1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012 Avionic Design GmbH
4 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/interconnect.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/pm_domain.h>
15 #include <linux/pm_opp.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/reset.h>
19 #include <soc/tegra/common.h>
20 #include <soc/tegra/pmc.h>
22 #include <drm/drm_atomic.h>
23 #include <drm/drm_atomic_helper.h>
24 #include <drm/drm_debugfs.h>
25 #include <drm/drm_fourcc.h>
26 #include <drm/drm_plane_helper.h>
27 #include <drm/drm_vblank.h>
35 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
36 struct drm_crtc_state *state);
38 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
46 /* Reads the active copy of a register. */
47 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
51 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
52 value = tegra_dc_readl(dc, offset);
53 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
58 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
61 if (offset >= 0x500 && offset <= 0x638) {
62 offset = 0x000 + (offset - 0x500);
63 return plane->offset + offset;
66 if (offset >= 0x700 && offset <= 0x719) {
67 offset = 0x180 + (offset - 0x700);
68 return plane->offset + offset;
71 if (offset >= 0x800 && offset <= 0x839) {
72 offset = 0x1c0 + (offset - 0x800);
73 return plane->offset + offset;
76 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
78 return plane->offset + offset;
81 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
84 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
87 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
90 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
93 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
95 struct device_node *np = dc->dev->of_node;
96 struct of_phandle_iterator it;
99 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
100 if (it.node == dev->of_node)
107 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
108 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
109 * Latching happens mmediately if the display controller is in STOP mode or
110 * on the next frame boundary otherwise.
112 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
113 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
114 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
115 * into the ACTIVE copy, either immediately if the display controller is in
116 * STOP mode, or at the next frame boundary otherwise.
118 void tegra_dc_commit(struct tegra_dc *dc)
120 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
121 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
124 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
127 fixed20_12 outf = dfixed_init(out);
128 fixed20_12 inf = dfixed_init(in);
149 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
150 inf.full -= dfixed_const(1);
152 dda_inc = dfixed_div(inf, outf);
153 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
158 static inline u32 compute_initial_dda(unsigned int in)
160 fixed20_12 inf = dfixed_init(in);
161 return dfixed_frac(inf);
164 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
166 u32 background[3] = {
167 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
168 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
169 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
171 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
172 BLEND_COLOR_KEY_NONE;
173 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
174 struct tegra_plane_state *state;
178 /* disable blending for non-overlapping case */
179 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
180 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
182 state = to_tegra_plane_state(plane->base.state);
186 * Since custom fix-weight blending isn't utilized and weight
187 * of top window is set to max, we can enforce dependent
188 * blending which in this case results in transparent bottom
189 * window if top window is opaque and if top window enables
190 * alpha blending, then bottom window is getting alpha value
191 * of 1 minus the sum of alpha components of the overlapping
194 background[0] |= BLEND_CONTROL_DEPENDENT;
195 background[1] |= BLEND_CONTROL_DEPENDENT;
198 * The region where three windows overlap is the intersection
199 * of the two regions where two windows overlap. It contributes
200 * to the area if all of the windows on top of it have an alpha
203 switch (state->base.normalized_zpos) {
205 if (state->blending[0].alpha &&
206 state->blending[1].alpha)
207 background[2] |= BLEND_CONTROL_DEPENDENT;
211 background[2] |= BLEND_CONTROL_DEPENDENT;
216 * Enable alpha blending if pixel format has an alpha
219 foreground |= BLEND_CONTROL_ALPHA;
222 * If any of the windows on top of this window is opaque, it
223 * will completely conceal this window within that area. If
224 * top window has an alpha component, it is blended over the
227 for (i = 0; i < 2; i++) {
228 if (state->blending[i].alpha &&
229 state->blending[i].top)
230 background[i] |= BLEND_CONTROL_DEPENDENT;
233 switch (state->base.normalized_zpos) {
235 if (state->blending[0].alpha &&
236 state->blending[1].alpha)
237 background[2] |= BLEND_CONTROL_DEPENDENT;
242 * When both middle and topmost windows have an alpha,
243 * these windows a mixed together and then the result
244 * is blended over the bottom window.
246 if (state->blending[0].alpha &&
247 state->blending[0].top)
248 background[2] |= BLEND_CONTROL_ALPHA;
250 if (state->blending[1].alpha &&
251 state->blending[1].top)
252 background[2] |= BLEND_CONTROL_ALPHA;
257 switch (state->base.normalized_zpos) {
259 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
260 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
261 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
266 * If window B / C is topmost, then X / Y registers are
267 * matching the order of blending[...] state indices,
268 * otherwise a swap is required.
270 if (!state->blending[0].top && state->blending[1].top) {
271 blending[0] = foreground;
272 blending[1] = background[1];
274 blending[0] = background[0];
275 blending[1] = foreground;
278 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
279 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
280 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
284 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
285 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
286 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
291 static void tegra_plane_setup_blending(struct tegra_plane *plane,
292 const struct tegra_dc_window *window)
296 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
297 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
298 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
299 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
301 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
302 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
303 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
304 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
306 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
307 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
311 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
312 const struct tegra_dc_window *window)
314 struct tegra_dc *dc = plane->dc;
316 if (window->src.w == window->dst.w)
319 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
326 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
327 const struct tegra_dc_window *window)
329 struct tegra_dc *dc = plane->dc;
331 if (window->src.h == window->dst.h)
334 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
337 if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
343 static void tegra_dc_setup_window(struct tegra_plane *plane,
344 const struct tegra_dc_window *window)
346 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
347 struct tegra_dc *dc = plane->dc;
353 * For YUV planar modes, the number of bytes per pixel takes into
354 * account only the luma component and therefore is 1.
356 yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL);
358 bpp = window->bits_per_pixel / 8;
360 bpp = (planes > 1) ? 1 : 2;
362 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
363 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
365 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
366 tegra_plane_writel(plane, value, DC_WIN_POSITION);
368 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
369 tegra_plane_writel(plane, value, DC_WIN_SIZE);
371 h_offset = window->src.x * bpp;
372 v_offset = window->src.y;
373 h_size = window->src.w * bpp;
374 v_size = window->src.h;
376 if (window->reflect_x)
377 h_offset += (window->src.w - 1) * bpp;
379 if (window->reflect_y)
380 v_offset += window->src.h - 1;
382 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
383 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
386 * For DDA computations the number of bytes per pixel for YUV planar
387 * modes needs to take into account all Y, U and V components.
389 if (yuv && planes > 1)
392 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
393 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
395 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
396 tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
398 h_dda = compute_initial_dda(window->src.x);
399 v_dda = compute_initial_dda(window->src.y);
401 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
402 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
404 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
405 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
407 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
409 if (yuv && planes > 1) {
410 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
413 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
415 value = window->stride[1] << 16 | window->stride[0];
416 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
418 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
421 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
422 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
424 if (dc->soc->supports_block_linear) {
425 unsigned long height = window->tiling.value;
427 switch (window->tiling.mode) {
428 case TEGRA_BO_TILING_MODE_PITCH:
429 value = DC_WINBUF_SURFACE_KIND_PITCH;
432 case TEGRA_BO_TILING_MODE_TILED:
433 value = DC_WINBUF_SURFACE_KIND_TILED;
436 case TEGRA_BO_TILING_MODE_BLOCK:
437 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
438 DC_WINBUF_SURFACE_KIND_BLOCK;
442 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
444 switch (window->tiling.mode) {
445 case TEGRA_BO_TILING_MODE_PITCH:
446 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
447 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
450 case TEGRA_BO_TILING_MODE_TILED:
451 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
452 DC_WIN_BUFFER_ADDR_MODE_TILE;
455 case TEGRA_BO_TILING_MODE_BLOCK:
457 * No need to handle this here because ->atomic_check
458 * will already have filtered it out.
463 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
469 /* setup default colorspace conversion coefficients */
470 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
471 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
472 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
473 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
474 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
475 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
476 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
477 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
480 } else if (window->bits_per_pixel < 24) {
481 value |= COLOR_EXPAND;
484 if (window->reflect_x)
485 value |= H_DIRECTION;
487 if (window->reflect_y)
488 value |= V_DIRECTION;
490 if (tegra_plane_use_horizontal_filtering(plane, window)) {
492 * Enable horizontal 6-tap filter and set filtering
493 * coefficients to the default values defined in TRM.
495 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
496 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
497 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
498 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
499 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
500 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
501 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
502 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
503 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
504 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
505 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
506 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
507 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
508 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
509 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
510 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
515 if (tegra_plane_use_vertical_filtering(plane, window)) {
519 * Enable vertical 2-tap filter and set filtering
520 * coefficients to the default values defined in TRM.
522 for (i = 0, k = 128; i < 16; i++, k -= 8)
523 tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
528 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
530 if (dc->soc->has_legacy_blending)
531 tegra_plane_setup_blending_legacy(plane);
533 tegra_plane_setup_blending(plane, window);
536 static const u32 tegra20_primary_formats[] = {
543 /* non-native formats */
550 static const u64 tegra20_modifiers[] = {
551 DRM_FORMAT_MOD_LINEAR,
552 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
553 DRM_FORMAT_MOD_INVALID
556 static const u32 tegra114_primary_formats[] = {
563 /* new on Tegra114 */
578 static const u32 tegra124_primary_formats[] = {
585 /* new on Tegra114 */
598 /* new on Tegra124 */
603 static const u64 tegra124_modifiers[] = {
604 DRM_FORMAT_MOD_LINEAR,
605 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
606 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
607 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
608 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
609 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
610 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
611 DRM_FORMAT_MOD_INVALID
614 static int tegra_plane_atomic_check(struct drm_plane *plane,
615 struct drm_atomic_state *state)
617 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
619 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
620 unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
623 unsigned int rotation = new_plane_state->rotation;
624 struct tegra_bo_tiling *tiling = &plane_state->tiling;
625 struct tegra_plane *tegra = to_tegra_plane(plane);
626 struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
629 plane_state->peak_memory_bandwidth = 0;
630 plane_state->avg_memory_bandwidth = 0;
632 /* no need for further checks if the plane is being disabled */
633 if (!new_plane_state->crtc) {
634 plane_state->total_peak_memory_bandwidth = 0;
638 err = tegra_plane_format(new_plane_state->fb->format->format,
639 &plane_state->format,
645 * Tegra20 and Tegra30 are special cases here because they support
646 * only variants of specific formats with an alpha component, but not
647 * the corresponding opaque formats. However, the opaque formats can
648 * be emulated by disabling alpha blending for the plane.
650 if (dc->soc->has_legacy_blending) {
651 err = tegra_plane_setup_legacy_state(tegra, plane_state);
656 err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
660 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
661 !dc->soc->supports_block_linear) {
662 DRM_ERROR("hardware doesn't support block linear mode\n");
667 * Older userspace used custom BO flag in order to specify the Y
668 * reflection, while modern userspace uses the generic DRM rotation
669 * property in order to achieve the same result. The legacy BO flag
670 * duplicates the DRM rotation property when both are set.
672 if (tegra_fb_is_bottom_up(new_plane_state->fb))
673 rotation |= DRM_MODE_REFLECT_Y;
675 rotation = drm_rotation_simplify(rotation, supported_rotation);
677 if (rotation & DRM_MODE_REFLECT_X)
678 plane_state->reflect_x = true;
680 plane_state->reflect_x = false;
682 if (rotation & DRM_MODE_REFLECT_Y)
683 plane_state->reflect_y = true;
685 plane_state->reflect_y = false;
688 * Tegra doesn't support different strides for U and V planes so we
689 * error out if the user tries to display a framebuffer with such a
692 if (new_plane_state->fb->format->num_planes > 2) {
693 if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
694 DRM_ERROR("unsupported UV-plane configuration\n");
699 err = tegra_plane_state_add(tegra, new_plane_state);
706 static void tegra_plane_atomic_disable(struct drm_plane *plane,
707 struct drm_atomic_state *state)
709 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
711 struct tegra_plane *p = to_tegra_plane(plane);
714 /* rien ne va plus */
715 if (!old_state || !old_state->crtc)
718 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
719 value &= ~WIN_ENABLE;
720 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
723 static void tegra_plane_atomic_update(struct drm_plane *plane,
724 struct drm_atomic_state *state)
726 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
728 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
729 struct drm_framebuffer *fb = new_state->fb;
730 struct tegra_plane *p = to_tegra_plane(plane);
731 struct tegra_dc_window window;
734 /* rien ne va plus */
735 if (!new_state->crtc || !new_state->fb)
738 if (!new_state->visible)
739 return tegra_plane_atomic_disable(plane, state);
741 memset(&window, 0, sizeof(window));
742 window.src.x = new_state->src.x1 >> 16;
743 window.src.y = new_state->src.y1 >> 16;
744 window.src.w = drm_rect_width(&new_state->src) >> 16;
745 window.src.h = drm_rect_height(&new_state->src) >> 16;
746 window.dst.x = new_state->dst.x1;
747 window.dst.y = new_state->dst.y1;
748 window.dst.w = drm_rect_width(&new_state->dst);
749 window.dst.h = drm_rect_height(&new_state->dst);
750 window.bits_per_pixel = fb->format->cpp[0] * 8;
751 window.reflect_x = tegra_plane_state->reflect_x;
752 window.reflect_y = tegra_plane_state->reflect_y;
754 /* copy from state */
755 window.zpos = new_state->normalized_zpos;
756 window.tiling = tegra_plane_state->tiling;
757 window.format = tegra_plane_state->format;
758 window.swap = tegra_plane_state->swap;
760 for (i = 0; i < fb->format->num_planes; i++) {
761 window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
764 * Tegra uses a shared stride for UV planes. Framebuffers are
765 * already checked for this in the tegra_plane_atomic_check()
766 * function, so it's safe to ignore the V-plane pitch here.
769 window.stride[i] = fb->pitches[i];
772 tegra_dc_setup_window(p, &window);
775 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
776 .prepare_fb = tegra_plane_prepare_fb,
777 .cleanup_fb = tegra_plane_cleanup_fb,
778 .atomic_check = tegra_plane_atomic_check,
779 .atomic_disable = tegra_plane_atomic_disable,
780 .atomic_update = tegra_plane_atomic_update,
783 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
786 * Ideally this would use drm_crtc_mask(), but that would require the
787 * CRTC to already be in the mode_config's list of CRTCs. However, it
788 * will only be added to that list in the drm_crtc_init_with_planes()
789 * (in tegra_dc_init()), which in turn requires registration of these
790 * planes. So we have ourselves a nice little chicken and egg problem
793 * We work around this by manually creating the mask from the number
794 * of CRTCs that have been registered, and should therefore always be
795 * the same as drm_crtc_index() after registration.
797 return 1 << drm->mode_config.num_crtc;
800 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
803 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
804 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
805 struct tegra_plane *plane;
806 unsigned int num_formats;
807 const u64 *modifiers;
811 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
813 return ERR_PTR(-ENOMEM);
815 /* Always use window A as primary window */
816 plane->offset = 0xa00;
820 num_formats = dc->soc->num_primary_formats;
821 formats = dc->soc->primary_formats;
822 modifiers = dc->soc->modifiers;
824 err = tegra_plane_interconnect_init(plane);
830 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
831 &tegra_plane_funcs, formats,
832 num_formats, modifiers, type, NULL);
838 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
839 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
841 err = drm_plane_create_rotation_property(&plane->base,
844 DRM_MODE_ROTATE_180 |
848 dev_err(dc->dev, "failed to create rotation property: %d\n",
854 static const u32 tegra_legacy_cursor_plane_formats[] = {
858 static const u32 tegra_cursor_plane_formats[] = {
862 static int tegra_cursor_atomic_check(struct drm_plane *plane,
863 struct drm_atomic_state *state)
865 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
867 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
868 struct tegra_plane *tegra = to_tegra_plane(plane);
871 plane_state->peak_memory_bandwidth = 0;
872 plane_state->avg_memory_bandwidth = 0;
874 /* no need for further checks if the plane is being disabled */
875 if (!new_plane_state->crtc) {
876 plane_state->total_peak_memory_bandwidth = 0;
880 /* scaling not supported for cursor */
881 if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
882 (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
885 /* only square cursors supported */
886 if (new_plane_state->src_w != new_plane_state->src_h)
889 if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
890 new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
893 err = tegra_plane_state_add(tegra, new_plane_state);
900 static void __tegra_cursor_atomic_update(struct drm_plane *plane,
901 struct drm_plane_state *new_state)
903 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
904 struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
905 struct tegra_drm *tegra = plane->dev->dev_private;
906 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
907 u64 dma_mask = *dc->dev->dma_mask;
912 /* rien ne va plus */
913 if (!new_state->crtc || !new_state->fb)
917 * Legacy display supports hardware clipping of the cursor, but
918 * nvdisplay relies on software to clip the cursor to the screen.
920 if (!dc->soc->has_nvdisplay)
921 value |= CURSOR_CLIP_DISPLAY;
923 switch (new_state->crtc_w) {
925 value |= CURSOR_SIZE_32x32;
929 value |= CURSOR_SIZE_64x64;
933 value |= CURSOR_SIZE_128x128;
937 value |= CURSOR_SIZE_256x256;
941 WARN(1, "cursor size %ux%u not supported\n",
942 new_state->crtc_w, new_state->crtc_h);
946 value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
947 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
949 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
950 value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
951 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
954 /* enable cursor and set blend mode */
955 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
956 value |= CURSOR_ENABLE;
957 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
959 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
960 value &= ~CURSOR_DST_BLEND_MASK;
961 value &= ~CURSOR_SRC_BLEND_MASK;
963 if (dc->soc->has_nvdisplay)
964 value &= ~CURSOR_COMPOSITION_MODE_XOR;
966 value |= CURSOR_MODE_NORMAL;
968 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
969 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
970 value |= CURSOR_ALPHA;
971 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
973 /* nvdisplay relies on software for clipping */
974 if (dc->soc->has_nvdisplay) {
977 x = new_state->dst.x1;
978 y = new_state->dst.y1;
980 drm_rect_fp_to_int(&src, &new_state->src);
982 value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
983 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
985 value = (drm_rect_height(&src) & tegra->vmask) << 16 |
986 (drm_rect_width(&src) & tegra->hmask);
987 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
989 x = new_state->crtc_x;
990 y = new_state->crtc_y;
993 /* position the cursor */
994 value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
995 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
998 static void tegra_cursor_atomic_update(struct drm_plane *plane,
999 struct drm_atomic_state *state)
1001 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1003 __tegra_cursor_atomic_update(plane, new_state);
1006 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
1007 struct drm_atomic_state *state)
1009 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
1011 struct tegra_dc *dc;
1014 /* rien ne va plus */
1015 if (!old_state || !old_state->crtc)
1018 dc = to_tegra_dc(old_state->crtc);
1020 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1021 value &= ~CURSOR_ENABLE;
1022 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1025 static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state)
1027 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1028 struct drm_crtc_state *crtc_state;
1029 int min_scale, max_scale;
1032 crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc);
1033 if (WARN_ON(!crtc_state))
1036 if (!crtc_state->active)
1039 if (plane->state->crtc != new_state->crtc ||
1040 plane->state->src_w != new_state->src_w ||
1041 plane->state->src_h != new_state->src_h ||
1042 plane->state->crtc_w != new_state->crtc_w ||
1043 plane->state->crtc_h != new_state->crtc_h ||
1044 plane->state->fb != new_state->fb ||
1045 plane->state->fb == NULL)
1048 min_scale = (1 << 16) / 8;
1049 max_scale = (8 << 16) / 1;
1051 err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
1056 if (new_state->visible != plane->state->visible)
1062 static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
1063 struct drm_atomic_state *state)
1065 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1066 struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
1068 plane->state->src_x = new_state->src_x;
1069 plane->state->src_y = new_state->src_y;
1070 plane->state->crtc_x = new_state->crtc_x;
1071 plane->state->crtc_y = new_state->crtc_y;
1073 if (new_state->visible) {
1074 struct tegra_plane *p = to_tegra_plane(plane);
1077 __tegra_cursor_atomic_update(plane, new_state);
1079 value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
1080 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1081 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1083 value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
1084 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1085 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1089 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1090 .prepare_fb = tegra_plane_prepare_fb,
1091 .cleanup_fb = tegra_plane_cleanup_fb,
1092 .atomic_check = tegra_cursor_atomic_check,
1093 .atomic_update = tegra_cursor_atomic_update,
1094 .atomic_disable = tegra_cursor_atomic_disable,
1095 .atomic_async_check = tegra_cursor_atomic_async_check,
1096 .atomic_async_update = tegra_cursor_atomic_async_update,
1099 static const uint64_t linear_modifiers[] = {
1100 DRM_FORMAT_MOD_LINEAR,
1101 DRM_FORMAT_MOD_INVALID
1104 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1105 struct tegra_dc *dc)
1107 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1108 struct tegra_plane *plane;
1109 unsigned int num_formats;
1113 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1115 return ERR_PTR(-ENOMEM);
1118 * This index is kind of fake. The cursor isn't a regular plane, but
1119 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1120 * use the same programming. Setting this fake index here allows the
1121 * code in tegra_add_plane_state() to do the right thing without the
1122 * need to special-casing the cursor plane.
1127 if (!dc->soc->has_nvdisplay) {
1128 num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1129 formats = tegra_legacy_cursor_plane_formats;
1131 err = tegra_plane_interconnect_init(plane);
1134 return ERR_PTR(err);
1137 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1138 formats = tegra_cursor_plane_formats;
1141 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1142 &tegra_plane_funcs, formats,
1143 num_formats, linear_modifiers,
1144 DRM_PLANE_TYPE_CURSOR, NULL);
1147 return ERR_PTR(err);
1150 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1151 drm_plane_create_zpos_immutable_property(&plane->base, 255);
1153 return &plane->base;
1156 static const u32 tegra20_overlay_formats[] = {
1157 DRM_FORMAT_ARGB4444,
1158 DRM_FORMAT_ARGB1555,
1160 DRM_FORMAT_RGBA5551,
1161 DRM_FORMAT_ABGR8888,
1162 DRM_FORMAT_ARGB8888,
1163 /* non-native formats */
1164 DRM_FORMAT_XRGB1555,
1165 DRM_FORMAT_RGBX5551,
1166 DRM_FORMAT_XBGR8888,
1167 DRM_FORMAT_XRGB8888,
1168 /* planar formats */
1175 static const u32 tegra114_overlay_formats[] = {
1176 DRM_FORMAT_ARGB4444,
1177 DRM_FORMAT_ARGB1555,
1179 DRM_FORMAT_RGBA5551,
1180 DRM_FORMAT_ABGR8888,
1181 DRM_FORMAT_ARGB8888,
1182 /* new on Tegra114 */
1183 DRM_FORMAT_ABGR4444,
1184 DRM_FORMAT_ABGR1555,
1185 DRM_FORMAT_BGRA5551,
1186 DRM_FORMAT_XRGB1555,
1187 DRM_FORMAT_RGBX5551,
1188 DRM_FORMAT_XBGR1555,
1189 DRM_FORMAT_BGRX5551,
1191 DRM_FORMAT_BGRA8888,
1192 DRM_FORMAT_RGBA8888,
1193 DRM_FORMAT_XRGB8888,
1194 DRM_FORMAT_XBGR8888,
1195 /* planar formats */
1200 /* semi-planar formats */
1209 static const u32 tegra124_overlay_formats[] = {
1210 DRM_FORMAT_ARGB4444,
1211 DRM_FORMAT_ARGB1555,
1213 DRM_FORMAT_RGBA5551,
1214 DRM_FORMAT_ABGR8888,
1215 DRM_FORMAT_ARGB8888,
1216 /* new on Tegra114 */
1217 DRM_FORMAT_ABGR4444,
1218 DRM_FORMAT_ABGR1555,
1219 DRM_FORMAT_BGRA5551,
1220 DRM_FORMAT_XRGB1555,
1221 DRM_FORMAT_RGBX5551,
1222 DRM_FORMAT_XBGR1555,
1223 DRM_FORMAT_BGRX5551,
1225 DRM_FORMAT_BGRA8888,
1226 DRM_FORMAT_RGBA8888,
1227 DRM_FORMAT_XRGB8888,
1228 DRM_FORMAT_XBGR8888,
1229 /* new on Tegra124 */
1230 DRM_FORMAT_RGBX8888,
1231 DRM_FORMAT_BGRX8888,
1232 /* planar formats */
1237 DRM_FORMAT_YUV420, /* YU12 */
1238 DRM_FORMAT_YUV422, /* YU16 */
1239 DRM_FORMAT_YUV444, /* YU24 */
1240 /* semi-planar formats */
1249 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1250 struct tegra_dc *dc,
1254 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1255 struct tegra_plane *plane;
1256 unsigned int num_formats;
1257 enum drm_plane_type type;
1261 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1263 return ERR_PTR(-ENOMEM);
1265 plane->offset = 0xa00 + 0x200 * index;
1266 plane->index = index;
1269 num_formats = dc->soc->num_overlay_formats;
1270 formats = dc->soc->overlay_formats;
1272 err = tegra_plane_interconnect_init(plane);
1275 return ERR_PTR(err);
1279 type = DRM_PLANE_TYPE_OVERLAY;
1281 type = DRM_PLANE_TYPE_CURSOR;
1283 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1284 &tegra_plane_funcs, formats,
1285 num_formats, linear_modifiers,
1289 return ERR_PTR(err);
1292 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1293 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1295 err = drm_plane_create_rotation_property(&plane->base,
1298 DRM_MODE_ROTATE_180 |
1299 DRM_MODE_REFLECT_X |
1300 DRM_MODE_REFLECT_Y);
1302 dev_err(dc->dev, "failed to create rotation property: %d\n",
1305 return &plane->base;
1308 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1309 struct tegra_dc *dc)
1311 struct drm_plane *plane, *primary = NULL;
1314 for (i = 0; i < dc->soc->num_wgrps; i++) {
1315 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1317 if (wgrp->dc == dc->pipe) {
1318 for (j = 0; j < wgrp->num_windows; j++) {
1319 unsigned int index = wgrp->windows[j];
1321 plane = tegra_shared_plane_create(drm, dc,
1328 * Choose the first shared plane owned by this
1329 * head as the primary plane.
1332 plane->type = DRM_PLANE_TYPE_PRIMARY;
1342 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1343 struct tegra_dc *dc)
1345 struct drm_plane *planes[2], *primary;
1346 unsigned int planes_num;
1350 primary = tegra_primary_plane_create(drm, dc);
1351 if (IS_ERR(primary))
1354 if (dc->soc->supports_cursor)
1359 for (i = 0; i < planes_num; i++) {
1360 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1362 if (IS_ERR(planes[i])) {
1363 err = PTR_ERR(planes[i]);
1366 planes[i]->funcs->destroy(planes[i]);
1368 primary->funcs->destroy(primary);
1369 return ERR_PTR(err);
1376 static void tegra_dc_destroy(struct drm_crtc *crtc)
1378 drm_crtc_cleanup(crtc);
1381 static void tegra_crtc_reset(struct drm_crtc *crtc)
1383 struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1386 tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1388 __drm_atomic_helper_crtc_reset(crtc, &state->base);
1391 static struct drm_crtc_state *
1392 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1394 struct tegra_dc_state *state = to_dc_state(crtc->state);
1395 struct tegra_dc_state *copy;
1397 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1401 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base);
1402 copy->clk = state->clk;
1403 copy->pclk = state->pclk;
1404 copy->div = state->div;
1405 copy->planes = state->planes;
1410 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1411 struct drm_crtc_state *state)
1413 __drm_atomic_helper_crtc_destroy_state(state);
1417 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1419 static const struct debugfs_reg32 tegra_dc_regs[] = {
1420 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1421 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1422 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1423 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1424 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1425 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1426 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1427 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1428 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1429 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1430 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1431 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1432 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1433 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1434 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1435 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1436 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1437 DEBUGFS_REG32(DC_CMD_INT_STATUS),
1438 DEBUGFS_REG32(DC_CMD_INT_MASK),
1439 DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1440 DEBUGFS_REG32(DC_CMD_INT_TYPE),
1441 DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1442 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1443 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1444 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1445 DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1446 DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1447 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1448 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1449 DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1450 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1451 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1452 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1453 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1454 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1455 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1456 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1457 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1458 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1459 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1460 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1461 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1462 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1463 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1464 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1465 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1466 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1467 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1468 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1469 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1470 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1471 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1472 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1473 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1474 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1475 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1476 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1477 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1478 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1479 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1480 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1481 DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1482 DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1483 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1484 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1485 DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1486 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1487 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1488 DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1489 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1490 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1491 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1492 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1493 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1494 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1495 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1496 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1497 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1498 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1499 DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1500 DEBUGFS_REG32(DC_DISP_ACTIVE),
1501 DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1502 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1503 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1504 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1505 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1506 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1507 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1508 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1509 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1510 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1511 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1512 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1513 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1514 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1515 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1516 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1517 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1518 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1519 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1520 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1521 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1522 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1523 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1524 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1525 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1526 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1527 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1528 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1529 DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1530 DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1531 DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1532 DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1533 DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1534 DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1535 DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1536 DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1537 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1538 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1539 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1540 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1541 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1542 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1543 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1544 DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1545 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1546 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1547 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1548 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1549 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1550 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1551 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1552 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1553 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1554 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1555 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1556 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1557 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1558 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1559 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1560 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1561 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1562 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1563 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1564 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1565 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1566 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1567 DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1568 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1569 DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1570 DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1571 DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1572 DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1573 DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1574 DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1575 DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1576 DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1577 DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1578 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1579 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1580 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1581 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1582 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1583 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1584 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1585 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1586 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1587 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1588 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1589 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1590 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1591 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1592 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1593 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1594 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1595 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1596 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1597 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1598 DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1599 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1600 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1601 DEBUGFS_REG32(DC_WIN_POSITION),
1602 DEBUGFS_REG32(DC_WIN_SIZE),
1603 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1604 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1605 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1606 DEBUGFS_REG32(DC_WIN_DDA_INC),
1607 DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1608 DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1609 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1610 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1611 DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1612 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1613 DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1614 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1615 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1616 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1617 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1618 DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1619 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1620 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1621 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1622 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1623 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1624 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1625 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1626 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1627 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1628 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1629 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1630 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1631 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1634 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1636 struct drm_info_node *node = s->private;
1637 struct tegra_dc *dc = node->info_ent->data;
1641 drm_modeset_lock(&dc->base.mutex, NULL);
1643 if (!dc->base.state->active) {
1648 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1649 unsigned int offset = tegra_dc_regs[i].offset;
1651 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1652 offset, tegra_dc_readl(dc, offset));
1656 drm_modeset_unlock(&dc->base.mutex);
1660 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1662 struct drm_info_node *node = s->private;
1663 struct tegra_dc *dc = node->info_ent->data;
1667 drm_modeset_lock(&dc->base.mutex, NULL);
1669 if (!dc->base.state->active) {
1674 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1675 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1676 tegra_dc_commit(dc);
1678 drm_crtc_wait_one_vblank(&dc->base);
1679 drm_crtc_wait_one_vblank(&dc->base);
1681 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1682 seq_printf(s, "%08x\n", value);
1684 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1687 drm_modeset_unlock(&dc->base.mutex);
1691 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1693 struct drm_info_node *node = s->private;
1694 struct tegra_dc *dc = node->info_ent->data;
1696 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1697 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1698 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1699 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1701 seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1702 seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1703 seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1704 seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1709 static struct drm_info_list debugfs_files[] = {
1710 { "regs", tegra_dc_show_regs, 0, NULL },
1711 { "crc", tegra_dc_show_crc, 0, NULL },
1712 { "stats", tegra_dc_show_stats, 0, NULL },
1715 static int tegra_dc_late_register(struct drm_crtc *crtc)
1717 unsigned int i, count = ARRAY_SIZE(debugfs_files);
1718 struct drm_minor *minor = crtc->dev->primary;
1719 struct dentry *root;
1720 struct tegra_dc *dc = to_tegra_dc(crtc);
1722 #ifdef CONFIG_DEBUG_FS
1723 root = crtc->debugfs_entry;
1728 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1730 if (!dc->debugfs_files)
1733 for (i = 0; i < count; i++)
1734 dc->debugfs_files[i].data = dc;
1736 drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1741 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1743 unsigned int count = ARRAY_SIZE(debugfs_files);
1744 struct drm_minor *minor = crtc->dev->primary;
1745 struct tegra_dc *dc = to_tegra_dc(crtc);
1747 drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1748 kfree(dc->debugfs_files);
1749 dc->debugfs_files = NULL;
1752 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1754 struct tegra_dc *dc = to_tegra_dc(crtc);
1756 /* XXX vblank syncpoints don't work with nvdisplay yet */
1757 if (dc->syncpt && !dc->soc->has_nvdisplay)
1758 return host1x_syncpt_read(dc->syncpt);
1760 /* fallback to software emulated VBLANK counter */
1761 return (u32)drm_crtc_vblank_count(&dc->base);
1764 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1766 struct tegra_dc *dc = to_tegra_dc(crtc);
1769 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1770 value |= VBLANK_INT;
1771 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1776 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1778 struct tegra_dc *dc = to_tegra_dc(crtc);
1781 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1782 value &= ~VBLANK_INT;
1783 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1786 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1787 .page_flip = drm_atomic_helper_page_flip,
1788 .set_config = drm_atomic_helper_set_config,
1789 .destroy = tegra_dc_destroy,
1790 .reset = tegra_crtc_reset,
1791 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1792 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1793 .late_register = tegra_dc_late_register,
1794 .early_unregister = tegra_dc_early_unregister,
1795 .get_vblank_counter = tegra_dc_get_vblank_counter,
1796 .enable_vblank = tegra_dc_enable_vblank,
1797 .disable_vblank = tegra_dc_disable_vblank,
1800 static int tegra_dc_set_timings(struct tegra_dc *dc,
1801 struct drm_display_mode *mode)
1803 unsigned int h_ref_to_sync = 1;
1804 unsigned int v_ref_to_sync = 1;
1805 unsigned long value;
1807 if (!dc->soc->has_nvdisplay) {
1808 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1810 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1811 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1814 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1815 ((mode->hsync_end - mode->hsync_start) << 0);
1816 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1818 value = ((mode->vtotal - mode->vsync_end) << 16) |
1819 ((mode->htotal - mode->hsync_end) << 0);
1820 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1822 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1823 ((mode->hsync_start - mode->hdisplay) << 0);
1824 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1826 value = (mode->vdisplay << 16) | mode->hdisplay;
1827 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1833 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1835 * @dc: display controller
1836 * @crtc_state: CRTC atomic state
1837 * @clk: parent clock for display controller
1838 * @pclk: pixel clock
1839 * @div: shift clock divider
1842 * 0 on success or a negative error-code on failure.
1844 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1845 struct drm_crtc_state *crtc_state,
1846 struct clk *clk, unsigned long pclk,
1849 struct tegra_dc_state *state = to_dc_state(crtc_state);
1851 if (!clk_has_parent(dc->clk, clk))
1861 static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
1862 struct tegra_dc_state *state)
1864 unsigned long rate, pstate;
1865 struct dev_pm_opp *opp;
1868 if (!dc->has_opp_table)
1871 /* calculate actual pixel clock rate which depends on internal divider */
1872 rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
1874 /* find suitable OPP for the rate */
1875 opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
1878 * Very high resolution modes may results in a clock rate that is
1879 * above the characterized maximum. In this case it's okay to fall
1880 * back to the characterized maximum.
1882 if (opp == ERR_PTR(-ERANGE))
1883 opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
1886 dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
1891 pstate = dev_pm_opp_get_required_pstate(opp, 0);
1892 dev_pm_opp_put(opp);
1895 * The minimum core voltage depends on the pixel clock rate (which
1896 * depends on internal clock divider of the CRTC) and not on the
1897 * rate of the display controller clock. This is why we're not using
1898 * dev_pm_opp_set_rate() API and instead controlling the power domain
1901 err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
1903 dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
1907 static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
1908 struct tegra_dc_state *state)
1912 err = clk_set_parent(dc->clk, state->clk);
1914 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1917 * Outputs may not want to change the parent clock rate. This is only
1918 * relevant to Tegra20 where only a single display PLL is available.
1919 * Since that PLL would typically be used for HDMI, an internal LVDS
1920 * panel would need to be driven by some other clock such as PLL_P
1921 * which is shared with other peripherals. Changing the clock rate
1922 * should therefore be avoided.
1924 if (state->pclk > 0) {
1925 err = clk_set_rate(state->clk, state->pclk);
1928 "failed to set clock rate to %lu Hz\n",
1931 err = clk_set_rate(dc->clk, state->pclk);
1933 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1934 dc->clk, state->pclk, err);
1937 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1939 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1941 tegra_dc_update_voltage_state(dc, state);
1944 static void tegra_dc_stop(struct tegra_dc *dc)
1948 /* stop the display controller */
1949 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1950 value &= ~DISP_CTRL_MODE_MASK;
1951 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1953 tegra_dc_commit(dc);
1956 static bool tegra_dc_idle(struct tegra_dc *dc)
1960 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1962 return (value & DISP_CTRL_MODE_MASK) == 0;
1965 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1967 timeout = jiffies + msecs_to_jiffies(timeout);
1969 while (time_before(jiffies, timeout)) {
1970 if (tegra_dc_idle(dc))
1973 usleep_range(1000, 2000);
1976 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1981 tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
1982 struct drm_atomic_state *state,
1983 bool prepare_bandwidth_transition)
1985 const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
1986 u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
1987 const struct drm_plane_state *old_plane_state;
1988 const struct drm_crtc_state *old_crtc_state;
1989 struct tegra_dc_window window, old_window;
1990 struct tegra_dc *dc = to_tegra_dc(crtc);
1991 struct tegra_plane *tegra;
1992 struct drm_plane *plane;
1994 if (dc->soc->has_nvdisplay)
1997 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
1999 if (!crtc->state->active) {
2000 if (!old_crtc_state->active)
2004 * When CRTC is disabled on DPMS, the state of attached planes
2005 * is kept unchanged. Hence we need to enforce removal of the
2006 * bandwidths from the ICC paths.
2008 drm_atomic_crtc_for_each_plane(plane, crtc) {
2009 tegra = to_tegra_plane(plane);
2011 icc_set_bw(tegra->icc_mem, 0, 0);
2012 icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2018 for_each_old_plane_in_state(old_crtc_state->state, plane,
2019 old_plane_state, i) {
2020 old_tegra_state = to_const_tegra_plane_state(old_plane_state);
2021 new_tegra_state = to_const_tegra_plane_state(plane->state);
2022 tegra = to_tegra_plane(plane);
2025 * We're iterating over the global atomic state and it contains
2026 * planes from another CRTC, hence we need to filter out the
2027 * planes unrelated to this CRTC.
2029 if (tegra->dc != dc)
2032 new_avg_bw = new_tegra_state->avg_memory_bandwidth;
2033 old_avg_bw = old_tegra_state->avg_memory_bandwidth;
2035 new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
2036 old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
2039 * See the comment related to !crtc->state->active above,
2040 * which explains why bandwidths need to be updated when
2041 * CRTC is turning ON.
2043 if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
2044 old_crtc_state->active)
2047 window.src.h = drm_rect_height(&plane->state->src) >> 16;
2048 window.dst.h = drm_rect_height(&plane->state->dst);
2050 old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
2051 old_window.dst.h = drm_rect_height(&old_plane_state->dst);
2054 * During the preparation phase (atomic_begin), the memory
2055 * freq should go high before the DC changes are committed
2056 * if bandwidth requirement goes up, otherwise memory freq
2057 * should to stay high if BW requirement goes down. The
2058 * opposite applies to the completion phase (post_commit).
2060 if (prepare_bandwidth_transition) {
2061 new_avg_bw = max(old_avg_bw, new_avg_bw);
2062 new_peak_bw = max(old_peak_bw, new_peak_bw);
2064 if (tegra_plane_use_vertical_filtering(tegra, &old_window))
2065 window = old_window;
2068 icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
2070 if (tegra_plane_use_vertical_filtering(tegra, &window))
2071 icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
2073 icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2077 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
2078 struct drm_atomic_state *state)
2080 struct tegra_dc *dc = to_tegra_dc(crtc);
2084 if (!tegra_dc_idle(dc)) {
2088 * Ignore the return value, there isn't anything useful to do
2089 * in case this fails.
2091 tegra_dc_wait_idle(dc, 100);
2095 * This should really be part of the RGB encoder driver, but clearing
2096 * these bits has the side-effect of stopping the display controller.
2097 * When that happens no VBLANK interrupts will be raised. At the same
2098 * time the encoder is disabled before the display controller, so the
2099 * above code is always going to timeout waiting for the controller
2102 * Given the close coupling between the RGB encoder and the display
2103 * controller doing it here is still kind of okay. None of the other
2104 * encoder drivers require these bits to be cleared.
2106 * XXX: Perhaps given that the display controller is switched off at
2107 * this point anyway maybe clearing these bits isn't even useful for
2111 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2112 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2113 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
2114 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2117 tegra_dc_stats_reset(&dc->stats);
2118 drm_crtc_vblank_off(crtc);
2120 spin_lock_irq(&crtc->dev->event_lock);
2122 if (crtc->state->event) {
2123 drm_crtc_send_vblank_event(crtc, crtc->state->event);
2124 crtc->state->event = NULL;
2127 spin_unlock_irq(&crtc->dev->event_lock);
2129 err = host1x_client_suspend(&dc->client);
2131 dev_err(dc->dev, "failed to suspend: %d\n", err);
2133 if (dc->has_opp_table) {
2134 err = dev_pm_genpd_set_performance_state(dc->dev, 0);
2137 "failed to clear power domain state: %d\n", err);
2141 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2142 struct drm_atomic_state *state)
2144 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2145 struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2146 struct tegra_dc *dc = to_tegra_dc(crtc);
2150 /* apply PLL changes */
2151 tegra_dc_set_clock_rate(dc, crtc_state);
2153 err = host1x_client_resume(&dc->client);
2155 dev_err(dc->dev, "failed to resume: %d\n", err);
2159 /* initialize display controller */
2161 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2163 if (dc->soc->has_nvdisplay)
2168 value = SYNCPT_CNTRL_NO_STALL;
2169 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2171 value = enable | syncpt;
2172 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2175 if (dc->soc->has_nvdisplay) {
2176 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2178 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2180 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2181 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2182 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2183 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2184 VBLANK_INT | FRAME_END_INT;
2185 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2187 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2189 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2191 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2192 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2194 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2196 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2197 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2198 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2200 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2201 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2202 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2204 /* initialize timer */
2205 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2206 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2207 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2209 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2210 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2211 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2213 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2214 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2215 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2217 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2218 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2219 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2222 if (dc->soc->supports_background_color)
2223 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2225 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2227 /* apply pixel clock changes */
2228 if (!dc->soc->has_nvdisplay) {
2229 value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
2230 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
2233 /* program display mode */
2234 tegra_dc_set_timings(dc, mode);
2236 /* interlacing isn't supported yet, so disable it */
2237 if (dc->soc->supports_interlacing) {
2238 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2239 value &= ~INTERLACE_ENABLE;
2240 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2243 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2244 value &= ~DISP_CTRL_MODE_MASK;
2245 value |= DISP_CTRL_MODE_C_DISPLAY;
2246 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2248 if (!dc->soc->has_nvdisplay) {
2249 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2250 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2251 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2252 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2255 /* enable underflow reporting and display red for missing pixels */
2256 if (dc->soc->has_nvdisplay) {
2257 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2258 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2262 /* XXX: parameterize? */
2263 value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
2264 tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
2267 tegra_dc_commit(dc);
2269 drm_crtc_vblank_on(crtc);
2272 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2273 struct drm_atomic_state *state)
2275 unsigned long flags;
2277 tegra_crtc_update_memory_bandwidth(crtc, state, true);
2279 if (crtc->state->event) {
2280 spin_lock_irqsave(&crtc->dev->event_lock, flags);
2282 if (drm_crtc_vblank_get(crtc) != 0)
2283 drm_crtc_send_vblank_event(crtc, crtc->state->event);
2285 drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2287 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2289 crtc->state->event = NULL;
2293 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2294 struct drm_atomic_state *state)
2296 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2298 struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2299 struct tegra_dc *dc = to_tegra_dc(crtc);
2302 value = dc_state->planes << 8 | GENERAL_UPDATE;
2303 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2304 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2306 value = dc_state->planes | GENERAL_ACT_REQ;
2307 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2308 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2311 static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2313 const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2314 const struct drm_format_info *fmt = state->fb->format;
2315 unsigned int src_w = drm_rect_width(&state->src) >> 16;
2316 unsigned int dst_w = drm_rect_width(&state->dst);
2318 if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2321 if (soc->supports_cursor)
2324 if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2330 static unsigned long
2331 tegra_plane_overlap_mask(struct drm_crtc_state *state,
2332 const struct drm_plane_state *plane_state)
2334 const struct drm_plane_state *other_state;
2335 const struct tegra_plane *tegra;
2336 unsigned long overlap_mask = 0;
2337 struct drm_plane *plane;
2338 struct drm_rect rect;
2340 if (!plane_state->visible || !plane_state->fb)
2344 * Data-prefetch FIFO will easily help to overcome temporal memory
2345 * pressure if other plane overlaps with the cursor plane.
2347 if (tegra_plane_is_cursor(plane_state))
2350 drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2351 rect = plane_state->dst;
2353 tegra = to_tegra_plane(other_state->plane);
2355 if (!other_state->visible || !other_state->fb)
2359 * Ignore cursor plane overlaps because it's not practical to
2360 * assume that it contributes to the bandwidth in overlapping
2361 * area if window width is small.
2363 if (tegra_plane_is_cursor(other_state))
2366 if (drm_rect_intersect(&rect, &other_state->dst))
2367 overlap_mask |= BIT(tegra->index);
2370 return overlap_mask;
2373 static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2374 struct drm_atomic_state *state)
2376 ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2377 u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2378 bool all_planes_overlap_simultaneously = true;
2379 const struct tegra_plane_state *tegra_state;
2380 const struct drm_plane_state *plane_state;
2381 struct tegra_dc *dc = to_tegra_dc(crtc);
2382 const struct drm_crtc_state *old_state;
2383 struct drm_crtc_state *new_state;
2384 struct tegra_plane *tegra;
2385 struct drm_plane *plane;
2388 * The nv-display uses shared planes. The algorithm below assumes
2389 * maximum 3 planes per-CRTC, this assumption isn't applicable to
2390 * the nv-display. Note that T124 support has additional windows,
2391 * but currently they aren't supported by the driver.
2393 if (dc->soc->has_nvdisplay)
2396 new_state = drm_atomic_get_new_crtc_state(state, crtc);
2397 old_state = drm_atomic_get_old_crtc_state(state, crtc);
2400 * For overlapping planes pixel's data is fetched for each plane at
2401 * the same time, hence bandwidths are accumulated in this case.
2402 * This needs to be taken into account for calculating total bandwidth
2403 * consumed by all planes.
2405 * Here we get the overlapping state of each plane, which is a
2406 * bitmask of plane indices telling with what planes there is an
2407 * overlap. Note that bitmask[plane] includes BIT(plane) in order
2408 * to make further code nicer and simpler.
2410 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2411 tegra_state = to_const_tegra_plane_state(plane_state);
2412 tegra = to_tegra_plane(plane);
2414 if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2417 plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2418 mask = tegra_plane_overlap_mask(new_state, plane_state);
2419 overlap_mask[tegra->index] = mask;
2421 if (hweight_long(mask) != 3)
2422 all_planes_overlap_simultaneously = false;
2426 * Then we calculate maximum bandwidth of each plane state.
2427 * The bandwidth includes the plane BW + BW of the "simultaneously"
2428 * overlapping planes, where "simultaneously" means areas where DC
2429 * fetches from the planes simultaneously during of scan-out process.
2431 * For example, if plane A overlaps with planes B and C, but B and C
2432 * don't overlap, then the peak bandwidth will be either in area where
2433 * A-and-B or A-and-C planes overlap.
2435 * The plane_peak_bw[] contains peak memory bandwidth values of
2436 * each plane, this information is needed by interconnect provider
2437 * in order to set up latency allowance based on the peak BW, see
2438 * tegra_crtc_update_memory_bandwidth().
2440 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2441 u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2444 * Note that plane's atomic check doesn't touch the
2445 * total_peak_memory_bandwidth of enabled plane, hence the
2446 * current state contains the old bandwidth state from the
2447 * previous CRTC commit.
2449 tegra_state = to_const_tegra_plane_state(plane_state);
2450 tegra = to_tegra_plane(plane);
2452 for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2453 if (i == tegra->index)
2456 if (all_planes_overlap_simultaneously)
2457 overlap_bw += plane_peak_bw[i];
2459 overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2462 new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2463 old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2466 * If plane's peak bandwidth changed (for example plane isn't
2467 * overlapped anymore) and plane isn't in the atomic state,
2468 * then add plane to the state in order to have the bandwidth
2471 if (old_peak_bw != new_peak_bw) {
2472 struct tegra_plane_state *new_tegra_state;
2473 struct drm_plane_state *new_plane_state;
2475 new_plane_state = drm_atomic_get_plane_state(state, plane);
2476 if (IS_ERR(new_plane_state))
2477 return PTR_ERR(new_plane_state);
2479 new_tegra_state = to_tegra_plane_state(new_plane_state);
2480 new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2487 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2488 struct drm_atomic_state *state)
2492 err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2499 void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2500 struct drm_atomic_state *state)
2503 * Display bandwidth is allowed to go down only once hardware state
2504 * is known to be armed, i.e. state was committed and VBLANK event
2507 tegra_crtc_update_memory_bandwidth(crtc, state, false);
2510 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2511 .atomic_check = tegra_crtc_atomic_check,
2512 .atomic_begin = tegra_crtc_atomic_begin,
2513 .atomic_flush = tegra_crtc_atomic_flush,
2514 .atomic_enable = tegra_crtc_atomic_enable,
2515 .atomic_disable = tegra_crtc_atomic_disable,
2518 static irqreturn_t tegra_dc_irq(int irq, void *data)
2520 struct tegra_dc *dc = data;
2521 unsigned long status;
2523 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2524 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2526 if (status & FRAME_END_INT) {
2528 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2530 dc->stats.frames_total++;
2534 if (status & VBLANK_INT) {
2536 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2538 drm_crtc_handle_vblank(&dc->base);
2539 dc->stats.vblank_total++;
2543 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2545 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2547 dc->stats.underflow_total++;
2548 dc->stats.underflow++;
2551 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2553 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2555 dc->stats.overflow_total++;
2556 dc->stats.overflow++;
2559 if (status & HEAD_UF_INT) {
2560 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2561 dc->stats.underflow_total++;
2562 dc->stats.underflow++;
2568 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2572 if (!dc->soc->wgrps)
2575 for (i = 0; i < dc->soc->num_wgrps; i++) {
2576 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2578 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2585 static int tegra_dc_early_init(struct host1x_client *client)
2587 struct drm_device *drm = dev_get_drvdata(client->host);
2588 struct tegra_drm *tegra = drm->dev_private;
2595 static int tegra_dc_init(struct host1x_client *client)
2597 struct drm_device *drm = dev_get_drvdata(client->host);
2598 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2599 struct tegra_dc *dc = host1x_client_to_dc(client);
2600 struct tegra_drm *tegra = drm->dev_private;
2601 struct drm_plane *primary = NULL;
2602 struct drm_plane *cursor = NULL;
2606 * DC has been reset by now, so VBLANK syncpoint can be released
2609 host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2612 * XXX do not register DCs with no window groups because we cannot
2613 * assign a primary plane to them, which in turn will cause KMS to
2616 if (!tegra_dc_has_window_groups(dc))
2620 * Set the display hub as the host1x client parent for the display
2621 * controller. This is needed for the runtime reference counting that
2622 * ensures the display hub is always powered when any of the display
2625 if (dc->soc->has_nvdisplay)
2626 client->parent = &tegra->hub->client;
2628 dc->syncpt = host1x_syncpt_request(client, flags);
2630 dev_warn(dc->dev, "failed to allocate syncpoint\n");
2632 err = host1x_client_iommu_attach(client);
2633 if (err < 0 && err != -ENODEV) {
2634 dev_err(client->dev, "failed to attach to domain: %d\n", err);
2639 primary = tegra_dc_add_shared_planes(drm, dc);
2641 primary = tegra_dc_add_planes(drm, dc);
2643 if (IS_ERR(primary)) {
2644 err = PTR_ERR(primary);
2648 if (dc->soc->supports_cursor) {
2649 cursor = tegra_dc_cursor_plane_create(drm, dc);
2650 if (IS_ERR(cursor)) {
2651 err = PTR_ERR(cursor);
2655 /* dedicate one overlay to mouse cursor */
2656 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2657 if (IS_ERR(cursor)) {
2658 err = PTR_ERR(cursor);
2663 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2664 &tegra_crtc_funcs, NULL);
2668 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2671 * Keep track of the minimum pitch alignment across all display
2674 if (dc->soc->pitch_align > tegra->pitch_align)
2675 tegra->pitch_align = dc->soc->pitch_align;
2677 /* track maximum resolution */
2678 if (dc->soc->has_nvdisplay)
2679 drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2681 drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2683 err = tegra_dc_rgb_init(drm, dc);
2684 if (err < 0 && err != -ENODEV) {
2685 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2689 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2690 dev_name(dc->dev), dc);
2692 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2698 * Inherit the DMA parameters (such as maximum segment size) from the
2699 * parent host1x device.
2701 client->dev->dma_parms = client->host->dma_parms;
2706 if (!IS_ERR_OR_NULL(cursor))
2707 drm_plane_cleanup(cursor);
2709 if (!IS_ERR(primary))
2710 drm_plane_cleanup(primary);
2712 host1x_client_iommu_detach(client);
2713 host1x_syncpt_put(dc->syncpt);
2718 static int tegra_dc_exit(struct host1x_client *client)
2720 struct tegra_dc *dc = host1x_client_to_dc(client);
2723 if (!tegra_dc_has_window_groups(dc))
2726 /* avoid a dangling pointer just in case this disappears */
2727 client->dev->dma_parms = NULL;
2729 devm_free_irq(dc->dev, dc->irq, dc);
2731 err = tegra_dc_rgb_exit(dc);
2733 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2737 host1x_client_iommu_detach(client);
2738 host1x_syncpt_put(dc->syncpt);
2743 static int tegra_dc_late_exit(struct host1x_client *client)
2745 struct drm_device *drm = dev_get_drvdata(client->host);
2746 struct tegra_drm *tegra = drm->dev_private;
2753 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2755 struct tegra_dc *dc = host1x_client_to_dc(client);
2756 struct device *dev = client->dev;
2759 err = reset_control_assert(dc->rst);
2761 dev_err(dev, "failed to assert reset: %d\n", err);
2765 if (dc->soc->has_powergate)
2766 tegra_powergate_power_off(dc->powergate);
2768 clk_disable_unprepare(dc->clk);
2769 pm_runtime_put_sync(dev);
2774 static int tegra_dc_runtime_resume(struct host1x_client *client)
2776 struct tegra_dc *dc = host1x_client_to_dc(client);
2777 struct device *dev = client->dev;
2780 err = pm_runtime_resume_and_get(dev);
2782 dev_err(dev, "failed to get runtime PM: %d\n", err);
2786 if (dc->soc->has_powergate) {
2787 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2790 dev_err(dev, "failed to power partition: %d\n", err);
2794 err = clk_prepare_enable(dc->clk);
2796 dev_err(dev, "failed to enable clock: %d\n", err);
2800 err = reset_control_deassert(dc->rst);
2802 dev_err(dev, "failed to deassert reset: %d\n", err);
2810 clk_disable_unprepare(dc->clk);
2812 pm_runtime_put_sync(dev);
2816 static const struct host1x_client_ops dc_client_ops = {
2817 .early_init = tegra_dc_early_init,
2818 .init = tegra_dc_init,
2819 .exit = tegra_dc_exit,
2820 .late_exit = tegra_dc_late_exit,
2821 .suspend = tegra_dc_runtime_suspend,
2822 .resume = tegra_dc_runtime_resume,
2825 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2826 .supports_background_color = false,
2827 .supports_interlacing = false,
2828 .supports_cursor = false,
2829 .supports_block_linear = false,
2830 .supports_sector_layout = false,
2831 .has_legacy_blending = true,
2833 .has_powergate = false,
2835 .has_nvdisplay = false,
2836 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2837 .primary_formats = tegra20_primary_formats,
2838 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2839 .overlay_formats = tegra20_overlay_formats,
2840 .modifiers = tegra20_modifiers,
2841 .has_win_a_without_filters = true,
2842 .has_win_b_vfilter_mem_client = true,
2843 .has_win_c_without_vert_filter = true,
2844 .plane_tiled_memory_bandwidth_x2 = false,
2845 .has_pll_d2_out0 = false,
2848 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2849 .supports_background_color = false,
2850 .supports_interlacing = false,
2851 .supports_cursor = false,
2852 .supports_block_linear = false,
2853 .supports_sector_layout = false,
2854 .has_legacy_blending = true,
2856 .has_powergate = false,
2857 .coupled_pm = false,
2858 .has_nvdisplay = false,
2859 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2860 .primary_formats = tegra20_primary_formats,
2861 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2862 .overlay_formats = tegra20_overlay_formats,
2863 .modifiers = tegra20_modifiers,
2864 .has_win_a_without_filters = false,
2865 .has_win_b_vfilter_mem_client = true,
2866 .has_win_c_without_vert_filter = false,
2867 .plane_tiled_memory_bandwidth_x2 = true,
2868 .has_pll_d2_out0 = true,
2871 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2872 .supports_background_color = false,
2873 .supports_interlacing = false,
2874 .supports_cursor = false,
2875 .supports_block_linear = false,
2876 .supports_sector_layout = false,
2877 .has_legacy_blending = true,
2879 .has_powergate = true,
2880 .coupled_pm = false,
2881 .has_nvdisplay = false,
2882 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2883 .primary_formats = tegra114_primary_formats,
2884 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2885 .overlay_formats = tegra114_overlay_formats,
2886 .modifiers = tegra20_modifiers,
2887 .has_win_a_without_filters = false,
2888 .has_win_b_vfilter_mem_client = false,
2889 .has_win_c_without_vert_filter = false,
2890 .plane_tiled_memory_bandwidth_x2 = true,
2891 .has_pll_d2_out0 = true,
2894 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2895 .supports_background_color = true,
2896 .supports_interlacing = true,
2897 .supports_cursor = true,
2898 .supports_block_linear = true,
2899 .supports_sector_layout = false,
2900 .has_legacy_blending = false,
2902 .has_powergate = true,
2903 .coupled_pm = false,
2904 .has_nvdisplay = false,
2905 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2906 .primary_formats = tegra124_primary_formats,
2907 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2908 .overlay_formats = tegra124_overlay_formats,
2909 .modifiers = tegra124_modifiers,
2910 .has_win_a_without_filters = false,
2911 .has_win_b_vfilter_mem_client = false,
2912 .has_win_c_without_vert_filter = false,
2913 .plane_tiled_memory_bandwidth_x2 = false,
2914 .has_pll_d2_out0 = true,
2917 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2918 .supports_background_color = true,
2919 .supports_interlacing = true,
2920 .supports_cursor = true,
2921 .supports_block_linear = true,
2922 .supports_sector_layout = false,
2923 .has_legacy_blending = false,
2925 .has_powergate = true,
2926 .coupled_pm = false,
2927 .has_nvdisplay = false,
2928 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2929 .primary_formats = tegra114_primary_formats,
2930 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2931 .overlay_formats = tegra114_overlay_formats,
2932 .modifiers = tegra124_modifiers,
2933 .has_win_a_without_filters = false,
2934 .has_win_b_vfilter_mem_client = false,
2935 .has_win_c_without_vert_filter = false,
2936 .plane_tiled_memory_bandwidth_x2 = false,
2937 .has_pll_d2_out0 = true,
2940 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2944 .windows = (const unsigned int[]) { 0 },
2949 .windows = (const unsigned int[]) { 1 },
2954 .windows = (const unsigned int[]) { 2 },
2959 .windows = (const unsigned int[]) { 3 },
2964 .windows = (const unsigned int[]) { 4 },
2969 .windows = (const unsigned int[]) { 5 },
2974 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2975 .supports_background_color = true,
2976 .supports_interlacing = true,
2977 .supports_cursor = true,
2978 .supports_block_linear = true,
2979 .supports_sector_layout = false,
2980 .has_legacy_blending = false,
2982 .has_powergate = false,
2983 .coupled_pm = false,
2984 .has_nvdisplay = true,
2985 .wgrps = tegra186_dc_wgrps,
2986 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2987 .plane_tiled_memory_bandwidth_x2 = false,
2988 .has_pll_d2_out0 = false,
2991 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2995 .windows = (const unsigned int[]) { 0 },
3000 .windows = (const unsigned int[]) { 1 },
3005 .windows = (const unsigned int[]) { 2 },
3010 .windows = (const unsigned int[]) { 3 },
3015 .windows = (const unsigned int[]) { 4 },
3020 .windows = (const unsigned int[]) { 5 },
3025 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
3026 .supports_background_color = true,
3027 .supports_interlacing = true,
3028 .supports_cursor = true,
3029 .supports_block_linear = true,
3030 .supports_sector_layout = true,
3031 .has_legacy_blending = false,
3033 .has_powergate = false,
3034 .coupled_pm = false,
3035 .has_nvdisplay = true,
3036 .wgrps = tegra194_dc_wgrps,
3037 .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
3038 .plane_tiled_memory_bandwidth_x2 = false,
3039 .has_pll_d2_out0 = false,
3042 static const struct of_device_id tegra_dc_of_match[] = {
3044 .compatible = "nvidia,tegra194-dc",
3045 .data = &tegra194_dc_soc_info,
3047 .compatible = "nvidia,tegra186-dc",
3048 .data = &tegra186_dc_soc_info,
3050 .compatible = "nvidia,tegra210-dc",
3051 .data = &tegra210_dc_soc_info,
3053 .compatible = "nvidia,tegra124-dc",
3054 .data = &tegra124_dc_soc_info,
3056 .compatible = "nvidia,tegra114-dc",
3057 .data = &tegra114_dc_soc_info,
3059 .compatible = "nvidia,tegra30-dc",
3060 .data = &tegra30_dc_soc_info,
3062 .compatible = "nvidia,tegra20-dc",
3063 .data = &tegra20_dc_soc_info,
3068 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
3070 static int tegra_dc_parse_dt(struct tegra_dc *dc)
3072 struct device_node *np;
3076 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
3078 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
3081 * If the nvidia,head property isn't present, try to find the
3082 * correct head number by looking up the position of this
3083 * display controller's node within the device tree. Assuming
3084 * that the nodes are ordered properly in the DTS file and
3085 * that the translation into a flattened device tree blob
3086 * preserves that ordering this will actually yield the right
3089 * If those assumptions don't hold, this will still work for
3090 * cases where only a single display controller is used.
3092 for_each_matching_node(np, tegra_dc_of_match) {
3093 if (np == dc->dev->of_node) {
3107 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
3109 struct tegra_dc *dc = dev_get_drvdata(dev);
3110 unsigned int pipe = (unsigned long)(void *)data;
3112 return dc->pipe == pipe;
3115 static int tegra_dc_couple(struct tegra_dc *dc)
3118 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
3119 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
3120 * POWER_CONTROL registers during CRTC enabling.
3122 if (dc->soc->coupled_pm && dc->pipe == 1) {
3123 struct device *companion;
3124 struct tegra_dc *parent;
3126 companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
3127 tegra_dc_match_by_pipe);
3129 return -EPROBE_DEFER;
3131 parent = dev_get_drvdata(companion);
3132 dc->client.parent = &parent->client;
3134 dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
3140 static int tegra_dc_init_opp_table(struct tegra_dc *dc)
3142 struct tegra_core_opp_params opp_params = {};
3145 err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
3146 if (err && err != -ENODEV)
3150 dc->has_opp_table = false;
3152 dc->has_opp_table = true;
3157 static int tegra_dc_probe(struct platform_device *pdev)
3159 u64 dma_mask = dma_get_mask(pdev->dev.parent);
3160 struct tegra_dc *dc;
3163 err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
3165 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
3169 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
3173 dc->soc = of_device_get_match_data(&pdev->dev);
3175 INIT_LIST_HEAD(&dc->list);
3176 dc->dev = &pdev->dev;
3178 err = tegra_dc_parse_dt(dc);
3182 err = tegra_dc_couple(dc);
3186 dc->clk = devm_clk_get(&pdev->dev, NULL);
3187 if (IS_ERR(dc->clk)) {
3188 dev_err(&pdev->dev, "failed to get clock\n");
3189 return PTR_ERR(dc->clk);
3192 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3193 if (IS_ERR(dc->rst)) {
3194 dev_err(&pdev->dev, "failed to get reset\n");
3195 return PTR_ERR(dc->rst);
3198 /* assert reset and disable clock */
3199 err = clk_prepare_enable(dc->clk);
3203 usleep_range(2000, 4000);
3205 err = reset_control_assert(dc->rst);
3209 usleep_range(2000, 4000);
3211 clk_disable_unprepare(dc->clk);
3213 if (dc->soc->has_powergate) {
3215 dc->powergate = TEGRA_POWERGATE_DIS;
3217 dc->powergate = TEGRA_POWERGATE_DISB;
3219 tegra_powergate_power_off(dc->powergate);
3222 err = tegra_dc_init_opp_table(dc);
3226 dc->regs = devm_platform_ioremap_resource(pdev, 0);
3227 if (IS_ERR(dc->regs))
3228 return PTR_ERR(dc->regs);
3230 dc->irq = platform_get_irq(pdev, 0);
3234 err = tegra_dc_rgb_probe(dc);
3235 if (err < 0 && err != -ENODEV)
3236 return dev_err_probe(&pdev->dev, err,
3237 "failed to probe RGB output\n");
3239 platform_set_drvdata(pdev, dc);
3240 pm_runtime_enable(&pdev->dev);
3242 INIT_LIST_HEAD(&dc->client.list);
3243 dc->client.ops = &dc_client_ops;
3244 dc->client.dev = &pdev->dev;
3246 err = host1x_client_register(&dc->client);
3248 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3256 pm_runtime_disable(&pdev->dev);
3257 tegra_dc_rgb_remove(dc);
3262 static int tegra_dc_remove(struct platform_device *pdev)
3264 struct tegra_dc *dc = platform_get_drvdata(pdev);
3267 err = host1x_client_unregister(&dc->client);
3269 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
3274 err = tegra_dc_rgb_remove(dc);
3276 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
3280 pm_runtime_disable(&pdev->dev);
3285 struct platform_driver tegra_dc_driver = {
3288 .of_match_table = tegra_dc_of_match,
3290 .probe = tegra_dc_probe,
3291 .remove = tegra_dc_remove,