drm/vma: provide drm_vma_node_unmap() helper
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #define pr_fmt(fmt) "[TTM] " fmt
32
33 #include <drm/ttm/ttm_module.h>
34 #include <drm/ttm/ttm_bo_driver.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <linux/jiffies.h>
37 #include <linux/slab.h>
38 #include <linux/sched.h>
39 #include <linux/mm.h>
40 #include <linux/file.h>
41 #include <linux/module.h>
42 #include <linux/atomic.h>
43
44 #define TTM_ASSERT_LOCKED(param)
45 #define TTM_DEBUG(fmt, arg...)
46 #define TTM_BO_HASH_ORDER 13
47
48 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
50 static void ttm_bo_global_kobj_release(struct kobject *kobj);
51
52 static struct attribute ttm_bo_count = {
53         .name = "bo_count",
54         .mode = S_IRUGO
55 };
56
57 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
58 {
59         int i;
60
61         for (i = 0; i <= TTM_PL_PRIV5; i++)
62                 if (flags & (1 << i)) {
63                         *mem_type = i;
64                         return 0;
65                 }
66         return -EINVAL;
67 }
68
69 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
70 {
71         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
72
73         pr_err("    has_type: %d\n", man->has_type);
74         pr_err("    use_type: %d\n", man->use_type);
75         pr_err("    flags: 0x%08X\n", man->flags);
76         pr_err("    gpu_offset: 0x%08lX\n", man->gpu_offset);
77         pr_err("    size: %llu\n", man->size);
78         pr_err("    available_caching: 0x%08X\n", man->available_caching);
79         pr_err("    default_caching: 0x%08X\n", man->default_caching);
80         if (mem_type != TTM_PL_SYSTEM)
81                 (*man->func->debug)(man, TTM_PFX);
82 }
83
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85                                         struct ttm_placement *placement)
86 {
87         int i, ret, mem_type;
88
89         pr_err("No space for %p (%lu pages, %luK, %luM)\n",
90                bo, bo->mem.num_pages, bo->mem.size >> 10,
91                bo->mem.size >> 20);
92         for (i = 0; i < placement->num_placement; i++) {
93                 ret = ttm_mem_type_from_flags(placement->placement[i],
94                                                 &mem_type);
95                 if (ret)
96                         return;
97                 pr_err("  placement[%d]=0x%08X (%d)\n",
98                        i, placement->placement[i], mem_type);
99                 ttm_mem_type_debug(bo->bdev, mem_type);
100         }
101 }
102
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104                                   struct attribute *attr,
105                                   char *buffer)
106 {
107         struct ttm_bo_global *glob =
108                 container_of(kobj, struct ttm_bo_global, kobj);
109
110         return snprintf(buffer, PAGE_SIZE, "%lu\n",
111                         (unsigned long) atomic_read(&glob->bo_count));
112 }
113
114 static struct attribute *ttm_bo_global_attrs[] = {
115         &ttm_bo_count,
116         NULL
117 };
118
119 static const struct sysfs_ops ttm_bo_global_ops = {
120         .show = &ttm_bo_global_show
121 };
122
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124         .release = &ttm_bo_global_kobj_release,
125         .sysfs_ops = &ttm_bo_global_ops,
126         .default_attrs = ttm_bo_global_attrs
127 };
128
129
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132         return 1 << (type);
133 }
134
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137         struct ttm_buffer_object *bo =
138             container_of(list_kref, struct ttm_buffer_object, list_kref);
139         struct ttm_bo_device *bdev = bo->bdev;
140         size_t acc_size = bo->acc_size;
141
142         BUG_ON(atomic_read(&bo->list_kref.refcount));
143         BUG_ON(atomic_read(&bo->kref.refcount));
144         BUG_ON(atomic_read(&bo->cpu_writers));
145         BUG_ON(bo->sync_obj != NULL);
146         BUG_ON(bo->mem.mm_node != NULL);
147         BUG_ON(!list_empty(&bo->lru));
148         BUG_ON(!list_empty(&bo->ddestroy));
149
150         if (bo->ttm)
151                 ttm_tt_destroy(bo->ttm);
152         atomic_dec(&bo->glob->bo_count);
153         if (bo->resv == &bo->ttm_resv)
154                 reservation_object_fini(&bo->ttm_resv);
155
156         if (bo->destroy)
157                 bo->destroy(bo);
158         else {
159                 kfree(bo);
160         }
161         ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
162 }
163
164 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
165 {
166         struct ttm_bo_device *bdev = bo->bdev;
167         struct ttm_mem_type_manager *man;
168
169         lockdep_assert_held(&bo->resv->lock.base);
170
171         if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
172
173                 BUG_ON(!list_empty(&bo->lru));
174
175                 man = &bdev->man[bo->mem.mem_type];
176                 list_add_tail(&bo->lru, &man->lru);
177                 kref_get(&bo->list_kref);
178
179                 if (bo->ttm != NULL) {
180                         list_add_tail(&bo->swap, &bo->glob->swap_lru);
181                         kref_get(&bo->list_kref);
182                 }
183         }
184 }
185 EXPORT_SYMBOL(ttm_bo_add_to_lru);
186
187 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
188 {
189         int put_count = 0;
190
191         if (!list_empty(&bo->swap)) {
192                 list_del_init(&bo->swap);
193                 ++put_count;
194         }
195         if (!list_empty(&bo->lru)) {
196                 list_del_init(&bo->lru);
197                 ++put_count;
198         }
199
200         /*
201          * TODO: Add a driver hook to delete from
202          * driver-specific LRU's here.
203          */
204
205         return put_count;
206 }
207
208 static void ttm_bo_ref_bug(struct kref *list_kref)
209 {
210         BUG();
211 }
212
213 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
214                          bool never_free)
215 {
216         kref_sub(&bo->list_kref, count,
217                  (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
218 }
219
220 void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
221 {
222         int put_count;
223
224         spin_lock(&bo->glob->lru_lock);
225         put_count = ttm_bo_del_from_lru(bo);
226         spin_unlock(&bo->glob->lru_lock);
227         ttm_bo_list_ref_sub(bo, put_count, true);
228 }
229 EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
230
231 /*
232  * Call bo->mutex locked.
233  */
234 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
235 {
236         struct ttm_bo_device *bdev = bo->bdev;
237         struct ttm_bo_global *glob = bo->glob;
238         int ret = 0;
239         uint32_t page_flags = 0;
240
241         TTM_ASSERT_LOCKED(&bo->mutex);
242         bo->ttm = NULL;
243
244         if (bdev->need_dma32)
245                 page_flags |= TTM_PAGE_FLAG_DMA32;
246
247         switch (bo->type) {
248         case ttm_bo_type_device:
249                 if (zero_alloc)
250                         page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
251         case ttm_bo_type_kernel:
252                 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
253                                                       page_flags, glob->dummy_read_page);
254                 if (unlikely(bo->ttm == NULL))
255                         ret = -ENOMEM;
256                 break;
257         case ttm_bo_type_sg:
258                 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
259                                                       page_flags | TTM_PAGE_FLAG_SG,
260                                                       glob->dummy_read_page);
261                 if (unlikely(bo->ttm == NULL)) {
262                         ret = -ENOMEM;
263                         break;
264                 }
265                 bo->ttm->sg = bo->sg;
266                 break;
267         default:
268                 pr_err("Illegal buffer object type\n");
269                 ret = -EINVAL;
270                 break;
271         }
272
273         return ret;
274 }
275
276 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
277                                   struct ttm_mem_reg *mem,
278                                   bool evict, bool interruptible,
279                                   bool no_wait_gpu)
280 {
281         struct ttm_bo_device *bdev = bo->bdev;
282         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
283         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
284         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
285         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
286         int ret = 0;
287
288         if (old_is_pci || new_is_pci ||
289             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
290                 ret = ttm_mem_io_lock(old_man, true);
291                 if (unlikely(ret != 0))
292                         goto out_err;
293                 ttm_bo_unmap_virtual_locked(bo);
294                 ttm_mem_io_unlock(old_man);
295         }
296
297         /*
298          * Create and bind a ttm if required.
299          */
300
301         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
302                 if (bo->ttm == NULL) {
303                         bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
304                         ret = ttm_bo_add_ttm(bo, zero);
305                         if (ret)
306                                 goto out_err;
307                 }
308
309                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
310                 if (ret)
311                         goto out_err;
312
313                 if (mem->mem_type != TTM_PL_SYSTEM) {
314                         ret = ttm_tt_bind(bo->ttm, mem);
315                         if (ret)
316                                 goto out_err;
317                 }
318
319                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
320                         if (bdev->driver->move_notify)
321                                 bdev->driver->move_notify(bo, mem);
322                         bo->mem = *mem;
323                         mem->mm_node = NULL;
324                         goto moved;
325                 }
326         }
327
328         if (bdev->driver->move_notify)
329                 bdev->driver->move_notify(bo, mem);
330
331         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
332             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
333                 ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
334         else if (bdev->driver->move)
335                 ret = bdev->driver->move(bo, evict, interruptible,
336                                          no_wait_gpu, mem);
337         else
338                 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
339
340         if (ret) {
341                 if (bdev->driver->move_notify) {
342                         struct ttm_mem_reg tmp_mem = *mem;
343                         *mem = bo->mem;
344                         bo->mem = tmp_mem;
345                         bdev->driver->move_notify(bo, mem);
346                         bo->mem = *mem;
347                         *mem = tmp_mem;
348                 }
349
350                 goto out_err;
351         }
352
353 moved:
354         if (bo->evicted) {
355                 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
356                 if (ret)
357                         pr_err("Can not flush read caches\n");
358                 bo->evicted = false;
359         }
360
361         if (bo->mem.mm_node) {
362                 bo->offset = (bo->mem.start << PAGE_SHIFT) +
363                     bdev->man[bo->mem.mem_type].gpu_offset;
364                 bo->cur_placement = bo->mem.placement;
365         } else
366                 bo->offset = 0;
367
368         return 0;
369
370 out_err:
371         new_man = &bdev->man[bo->mem.mem_type];
372         if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
373                 ttm_tt_unbind(bo->ttm);
374                 ttm_tt_destroy(bo->ttm);
375                 bo->ttm = NULL;
376         }
377
378         return ret;
379 }
380
381 /**
382  * Call bo::reserved.
383  * Will release GPU memory type usage on destruction.
384  * This is the place to put in driver specific hooks to release
385  * driver private resources.
386  * Will release the bo::reserved lock.
387  */
388
389 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
390 {
391         if (bo->bdev->driver->move_notify)
392                 bo->bdev->driver->move_notify(bo, NULL);
393
394         if (bo->ttm) {
395                 ttm_tt_unbind(bo->ttm);
396                 ttm_tt_destroy(bo->ttm);
397                 bo->ttm = NULL;
398         }
399         ttm_bo_mem_put(bo, &bo->mem);
400
401         ww_mutex_unlock (&bo->resv->lock);
402 }
403
404 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
405 {
406         struct ttm_bo_device *bdev = bo->bdev;
407         struct ttm_bo_global *glob = bo->glob;
408         struct ttm_bo_driver *driver = bdev->driver;
409         void *sync_obj = NULL;
410         int put_count;
411         int ret;
412
413         spin_lock(&glob->lru_lock);
414         ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
415
416         spin_lock(&bdev->fence_lock);
417         (void) ttm_bo_wait(bo, false, false, true);
418         if (!ret && !bo->sync_obj) {
419                 spin_unlock(&bdev->fence_lock);
420                 put_count = ttm_bo_del_from_lru(bo);
421
422                 spin_unlock(&glob->lru_lock);
423                 ttm_bo_cleanup_memtype_use(bo);
424
425                 ttm_bo_list_ref_sub(bo, put_count, true);
426
427                 return;
428         }
429         if (bo->sync_obj)
430                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
431         spin_unlock(&bdev->fence_lock);
432
433         if (!ret)
434                 ww_mutex_unlock(&bo->resv->lock);
435
436         kref_get(&bo->list_kref);
437         list_add_tail(&bo->ddestroy, &bdev->ddestroy);
438         spin_unlock(&glob->lru_lock);
439
440         if (sync_obj) {
441                 driver->sync_obj_flush(sync_obj);
442                 driver->sync_obj_unref(&sync_obj);
443         }
444         schedule_delayed_work(&bdev->wq,
445                               ((HZ / 100) < 1) ? 1 : HZ / 100);
446 }
447
448 /**
449  * function ttm_bo_cleanup_refs_and_unlock
450  * If bo idle, remove from delayed- and lru lists, and unref.
451  * If not idle, do nothing.
452  *
453  * Must be called with lru_lock and reservation held, this function
454  * will drop both before returning.
455  *
456  * @interruptible         Any sleeps should occur interruptibly.
457  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
458  */
459
460 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
461                                           bool interruptible,
462                                           bool no_wait_gpu)
463 {
464         struct ttm_bo_device *bdev = bo->bdev;
465         struct ttm_bo_driver *driver = bdev->driver;
466         struct ttm_bo_global *glob = bo->glob;
467         int put_count;
468         int ret;
469
470         spin_lock(&bdev->fence_lock);
471         ret = ttm_bo_wait(bo, false, false, true);
472
473         if (ret && !no_wait_gpu) {
474                 void *sync_obj;
475
476                 /*
477                  * Take a reference to the fence and unreserve,
478                  * at this point the buffer should be dead, so
479                  * no new sync objects can be attached.
480                  */
481                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
482                 spin_unlock(&bdev->fence_lock);
483
484                 ww_mutex_unlock(&bo->resv->lock);
485                 spin_unlock(&glob->lru_lock);
486
487                 ret = driver->sync_obj_wait(sync_obj, false, interruptible);
488                 driver->sync_obj_unref(&sync_obj);
489                 if (ret)
490                         return ret;
491
492                 /*
493                  * remove sync_obj with ttm_bo_wait, the wait should be
494                  * finished, and no new wait object should have been added.
495                  */
496                 spin_lock(&bdev->fence_lock);
497                 ret = ttm_bo_wait(bo, false, false, true);
498                 WARN_ON(ret);
499                 spin_unlock(&bdev->fence_lock);
500                 if (ret)
501                         return ret;
502
503                 spin_lock(&glob->lru_lock);
504                 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
505
506                 /*
507                  * We raced, and lost, someone else holds the reservation now,
508                  * and is probably busy in ttm_bo_cleanup_memtype_use.
509                  *
510                  * Even if it's not the case, because we finished waiting any
511                  * delayed destruction would succeed, so just return success
512                  * here.
513                  */
514                 if (ret) {
515                         spin_unlock(&glob->lru_lock);
516                         return 0;
517                 }
518         } else
519                 spin_unlock(&bdev->fence_lock);
520
521         if (ret || unlikely(list_empty(&bo->ddestroy))) {
522                 ww_mutex_unlock(&bo->resv->lock);
523                 spin_unlock(&glob->lru_lock);
524                 return ret;
525         }
526
527         put_count = ttm_bo_del_from_lru(bo);
528         list_del_init(&bo->ddestroy);
529         ++put_count;
530
531         spin_unlock(&glob->lru_lock);
532         ttm_bo_cleanup_memtype_use(bo);
533
534         ttm_bo_list_ref_sub(bo, put_count, true);
535
536         return 0;
537 }
538
539 /**
540  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
541  * encountered buffers.
542  */
543
544 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
545 {
546         struct ttm_bo_global *glob = bdev->glob;
547         struct ttm_buffer_object *entry = NULL;
548         int ret = 0;
549
550         spin_lock(&glob->lru_lock);
551         if (list_empty(&bdev->ddestroy))
552                 goto out_unlock;
553
554         entry = list_first_entry(&bdev->ddestroy,
555                 struct ttm_buffer_object, ddestroy);
556         kref_get(&entry->list_kref);
557
558         for (;;) {
559                 struct ttm_buffer_object *nentry = NULL;
560
561                 if (entry->ddestroy.next != &bdev->ddestroy) {
562                         nentry = list_first_entry(&entry->ddestroy,
563                                 struct ttm_buffer_object, ddestroy);
564                         kref_get(&nentry->list_kref);
565                 }
566
567                 ret = ttm_bo_reserve_nolru(entry, false, true, false, 0);
568                 if (remove_all && ret) {
569                         spin_unlock(&glob->lru_lock);
570                         ret = ttm_bo_reserve_nolru(entry, false, false,
571                                                    false, 0);
572                         spin_lock(&glob->lru_lock);
573                 }
574
575                 if (!ret)
576                         ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
577                                                              !remove_all);
578                 else
579                         spin_unlock(&glob->lru_lock);
580
581                 kref_put(&entry->list_kref, ttm_bo_release_list);
582                 entry = nentry;
583
584                 if (ret || !entry)
585                         goto out;
586
587                 spin_lock(&glob->lru_lock);
588                 if (list_empty(&entry->ddestroy))
589                         break;
590         }
591
592 out_unlock:
593         spin_unlock(&glob->lru_lock);
594 out:
595         if (entry)
596                 kref_put(&entry->list_kref, ttm_bo_release_list);
597         return ret;
598 }
599
600 static void ttm_bo_delayed_workqueue(struct work_struct *work)
601 {
602         struct ttm_bo_device *bdev =
603             container_of(work, struct ttm_bo_device, wq.work);
604
605         if (ttm_bo_delayed_delete(bdev, false)) {
606                 schedule_delayed_work(&bdev->wq,
607                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
608         }
609 }
610
611 static void ttm_bo_release(struct kref *kref)
612 {
613         struct ttm_buffer_object *bo =
614             container_of(kref, struct ttm_buffer_object, kref);
615         struct ttm_bo_device *bdev = bo->bdev;
616         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
617
618         drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node);
619         ttm_mem_io_lock(man, false);
620         ttm_mem_io_free_vm(bo);
621         ttm_mem_io_unlock(man);
622         ttm_bo_cleanup_refs_or_queue(bo);
623         kref_put(&bo->list_kref, ttm_bo_release_list);
624 }
625
626 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
627 {
628         struct ttm_buffer_object *bo = *p_bo;
629
630         *p_bo = NULL;
631         kref_put(&bo->kref, ttm_bo_release);
632 }
633 EXPORT_SYMBOL(ttm_bo_unref);
634
635 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
636 {
637         return cancel_delayed_work_sync(&bdev->wq);
638 }
639 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
640
641 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
642 {
643         if (resched)
644                 schedule_delayed_work(&bdev->wq,
645                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
646 }
647 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
648
649 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
650                         bool no_wait_gpu)
651 {
652         struct ttm_bo_device *bdev = bo->bdev;
653         struct ttm_mem_reg evict_mem;
654         struct ttm_placement placement;
655         int ret = 0;
656
657         spin_lock(&bdev->fence_lock);
658         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
659         spin_unlock(&bdev->fence_lock);
660
661         if (unlikely(ret != 0)) {
662                 if (ret != -ERESTARTSYS) {
663                         pr_err("Failed to expire sync object before buffer eviction\n");
664                 }
665                 goto out;
666         }
667
668         lockdep_assert_held(&bo->resv->lock.base);
669
670         evict_mem = bo->mem;
671         evict_mem.mm_node = NULL;
672         evict_mem.bus.io_reserved_vm = false;
673         evict_mem.bus.io_reserved_count = 0;
674
675         placement.fpfn = 0;
676         placement.lpfn = 0;
677         placement.num_placement = 0;
678         placement.num_busy_placement = 0;
679         bdev->driver->evict_flags(bo, &placement);
680         ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
681                                 no_wait_gpu);
682         if (ret) {
683                 if (ret != -ERESTARTSYS) {
684                         pr_err("Failed to find memory space for buffer 0x%p eviction\n",
685                                bo);
686                         ttm_bo_mem_space_debug(bo, &placement);
687                 }
688                 goto out;
689         }
690
691         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
692                                      no_wait_gpu);
693         if (ret) {
694                 if (ret != -ERESTARTSYS)
695                         pr_err("Buffer eviction failed\n");
696                 ttm_bo_mem_put(bo, &evict_mem);
697                 goto out;
698         }
699         bo->evicted = true;
700 out:
701         return ret;
702 }
703
704 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
705                                 uint32_t mem_type,
706                                 bool interruptible,
707                                 bool no_wait_gpu)
708 {
709         struct ttm_bo_global *glob = bdev->glob;
710         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
711         struct ttm_buffer_object *bo;
712         int ret = -EBUSY, put_count;
713
714         spin_lock(&glob->lru_lock);
715         list_for_each_entry(bo, &man->lru, lru) {
716                 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
717                 if (!ret)
718                         break;
719         }
720
721         if (ret) {
722                 spin_unlock(&glob->lru_lock);
723                 return ret;
724         }
725
726         kref_get(&bo->list_kref);
727
728         if (!list_empty(&bo->ddestroy)) {
729                 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
730                                                      no_wait_gpu);
731                 kref_put(&bo->list_kref, ttm_bo_release_list);
732                 return ret;
733         }
734
735         put_count = ttm_bo_del_from_lru(bo);
736         spin_unlock(&glob->lru_lock);
737
738         BUG_ON(ret != 0);
739
740         ttm_bo_list_ref_sub(bo, put_count, true);
741
742         ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
743         ttm_bo_unreserve(bo);
744
745         kref_put(&bo->list_kref, ttm_bo_release_list);
746         return ret;
747 }
748
749 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
750 {
751         struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
752
753         if (mem->mm_node)
754                 (*man->func->put_node)(man, mem);
755 }
756 EXPORT_SYMBOL(ttm_bo_mem_put);
757
758 /**
759  * Repeatedly evict memory from the LRU for @mem_type until we create enough
760  * space, or we've evicted everything and there isn't enough space.
761  */
762 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
763                                         uint32_t mem_type,
764                                         struct ttm_placement *placement,
765                                         struct ttm_mem_reg *mem,
766                                         bool interruptible,
767                                         bool no_wait_gpu)
768 {
769         struct ttm_bo_device *bdev = bo->bdev;
770         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
771         int ret;
772
773         do {
774                 ret = (*man->func->get_node)(man, bo, placement, mem);
775                 if (unlikely(ret != 0))
776                         return ret;
777                 if (mem->mm_node)
778                         break;
779                 ret = ttm_mem_evict_first(bdev, mem_type,
780                                           interruptible, no_wait_gpu);
781                 if (unlikely(ret != 0))
782                         return ret;
783         } while (1);
784         if (mem->mm_node == NULL)
785                 return -ENOMEM;
786         mem->mem_type = mem_type;
787         return 0;
788 }
789
790 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
791                                       uint32_t cur_placement,
792                                       uint32_t proposed_placement)
793 {
794         uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
795         uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
796
797         /**
798          * Keep current caching if possible.
799          */
800
801         if ((cur_placement & caching) != 0)
802                 result |= (cur_placement & caching);
803         else if ((man->default_caching & caching) != 0)
804                 result |= man->default_caching;
805         else if ((TTM_PL_FLAG_CACHED & caching) != 0)
806                 result |= TTM_PL_FLAG_CACHED;
807         else if ((TTM_PL_FLAG_WC & caching) != 0)
808                 result |= TTM_PL_FLAG_WC;
809         else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
810                 result |= TTM_PL_FLAG_UNCACHED;
811
812         return result;
813 }
814
815 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
816                                  uint32_t mem_type,
817                                  uint32_t proposed_placement,
818                                  uint32_t *masked_placement)
819 {
820         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
821
822         if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
823                 return false;
824
825         if ((proposed_placement & man->available_caching) == 0)
826                 return false;
827
828         cur_flags |= (proposed_placement & man->available_caching);
829
830         *masked_placement = cur_flags;
831         return true;
832 }
833
834 /**
835  * Creates space for memory region @mem according to its type.
836  *
837  * This function first searches for free space in compatible memory types in
838  * the priority order defined by the driver.  If free space isn't found, then
839  * ttm_bo_mem_force_space is attempted in priority order to evict and find
840  * space.
841  */
842 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
843                         struct ttm_placement *placement,
844                         struct ttm_mem_reg *mem,
845                         bool interruptible,
846                         bool no_wait_gpu)
847 {
848         struct ttm_bo_device *bdev = bo->bdev;
849         struct ttm_mem_type_manager *man;
850         uint32_t mem_type = TTM_PL_SYSTEM;
851         uint32_t cur_flags = 0;
852         bool type_found = false;
853         bool type_ok = false;
854         bool has_erestartsys = false;
855         int i, ret;
856
857         mem->mm_node = NULL;
858         for (i = 0; i < placement->num_placement; ++i) {
859                 ret = ttm_mem_type_from_flags(placement->placement[i],
860                                                 &mem_type);
861                 if (ret)
862                         return ret;
863                 man = &bdev->man[mem_type];
864
865                 type_ok = ttm_bo_mt_compatible(man,
866                                                 mem_type,
867                                                 placement->placement[i],
868                                                 &cur_flags);
869
870                 if (!type_ok)
871                         continue;
872
873                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
874                                                   cur_flags);
875                 /*
876                  * Use the access and other non-mapping-related flag bits from
877                  * the memory placement flags to the current flags
878                  */
879                 ttm_flag_masked(&cur_flags, placement->placement[i],
880                                 ~TTM_PL_MASK_MEMTYPE);
881
882                 if (mem_type == TTM_PL_SYSTEM)
883                         break;
884
885                 if (man->has_type && man->use_type) {
886                         type_found = true;
887                         ret = (*man->func->get_node)(man, bo, placement, mem);
888                         if (unlikely(ret))
889                                 return ret;
890                 }
891                 if (mem->mm_node)
892                         break;
893         }
894
895         if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
896                 mem->mem_type = mem_type;
897                 mem->placement = cur_flags;
898                 return 0;
899         }
900
901         if (!type_found)
902                 return -EINVAL;
903
904         for (i = 0; i < placement->num_busy_placement; ++i) {
905                 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
906                                                 &mem_type);
907                 if (ret)
908                         return ret;
909                 man = &bdev->man[mem_type];
910                 if (!man->has_type)
911                         continue;
912                 if (!ttm_bo_mt_compatible(man,
913                                                 mem_type,
914                                                 placement->busy_placement[i],
915                                                 &cur_flags))
916                         continue;
917
918                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
919                                                   cur_flags);
920                 /*
921                  * Use the access and other non-mapping-related flag bits from
922                  * the memory placement flags to the current flags
923                  */
924                 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
925                                 ~TTM_PL_MASK_MEMTYPE);
926
927
928                 if (mem_type == TTM_PL_SYSTEM) {
929                         mem->mem_type = mem_type;
930                         mem->placement = cur_flags;
931                         mem->mm_node = NULL;
932                         return 0;
933                 }
934
935                 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
936                                                 interruptible, no_wait_gpu);
937                 if (ret == 0 && mem->mm_node) {
938                         mem->placement = cur_flags;
939                         return 0;
940                 }
941                 if (ret == -ERESTARTSYS)
942                         has_erestartsys = true;
943         }
944         ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
945         return ret;
946 }
947 EXPORT_SYMBOL(ttm_bo_mem_space);
948
949 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
950                         struct ttm_placement *placement,
951                         bool interruptible,
952                         bool no_wait_gpu)
953 {
954         int ret = 0;
955         struct ttm_mem_reg mem;
956         struct ttm_bo_device *bdev = bo->bdev;
957
958         lockdep_assert_held(&bo->resv->lock.base);
959
960         /*
961          * FIXME: It's possible to pipeline buffer moves.
962          * Have the driver move function wait for idle when necessary,
963          * instead of doing it here.
964          */
965         spin_lock(&bdev->fence_lock);
966         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
967         spin_unlock(&bdev->fence_lock);
968         if (ret)
969                 return ret;
970         mem.num_pages = bo->num_pages;
971         mem.size = mem.num_pages << PAGE_SHIFT;
972         mem.page_alignment = bo->mem.page_alignment;
973         mem.bus.io_reserved_vm = false;
974         mem.bus.io_reserved_count = 0;
975         /*
976          * Determine where to move the buffer.
977          */
978         ret = ttm_bo_mem_space(bo, placement, &mem,
979                                interruptible, no_wait_gpu);
980         if (ret)
981                 goto out_unlock;
982         ret = ttm_bo_handle_move_mem(bo, &mem, false,
983                                      interruptible, no_wait_gpu);
984 out_unlock:
985         if (ret && mem.mm_node)
986                 ttm_bo_mem_put(bo, &mem);
987         return ret;
988 }
989
990 static int ttm_bo_mem_compat(struct ttm_placement *placement,
991                              struct ttm_mem_reg *mem)
992 {
993         int i;
994
995         if (mem->mm_node && placement->lpfn != 0 &&
996             (mem->start < placement->fpfn ||
997              mem->start + mem->num_pages > placement->lpfn))
998                 return -1;
999
1000         for (i = 0; i < placement->num_placement; i++) {
1001                 if ((placement->placement[i] & mem->placement &
1002                         TTM_PL_MASK_CACHING) &&
1003                         (placement->placement[i] & mem->placement &
1004                         TTM_PL_MASK_MEM))
1005                         return i;
1006         }
1007         return -1;
1008 }
1009
1010 int ttm_bo_validate(struct ttm_buffer_object *bo,
1011                         struct ttm_placement *placement,
1012                         bool interruptible,
1013                         bool no_wait_gpu)
1014 {
1015         int ret;
1016
1017         lockdep_assert_held(&bo->resv->lock.base);
1018         /* Check that range is valid */
1019         if (placement->lpfn || placement->fpfn)
1020                 if (placement->fpfn > placement->lpfn ||
1021                         (placement->lpfn - placement->fpfn) < bo->num_pages)
1022                         return -EINVAL;
1023         /*
1024          * Check whether we need to move buffer.
1025          */
1026         ret = ttm_bo_mem_compat(placement, &bo->mem);
1027         if (ret < 0) {
1028                 ret = ttm_bo_move_buffer(bo, placement, interruptible,
1029                                          no_wait_gpu);
1030                 if (ret)
1031                         return ret;
1032         } else {
1033                 /*
1034                  * Use the access and other non-mapping-related flag bits from
1035                  * the compatible memory placement flags to the active flags
1036                  */
1037                 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1038                                 ~TTM_PL_MASK_MEMTYPE);
1039         }
1040         /*
1041          * We might need to add a TTM.
1042          */
1043         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1044                 ret = ttm_bo_add_ttm(bo, true);
1045                 if (ret)
1046                         return ret;
1047         }
1048         return 0;
1049 }
1050 EXPORT_SYMBOL(ttm_bo_validate);
1051
1052 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1053                                 struct ttm_placement *placement)
1054 {
1055         BUG_ON((placement->fpfn || placement->lpfn) &&
1056                (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1057
1058         return 0;
1059 }
1060
1061 int ttm_bo_init(struct ttm_bo_device *bdev,
1062                 struct ttm_buffer_object *bo,
1063                 unsigned long size,
1064                 enum ttm_bo_type type,
1065                 struct ttm_placement *placement,
1066                 uint32_t page_alignment,
1067                 bool interruptible,
1068                 struct file *persistent_swap_storage,
1069                 size_t acc_size,
1070                 struct sg_table *sg,
1071                 void (*destroy) (struct ttm_buffer_object *))
1072 {
1073         int ret = 0;
1074         unsigned long num_pages;
1075         struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1076         bool locked;
1077
1078         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1079         if (ret) {
1080                 pr_err("Out of kernel memory\n");
1081                 if (destroy)
1082                         (*destroy)(bo);
1083                 else
1084                         kfree(bo);
1085                 return -ENOMEM;
1086         }
1087
1088         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1089         if (num_pages == 0) {
1090                 pr_err("Illegal buffer object size\n");
1091                 if (destroy)
1092                         (*destroy)(bo);
1093                 else
1094                         kfree(bo);
1095                 ttm_mem_global_free(mem_glob, acc_size);
1096                 return -EINVAL;
1097         }
1098         bo->destroy = destroy;
1099
1100         kref_init(&bo->kref);
1101         kref_init(&bo->list_kref);
1102         atomic_set(&bo->cpu_writers, 0);
1103         INIT_LIST_HEAD(&bo->lru);
1104         INIT_LIST_HEAD(&bo->ddestroy);
1105         INIT_LIST_HEAD(&bo->swap);
1106         INIT_LIST_HEAD(&bo->io_reserve_lru);
1107         bo->bdev = bdev;
1108         bo->glob = bdev->glob;
1109         bo->type = type;
1110         bo->num_pages = num_pages;
1111         bo->mem.size = num_pages << PAGE_SHIFT;
1112         bo->mem.mem_type = TTM_PL_SYSTEM;
1113         bo->mem.num_pages = bo->num_pages;
1114         bo->mem.mm_node = NULL;
1115         bo->mem.page_alignment = page_alignment;
1116         bo->mem.bus.io_reserved_vm = false;
1117         bo->mem.bus.io_reserved_count = 0;
1118         bo->priv_flags = 0;
1119         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1120         bo->persistent_swap_storage = persistent_swap_storage;
1121         bo->acc_size = acc_size;
1122         bo->sg = sg;
1123         bo->resv = &bo->ttm_resv;
1124         reservation_object_init(bo->resv);
1125         atomic_inc(&bo->glob->bo_count);
1126         drm_vma_node_reset(&bo->vma_node);
1127
1128         ret = ttm_bo_check_placement(bo, placement);
1129
1130         /*
1131          * For ttm_bo_type_device buffers, allocate
1132          * address space from the device.
1133          */
1134         if (likely(!ret) &&
1135             (bo->type == ttm_bo_type_device ||
1136              bo->type == ttm_bo_type_sg))
1137                 ret = ttm_bo_setup_vm(bo);
1138
1139         locked = ww_mutex_trylock(&bo->resv->lock);
1140         WARN_ON(!locked);
1141
1142         if (likely(!ret))
1143                 ret = ttm_bo_validate(bo, placement, interruptible, false);
1144
1145         ttm_bo_unreserve(bo);
1146
1147         if (unlikely(ret))
1148                 ttm_bo_unref(&bo);
1149
1150         return ret;
1151 }
1152 EXPORT_SYMBOL(ttm_bo_init);
1153
1154 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1155                        unsigned long bo_size,
1156                        unsigned struct_size)
1157 {
1158         unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1159         size_t size = 0;
1160
1161         size += ttm_round_pot(struct_size);
1162         size += PAGE_ALIGN(npages * sizeof(void *));
1163         size += ttm_round_pot(sizeof(struct ttm_tt));
1164         return size;
1165 }
1166 EXPORT_SYMBOL(ttm_bo_acc_size);
1167
1168 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1169                            unsigned long bo_size,
1170                            unsigned struct_size)
1171 {
1172         unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1173         size_t size = 0;
1174
1175         size += ttm_round_pot(struct_size);
1176         size += PAGE_ALIGN(npages * sizeof(void *));
1177         size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1178         size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1179         return size;
1180 }
1181 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1182
1183 int ttm_bo_create(struct ttm_bo_device *bdev,
1184                         unsigned long size,
1185                         enum ttm_bo_type type,
1186                         struct ttm_placement *placement,
1187                         uint32_t page_alignment,
1188                         bool interruptible,
1189                         struct file *persistent_swap_storage,
1190                         struct ttm_buffer_object **p_bo)
1191 {
1192         struct ttm_buffer_object *bo;
1193         size_t acc_size;
1194         int ret;
1195
1196         bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1197         if (unlikely(bo == NULL))
1198                 return -ENOMEM;
1199
1200         acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1201         ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1202                           interruptible, persistent_swap_storage, acc_size,
1203                           NULL, NULL);
1204         if (likely(ret == 0))
1205                 *p_bo = bo;
1206
1207         return ret;
1208 }
1209 EXPORT_SYMBOL(ttm_bo_create);
1210
1211 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1212                                         unsigned mem_type, bool allow_errors)
1213 {
1214         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1215         struct ttm_bo_global *glob = bdev->glob;
1216         int ret;
1217
1218         /*
1219          * Can't use standard list traversal since we're unlocking.
1220          */
1221
1222         spin_lock(&glob->lru_lock);
1223         while (!list_empty(&man->lru)) {
1224                 spin_unlock(&glob->lru_lock);
1225                 ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1226                 if (ret) {
1227                         if (allow_errors) {
1228                                 return ret;
1229                         } else {
1230                                 pr_err("Cleanup eviction failed\n");
1231                         }
1232                 }
1233                 spin_lock(&glob->lru_lock);
1234         }
1235         spin_unlock(&glob->lru_lock);
1236         return 0;
1237 }
1238
1239 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1240 {
1241         struct ttm_mem_type_manager *man;
1242         int ret = -EINVAL;
1243
1244         if (mem_type >= TTM_NUM_MEM_TYPES) {
1245                 pr_err("Illegal memory type %d\n", mem_type);
1246                 return ret;
1247         }
1248         man = &bdev->man[mem_type];
1249
1250         if (!man->has_type) {
1251                 pr_err("Trying to take down uninitialized memory manager type %u\n",
1252                        mem_type);
1253                 return ret;
1254         }
1255
1256         man->use_type = false;
1257         man->has_type = false;
1258
1259         ret = 0;
1260         if (mem_type > 0) {
1261                 ttm_bo_force_list_clean(bdev, mem_type, false);
1262
1263                 ret = (*man->func->takedown)(man);
1264         }
1265
1266         return ret;
1267 }
1268 EXPORT_SYMBOL(ttm_bo_clean_mm);
1269
1270 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1271 {
1272         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1273
1274         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1275                 pr_err("Illegal memory manager memory type %u\n", mem_type);
1276                 return -EINVAL;
1277         }
1278
1279         if (!man->has_type) {
1280                 pr_err("Memory type %u has not been initialized\n", mem_type);
1281                 return 0;
1282         }
1283
1284         return ttm_bo_force_list_clean(bdev, mem_type, true);
1285 }
1286 EXPORT_SYMBOL(ttm_bo_evict_mm);
1287
1288 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1289                         unsigned long p_size)
1290 {
1291         int ret = -EINVAL;
1292         struct ttm_mem_type_manager *man;
1293
1294         BUG_ON(type >= TTM_NUM_MEM_TYPES);
1295         man = &bdev->man[type];
1296         BUG_ON(man->has_type);
1297         man->io_reserve_fastpath = true;
1298         man->use_io_reserve_lru = false;
1299         mutex_init(&man->io_reserve_mutex);
1300         INIT_LIST_HEAD(&man->io_reserve_lru);
1301
1302         ret = bdev->driver->init_mem_type(bdev, type, man);
1303         if (ret)
1304                 return ret;
1305         man->bdev = bdev;
1306
1307         ret = 0;
1308         if (type != TTM_PL_SYSTEM) {
1309                 ret = (*man->func->init)(man, p_size);
1310                 if (ret)
1311                         return ret;
1312         }
1313         man->has_type = true;
1314         man->use_type = true;
1315         man->size = p_size;
1316
1317         INIT_LIST_HEAD(&man->lru);
1318
1319         return 0;
1320 }
1321 EXPORT_SYMBOL(ttm_bo_init_mm);
1322
1323 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1324 {
1325         struct ttm_bo_global *glob =
1326                 container_of(kobj, struct ttm_bo_global, kobj);
1327
1328         ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1329         __free_page(glob->dummy_read_page);
1330         kfree(glob);
1331 }
1332
1333 void ttm_bo_global_release(struct drm_global_reference *ref)
1334 {
1335         struct ttm_bo_global *glob = ref->object;
1336
1337         kobject_del(&glob->kobj);
1338         kobject_put(&glob->kobj);
1339 }
1340 EXPORT_SYMBOL(ttm_bo_global_release);
1341
1342 int ttm_bo_global_init(struct drm_global_reference *ref)
1343 {
1344         struct ttm_bo_global_ref *bo_ref =
1345                 container_of(ref, struct ttm_bo_global_ref, ref);
1346         struct ttm_bo_global *glob = ref->object;
1347         int ret;
1348
1349         mutex_init(&glob->device_list_mutex);
1350         spin_lock_init(&glob->lru_lock);
1351         glob->mem_glob = bo_ref->mem_glob;
1352         glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1353
1354         if (unlikely(glob->dummy_read_page == NULL)) {
1355                 ret = -ENOMEM;
1356                 goto out_no_drp;
1357         }
1358
1359         INIT_LIST_HEAD(&glob->swap_lru);
1360         INIT_LIST_HEAD(&glob->device_list);
1361
1362         ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1363         ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1364         if (unlikely(ret != 0)) {
1365                 pr_err("Could not register buffer object swapout\n");
1366                 goto out_no_shrink;
1367         }
1368
1369         atomic_set(&glob->bo_count, 0);
1370
1371         ret = kobject_init_and_add(
1372                 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1373         if (unlikely(ret != 0))
1374                 kobject_put(&glob->kobj);
1375         return ret;
1376 out_no_shrink:
1377         __free_page(glob->dummy_read_page);
1378 out_no_drp:
1379         kfree(glob);
1380         return ret;
1381 }
1382 EXPORT_SYMBOL(ttm_bo_global_init);
1383
1384
1385 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1386 {
1387         int ret = 0;
1388         unsigned i = TTM_NUM_MEM_TYPES;
1389         struct ttm_mem_type_manager *man;
1390         struct ttm_bo_global *glob = bdev->glob;
1391
1392         while (i--) {
1393                 man = &bdev->man[i];
1394                 if (man->has_type) {
1395                         man->use_type = false;
1396                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1397                                 ret = -EBUSY;
1398                                 pr_err("DRM memory manager type %d is not clean\n",
1399                                        i);
1400                         }
1401                         man->has_type = false;
1402                 }
1403         }
1404
1405         mutex_lock(&glob->device_list_mutex);
1406         list_del(&bdev->device_list);
1407         mutex_unlock(&glob->device_list_mutex);
1408
1409         cancel_delayed_work_sync(&bdev->wq);
1410
1411         while (ttm_bo_delayed_delete(bdev, true))
1412                 ;
1413
1414         spin_lock(&glob->lru_lock);
1415         if (list_empty(&bdev->ddestroy))
1416                 TTM_DEBUG("Delayed destroy list was clean\n");
1417
1418         if (list_empty(&bdev->man[0].lru))
1419                 TTM_DEBUG("Swap list was clean\n");
1420         spin_unlock(&glob->lru_lock);
1421
1422         drm_vma_offset_manager_destroy(&bdev->vma_manager);
1423
1424         return ret;
1425 }
1426 EXPORT_SYMBOL(ttm_bo_device_release);
1427
1428 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1429                        struct ttm_bo_global *glob,
1430                        struct ttm_bo_driver *driver,
1431                        uint64_t file_page_offset,
1432                        bool need_dma32)
1433 {
1434         int ret = -EINVAL;
1435
1436         bdev->driver = driver;
1437
1438         memset(bdev->man, 0, sizeof(bdev->man));
1439
1440         /*
1441          * Initialize the system memory buffer type.
1442          * Other types need to be driver / IOCTL initialized.
1443          */
1444         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1445         if (unlikely(ret != 0))
1446                 goto out_no_sys;
1447
1448         drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset,
1449                                     0x10000000);
1450         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1451         INIT_LIST_HEAD(&bdev->ddestroy);
1452         bdev->dev_mapping = NULL;
1453         bdev->glob = glob;
1454         bdev->need_dma32 = need_dma32;
1455         bdev->val_seq = 0;
1456         spin_lock_init(&bdev->fence_lock);
1457         mutex_lock(&glob->device_list_mutex);
1458         list_add_tail(&bdev->device_list, &glob->device_list);
1459         mutex_unlock(&glob->device_list_mutex);
1460
1461         return 0;
1462 out_no_sys:
1463         return ret;
1464 }
1465 EXPORT_SYMBOL(ttm_bo_device_init);
1466
1467 /*
1468  * buffer object vm functions.
1469  */
1470
1471 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1472 {
1473         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1474
1475         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1476                 if (mem->mem_type == TTM_PL_SYSTEM)
1477                         return false;
1478
1479                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1480                         return false;
1481
1482                 if (mem->placement & TTM_PL_FLAG_CACHED)
1483                         return false;
1484         }
1485         return true;
1486 }
1487
1488 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1489 {
1490         struct ttm_bo_device *bdev = bo->bdev;
1491
1492         drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping);
1493         ttm_mem_io_free_vm(bo);
1494 }
1495
1496 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1497 {
1498         struct ttm_bo_device *bdev = bo->bdev;
1499         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1500
1501         ttm_mem_io_lock(man, false);
1502         ttm_bo_unmap_virtual_locked(bo);
1503         ttm_mem_io_unlock(man);
1504 }
1505
1506
1507 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1508
1509 /**
1510  * ttm_bo_setup_vm:
1511  *
1512  * @bo: the buffer to allocate address space for
1513  *
1514  * Allocate address space in the drm device so that applications
1515  * can mmap the buffer and access the contents. This only
1516  * applies to ttm_bo_type_device objects as others are not
1517  * placed in the drm device address space.
1518  */
1519
1520 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1521 {
1522         struct ttm_bo_device *bdev = bo->bdev;
1523
1524         return drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node,
1525                                   bo->mem.num_pages);
1526 }
1527
1528 int ttm_bo_wait(struct ttm_buffer_object *bo,
1529                 bool lazy, bool interruptible, bool no_wait)
1530 {
1531         struct ttm_bo_driver *driver = bo->bdev->driver;
1532         struct ttm_bo_device *bdev = bo->bdev;
1533         void *sync_obj;
1534         int ret = 0;
1535
1536         if (likely(bo->sync_obj == NULL))
1537                 return 0;
1538
1539         while (bo->sync_obj) {
1540
1541                 if (driver->sync_obj_signaled(bo->sync_obj)) {
1542                         void *tmp_obj = bo->sync_obj;
1543                         bo->sync_obj = NULL;
1544                         clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1545                         spin_unlock(&bdev->fence_lock);
1546                         driver->sync_obj_unref(&tmp_obj);
1547                         spin_lock(&bdev->fence_lock);
1548                         continue;
1549                 }
1550
1551                 if (no_wait)
1552                         return -EBUSY;
1553
1554                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1555                 spin_unlock(&bdev->fence_lock);
1556                 ret = driver->sync_obj_wait(sync_obj,
1557                                             lazy, interruptible);
1558                 if (unlikely(ret != 0)) {
1559                         driver->sync_obj_unref(&sync_obj);
1560                         spin_lock(&bdev->fence_lock);
1561                         return ret;
1562                 }
1563                 spin_lock(&bdev->fence_lock);
1564                 if (likely(bo->sync_obj == sync_obj)) {
1565                         void *tmp_obj = bo->sync_obj;
1566                         bo->sync_obj = NULL;
1567                         clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1568                                   &bo->priv_flags);
1569                         spin_unlock(&bdev->fence_lock);
1570                         driver->sync_obj_unref(&sync_obj);
1571                         driver->sync_obj_unref(&tmp_obj);
1572                         spin_lock(&bdev->fence_lock);
1573                 } else {
1574                         spin_unlock(&bdev->fence_lock);
1575                         driver->sync_obj_unref(&sync_obj);
1576                         spin_lock(&bdev->fence_lock);
1577                 }
1578         }
1579         return 0;
1580 }
1581 EXPORT_SYMBOL(ttm_bo_wait);
1582
1583 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1584 {
1585         struct ttm_bo_device *bdev = bo->bdev;
1586         int ret = 0;
1587
1588         /*
1589          * Using ttm_bo_reserve makes sure the lru lists are updated.
1590          */
1591
1592         ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1593         if (unlikely(ret != 0))
1594                 return ret;
1595         spin_lock(&bdev->fence_lock);
1596         ret = ttm_bo_wait(bo, false, true, no_wait);
1597         spin_unlock(&bdev->fence_lock);
1598         if (likely(ret == 0))
1599                 atomic_inc(&bo->cpu_writers);
1600         ttm_bo_unreserve(bo);
1601         return ret;
1602 }
1603 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1604
1605 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1606 {
1607         atomic_dec(&bo->cpu_writers);
1608 }
1609 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1610
1611 /**
1612  * A buffer object shrink method that tries to swap out the first
1613  * buffer object on the bo_global::swap_lru list.
1614  */
1615
1616 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1617 {
1618         struct ttm_bo_global *glob =
1619             container_of(shrink, struct ttm_bo_global, shrink);
1620         struct ttm_buffer_object *bo;
1621         int ret = -EBUSY;
1622         int put_count;
1623         uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1624
1625         spin_lock(&glob->lru_lock);
1626         list_for_each_entry(bo, &glob->swap_lru, swap) {
1627                 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
1628                 if (!ret)
1629                         break;
1630         }
1631
1632         if (ret) {
1633                 spin_unlock(&glob->lru_lock);
1634                 return ret;
1635         }
1636
1637         kref_get(&bo->list_kref);
1638
1639         if (!list_empty(&bo->ddestroy)) {
1640                 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1641                 kref_put(&bo->list_kref, ttm_bo_release_list);
1642                 return ret;
1643         }
1644
1645         put_count = ttm_bo_del_from_lru(bo);
1646         spin_unlock(&glob->lru_lock);
1647
1648         ttm_bo_list_ref_sub(bo, put_count, true);
1649
1650         /**
1651          * Wait for GPU, then move to system cached.
1652          */
1653
1654         spin_lock(&bo->bdev->fence_lock);
1655         ret = ttm_bo_wait(bo, false, false, false);
1656         spin_unlock(&bo->bdev->fence_lock);
1657
1658         if (unlikely(ret != 0))
1659                 goto out;
1660
1661         if ((bo->mem.placement & swap_placement) != swap_placement) {
1662                 struct ttm_mem_reg evict_mem;
1663
1664                 evict_mem = bo->mem;
1665                 evict_mem.mm_node = NULL;
1666                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1667                 evict_mem.mem_type = TTM_PL_SYSTEM;
1668
1669                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1670                                              false, false);
1671                 if (unlikely(ret != 0))
1672                         goto out;
1673         }
1674
1675         ttm_bo_unmap_virtual(bo);
1676
1677         /**
1678          * Swap out. Buffer will be swapped in again as soon as
1679          * anyone tries to access a ttm page.
1680          */
1681
1682         if (bo->bdev->driver->swap_notify)
1683                 bo->bdev->driver->swap_notify(bo);
1684
1685         ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1686 out:
1687
1688         /**
1689          *
1690          * Unreserve without putting on LRU to avoid swapping out an
1691          * already swapped buffer.
1692          */
1693
1694         ww_mutex_unlock(&bo->resv->lock);
1695         kref_put(&bo->list_kref, ttm_bo_release_list);
1696         return ret;
1697 }
1698
1699 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1700 {
1701         while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1702                 ;
1703 }
1704 EXPORT_SYMBOL(ttm_bo_swapout_all);