         struct drm_connector *conn;
654         int i;
655
656         *left = vc4_state->margins.left;
657         *right = vc4_state->margins.right;
658         *top = vc4_state->margins.top;
659         *bottom = vc4_state->margins.bottom;
660
661         /* We have to interate over all new connector states because
662          * vc4_crtc_get_margins() might be called before
663          * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
664          * might be outdated.
665          */
666         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
667                 if (conn_state->crtc != state->crtc)
668                         continue;
669
670                 *left = conn_state->tv.margins.left;
671                 *right = conn_state->tv.margins.right;
672                 *top = conn_state->tv.margins.top;
673                 *bottom = conn_state->tv.margins.bottom;
674                 break;
675         }
676 }
677
678 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
679                                  struct drm_crtc_state *state)
680 {
681         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
682         struct drm_device *dev = crtc->dev;
683         struct vc4_dev *vc4 = to_vc4_dev(dev);
684         struct drm_plane *plane;
685         unsigned long flags;
686         const struct drm_plane_state *plane_state;
687         struct drm_connector *conn;
688         struct drm_connector_state *conn_state;
689         u32 dlist_count = 0;
690         int ret, i;
691
692         /* The pixelvalve can only feed one encoder (and encoders are
693          * 1:1 with connectors.)
694          */
695         if (hweight32(state->connector_mask) > 1)
696                 return -EINVAL;
697
698         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
699                 dlist_count += vc4_plane_dlist_size(plane_state);
700
701         dlist_count++; /* Account for SCALER_CTL0_END. */
702
703         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
704         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
705                                  dlist_count);
706         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
707         if (ret)
708                 return ret;
709
710         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
711                 if (conn_state->crtc != crtc)
712                         continue;
713
714                 /* The writeback connector is implemented using the transposer
715                  * block which is directly taking its data from the HVS FIFO.
716                  */
717                 if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
718                         state->no_vblank = true;
719                         vc4_state->feed_txp = true;
720                 } else {
721                         state->no_vblank = false;
722                         vc4_state->feed_txp = false;
723                 }
724
725                 vc4_state->margins.left = conn_state->tv.margins.left;
726                 vc4_state->margins.right = conn_state->tv.margins.right;
727                 vc4_state->margins.top = conn_state->tv.margins.top;
728                 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
729                 break;
730         }
731
732         return 0;
733 }
734
735 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
736                                   struct drm_crtc_state *old_state)
737 {
738         struct drm_device *dev = crtc->dev;
739         struct vc4_dev *vc4 = to_vc4_dev(dev);
740         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
741         struct drm_plane *plane;
742         struct vc4_plane_state *vc4_plane_state;
743         bool debug_dump_regs = false;
744         bool enable_bg_fill = false;
745         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
746         u32 __iomem *dlist_next = dlist_start;
747
748         if (debug_dump_regs) {
749                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
750                 vc4_hvs_dump_state(dev);
751         }
752
753         /* Copy all the active planes' dlist contents to the hardware dlist. */
754         drm_atomic_crtc_for_each_plane(plane, crtc) {
755                 /* Is this the first active plane? */
756                 if (dlist_next == dlist_start) {
757                         /* We need to enable background fill when a plane
758                          * could be alpha blending from the background, i.e.
759                          * where no other plane is underneath. It suffices to
760                          * consider the first active plane here since we set
761                          * needs_bg_fill such that either the first plane
762                          * already needs it or all planes on top blend from
763                          * the first or a lower plane.
764                          */
765                         vc4_plane_state = to_vc4_plane_state(plane->state);
766                         enable_bg_fill = vc4_plane_state->needs_bg_fill;
767                 }
768
769                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
770         }
771
772         writel(SCALER_CTL0_END, dlist_next);
773         dlist_next++;
774
775         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
776
777         if (enable_bg_fill)
778                 /* This sets a black background color fill, as is the case
779                  * with other DRM drivers.
780                  */
781                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel),
782                           HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel)) |
783                           SCALER_DISPBKGND_FILL);
784
785         /* Only update DISPLIST if the CRTC was already running and is not
786          * being disabled.
787          * vc4_crtc_enable() takes care of updating the dlist just after
788          * re-enabling VBLANK interrupts and before enabling the engine.
789          * If the CRTC is being disabled, there's no point in updating this
790          * information.
791          */
792         if (crtc->state->active && old_state->active)
793                 vc4_crtc_update_dlist(crtc);
794
795         if (crtc->state->color_mgmt_changed) {
796                 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel));
797
798                 if (crtc->state->gamma_lut) {
799                         vc4_crtc_update_gamma_lut(crtc);
800                         dispbkgndx |= SCALER_DISPBKGND_GAMMA;
801                 } else {
802                         /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
803                          * in hardware, which is the same as a linear lut that
804                          * DRM expects us to use in absence of a user lut.
805                          */
806                         dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
807                 }
808                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel), dispbkgndx);
809         }
810
811         if (debug_dump_regs) {
812                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
813                 vc4_hvs_dump_state(dev);
814         }
815 }
816
817 static int vc4_enable_vblank(struct drm_crtc *crtc)
818 {
819         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
820
821         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
822
823         return 0;
824 }
825
826 static void vc4_disable_vblank(struct drm_crtc *crtc)
827 {
828         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
829
830         CRTC_WRITE(PV_INTEN, 0);
831 }
832
833 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
834 {
835         struct drm_crtc *crtc = &vc4_crtc->base;
836         struct drm_device *dev = crtc->dev;
837         struct vc4_dev *vc4 = to_vc4_dev(dev);
838         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
839         u32 chan = vc4_state->assigned_channel;
840         unsigned long flags;
841
842         spin_lock_irqsave(&dev->event_lock, flags);
843         if (vc4_crtc->event &&
844             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
845              vc4_state->feed_txp)) {
846                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
847                 vc4_crtc->event = NULL;
848                 drm_crtc_vblank_put(crtc);
849
850                 /* Wait for the page flip to unmask the underrun to ensure that
851                  * the display list was updated by the hardware. Before that
852                  * happens, the HVS will be using the previous display list with
853                  * the CRTC and encoder already reconfigured, leading to
854                  * underruns. This can be seen when reconfiguring the CRTC.
855                  */
856                 if (vc4->hvs)
857                         vc4_hvs_unmask_underrun(dev, chan);
858         }
859         spin_unlock_irqrestore(&dev->event_lock, flags);
860 }
861
862 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
863 {
864         crtc->t_vblank = ktime_get();
865         drm_crtc_handle_vblank(&crtc->base);
866         vc4_crtc_handle_page_flip(crtc);
867 }
868
869 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
870 {
871         struct vc4_crtc *vc4_crtc = data;
872         u32 stat = CRTC_READ(PV_INTSTAT);
873         irqreturn_t ret = IRQ_NONE;
874
875         if (stat & PV_INT_VFP_START) {
876                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
877                 vc4_crtc_handle_vblank(vc4_crtc);
878                 ret = IRQ_HANDLED;
879         }
880
881         return ret;
882 }
883
884 struct vc4_async_flip_state {
885         struct drm_crtc *crtc;
886         struct drm_framebuffer *fb;
887         struct drm_framebuffer *old_fb;
888         struct drm_pending_vblank_event *event;
889
890         struct vc4_seqno_cb cb;
891 };
892
893 /* Called when the V3D execution for the BO being flipped to is done, so that
894  * we can actually update the plane's address to point to it.
895  */
896 static void
897 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
898 {
899         struct vc4_async_flip_state *flip_state =
900                 container_of(cb, struct vc4_async_flip_state, cb);
901         struct drm_crtc *crtc = flip_state->crtc;
902         struct drm_device *dev = crtc->dev;
903         struct vc4_dev *vc4 = to_vc4_dev(dev);
904         struct drm_plane *plane = crtc->primary;
905
906         vc4_plane_async_set_fb(plane, flip_state->fb);
907         if (flip_state->event) {
908                 unsigned long flags;
909
910                 spin_lock_irqsave(&dev->event_lock, flags);
911                 drm_crtc_send_vblank_event(crtc, flip_state->event);
912                 spin_unlock_irqrestore(&dev->event_lock, flags);
913         }
914
915         drm_crtc_vblank_put(crtc);
916         drm_framebuffer_put(flip_state->fb);
917
918         /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
919          * when the planes are updated through the async update path.
920          * FIXME: we should move to generic async-page-flip when it's
921          * available, so that we can get rid of this hand-made cleanup_fb()
922          * logic.
923          */
924         if (flip_state->old_fb) {
925                 struct drm_gem_cma_object *cma_bo;
926                 struct vc4_bo *bo;
927
928                 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
929                 bo = to_vc4_bo(&cma_bo->base);
930                 vc4_bo_dec_usecnt(bo);
931                 drm_framebuffer_put(flip_state->old_fb);
932         }
933
934         kfree(flip_state);
935
936         up(&vc4->async_modeset);
937 }
938
939 /* Implements async (non-vblank-synced) page flips.
940  *
941  * The page flip ioctl needs to return immediately, so we grab the
942  * modeset semaphore on the pipe, and queue the address update for
943  * when V3D is done with the BO being flipped to.
944  */
945 static int vc4_async_page_flip(struct drm_crtc *crtc,
946                                struct drm_framebuffer *fb,
947                                struct drm_pending_vblank_event *event,
948                                uint32_t flags)
949 {
950         struct drm_device *dev = crtc->dev;
951         struct vc4_dev *vc4 = to_vc4_dev(dev);
952         struct drm_plane *plane = crtc->primary;
953         int ret = 0;
954         struct vc4_async_flip_state *flip_state;
955         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
956         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
957
958         /* Increment the BO usecnt here, so that we never end up with an
959          * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
960          * plane is later updated through the non-async path.
961          * FIXME: we should move to generic async-page-flip when it's
962          * available, so that we can get rid of this hand-made prepare_fb()
963          * logic.
964          */
965         ret = vc4_bo_inc_usecnt(bo);
966         if (ret)
967                 return ret;
968
969         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
970         if (!flip_state) {
971                 vc4_bo_dec_usecnt(bo);
972                 return -ENOMEM;
973         }
974
975         drm_framebuffer_get(fb);
976         flip_state->fb = fb;
977         flip_state->crtc = crtc;
978         flip_state->event = event;
979
980         /* Make sure all other async modesetes have landed. */
981         ret = down_interruptible(&vc4->async_modeset);
982         if (ret) {
983                 drm_framebuffer_put(fb);
984                 vc4_bo_dec_usecnt(bo);
985                 kfree(flip_state);
986                 return ret;
987         }
988
989         /* Save the current FB before it's replaced by the new one in
990          * drm_atomic_set_fb_for_plane(). We'll need the old FB in
991          * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
992          * it consistent.
993          * FIXME: we should move to generic async-page-flip when it's
994          * available, so that we can get rid of this hand-made cleanup_fb()
995          * logic.
996          */
997         flip_state->old_fb = plane->state->fb;
998         if (flip_state->old_fb)
999                 drm_framebuffer_get(flip_state->old_fb);
1000
1001         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1002
1003         /* Immediately update the plane's legacy fb pointer, so that later
1004          * modeset prep sees the state that will be present when the semaphore
1005          * is released.
1006          */
1007         drm_atomic_set_fb_for_plane(plane->state, fb);
1008
1009         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
1010                            vc4_async_page_flip_complete);
1011
1012         /* Driver takes ownership of state on successful async commit. */
1013         return 0;
1014 }
1015
1016 static int vc4_page_flip(struct drm_crtc *crtc,
1017                          struct drm_framebuffer *fb,
1018                          struct drm_pending_vblank_event *event,
1019                          uint32_t flags,
1020                          struct drm_modeset_acquire_ctx *ctx)
1021 {
1022         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
1023                 return vc4_async_page_flip(crtc, fb, event, flags);
1024         else
1025                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1026 }
1027
1028 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1029 {
1030         struct vc4_crtc_state *vc4_state, *old_vc4_state;
1031
1032         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1033         if (!vc4_state)
1034                 return NULL;
1035
1036         old_vc4_state = to_vc4_crtc_state(crtc->state);
1037         vc4_state->feed_txp = old_vc4_state->feed_txp;
1038         vc4_state->margins = old_vc4_state->margins;
1039         vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1040
1041         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1042         return &vc4_state->base;
1043 }
1044
1045 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1046                                    struct drm_crtc_state *state)
1047 {
1048         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1049         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1050
1051         if (vc4_state->mm.allocated) {
1052                 unsigned long flags;
1053
1054                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1055                 drm_mm_remove_node(&vc4_state->mm);
1056                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1057
1058         }
1059
1060         drm_atomic_helper_crtc_destroy_state(crtc, state);
1061 }
1062
1063 static void
1064 vc4_crtc_reset(struct drm_crtc *crtc)
1065 {
1066         if (crtc->state)
1067                 vc4_crtc_destroy_state(crtc, crtc->state);
1068
1069         crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1070         if (crtc->state)
1071                 crtc->state->crtc = crtc;
1072 }
1073
1074 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1075         .set_config = drm_atomic_helper_set_config,
1076         .destroy = vc4_crtc_destroy,
1077         .page_flip = vc4_page_flip,
1078         .set_property = NULL,
1079         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1080         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1081         .reset = vc4_crtc_reset,
1082         .atomic_duplicate_state = vc4_crtc_duplicate_state,
1083         .atomic_destroy_state = vc4_crtc_destroy_state,
1084         .gamma_set = drm_atomic_helper_legacy_gamma_set,
1085         .enable_vblank = vc4_enable_vblank,
1086         .disable_vblank = vc4_disable_vblank,
1087 };
1088
1089 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1090         .mode_set_nofb = vc4_crtc_mode_set_nofb,
1091         .mode_valid = vc4_crtc_mode_valid,
1092         .atomic_check = vc4_crtc_atomic_check,
1093         .atomic_flush = vc4_crtc_atomic_flush,
1094         .atomic_enable = vc4_crtc_atomic_enable,
1095         .atomic_disable = vc4_crtc_atomic_disable,
1096 };
1097
1098 static const struct vc4_crtc_data bcm2835_pv0_data = {
1099         .hvs_available_channels = BIT(0),
1100         .hvs_output = 0,
1101         .debugfs_name = "crtc0_regs",
1102         .fifo_depth = 64,
1103         .pixels_per_clock = 1,
1104         .encoder_types = {
1105                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1106                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1107         },
1108 };
1109
1110 static const struct vc4_crtc_data bcm2835_pv1_data = {
1111         .hvs_available_channels = BIT(2),
1112         .hvs_output = 2,
1113         .debugfs_name = "crtc1_regs",
1114         .fifo_depth = 64,
1115         .pixels_per_clock = 1,
1116         .encoder_types = {
1117                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1118                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1119         },
1120 };
1121
1122 static const struct vc4_crtc_data bcm2835_pv2_data = {
1123         .hvs_available_channels = BIT(1),
1124         .hvs_output = 1,
1125         .debugfs_name = "crtc2_regs",
1126         .fifo_depth = 64,
1127         .pixels_per_clock = 1,
1128         .encoder_types = {
1129                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1130                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1131         },
1132 };
1133
1134 static const struct vc4_crtc_data bcm2711_pv0_data = {
1135         .debugfs_name = "crtc0_regs",
1136         .hvs_available_channels = BIT(0),
1137         .hvs_output = 0,
1138         .fifo_depth = 64,
1139         .pixels_per_clock = 1,
1140         .encoder_types = {
1141                 [0] = VC4_ENCODER_TYPE_DSI0,
1142                 [1] = VC4_ENCODER_TYPE_DPI,
1143         },
1144 };
1145
1146 static const struct vc4_crtc_data bcm2711_pv1_data = {
1147         .debugfs_name = "crtc1_regs",
1148         .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1149         .hvs_output = 3,
1150         .fifo_depth = 64,
1151         .pixels_per_clock = 1,
1152         .encoder_types = {
1153                 [0] = VC4_ENCODER_TYPE_DSI1,
1154                 [1] = VC4_ENCODER_TYPE_SMI,
1155         },
1156 };
1157
1158 static const struct vc4_crtc_data bcm2711_pv2_data = {
1159         .debugfs_name = "crtc2_regs",
1160         .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1161         .hvs_output = 4,
1162         .fifo_depth = 256,
1163         .pixels_per_clock = 2,
1164         .encoder_types = {
1165                 [0] = VC4_ENCODER_TYPE_HDMI0,
1166         },
1167 };
1168
1169 static const struct vc4_crtc_data bcm2711_pv3_data = {
1170         .debugfs_name = "crtc3_regs",
1171         .hvs_available_channels = BIT(1),
1172         .hvs_output = 1,
1173         .fifo_depth = 64,
1174         .pixels_per_clock = 1,
1175         .encoder_types = {
1176                 [0] = VC4_ENCODER_TYPE_VEC,
1177         },
1178 };
1179
1180 static const struct vc4_crtc_data bcm2711_pv4_data = {
1181         .debugfs_name = "crtc4_regs",
1182         .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1183         .hvs_output = 5,
1184         .fifo_depth = 64,
1185         .pixels_per_clock = 2,
1186         .encoder_types = {
1187                 [0] = VC4_ENCODER_TYPE_HDMI1,
1188         },
1189 };
1190
1191 static const struct of_device_id vc4_crtc_dt_match[] = {
1192         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1193         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1194         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1195         { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1196         { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1197         { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1198         { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1199         { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1200         {}
1201 };
1202
1203 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1204                                         struct drm_crtc *crtc)
1205 {
1206         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1207         const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1208         const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1209         struct drm_encoder *encoder;
1210
1211         drm_for_each_encoder(encoder, drm) {
1212                 struct vc4_encoder *vc4_encoder;
1213                 int i;
1214
1215                 /* HVS FIFO2 can feed the TXP IP. */
1216                 if (crtc_data->hvs_output == 2 &&
1217                     encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1218                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
1219                         continue;
1220                 }
1221
1222                 vc4_encoder = to_vc4_encoder(encoder);
1223                 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1224                         if (vc4_encoder->type == encoder_types[i]) {
1225                                 vc4_encoder->clock_select = i;
1226                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1227                                 break;
1228                         }
1229                 }
1230         }
1231 }
1232
1233 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1234 {
1235         struct platform_device *pdev = to_platform_device(dev);
1236         struct drm_device *drm = dev_get_drvdata(master);
1237         struct vc4_dev *vc4 = to_vc4_dev(drm);
1238         struct vc4_crtc *vc4_crtc;
1239         struct drm_crtc *crtc;
1240         struct drm_plane *primary_plane, *destroy_plane, *temp;
1241         const struct of_device_id *match;
1242         int ret, i;
1243
1244         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1245         if (!vc4_crtc)
1246                 return -ENOMEM;
1247         crtc = &vc4_crtc->base;
1248
1249         match = of_match_device(vc4_crtc_dt_match, dev);
1250         if (!match)
1251                 return -ENODEV;
1252         vc4_crtc->data = match->data;
1253         vc4_crtc->pdev = pdev;
1254
1255         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1256         if (IS_ERR(vc4_crtc->regs))
1257                 return PTR_ERR(vc4_crtc->regs);
1258
1259         vc4_crtc->regset.base = vc4_crtc->regs;
1260         vc4_crtc->regset.regs = crtc_regs;
1261         vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1262
1263         /* For now, we create just the primary and the legacy cursor
1264          * planes.  We should be able to stack more planes on easily,
1265          * but to do that we would need to compute the bandwidth
1266          * requirement of the plane configuration, and reject ones
1267          * that will take too much.
1268          */
1269         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1270         if (IS_ERR(primary_plane)) {
1271                 dev_err(dev, "failed to construct primary plane\n");
1272                 ret = PTR_ERR(primary_plane);
1273                 goto err;
1274         }
1275
1276         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1277                                   &vc4_crtc_funcs, NULL);
1278         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1279
1280         if (!vc4->hvs->hvs5) {
1281                 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1282
1283                 /* We support CTM, but only for one CRTC at a
1284                  * time. It's therefore implemented as private driver
1285                  * state in vc4_kms, not here.
1286                  */
1287                 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1288         }
1289
1290         CRTC_WRITE(PV_INTEN, 0);
1291         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1292         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1293                                vc4_crtc_irq_handler,
1294                                IRQF_SHARED,
1295                                "vc4 crtc", vc4_crtc);
1296         if (ret)
1297                 goto err_destroy_planes;
1298
1299         vc4_set_crtc_possible_masks(drm, crtc);
1300
1301         for (i = 0; i < crtc->gamma_size; i++) {
1302                 vc4_crtc->lut_r[i] = i;
1303                 vc4_crtc->lut_g[i] = i;
1304                 vc4_crtc->lut_b[i] = i;
1305         }
1306
1307         platform_set_drvdata(pdev, vc4_crtc);
1308
1309         vc4_debugfs_add_regset32(drm, vc4_crtc->data->debugfs_name,
1310                                  &vc4_crtc->regset);
1311
1312         return 0;
1313
1314 err_destroy_planes:
1315         list_for_each_entry_safe(destroy_plane, temp,
1316                                  &drm->mode_config.plane_list, head) {
1317                 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1318                     destroy_plane->funcs->destroy(destroy_plane);
1319         }
1320 err:
1321         return ret;
1322 }
1323
1324 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1325                             void *data)
1326 {
1327         struct platform_device *pdev = to_platform_device(dev);
1328         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1329
1330         vc4_crtc_destroy(&vc4_crtc->base);
1331
1332         CRTC_WRITE(PV_INTEN, 0);
1333
1334         platform_set_drvdata(pdev, NULL);
1335 }
1336
1337 static const struct component_ops vc4_crtc_ops = {
1338         .bind   = vc4_crtc_bind,
1339         .unbind = vc4_crtc_unbind,
1340 };
1341
1342 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1343 {
1344         return component_add(&pdev->dev, &vc4_crtc_ops);
1345 }
1346
1347 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1348 {
1349         component_del(&pdev->dev, &vc4_crtc_ops);
1350         return 0;
1351 }
1352
1353 struct platform_driver vc4_crtc_driver = {
1354         .probe = vc4_crtc_dev_probe,
1355         .remove = vc4_crtc_dev_remove,
1356         .driver = {
1357                 .name = "vc4_crtc",
1358                 .of_match_table = vc4_crtc_dt_match,
1359         },
1360 };