drm/ttm: Pass GFP flags in order to avoid deadlock.
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / gpu / drm / ttm / ttm_page_alloc_dma.c
1 /*
2  * Copyright 2011 (c) Oracle Corp.
3
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sub license,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the
12  * next paragraph) shall be included in all copies or substantial portions
13  * of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
24  */
25
26 /*
27  * A simple DMA pool losely based on dmapool.c. It has certain advantages
28  * over the DMA pools:
29  * - Pool collects resently freed pages for reuse (and hooks up to
30  *   the shrinker).
31  * - Tracks currently in use pages
32  * - Tracks whether the page is UC, WB or cached (and reverts to WB
33  *   when freed).
34  */
35
36 #if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
37 #define pr_fmt(fmt) "[TTM] " fmt
38
39 #include <linux/dma-mapping.h>
40 #include <linux/list.h>
41 #include <linux/seq_file.h> /* for seq_printf */
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/highmem.h>
45 #include <linux/mm_types.h>
46 #include <linux/module.h>
47 #include <linux/mm.h>
48 #include <linux/atomic.h>
49 #include <linux/device.h>
50 #include <linux/kthread.h>
51 #include <drm/ttm/ttm_bo_driver.h>
52 #include <drm/ttm/ttm_page_alloc.h>
53 #ifdef TTM_HAS_AGP
54 #include <asm/agp.h>
55 #endif
56
57 #define NUM_PAGES_TO_ALLOC              (PAGE_SIZE/sizeof(struct page *))
58 #define SMALL_ALLOCATION                4
59 #define FREE_ALL_PAGES                  (~0U)
60 /* times are in msecs */
61 #define IS_UNDEFINED                    (0)
62 #define IS_WC                           (1<<1)
63 #define IS_UC                           (1<<2)
64 #define IS_CACHED                       (1<<3)
65 #define IS_DMA32                        (1<<4)
66
67 enum pool_type {
68         POOL_IS_UNDEFINED,
69         POOL_IS_WC = IS_WC,
70         POOL_IS_UC = IS_UC,
71         POOL_IS_CACHED = IS_CACHED,
72         POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
73         POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
74         POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
75 };
76 /*
77  * The pool structure. There are usually six pools:
78  *  - generic (not restricted to DMA32):
79  *      - write combined, uncached, cached.
80  *  - dma32 (up to 2^32 - so up 4GB):
81  *      - write combined, uncached, cached.
82  * for each 'struct device'. The 'cached' is for pages that are actively used.
83  * The other ones can be shrunk by the shrinker API if neccessary.
84  * @pools: The 'struct device->dma_pools' link.
85  * @type: Type of the pool
86  * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
87  * used with irqsave/irqrestore variants because pool allocator maybe called
88  * from delayed work.
89  * @inuse_list: Pool of pages that are in use. The order is very important and
90  *   it is in the order that the TTM pages that are put back are in.
91  * @free_list: Pool of pages that are free to be used. No order requirements.
92  * @dev: The device that is associated with these pools.
93  * @size: Size used during DMA allocation.
94  * @npages_free: Count of available pages for re-use.
95  * @npages_in_use: Count of pages that are in use.
96  * @nfrees: Stats when pool is shrinking.
97  * @nrefills: Stats when the pool is grown.
98  * @gfp_flags: Flags to pass for alloc_page.
99  * @name: Name of the pool.
100  * @dev_name: Name derieved from dev - similar to how dev_info works.
101  *   Used during shutdown as the dev_info during release is unavailable.
102  */
103 struct dma_pool {
104         struct list_head pools; /* The 'struct device->dma_pools link */
105         enum pool_type type;
106         spinlock_t lock;
107         struct list_head inuse_list;
108         struct list_head free_list;
109         struct device *dev;
110         unsigned size;
111         unsigned npages_free;
112         unsigned npages_in_use;
113         unsigned long nfrees; /* Stats when shrunk. */
114         unsigned long nrefills; /* Stats when grown. */
115         gfp_t gfp_flags;
116         char name[13]; /* "cached dma32" */
117         char dev_name[64]; /* Constructed from dev */
118 };
119
120 /*
121  * The accounting page keeping track of the allocated page along with
122  * the DMA address.
123  * @page_list: The link to the 'page_list' in 'struct dma_pool'.
124  * @vaddr: The virtual address of the page
125  * @dma: The bus address of the page. If the page is not allocated
126  *   via the DMA API, it will be -1.
127  */
128 struct dma_page {
129         struct list_head page_list;
130         void *vaddr;
131         struct page *p;
132         dma_addr_t dma;
133 };
134
135 /*
136  * Limits for the pool. They are handled without locks because only place where
137  * they may change is in sysfs store. They won't have immediate effect anyway
138  * so forcing serialization to access them is pointless.
139  */
140
141 struct ttm_pool_opts {
142         unsigned        alloc_size;
143         unsigned        max_size;
144         unsigned        small;
145 };
146
147 /*
148  * Contains the list of all of the 'struct device' and their corresponding
149  * DMA pools. Guarded by _mutex->lock.
150  * @pools: The link to 'struct ttm_pool_manager->pools'
151  * @dev: The 'struct device' associated with the 'pool'
152  * @pool: The 'struct dma_pool' associated with the 'dev'
153  */
154 struct device_pools {
155         struct list_head pools;
156         struct device *dev;
157         struct dma_pool *pool;
158 };
159
160 /*
161  * struct ttm_pool_manager - Holds memory pools for fast allocation
162  *
163  * @lock: Lock used when adding/removing from pools
164  * @pools: List of 'struct device' and 'struct dma_pool' tuples.
165  * @options: Limits for the pool.
166  * @npools: Total amount of pools in existence.
167  * @shrinker: The structure used by [un|]register_shrinker
168  */
169 struct ttm_pool_manager {
170         struct mutex            lock;
171         struct list_head        pools;
172         struct ttm_pool_opts    options;
173         unsigned                npools;
174         struct shrinker         mm_shrink;
175         struct kobject          kobj;
176 };
177
178 static struct ttm_pool_manager *_manager;
179
180 static struct attribute ttm_page_pool_max = {
181         .name = "pool_max_size",
182         .mode = S_IRUGO | S_IWUSR
183 };
184 static struct attribute ttm_page_pool_small = {
185         .name = "pool_small_allocation",
186         .mode = S_IRUGO | S_IWUSR
187 };
188 static struct attribute ttm_page_pool_alloc_size = {
189         .name = "pool_allocation_size",
190         .mode = S_IRUGO | S_IWUSR
191 };
192
193 static struct attribute *ttm_pool_attrs[] = {
194         &ttm_page_pool_max,
195         &ttm_page_pool_small,
196         &ttm_page_pool_alloc_size,
197         NULL
198 };
199
200 static void ttm_pool_kobj_release(struct kobject *kobj)
201 {
202         struct ttm_pool_manager *m =
203                 container_of(kobj, struct ttm_pool_manager, kobj);
204         kfree(m);
205 }
206
207 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
208                               const char *buffer, size_t size)
209 {
210         struct ttm_pool_manager *m =
211                 container_of(kobj, struct ttm_pool_manager, kobj);
212         int chars;
213         unsigned val;
214         chars = sscanf(buffer, "%u", &val);
215         if (chars == 0)
216                 return size;
217
218         /* Convert kb to number of pages */
219         val = val / (PAGE_SIZE >> 10);
220
221         if (attr == &ttm_page_pool_max)
222                 m->options.max_size = val;
223         else if (attr == &ttm_page_pool_small)
224                 m->options.small = val;
225         else if (attr == &ttm_page_pool_alloc_size) {
226                 if (val > NUM_PAGES_TO_ALLOC*8) {
227                         pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
228                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
229                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
230                         return size;
231                 } else if (val > NUM_PAGES_TO_ALLOC) {
232                         pr_warn("Setting allocation size to larger than %lu is not recommended\n",
233                                 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
234                 }
235                 m->options.alloc_size = val;
236         }
237
238         return size;
239 }
240
241 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
242                              char *buffer)
243 {
244         struct ttm_pool_manager *m =
245                 container_of(kobj, struct ttm_pool_manager, kobj);
246         unsigned val = 0;
247
248         if (attr == &ttm_page_pool_max)
249                 val = m->options.max_size;
250         else if (attr == &ttm_page_pool_small)
251                 val = m->options.small;
252         else if (attr == &ttm_page_pool_alloc_size)
253                 val = m->options.alloc_size;
254
255         val = val * (PAGE_SIZE >> 10);
256
257         return snprintf(buffer, PAGE_SIZE, "%u\n", val);
258 }
259
260 static const struct sysfs_ops ttm_pool_sysfs_ops = {
261         .show = &ttm_pool_show,
262         .store = &ttm_pool_store,
263 };
264
265 static struct kobj_type ttm_pool_kobj_type = {
266         .release = &ttm_pool_kobj_release,
267         .sysfs_ops = &ttm_pool_sysfs_ops,
268         .default_attrs = ttm_pool_attrs,
269 };
270
271 #ifndef CONFIG_X86
272 static int set_pages_array_wb(struct page **pages, int addrinarray)
273 {
274 #ifdef TTM_HAS_AGP
275         int i;
276
277         for (i = 0; i < addrinarray; i++)
278                 unmap_page_from_agp(pages[i]);
279 #endif
280         return 0;
281 }
282
283 static int set_pages_array_wc(struct page **pages, int addrinarray)
284 {
285 #ifdef TTM_HAS_AGP
286         int i;
287
288         for (i = 0; i < addrinarray; i++)
289                 map_page_into_agp(pages[i]);
290 #endif
291         return 0;
292 }
293
294 static int set_pages_array_uc(struct page **pages, int addrinarray)
295 {
296 #ifdef TTM_HAS_AGP
297         int i;
298
299         for (i = 0; i < addrinarray; i++)
300                 map_page_into_agp(pages[i]);
301 #endif
302         return 0;
303 }
304 #endif /* for !CONFIG_X86 */
305
306 static int ttm_set_pages_caching(struct dma_pool *pool,
307                                  struct page **pages, unsigned cpages)
308 {
309         int r = 0;
310         /* Set page caching */
311         if (pool->type & IS_UC) {
312                 r = set_pages_array_uc(pages, cpages);
313                 if (r)
314                         pr_err("%s: Failed to set %d pages to uc!\n",
315                                pool->dev_name, cpages);
316         }
317         if (pool->type & IS_WC) {
318                 r = set_pages_array_wc(pages, cpages);
319                 if (r)
320                         pr_err("%s: Failed to set %d pages to wc!\n",
321                                pool->dev_name, cpages);
322         }
323         return r;
324 }
325
326 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
327 {
328         dma_addr_t dma = d_page->dma;
329         dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);
330
331         kfree(d_page);
332         d_page = NULL;
333 }
334 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
335 {
336         struct dma_page *d_page;
337
338         d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
339         if (!d_page)
340                 return NULL;
341
342         d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
343                                            &d_page->dma,
344                                            pool->gfp_flags);
345         if (d_page->vaddr)
346                 d_page->p = virt_to_page(d_page->vaddr);
347         else {
348                 kfree(d_page);
349                 d_page = NULL;
350         }
351         return d_page;
352 }
353 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
354 {
355         enum pool_type type = IS_UNDEFINED;
356
357         if (flags & TTM_PAGE_FLAG_DMA32)
358                 type |= IS_DMA32;
359         if (cstate == tt_cached)
360                 type |= IS_CACHED;
361         else if (cstate == tt_uncached)
362                 type |= IS_UC;
363         else
364                 type |= IS_WC;
365
366         return type;
367 }
368
369 static void ttm_pool_update_free_locked(struct dma_pool *pool,
370                                         unsigned freed_pages)
371 {
372         pool->npages_free -= freed_pages;
373         pool->nfrees += freed_pages;
374
375 }
376
377 /* set memory back to wb and free the pages. */
378 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
379                               struct page *pages[], unsigned npages)
380 {
381         struct dma_page *d_page, *tmp;
382
383         /* Don't set WB on WB page pool. */
384         if (npages && !(pool->type & IS_CACHED) &&
385             set_pages_array_wb(pages, npages))
386                 pr_err("%s: Failed to set %d pages to wb!\n",
387                        pool->dev_name, npages);
388
389         list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
390                 list_del(&d_page->page_list);
391                 __ttm_dma_free_page(pool, d_page);
392         }
393 }
394
395 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
396 {
397         /* Don't set WB on WB page pool. */
398         if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
399                 pr_err("%s: Failed to set %d pages to wb!\n",
400                        pool->dev_name, 1);
401
402         list_del(&d_page->page_list);
403         __ttm_dma_free_page(pool, d_page);
404 }
405
406 /*
407  * Free pages from pool.
408  *
409  * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
410  * number of pages in one go.
411  *
412  * @pool: to free the pages from
413  * @nr_free: If set to true will free all pages in pool
414  * @gfp: GFP flags.
415  **/
416 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
417                                        gfp_t gfp)
418 {
419         unsigned long irq_flags;
420         struct dma_page *dma_p, *tmp;
421         struct page **pages_to_free;
422         struct list_head d_pages;
423         unsigned freed_pages = 0,
424                  npages_to_free = nr_free;
425
426         if (NUM_PAGES_TO_ALLOC < nr_free)
427                 npages_to_free = NUM_PAGES_TO_ALLOC;
428 #if 0
429         if (nr_free > 1) {
430                 pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
431                          pool->dev_name, pool->name, current->pid,
432                          npages_to_free, nr_free);
433         }
434 #endif
435         pages_to_free = kmalloc(npages_to_free * sizeof(struct page *), gfp);
436
437         if (!pages_to_free) {
438                 pr_err("%s: Failed to allocate memory for pool free operation\n",
439                        pool->dev_name);
440                 return 0;
441         }
442         INIT_LIST_HEAD(&d_pages);
443 restart:
444         spin_lock_irqsave(&pool->lock, irq_flags);
445
446         /* We picking the oldest ones off the list */
447         list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
448                                          page_list) {
449                 if (freed_pages >= npages_to_free)
450                         break;
451
452                 /* Move the dma_page from one list to another. */
453                 list_move(&dma_p->page_list, &d_pages);
454
455                 pages_to_free[freed_pages++] = dma_p->p;
456                 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
457                 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
458
459                         ttm_pool_update_free_locked(pool, freed_pages);
460                         /**
461                          * Because changing page caching is costly
462                          * we unlock the pool to prevent stalling.
463                          */
464                         spin_unlock_irqrestore(&pool->lock, irq_flags);
465
466                         ttm_dma_pages_put(pool, &d_pages, pages_to_free,
467                                           freed_pages);
468
469                         INIT_LIST_HEAD(&d_pages);
470
471                         if (likely(nr_free != FREE_ALL_PAGES))
472                                 nr_free -= freed_pages;
473
474                         if (NUM_PAGES_TO_ALLOC >= nr_free)
475                                 npages_to_free = nr_free;
476                         else
477                                 npages_to_free = NUM_PAGES_TO_ALLOC;
478
479                         freed_pages = 0;
480
481                         /* free all so restart the processing */
482                         if (nr_free)
483                                 goto restart;
484
485                         /* Not allowed to fall through or break because
486                          * following context is inside spinlock while we are
487                          * outside here.
488                          */
489                         goto out;
490
491                 }
492         }
493
494         /* remove range of pages from the pool */
495         if (freed_pages) {
496                 ttm_pool_update_free_locked(pool, freed_pages);
497                 nr_free -= freed_pages;
498         }
499
500         spin_unlock_irqrestore(&pool->lock, irq_flags);
501
502         if (freed_pages)
503                 ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
504 out:
505         kfree(pages_to_free);
506         return nr_free;
507 }
508
509 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
510 {
511         struct device_pools *p;
512         struct dma_pool *pool;
513
514         if (!dev)
515                 return;
516
517         mutex_lock(&_manager->lock);
518         list_for_each_entry_reverse(p, &_manager->pools, pools) {
519                 if (p->dev != dev)
520                         continue;
521                 pool = p->pool;
522                 if (pool->type != type)
523                         continue;
524
525                 list_del(&p->pools);
526                 kfree(p);
527                 _manager->npools--;
528                 break;
529         }
530         list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
531                 if (pool->type != type)
532                         continue;
533                 /* Takes a spinlock.. */
534                 ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, GFP_KERNEL);
535                 WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
536                 /* This code path is called after _all_ references to the
537                  * struct device has been dropped - so nobody should be
538                  * touching it. In case somebody is trying to _add_ we are
539                  * guarded by the mutex. */
540                 list_del(&pool->pools);
541                 kfree(pool);
542                 break;
543         }
544         mutex_unlock(&_manager->lock);
545 }
546
547 /*
548  * On free-ing of the 'struct device' this deconstructor is run.
549  * Albeit the pool might have already been freed earlier.
550  */
551 static void ttm_dma_pool_release(struct device *dev, void *res)
552 {
553         struct dma_pool *pool = *(struct dma_pool **)res;
554
555         if (pool)
556                 ttm_dma_free_pool(dev, pool->type);
557 }
558
559 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
560 {
561         return *(struct dma_pool **)res == match_data;
562 }
563
564 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
565                                           enum pool_type type)
566 {
567         char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
568         enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
569         struct device_pools *sec_pool = NULL;
570         struct dma_pool *pool = NULL, **ptr;
571         unsigned i;
572         int ret = -ENODEV;
573         char *p;
574
575         if (!dev)
576                 return NULL;
577
578         ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
579         if (!ptr)
580                 return NULL;
581
582         ret = -ENOMEM;
583
584         pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
585                             dev_to_node(dev));
586         if (!pool)
587                 goto err_mem;
588
589         sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
590                                 dev_to_node(dev));
591         if (!sec_pool)
592                 goto err_mem;
593
594         INIT_LIST_HEAD(&sec_pool->pools);
595         sec_pool->dev = dev;
596         sec_pool->pool =  pool;
597
598         INIT_LIST_HEAD(&pool->free_list);
599         INIT_LIST_HEAD(&pool->inuse_list);
600         INIT_LIST_HEAD(&pool->pools);
601         spin_lock_init(&pool->lock);
602         pool->dev = dev;
603         pool->npages_free = pool->npages_in_use = 0;
604         pool->nfrees = 0;
605         pool->gfp_flags = flags;
606         pool->size = PAGE_SIZE;
607         pool->type = type;
608         pool->nrefills = 0;
609         p = pool->name;
610         for (i = 0; i < 5; i++) {
611                 if (type & t[i]) {
612                         p += snprintf(p, sizeof(pool->name) - (p - pool->name),
613                                       "%s", n[i]);
614                 }
615         }
616         *p = 0;
617         /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
618          * - the kobj->name has already been deallocated.*/
619         snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
620                  dev_driver_string(dev), dev_name(dev));
621         mutex_lock(&_manager->lock);
622         /* You can get the dma_pool from either the global: */
623         list_add(&sec_pool->pools, &_manager->pools);
624         _manager->npools++;
625         /* or from 'struct device': */
626         list_add(&pool->pools, &dev->dma_pools);
627         mutex_unlock(&_manager->lock);
628
629         *ptr = pool;
630         devres_add(dev, ptr);
631
632         return pool;
633 err_mem:
634         devres_free(ptr);
635         kfree(sec_pool);
636         kfree(pool);
637         return ERR_PTR(ret);
638 }
639
640 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
641                                           enum pool_type type)
642 {
643         struct dma_pool *pool, *tmp, *found = NULL;
644
645         if (type == IS_UNDEFINED)
646                 return found;
647
648         /* NB: We iterate on the 'struct dev' which has no spinlock, but
649          * it does have a kref which we have taken. The kref is taken during
650          * graphic driver loading - in the drm_pci_init it calls either
651          * pci_dev_get or pci_register_driver which both end up taking a kref
652          * on 'struct device'.
653          *
654          * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
655          * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
656          * thing is at that point of time there are no pages associated with the
657          * driver so this function will not be called.
658          */
659         list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
660                 if (pool->type != type)
661                         continue;
662                 found = pool;
663                 break;
664         }
665         return found;
666 }
667
668 /*
669  * Free pages the pages that failed to change the caching state. If there
670  * are pages that have changed their caching state already put them to the
671  * pool.
672  */
673 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
674                                                  struct list_head *d_pages,
675                                                  struct page **failed_pages,
676                                                  unsigned cpages)
677 {
678         struct dma_page *d_page, *tmp;
679         struct page *p;
680         unsigned i = 0;
681
682         p = failed_pages[0];
683         if (!p)
684                 return;
685         /* Find the failed page. */
686         list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
687                 if (d_page->p != p)
688                         continue;
689                 /* .. and then progress over the full list. */
690                 list_del(&d_page->page_list);
691                 __ttm_dma_free_page(pool, d_page);
692                 if (++i < cpages)
693                         p = failed_pages[i];
694                 else
695                         break;
696         }
697
698 }
699
700 /*
701  * Allocate 'count' pages, and put 'need' number of them on the
702  * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
703  * The full list of pages should also be on 'd_pages'.
704  * We return zero for success, and negative numbers as errors.
705  */
706 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
707                                         struct list_head *d_pages,
708                                         unsigned count)
709 {
710         struct page **caching_array;
711         struct dma_page *dma_p;
712         struct page *p;
713         int r = 0;
714         unsigned i, cpages;
715         unsigned max_cpages = min(count,
716                         (unsigned)(PAGE_SIZE/sizeof(struct page *)));
717
718         /* allocate array for page caching change */
719         caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
720
721         if (!caching_array) {
722                 pr_err("%s: Unable to allocate table for new pages\n",
723                        pool->dev_name);
724                 return -ENOMEM;
725         }
726
727         if (count > 1) {
728                 pr_debug("%s: (%s:%d) Getting %d pages\n",
729                          pool->dev_name, pool->name, current->pid, count);
730         }
731
732         for (i = 0, cpages = 0; i < count; ++i) {
733                 dma_p = __ttm_dma_alloc_page(pool);
734                 if (!dma_p) {
735                         pr_err("%s: Unable to get page %u\n",
736                                pool->dev_name, i);
737
738                         /* store already allocated pages in the pool after
739                          * setting the caching state */
740                         if (cpages) {
741                                 r = ttm_set_pages_caching(pool, caching_array,
742                                                           cpages);
743                                 if (r)
744                                         ttm_dma_handle_caching_state_failure(
745                                                 pool, d_pages, caching_array,
746                                                 cpages);
747                         }
748                         r = -ENOMEM;
749                         goto out;
750                 }
751                 p = dma_p->p;
752 #ifdef CONFIG_HIGHMEM
753                 /* gfp flags of highmem page should never be dma32 so we
754                  * we should be fine in such case
755                  */
756                 if (!PageHighMem(p))
757 #endif
758                 {
759                         caching_array[cpages++] = p;
760                         if (cpages == max_cpages) {
761                                 /* Note: Cannot hold the spinlock */
762                                 r = ttm_set_pages_caching(pool, caching_array,
763                                                  cpages);
764                                 if (r) {
765                                         ttm_dma_handle_caching_state_failure(
766                                                 pool, d_pages, caching_array,
767                                                 cpages);
768                                         goto out;
769                                 }
770                                 cpages = 0;
771                         }
772                 }
773                 list_add(&dma_p->page_list, d_pages);
774         }
775
776         if (cpages) {
777                 r = ttm_set_pages_caching(pool, caching_array, cpages);
778                 if (r)
779                         ttm_dma_handle_caching_state_failure(pool, d_pages,
780                                         caching_array, cpages);
781         }
782 out:
783         kfree(caching_array);
784         return r;
785 }
786
787 /*
788  * @return count of pages still required to fulfill the request.
789  */
790 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
791                                          unsigned long *irq_flags)
792 {
793         unsigned count = _manager->options.small;
794         int r = pool->npages_free;
795
796         if (count > pool->npages_free) {
797                 struct list_head d_pages;
798
799                 INIT_LIST_HEAD(&d_pages);
800
801                 spin_unlock_irqrestore(&pool->lock, *irq_flags);
802
803                 /* Returns how many more are neccessary to fulfill the
804                  * request. */
805                 r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
806
807                 spin_lock_irqsave(&pool->lock, *irq_flags);
808                 if (!r) {
809                         /* Add the fresh to the end.. */
810                         list_splice(&d_pages, &pool->free_list);
811                         ++pool->nrefills;
812                         pool->npages_free += count;
813                         r = count;
814                 } else {
815                         struct dma_page *d_page;
816                         unsigned cpages = 0;
817
818                         pr_err("%s: Failed to fill %s pool (r:%d)!\n",
819                                pool->dev_name, pool->name, r);
820
821                         list_for_each_entry(d_page, &d_pages, page_list) {
822                                 cpages++;
823                         }
824                         list_splice_tail(&d_pages, &pool->free_list);
825                         pool->npages_free += cpages;
826                         r = cpages;
827                 }
828         }
829         return r;
830 }
831
832 /*
833  * @return count of pages still required to fulfill the request.
834  * The populate list is actually a stack (not that is matters as TTM
835  * allocates one page at a time.
836  */
837 static int ttm_dma_pool_get_pages(struct dma_pool *pool,
838                                   struct ttm_dma_tt *ttm_dma,
839                                   unsigned index)
840 {
841         struct dma_page *d_page;
842         struct ttm_tt *ttm = &ttm_dma->ttm;
843         unsigned long irq_flags;
844         int count, r = -ENOMEM;
845
846         spin_lock_irqsave(&pool->lock, irq_flags);
847         count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
848         if (count) {
849                 d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
850                 ttm->pages[index] = d_page->p;
851                 ttm_dma->dma_address[index] = d_page->dma;
852                 list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
853                 r = 0;
854                 pool->npages_in_use += 1;
855                 pool->npages_free -= 1;
856         }
857         spin_unlock_irqrestore(&pool->lock, irq_flags);
858         return r;
859 }
860
861 /*
862  * On success pages list will hold count number of correctly
863  * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
864  */
865 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
866 {
867         struct ttm_tt *ttm = &ttm_dma->ttm;
868         struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
869         struct dma_pool *pool;
870         enum pool_type type;
871         unsigned i;
872         gfp_t gfp_flags;
873         int ret;
874
875         if (ttm->state != tt_unpopulated)
876                 return 0;
877
878         type = ttm_to_type(ttm->page_flags, ttm->caching_state);
879         if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
880                 gfp_flags = GFP_USER | GFP_DMA32;
881         else
882                 gfp_flags = GFP_HIGHUSER;
883         if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
884                 gfp_flags |= __GFP_ZERO;
885
886         pool = ttm_dma_find_pool(dev, type);
887         if (!pool) {
888                 pool = ttm_dma_pool_init(dev, gfp_flags, type);
889                 if (IS_ERR_OR_NULL(pool)) {
890                         return -ENOMEM;
891                 }
892         }
893
894         INIT_LIST_HEAD(&ttm_dma->pages_list);
895         for (i = 0; i < ttm->num_pages; ++i) {
896                 ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
897                 if (ret != 0) {
898                         ttm_dma_unpopulate(ttm_dma, dev);
899                         return -ENOMEM;
900                 }
901
902                 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
903                                                 false, false);
904                 if (unlikely(ret != 0)) {
905                         ttm_dma_unpopulate(ttm_dma, dev);
906                         return -ENOMEM;
907                 }
908         }
909
910         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
911                 ret = ttm_tt_swapin(ttm);
912                 if (unlikely(ret != 0)) {
913                         ttm_dma_unpopulate(ttm_dma, dev);
914                         return ret;
915                 }
916         }
917
918         ttm->state = tt_unbound;
919         return 0;
920 }
921 EXPORT_SYMBOL_GPL(ttm_dma_populate);
922
923 /* Put all pages in pages list to correct pool to wait for reuse */
924 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
925 {
926         struct ttm_tt *ttm = &ttm_dma->ttm;
927         struct dma_pool *pool;
928         struct dma_page *d_page, *next;
929         enum pool_type type;
930         bool is_cached = false;
931         unsigned count = 0, i, npages = 0;
932         unsigned long irq_flags;
933
934         type = ttm_to_type(ttm->page_flags, ttm->caching_state);
935         pool = ttm_dma_find_pool(dev, type);
936         if (!pool)
937                 return;
938
939         is_cached = (ttm_dma_find_pool(pool->dev,
940                      ttm_to_type(ttm->page_flags, tt_cached)) == pool);
941
942         /* make sure pages array match list and count number of pages */
943         list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
944                 ttm->pages[count] = d_page->p;
945                 count++;
946         }
947
948         spin_lock_irqsave(&pool->lock, irq_flags);
949         pool->npages_in_use -= count;
950         if (is_cached) {
951                 pool->nfrees += count;
952         } else {
953                 pool->npages_free += count;
954                 list_splice(&ttm_dma->pages_list, &pool->free_list);
955                 npages = count;
956                 if (pool->npages_free > _manager->options.max_size) {
957                         npages = pool->npages_free - _manager->options.max_size;
958                         /* free at least NUM_PAGES_TO_ALLOC number of pages
959                          * to reduce calls to set_memory_wb */
960                         if (npages < NUM_PAGES_TO_ALLOC)
961                                 npages = NUM_PAGES_TO_ALLOC;
962                 }
963         }
964         spin_unlock_irqrestore(&pool->lock, irq_flags);
965
966         if (is_cached) {
967                 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
968                         ttm_mem_global_free_page(ttm->glob->mem_glob,
969                                                  d_page->p);
970                         ttm_dma_page_put(pool, d_page);
971                 }
972         } else {
973                 for (i = 0; i < count; i++) {
974                         ttm_mem_global_free_page(ttm->glob->mem_glob,
975                                                  ttm->pages[i]);
976                 }
977         }
978
979         INIT_LIST_HEAD(&ttm_dma->pages_list);
980         for (i = 0; i < ttm->num_pages; i++) {
981                 ttm->pages[i] = NULL;
982                 ttm_dma->dma_address[i] = 0;
983         }
984
985         /* shrink pool if necessary (only on !is_cached pools)*/
986         if (npages)
987                 ttm_dma_page_pool_free(pool, npages, GFP_KERNEL);
988         ttm->state = tt_unpopulated;
989 }
990 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
991
992 /**
993  * Callback for mm to request pool to reduce number of page held.
994  *
995  * XXX: (dchinner) Deadlock warning!
996  *
997  * We need to pass sc->gfp_mask to ttm_dma_page_pool_free().
998  *
999  * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1000  * shrinkers
1001  */
1002 static unsigned long
1003 ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1004 {
1005         static unsigned start_pool;
1006         unsigned idx = 0;
1007         unsigned pool_offset;
1008         unsigned shrink_pages = sc->nr_to_scan;
1009         struct device_pools *p;
1010         unsigned long freed = 0;
1011
1012         if (list_empty(&_manager->pools))
1013                 return SHRINK_STOP;
1014
1015         if (!mutex_trylock(&_manager->lock))
1016                 return SHRINK_STOP;
1017         if (!_manager->npools)
1018                 goto out;
1019         pool_offset = ++start_pool % _manager->npools;
1020         list_for_each_entry(p, &_manager->pools, pools) {
1021                 unsigned nr_free;
1022
1023                 if (!p->dev)
1024                         continue;
1025                 if (shrink_pages == 0)
1026                         break;
1027                 /* Do it in round-robin fashion. */
1028                 if (++idx < pool_offset)
1029                         continue;
1030                 nr_free = shrink_pages;
1031                 shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free,
1032                                                       sc->gfp_mask);
1033                 freed += nr_free - shrink_pages;
1034
1035                 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1036                          p->pool->dev_name, p->pool->name, current->pid,
1037                          nr_free, shrink_pages);
1038         }
1039 out:
1040         mutex_unlock(&_manager->lock);
1041         return freed;
1042 }
1043
1044 static unsigned long
1045 ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1046 {
1047         struct device_pools *p;
1048         unsigned long count = 0;
1049
1050         if (!mutex_trylock(&_manager->lock))
1051                 return 0;
1052         list_for_each_entry(p, &_manager->pools, pools)
1053                 count += p->pool->npages_free;
1054         mutex_unlock(&_manager->lock);
1055         return count;
1056 }
1057
1058 static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1059 {
1060         manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1061         manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1062         manager->mm_shrink.seeks = 1;
1063         register_shrinker(&manager->mm_shrink);
1064 }
1065
1066 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1067 {
1068         unregister_shrinker(&manager->mm_shrink);
1069 }
1070
1071 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1072 {
1073         int ret = -ENOMEM;
1074
1075         WARN_ON(_manager);
1076
1077         pr_info("Initializing DMA pool allocator\n");
1078
1079         _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1080         if (!_manager)
1081                 goto err;
1082
1083         mutex_init(&_manager->lock);
1084         INIT_LIST_HEAD(&_manager->pools);
1085
1086         _manager->options.max_size = max_pages;
1087         _manager->options.small = SMALL_ALLOCATION;
1088         _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1089
1090         /* This takes care of auto-freeing the _manager */
1091         ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1092                                    &glob->kobj, "dma_pool");
1093         if (unlikely(ret != 0)) {
1094                 kobject_put(&_manager->kobj);
1095                 goto err;
1096         }
1097         ttm_dma_pool_mm_shrink_init(_manager);
1098         return 0;
1099 err:
1100         return ret;
1101 }
1102
1103 void ttm_dma_page_alloc_fini(void)
1104 {
1105         struct device_pools *p, *t;
1106
1107         pr_info("Finalizing DMA pool allocator\n");
1108         ttm_dma_pool_mm_shrink_fini(_manager);
1109
1110         list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1111                 dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1112                         current->pid);
1113                 WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1114                         ttm_dma_pool_match, p->pool));
1115                 ttm_dma_free_pool(p->dev, p->pool->type);
1116         }
1117         kobject_put(&_manager->kobj);
1118         _manager = NULL;
1119 }
1120
1121 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1122 {
1123         struct device_pools *p;
1124         struct dma_pool *pool = NULL;
1125         char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
1126                      "name", "virt", "busaddr"};
1127
1128         if (!_manager) {
1129                 seq_printf(m, "No pool allocator running.\n");
1130                 return 0;
1131         }
1132         seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
1133                    h[0], h[1], h[2], h[3], h[4], h[5]);
1134         mutex_lock(&_manager->lock);
1135         list_for_each_entry(p, &_manager->pools, pools) {
1136                 struct device *dev = p->dev;
1137                 if (!dev)
1138                         continue;
1139                 pool = p->pool;
1140                 seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1141                                 pool->name, pool->nrefills,
1142                                 pool->nfrees, pool->npages_in_use,
1143                                 pool->npages_free,
1144                                 pool->dev_name);
1145         }
1146         mutex_unlock(&_manager->lock);
1147         return 0;
1148 }
1149 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1150
1151 #endif