Merge tag 'v5.18'
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / tegra / dc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/interconnect.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/pm_domain.h>
15 #include <linux/pm_opp.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/reset.h>
18
19 #include <soc/tegra/common.h>
20 #include <soc/tegra/pmc.h>
21
22 #include <drm/drm_atomic.h>
23 #include <drm/drm_atomic_helper.h>
24 #include <drm/drm_debugfs.h>
25 #include <drm/drm_fourcc.h>
26 #include <drm/drm_plane_helper.h>
27 #include <drm/drm_vblank.h>
28
29 #include "dc.h"
30 #include "drm.h"
31 #include "gem.h"
32 #include "hub.h"
33 #include "plane.h"
34
35 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
36                                             struct drm_crtc_state *state);
37
38 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
39 {
40         stats->frames = 0;
41         stats->vblank = 0;
42         stats->underflow = 0;
43         stats->overflow = 0;
44 }
45
46 /* Reads the active copy of a register. */
47 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
48 {
49         u32 value;
50
51         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
52         value = tegra_dc_readl(dc, offset);
53         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
54
55         return value;
56 }
57
58 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
59                                               unsigned int offset)
60 {
61         if (offset >= 0x500 && offset <= 0x638) {
62                 offset = 0x000 + (offset - 0x500);
63                 return plane->offset + offset;
64         }
65
66         if (offset >= 0x700 && offset <= 0x719) {
67                 offset = 0x180 + (offset - 0x700);
68                 return plane->offset + offset;
69         }
70
71         if (offset >= 0x800 && offset <= 0x839) {
72                 offset = 0x1c0 + (offset - 0x800);
73                 return plane->offset + offset;
74         }
75
76         dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
77
78         return plane->offset + offset;
79 }
80
81 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
82                                     unsigned int offset)
83 {
84         return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
85 }
86
87 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
88                                       unsigned int offset)
89 {
90         tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
91 }
92
93 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
94 {
95         struct device_node *np = dc->dev->of_node;
96         struct of_phandle_iterator it;
97         int err;
98
99         of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
100                 if (it.node == dev->of_node)
101                         return true;
102
103         return false;
104 }
105
106 /*
107  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
108  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
109  * Latching happens mmediately if the display controller is in STOP mode or
110  * on the next frame boundary otherwise.
111  *
112  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
113  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
114  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
115  * into the ACTIVE copy, either immediately if the display controller is in
116  * STOP mode, or at the next frame boundary otherwise.
117  */
118 void tegra_dc_commit(struct tegra_dc *dc)
119 {
120         tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
121         tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
122 }
123
124 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
125                                   unsigned int bpp)
126 {
127         fixed20_12 outf = dfixed_init(out);
128         fixed20_12 inf = dfixed_init(in);
129         u32 dda_inc;
130         int max;
131
132         if (v)
133                 max = 15;
134         else {
135                 switch (bpp) {
136                 case 2:
137                         max = 8;
138                         break;
139
140                 default:
141                         WARN_ON_ONCE(1);
142                         fallthrough;
143                 case 4:
144                         max = 4;
145                         break;
146                 }
147         }
148
149         outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
150         inf.full -= dfixed_const(1);
151
152         dda_inc = dfixed_div(inf, outf);
153         dda_inc = min_t(u32, dda_inc, dfixed_const(max));
154
155         return dda_inc;
156 }
157
158 static inline u32 compute_initial_dda(unsigned int in)
159 {
160         fixed20_12 inf = dfixed_init(in);
161         return dfixed_frac(inf);
162 }
163
164 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
165 {
166         u32 background[3] = {
167                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
168                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
169                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
170         };
171         u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
172                          BLEND_COLOR_KEY_NONE;
173         u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
174         struct tegra_plane_state *state;
175         u32 blending[2];
176         unsigned int i;
177
178         /* disable blending for non-overlapping case */
179         tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
180         tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
181
182         state = to_tegra_plane_state(plane->base.state);
183
184         if (state->opaque) {
185                 /*
186                  * Since custom fix-weight blending isn't utilized and weight
187                  * of top window is set to max, we can enforce dependent
188                  * blending which in this case results in transparent bottom
189                  * window if top window is opaque and if top window enables
190                  * alpha blending, then bottom window is getting alpha value
191                  * of 1 minus the sum of alpha components of the overlapping
192                  * plane.
193                  */
194                 background[0] |= BLEND_CONTROL_DEPENDENT;
195                 background[1] |= BLEND_CONTROL_DEPENDENT;
196
197                 /*
198                  * The region where three windows overlap is the intersection
199                  * of the two regions where two windows overlap. It contributes
200                  * to the area if all of the windows on top of it have an alpha
201                  * component.
202                  */
203                 switch (state->base.normalized_zpos) {
204                 case 0:
205                         if (state->blending[0].alpha &&
206                             state->blending[1].alpha)
207                                 background[2] |= BLEND_CONTROL_DEPENDENT;
208                         break;
209
210                 case 1:
211                         background[2] |= BLEND_CONTROL_DEPENDENT;
212                         break;
213                 }
214         } else {
215                 /*
216                  * Enable alpha blending if pixel format has an alpha
217                  * component.
218                  */
219                 foreground |= BLEND_CONTROL_ALPHA;
220
221                 /*
222                  * If any of the windows on top of this window is opaque, it
223                  * will completely conceal this window within that area. If
224                  * top window has an alpha component, it is blended over the
225                  * bottom window.
226                  */
227                 for (i = 0; i < 2; i++) {
228                         if (state->blending[i].alpha &&
229                             state->blending[i].top)
230                                 background[i] |= BLEND_CONTROL_DEPENDENT;
231                 }
232
233                 switch (state->base.normalized_zpos) {
234                 case 0:
235                         if (state->blending[0].alpha &&
236                             state->blending[1].alpha)
237                                 background[2] |= BLEND_CONTROL_DEPENDENT;
238                         break;
239
240                 case 1:
241                         /*
242                          * When both middle and topmost windows have an alpha,
243                          * these windows a mixed together and then the result
244                          * is blended over the bottom window.
245                          */
246                         if (state->blending[0].alpha &&
247                             state->blending[0].top)
248                                 background[2] |= BLEND_CONTROL_ALPHA;
249
250                         if (state->blending[1].alpha &&
251                             state->blending[1].top)
252                                 background[2] |= BLEND_CONTROL_ALPHA;
253                         break;
254                 }
255         }
256
257         switch (state->base.normalized_zpos) {
258         case 0:
259                 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
260                 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
261                 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
262                 break;
263
264         case 1:
265                 /*
266                  * If window B / C is topmost, then X / Y registers are
267                  * matching the order of blending[...] state indices,
268                  * otherwise a swap is required.
269                  */
270                 if (!state->blending[0].top && state->blending[1].top) {
271                         blending[0] = foreground;
272                         blending[1] = background[1];
273                 } else {
274                         blending[0] = background[0];
275                         blending[1] = foreground;
276                 }
277
278                 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
279                 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
280                 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
281                 break;
282
283         case 2:
284                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
285                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
286                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
287                 break;
288         }
289 }
290
291 static void tegra_plane_setup_blending(struct tegra_plane *plane,
292                                        const struct tegra_dc_window *window)
293 {
294         u32 value;
295
296         value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
297                 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
298                 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
299         tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
300
301         value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
302                 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
303                 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
304         tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
305
306         value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
307         tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
308 }
309
310 static bool
311 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
312                                      const struct tegra_dc_window *window)
313 {
314         struct tegra_dc *dc = plane->dc;
315
316         if (window->src.w == window->dst.w)
317                 return false;
318
319         if (plane->index == 0 && dc->soc->has_win_a_without_filters)
320                 return false;
321
322         return true;
323 }
324
325 static bool
326 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
327                                    const struct tegra_dc_window *window)
328 {
329         struct tegra_dc *dc = plane->dc;
330
331         if (window->src.h == window->dst.h)
332                 return false;
333
334         if (plane->index == 0 && dc->soc->has_win_a_without_filters)
335                 return false;
336
337         if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
338                 return false;
339
340         return true;
341 }
342
343 static void tegra_dc_setup_window(struct tegra_plane *plane,
344                                   const struct tegra_dc_window *window)
345 {
346         unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
347         struct tegra_dc *dc = plane->dc;
348         unsigned int planes;
349         u32 value;
350         bool yuv;
351
352         /*
353          * For YUV planar modes, the number of bytes per pixel takes into
354          * account only the luma component and therefore is 1.
355          */
356         yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL);
357         if (!yuv)
358                 bpp = window->bits_per_pixel / 8;
359         else
360                 bpp = (planes > 1) ? 1 : 2;
361
362         tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
363         tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
364
365         value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
366         tegra_plane_writel(plane, value, DC_WIN_POSITION);
367
368         value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
369         tegra_plane_writel(plane, value, DC_WIN_SIZE);
370
371         h_offset = window->src.x * bpp;
372         v_offset = window->src.y;
373         h_size = window->src.w * bpp;
374         v_size = window->src.h;
375
376         if (window->reflect_x)
377                 h_offset += (window->src.w - 1) * bpp;
378
379         if (window->reflect_y)
380                 v_offset += window->src.h - 1;
381
382         value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
383         tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
384
385         /*
386          * For DDA computations the number of bytes per pixel for YUV planar
387          * modes needs to take into account all Y, U and V components.
388          */
389         if (yuv && planes > 1)
390                 bpp = 2;
391
392         h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
393         v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
394
395         value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
396         tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
397
398         h_dda = compute_initial_dda(window->src.x);
399         v_dda = compute_initial_dda(window->src.y);
400
401         tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
402         tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
403
404         tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
405         tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
406
407         tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
408
409         if (yuv && planes > 1) {
410                 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
411
412                 if (planes > 2)
413                         tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
414
415                 value = window->stride[1] << 16 | window->stride[0];
416                 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
417         } else {
418                 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
419         }
420
421         tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
422         tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
423
424         if (dc->soc->supports_block_linear) {
425                 unsigned long height = window->tiling.value;
426
427                 switch (window->tiling.mode) {
428                 case TEGRA_BO_TILING_MODE_PITCH:
429                         value = DC_WINBUF_SURFACE_KIND_PITCH;
430                         break;
431
432                 case TEGRA_BO_TILING_MODE_TILED:
433                         value = DC_WINBUF_SURFACE_KIND_TILED;
434                         break;
435
436                 case TEGRA_BO_TILING_MODE_BLOCK:
437                         value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
438                                 DC_WINBUF_SURFACE_KIND_BLOCK;
439                         break;
440                 }
441
442                 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
443         } else {
444                 switch (window->tiling.mode) {
445                 case TEGRA_BO_TILING_MODE_PITCH:
446                         value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
447                                 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
448                         break;
449
450                 case TEGRA_BO_TILING_MODE_TILED:
451                         value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
452                                 DC_WIN_BUFFER_ADDR_MODE_TILE;
453                         break;
454
455                 case TEGRA_BO_TILING_MODE_BLOCK:
456                         /*
457                          * No need to handle this here because ->atomic_check
458                          * will already have filtered it out.
459                          */
460                         break;
461                 }
462
463                 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
464         }
465
466         value = WIN_ENABLE;
467
468         if (yuv) {
469                 /* setup default colorspace conversion coefficients */
470                 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
471                 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
472                 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
473                 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
474                 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
475                 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
476                 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
477                 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
478
479                 value |= CSC_ENABLE;
480         } else if (window->bits_per_pixel < 24) {
481                 value |= COLOR_EXPAND;
482         }
483
484         if (window->reflect_x)
485                 value |= H_DIRECTION;
486
487         if (window->reflect_y)
488                 value |= V_DIRECTION;
489
490         if (tegra_plane_use_horizontal_filtering(plane, window)) {
491                 /*
492                  * Enable horizontal 6-tap filter and set filtering
493                  * coefficients to the default values defined in TRM.
494                  */
495                 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
496                 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
497                 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
498                 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
499                 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
500                 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
501                 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
502                 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
503                 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
504                 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
505                 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
506                 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
507                 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
508                 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
509                 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
510                 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
511
512                 value |= H_FILTER;
513         }
514
515         if (tegra_plane_use_vertical_filtering(plane, window)) {
516                 unsigned int i, k;
517
518                 /*
519                  * Enable vertical 2-tap filter and set filtering
520                  * coefficients to the default values defined in TRM.
521                  */
522                 for (i = 0, k = 128; i < 16; i++, k -= 8)
523                         tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
524
525                 value |= V_FILTER;
526         }
527
528         tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
529
530         if (dc->soc->has_legacy_blending)
531                 tegra_plane_setup_blending_legacy(plane);
532         else
533                 tegra_plane_setup_blending(plane, window);
534 }
535
536 static const u32 tegra20_primary_formats[] = {
537         DRM_FORMAT_ARGB4444,
538         DRM_FORMAT_ARGB1555,
539         DRM_FORMAT_RGB565,
540         DRM_FORMAT_RGBA5551,
541         DRM_FORMAT_ABGR8888,
542         DRM_FORMAT_ARGB8888,
543         /* non-native formats */
544         DRM_FORMAT_XRGB1555,
545         DRM_FORMAT_RGBX5551,
546         DRM_FORMAT_XBGR8888,
547         DRM_FORMAT_XRGB8888,
548 };
549
550 static const u64 tegra20_modifiers[] = {
551         DRM_FORMAT_MOD_LINEAR,
552         DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
553         DRM_FORMAT_MOD_INVALID
554 };
555
556 static const u32 tegra114_primary_formats[] = {
557         DRM_FORMAT_ARGB4444,
558         DRM_FORMAT_ARGB1555,
559         DRM_FORMAT_RGB565,
560         DRM_FORMAT_RGBA5551,
561         DRM_FORMAT_ABGR8888,
562         DRM_FORMAT_ARGB8888,
563         /* new on Tegra114 */
564         DRM_FORMAT_ABGR4444,
565         DRM_FORMAT_ABGR1555,
566         DRM_FORMAT_BGRA5551,
567         DRM_FORMAT_XRGB1555,
568         DRM_FORMAT_RGBX5551,
569         DRM_FORMAT_XBGR1555,
570         DRM_FORMAT_BGRX5551,
571         DRM_FORMAT_BGR565,
572         DRM_FORMAT_BGRA8888,
573         DRM_FORMAT_RGBA8888,
574         DRM_FORMAT_XRGB8888,
575         DRM_FORMAT_XBGR8888,
576 };
577
578 static const u32 tegra124_primary_formats[] = {
579         DRM_FORMAT_ARGB4444,
580         DRM_FORMAT_ARGB1555,
581         DRM_FORMAT_RGB565,
582         DRM_FORMAT_RGBA5551,
583         DRM_FORMAT_ABGR8888,
584         DRM_FORMAT_ARGB8888,
585         /* new on Tegra114 */
586         DRM_FORMAT_ABGR4444,
587         DRM_FORMAT_ABGR1555,
588         DRM_FORMAT_BGRA5551,
589         DRM_FORMAT_XRGB1555,
590         DRM_FORMAT_RGBX5551,
591         DRM_FORMAT_XBGR1555,
592         DRM_FORMAT_BGRX5551,
593         DRM_FORMAT_BGR565,
594         DRM_FORMAT_BGRA8888,
595         DRM_FORMAT_RGBA8888,
596         DRM_FORMAT_XRGB8888,
597         DRM_FORMAT_XBGR8888,
598         /* new on Tegra124 */
599         DRM_FORMAT_RGBX8888,
600         DRM_FORMAT_BGRX8888,
601 };
602
603 static const u64 tegra124_modifiers[] = {
604         DRM_FORMAT_MOD_LINEAR,
605         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
606         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
607         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
608         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
609         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
610         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
611         DRM_FORMAT_MOD_INVALID
612 };
613
614 static int tegra_plane_atomic_check(struct drm_plane *plane,
615                                     struct drm_atomic_state *state)
616 {
617         struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
618                                                                                  plane);
619         struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
620         unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
621                                           DRM_MODE_REFLECT_X |
622                                           DRM_MODE_REFLECT_Y;
623         unsigned int rotation = new_plane_state->rotation;
624         struct tegra_bo_tiling *tiling = &plane_state->tiling;
625         struct tegra_plane *tegra = to_tegra_plane(plane);
626         struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
627         int err;
628
629         plane_state->peak_memory_bandwidth = 0;
630         plane_state->avg_memory_bandwidth = 0;
631
632         /* no need for further checks if the plane is being disabled */
633         if (!new_plane_state->crtc) {
634                 plane_state->total_peak_memory_bandwidth = 0;
635                 return 0;
636         }
637
638         err = tegra_plane_format(new_plane_state->fb->format->format,
639                                  &plane_state->format,
640                                  &plane_state->swap);
641         if (err < 0)
642                 return err;
643
644         /*
645          * Tegra20 and Tegra30 are special cases here because they support
646          * only variants of specific formats with an alpha component, but not
647          * the corresponding opaque formats. However, the opaque formats can
648          * be emulated by disabling alpha blending for the plane.
649          */
650         if (dc->soc->has_legacy_blending) {
651                 err = tegra_plane_setup_legacy_state(tegra, plane_state);
652                 if (err < 0)
653                         return err;
654         }
655
656         err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
657         if (err < 0)
658                 return err;
659
660         if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
661             !dc->soc->supports_block_linear) {
662                 DRM_ERROR("hardware doesn't support block linear mode\n");
663                 return -EINVAL;
664         }
665
666         /*
667          * Older userspace used custom BO flag in order to specify the Y
668          * reflection, while modern userspace uses the generic DRM rotation
669          * property in order to achieve the same result.  The legacy BO flag
670          * duplicates the DRM rotation property when both are set.
671          */
672         if (tegra_fb_is_bottom_up(new_plane_state->fb))
673                 rotation |= DRM_MODE_REFLECT_Y;
674
675         rotation = drm_rotation_simplify(rotation, supported_rotation);
676
677         if (rotation & DRM_MODE_REFLECT_X)
678                 plane_state->reflect_x = true;
679         else
680                 plane_state->reflect_x = false;
681
682         if (rotation & DRM_MODE_REFLECT_Y)
683                 plane_state->reflect_y = true;
684         else
685                 plane_state->reflect_y = false;
686
687         /*
688          * Tegra doesn't support different strides for U and V planes so we
689          * error out if the user tries to display a framebuffer with such a
690          * configuration.
691          */
692         if (new_plane_state->fb->format->num_planes > 2) {
693                 if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
694                         DRM_ERROR("unsupported UV-plane configuration\n");
695                         return -EINVAL;
696                 }
697         }
698
699         err = tegra_plane_state_add(tegra, new_plane_state);
700         if (err < 0)
701                 return err;
702
703         return 0;
704 }
705
706 static void tegra_plane_atomic_disable(struct drm_plane *plane,
707                                        struct drm_atomic_state *state)
708 {
709         struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
710                                                                            plane);
711         struct tegra_plane *p = to_tegra_plane(plane);
712         u32 value;
713
714         /* rien ne va plus */
715         if (!old_state || !old_state->crtc)
716                 return;
717
718         value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
719         value &= ~WIN_ENABLE;
720         tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
721 }
722
723 static void tegra_plane_atomic_update(struct drm_plane *plane,
724                                       struct drm_atomic_state *state)
725 {
726         struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
727                                                                            plane);
728         struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
729         struct drm_framebuffer *fb = new_state->fb;
730         struct tegra_plane *p = to_tegra_plane(plane);
731         struct tegra_dc_window window;
732         unsigned int i;
733
734         /* rien ne va plus */
735         if (!new_state->crtc || !new_state->fb)
736                 return;
737
738         if (!new_state->visible)
739                 return tegra_plane_atomic_disable(plane, state);
740
741         memset(&window, 0, sizeof(window));
742         window.src.x = new_state->src.x1 >> 16;
743         window.src.y = new_state->src.y1 >> 16;
744         window.src.w = drm_rect_width(&new_state->src) >> 16;
745         window.src.h = drm_rect_height(&new_state->src) >> 16;
746         window.dst.x = new_state->dst.x1;
747         window.dst.y = new_state->dst.y1;
748         window.dst.w = drm_rect_width(&new_state->dst);
749         window.dst.h = drm_rect_height(&new_state->dst);
750         window.bits_per_pixel = fb->format->cpp[0] * 8;
751         window.reflect_x = tegra_plane_state->reflect_x;
752         window.reflect_y = tegra_plane_state->reflect_y;
753
754         /* copy from state */
755         window.zpos = new_state->normalized_zpos;
756         window.tiling = tegra_plane_state->tiling;
757         window.format = tegra_plane_state->format;
758         window.swap = tegra_plane_state->swap;
759
760         for (i = 0; i < fb->format->num_planes; i++) {
761                 window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
762
763                 /*
764                  * Tegra uses a shared stride for UV planes. Framebuffers are
765                  * already checked for this in the tegra_plane_atomic_check()
766                  * function, so it's safe to ignore the V-plane pitch here.
767                  */
768                 if (i < 2)
769                         window.stride[i] = fb->pitches[i];
770         }
771
772         tegra_dc_setup_window(p, &window);
773 }
774
775 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
776         .prepare_fb = tegra_plane_prepare_fb,
777         .cleanup_fb = tegra_plane_cleanup_fb,
778         .atomic_check = tegra_plane_atomic_check,
779         .atomic_disable = tegra_plane_atomic_disable,
780         .atomic_update = tegra_plane_atomic_update,
781 };
782
783 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
784 {
785         /*
786          * Ideally this would use drm_crtc_mask(), but that would require the
787          * CRTC to already be in the mode_config's list of CRTCs. However, it
788          * will only be added to that list in the drm_crtc_init_with_planes()
789          * (in tegra_dc_init()), which in turn requires registration of these
790          * planes. So we have ourselves a nice little chicken and egg problem
791          * here.
792          *
793          * We work around this by manually creating the mask from the number
794          * of CRTCs that have been registered, and should therefore always be
795          * the same as drm_crtc_index() after registration.
796          */
797         return 1 << drm->mode_config.num_crtc;
798 }
799
800 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
801                                                     struct tegra_dc *dc)
802 {
803         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
804         enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
805         struct tegra_plane *plane;
806         unsigned int num_formats;
807         const u64 *modifiers;
808         const u32 *formats;
809         int err;
810
811         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
812         if (!plane)
813                 return ERR_PTR(-ENOMEM);
814
815         /* Always use window A as primary window */
816         plane->offset = 0xa00;
817         plane->index = 0;
818         plane->dc = dc;
819
820         num_formats = dc->soc->num_primary_formats;
821         formats = dc->soc->primary_formats;
822         modifiers = dc->soc->modifiers;
823
824         err = tegra_plane_interconnect_init(plane);
825         if (err) {
826                 kfree(plane);
827                 return ERR_PTR(err);
828         }
829
830         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
831                                        &tegra_plane_funcs, formats,
832                                        num_formats, modifiers, type, NULL);
833         if (err < 0) {
834                 kfree(plane);
835                 return ERR_PTR(err);
836         }
837
838         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
839         drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
840
841         err = drm_plane_create_rotation_property(&plane->base,
842                                                  DRM_MODE_ROTATE_0,
843                                                  DRM_MODE_ROTATE_0 |
844                                                  DRM_MODE_ROTATE_180 |
845                                                  DRM_MODE_REFLECT_X |
846                                                  DRM_MODE_REFLECT_Y);
847         if (err < 0)
848                 dev_err(dc->dev, "failed to create rotation property: %d\n",
849                         err);
850
851         return &plane->base;
852 }
853
854 static const u32 tegra_legacy_cursor_plane_formats[] = {
855         DRM_FORMAT_RGBA8888,
856 };
857
858 static const u32 tegra_cursor_plane_formats[] = {
859         DRM_FORMAT_ARGB8888,
860 };
861
862 static int tegra_cursor_atomic_check(struct drm_plane *plane,
863                                      struct drm_atomic_state *state)
864 {
865         struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
866                                                                                  plane);
867         struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
868         struct tegra_plane *tegra = to_tegra_plane(plane);
869         int err;
870
871         plane_state->peak_memory_bandwidth = 0;
872         plane_state->avg_memory_bandwidth = 0;
873
874         /* no need for further checks if the plane is being disabled */
875         if (!new_plane_state->crtc) {
876                 plane_state->total_peak_memory_bandwidth = 0;
877                 return 0;
878         }
879
880         /* scaling not supported for cursor */
881         if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
882             (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
883                 return -EINVAL;
884
885         /* only square cursors supported */
886         if (new_plane_state->src_w != new_plane_state->src_h)
887                 return -EINVAL;
888
889         if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
890             new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
891                 return -EINVAL;
892
893         err = tegra_plane_state_add(tegra, new_plane_state);
894         if (err < 0)
895                 return err;
896
897         return 0;
898 }
899
900 static void __tegra_cursor_atomic_update(struct drm_plane *plane,
901                                          struct drm_plane_state *new_state)
902 {
903         struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
904         struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
905         struct tegra_drm *tegra = plane->dev->dev_private;
906 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
907         u64 dma_mask = *dc->dev->dma_mask;
908 #endif
909         unsigned int x, y;
910         u32 value = 0;
911
912         /* rien ne va plus */
913         if (!new_state->crtc || !new_state->fb)
914                 return;
915
916         /*
917          * Legacy display supports hardware clipping of the cursor, but
918          * nvdisplay relies on software to clip the cursor to the screen.
919          */
920         if (!dc->soc->has_nvdisplay)
921                 value |= CURSOR_CLIP_DISPLAY;
922
923         switch (new_state->crtc_w) {
924         case 32:
925                 value |= CURSOR_SIZE_32x32;
926                 break;
927
928         case 64:
929                 value |= CURSOR_SIZE_64x64;
930                 break;
931
932         case 128:
933                 value |= CURSOR_SIZE_128x128;
934                 break;
935
936         case 256:
937                 value |= CURSOR_SIZE_256x256;
938                 break;
939
940         default:
941                 WARN(1, "cursor size %ux%u not supported\n",
942                      new_state->crtc_w, new_state->crtc_h);
943                 return;
944         }
945
946         value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
947         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
948
949 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
950         value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
951         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
952 #endif
953
954         /* enable cursor and set blend mode */
955         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
956         value |= CURSOR_ENABLE;
957         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
958
959         value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
960         value &= ~CURSOR_DST_BLEND_MASK;
961         value &= ~CURSOR_SRC_BLEND_MASK;
962
963         if (dc->soc->has_nvdisplay)
964                 value &= ~CURSOR_COMPOSITION_MODE_XOR;
965         else
966                 value |= CURSOR_MODE_NORMAL;
967
968         value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
969         value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
970         value |= CURSOR_ALPHA;
971         tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
972
973         /* nvdisplay relies on software for clipping */
974         if (dc->soc->has_nvdisplay) {
975                 struct drm_rect src;
976
977                 x = new_state->dst.x1;
978                 y = new_state->dst.y1;
979
980                 drm_rect_fp_to_int(&src, &new_state->src);
981
982                 value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
983                 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
984
985                 value = (drm_rect_height(&src) & tegra->vmask) << 16 |
986                         (drm_rect_width(&src) & tegra->hmask);
987                 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
988         } else {
989                 x = new_state->crtc_x;
990                 y = new_state->crtc_y;
991         }
992
993         /* position the cursor */
994         value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
995         tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
996 }
997
998 static void tegra_cursor_atomic_update(struct drm_plane *plane,
999                                        struct drm_atomic_state *state)
1000 {
1001         struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1002
1003         __tegra_cursor_atomic_update(plane, new_state);
1004 }
1005
1006 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
1007                                         struct drm_atomic_state *state)
1008 {
1009         struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
1010                                                                            plane);
1011         struct tegra_dc *dc;
1012         u32 value;
1013
1014         /* rien ne va plus */
1015         if (!old_state || !old_state->crtc)
1016                 return;
1017
1018         dc = to_tegra_dc(old_state->crtc);
1019
1020         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1021         value &= ~CURSOR_ENABLE;
1022         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1023 }
1024
1025 static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state)
1026 {
1027         struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1028         struct drm_crtc_state *crtc_state;
1029         int min_scale, max_scale;
1030         int err;
1031
1032         crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc);
1033         if (WARN_ON(!crtc_state))
1034                 return -EINVAL;
1035
1036         if (!crtc_state->active)
1037                 return -EINVAL;
1038
1039         if (plane->state->crtc != new_state->crtc ||
1040             plane->state->src_w != new_state->src_w ||
1041             plane->state->src_h != new_state->src_h ||
1042             plane->state->crtc_w != new_state->crtc_w ||
1043             plane->state->crtc_h != new_state->crtc_h ||
1044             plane->state->fb != new_state->fb ||
1045             plane->state->fb == NULL)
1046                 return -EINVAL;
1047
1048         min_scale = (1 << 16) / 8;
1049         max_scale = (8 << 16) / 1;
1050
1051         err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
1052                                                   true, true);
1053         if (err < 0)
1054                 return err;
1055
1056         if (new_state->visible != plane->state->visible)
1057                 return -EINVAL;
1058
1059         return 0;
1060 }
1061
1062 static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
1063                                              struct drm_atomic_state *state)
1064 {
1065         struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1066         struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
1067
1068         plane->state->src_x = new_state->src_x;
1069         plane->state->src_y = new_state->src_y;
1070         plane->state->crtc_x = new_state->crtc_x;
1071         plane->state->crtc_y = new_state->crtc_y;
1072
1073         if (new_state->visible) {
1074                 struct tegra_plane *p = to_tegra_plane(plane);
1075                 u32 value;
1076
1077                 __tegra_cursor_atomic_update(plane, new_state);
1078
1079                 value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
1080                 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1081                 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1082
1083                 value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
1084                 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1085                 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1086         }
1087 }
1088
1089 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1090         .prepare_fb = tegra_plane_prepare_fb,
1091         .cleanup_fb = tegra_plane_cleanup_fb,
1092         .atomic_check = tegra_cursor_atomic_check,
1093         .atomic_update = tegra_cursor_atomic_update,
1094         .atomic_disable = tegra_cursor_atomic_disable,
1095         .atomic_async_check = tegra_cursor_atomic_async_check,
1096         .atomic_async_update = tegra_cursor_atomic_async_update,
1097 };
1098
1099 static const uint64_t linear_modifiers[] = {
1100         DRM_FORMAT_MOD_LINEAR,
1101         DRM_FORMAT_MOD_INVALID
1102 };
1103
1104 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1105                                                       struct tegra_dc *dc)
1106 {
1107         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1108         struct tegra_plane *plane;
1109         unsigned int num_formats;
1110         const u32 *formats;
1111         int err;
1112
1113         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1114         if (!plane)
1115                 return ERR_PTR(-ENOMEM);
1116
1117         /*
1118          * This index is kind of fake. The cursor isn't a regular plane, but
1119          * its update and activation request bits in DC_CMD_STATE_CONTROL do
1120          * use the same programming. Setting this fake index here allows the
1121          * code in tegra_add_plane_state() to do the right thing without the
1122          * need to special-casing the cursor plane.
1123          */
1124         plane->index = 6;
1125         plane->dc = dc;
1126
1127         if (!dc->soc->has_nvdisplay) {
1128                 num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1129                 formats = tegra_legacy_cursor_plane_formats;
1130
1131                 err = tegra_plane_interconnect_init(plane);
1132                 if (err) {
1133                         kfree(plane);
1134                         return ERR_PTR(err);
1135                 }
1136         } else {
1137                 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1138                 formats = tegra_cursor_plane_formats;
1139         }
1140
1141         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1142                                        &tegra_plane_funcs, formats,
1143                                        num_formats, linear_modifiers,
1144                                        DRM_PLANE_TYPE_CURSOR, NULL);
1145         if (err < 0) {
1146                 kfree(plane);
1147                 return ERR_PTR(err);
1148         }
1149
1150         drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1151         drm_plane_create_zpos_immutable_property(&plane->base, 255);
1152
1153         return &plane->base;
1154 }
1155
1156 static const u32 tegra20_overlay_formats[] = {
1157         DRM_FORMAT_ARGB4444,
1158         DRM_FORMAT_ARGB1555,
1159         DRM_FORMAT_RGB565,
1160         DRM_FORMAT_RGBA5551,
1161         DRM_FORMAT_ABGR8888,
1162         DRM_FORMAT_ARGB8888,
1163         /* non-native formats */
1164         DRM_FORMAT_XRGB1555,
1165         DRM_FORMAT_RGBX5551,
1166         DRM_FORMAT_XBGR8888,
1167         DRM_FORMAT_XRGB8888,
1168         /* planar formats */
1169         DRM_FORMAT_UYVY,
1170         DRM_FORMAT_YUYV,
1171         DRM_FORMAT_YUV420,
1172         DRM_FORMAT_YUV422,
1173 };
1174
1175 static const u32 tegra114_overlay_formats[] = {
1176         DRM_FORMAT_ARGB4444,
1177         DRM_FORMAT_ARGB1555,
1178         DRM_FORMAT_RGB565,
1179         DRM_FORMAT_RGBA5551,
1180         DRM_FORMAT_ABGR8888,
1181         DRM_FORMAT_ARGB8888,
1182         /* new on Tegra114 */
1183         DRM_FORMAT_ABGR4444,
1184         DRM_FORMAT_ABGR1555,
1185         DRM_FORMAT_BGRA5551,
1186         DRM_FORMAT_XRGB1555,
1187         DRM_FORMAT_RGBX5551,
1188         DRM_FORMAT_XBGR1555,
1189         DRM_FORMAT_BGRX5551,
1190         DRM_FORMAT_BGR565,
1191         DRM_FORMAT_BGRA8888,
1192         DRM_FORMAT_RGBA8888,
1193         DRM_FORMAT_XRGB8888,
1194         DRM_FORMAT_XBGR8888,
1195         /* planar formats */
1196         DRM_FORMAT_UYVY,
1197         DRM_FORMAT_YUYV,
1198         DRM_FORMAT_YUV420,
1199         DRM_FORMAT_YUV422,
1200         /* semi-planar formats */
1201         DRM_FORMAT_NV12,
1202         DRM_FORMAT_NV21,
1203         DRM_FORMAT_NV16,
1204         DRM_FORMAT_NV61,
1205         DRM_FORMAT_NV24,
1206         DRM_FORMAT_NV42,
1207 };
1208
1209 static const u32 tegra124_overlay_formats[] = {
1210         DRM_FORMAT_ARGB4444,
1211         DRM_FORMAT_ARGB1555,
1212         DRM_FORMAT_RGB565,
1213         DRM_FORMAT_RGBA5551,
1214         DRM_FORMAT_ABGR8888,
1215         DRM_FORMAT_ARGB8888,
1216         /* new on Tegra114 */
1217         DRM_FORMAT_ABGR4444,
1218         DRM_FORMAT_ABGR1555,
1219         DRM_FORMAT_BGRA5551,
1220         DRM_FORMAT_XRGB1555,
1221         DRM_FORMAT_RGBX5551,
1222         DRM_FORMAT_XBGR1555,
1223         DRM_FORMAT_BGRX5551,
1224         DRM_FORMAT_BGR565,
1225         DRM_FORMAT_BGRA8888,
1226         DRM_FORMAT_RGBA8888,
1227         DRM_FORMAT_XRGB8888,
1228         DRM_FORMAT_XBGR8888,
1229         /* new on Tegra124 */
1230         DRM_FORMAT_RGBX8888,
1231         DRM_FORMAT_BGRX8888,
1232         /* planar formats */
1233         DRM_FORMAT_UYVY,
1234         DRM_FORMAT_YUYV,
1235         DRM_FORMAT_YVYU,
1236         DRM_FORMAT_VYUY,
1237         DRM_FORMAT_YUV420, /* YU12 */
1238         DRM_FORMAT_YUV422, /* YU16 */
1239         DRM_FORMAT_YUV444, /* YU24 */
1240         /* semi-planar formats */
1241         DRM_FORMAT_NV12,
1242         DRM_FORMAT_NV21,
1243         DRM_FORMAT_NV16,
1244         DRM_FORMAT_NV61,
1245         DRM_FORMAT_NV24,
1246         DRM_FORMAT_NV42,
1247 };
1248
1249 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1250                                                        struct tegra_dc *dc,
1251                                                        unsigned int index,
1252                                                        bool cursor)
1253 {
1254         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1255         struct tegra_plane *plane;
1256         unsigned int num_formats;
1257         enum drm_plane_type type;
1258         const u32 *formats;
1259         int err;
1260
1261         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1262         if (!plane)
1263                 return ERR_PTR(-ENOMEM);
1264
1265         plane->offset = 0xa00 + 0x200 * index;
1266         plane->index = index;
1267         plane->dc = dc;
1268
1269         num_formats = dc->soc->num_overlay_formats;
1270         formats = dc->soc->overlay_formats;
1271
1272         err = tegra_plane_interconnect_init(plane);
1273         if (err) {
1274                 kfree(plane);
1275                 return ERR_PTR(err);
1276         }
1277
1278         if (!cursor)
1279                 type = DRM_PLANE_TYPE_OVERLAY;
1280         else
1281                 type = DRM_PLANE_TYPE_CURSOR;
1282
1283         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1284                                        &tegra_plane_funcs, formats,
1285                                        num_formats, linear_modifiers,
1286                                        type, NULL);
1287         if (err < 0) {
1288                 kfree(plane);
1289                 return ERR_PTR(err);
1290         }
1291
1292         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1293         drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1294
1295         err = drm_plane_create_rotation_property(&plane->base,
1296                                                  DRM_MODE_ROTATE_0,
1297                                                  DRM_MODE_ROTATE_0 |
1298                                                  DRM_MODE_ROTATE_180 |
1299                                                  DRM_MODE_REFLECT_X |
1300                                                  DRM_MODE_REFLECT_Y);
1301         if (err < 0)
1302                 dev_err(dc->dev, "failed to create rotation property: %d\n",
1303                         err);
1304
1305         return &plane->base;
1306 }
1307
1308 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1309                                                     struct tegra_dc *dc)
1310 {
1311         struct drm_plane *plane, *primary = NULL;
1312         unsigned int i, j;
1313
1314         for (i = 0; i < dc->soc->num_wgrps; i++) {
1315                 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1316
1317                 if (wgrp->dc == dc->pipe) {
1318                         for (j = 0; j < wgrp->num_windows; j++) {
1319                                 unsigned int index = wgrp->windows[j];
1320
1321                                 plane = tegra_shared_plane_create(drm, dc,
1322                                                                   wgrp->index,
1323                                                                   index);
1324                                 if (IS_ERR(plane))
1325                                         return plane;
1326
1327                                 /*
1328                                  * Choose the first shared plane owned by this
1329                                  * head as the primary plane.
1330                                  */
1331                                 if (!primary) {
1332                                         plane->type = DRM_PLANE_TYPE_PRIMARY;
1333                                         primary = plane;
1334                                 }
1335                         }
1336                 }
1337         }
1338
1339         return primary;
1340 }
1341
1342 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1343                                              struct tegra_dc *dc)
1344 {
1345         struct drm_plane *planes[2], *primary;
1346         unsigned int planes_num;
1347         unsigned int i;
1348         int err;
1349
1350         primary = tegra_primary_plane_create(drm, dc);
1351         if (IS_ERR(primary))
1352                 return primary;
1353
1354         if (dc->soc->supports_cursor)
1355                 planes_num = 2;
1356         else
1357                 planes_num = 1;
1358
1359         for (i = 0; i < planes_num; i++) {
1360                 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1361                                                           false);
1362                 if (IS_ERR(planes[i])) {
1363                         err = PTR_ERR(planes[i]);
1364
1365                         while (i--)
1366                                 planes[i]->funcs->destroy(planes[i]);
1367
1368                         primary->funcs->destroy(primary);
1369                         return ERR_PTR(err);
1370                 }
1371         }
1372
1373         return primary;
1374 }
1375
1376 static void tegra_dc_destroy(struct drm_crtc *crtc)
1377 {
1378         drm_crtc_cleanup(crtc);
1379 }
1380
1381 static void tegra_crtc_reset(struct drm_crtc *crtc)
1382 {
1383         struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1384
1385         if (crtc->state)
1386                 tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1387
1388         __drm_atomic_helper_crtc_reset(crtc, &state->base);
1389 }
1390
1391 static struct drm_crtc_state *
1392 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1393 {
1394         struct tegra_dc_state *state = to_dc_state(crtc->state);
1395         struct tegra_dc_state *copy;
1396
1397         copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1398         if (!copy)
1399                 return NULL;
1400
1401         __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1402         copy->clk = state->clk;
1403         copy->pclk = state->pclk;
1404         copy->div = state->div;
1405         copy->planes = state->planes;
1406
1407         return &copy->base;
1408 }
1409
1410 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1411                                             struct drm_crtc_state *state)
1412 {
1413         __drm_atomic_helper_crtc_destroy_state(state);
1414         kfree(state);
1415 }
1416
1417 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1418
1419 static const struct debugfs_reg32 tegra_dc_regs[] = {
1420         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1421         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1422         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1423         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1424         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1425         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1426         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1427         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1428         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1429         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1430         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1431         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1432         DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1433         DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1434         DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1435         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1436         DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1437         DEBUGFS_REG32(DC_CMD_INT_STATUS),
1438         DEBUGFS_REG32(DC_CMD_INT_MASK),
1439         DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1440         DEBUGFS_REG32(DC_CMD_INT_TYPE),
1441         DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1442         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1443         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1444         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1445         DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1446         DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1447         DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1448         DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1449         DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1450         DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1451         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1452         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1453         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1454         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1455         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1456         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1457         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1458         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1459         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1460         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1461         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1462         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1463         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1464         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1465         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1466         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1467         DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1468         DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1469         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1470         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1471         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1472         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1473         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1474         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1475         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1476         DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1477         DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1478         DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1479         DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1480         DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1481         DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1482         DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1483         DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1484         DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1485         DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1486         DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1487         DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1488         DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1489         DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1490         DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1491         DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1492         DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1493         DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1494         DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1495         DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1496         DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1497         DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1498         DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1499         DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1500         DEBUGFS_REG32(DC_DISP_ACTIVE),
1501         DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1502         DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1503         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1504         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1505         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1506         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1507         DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1508         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1509         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1510         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1511         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1512         DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1513         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1514         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1515         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1516         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1517         DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1518         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1519         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1520         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1521         DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1522         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1523         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1524         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1525         DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1526         DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1527         DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1528         DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1529         DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1530         DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1531         DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1532         DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1533         DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1534         DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1535         DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1536         DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1537         DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1538         DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1539         DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1540         DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1541         DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1542         DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1543         DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1544         DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1545         DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1546         DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1547         DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1548         DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1549         DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1550         DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1551         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1552         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1553         DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1554         DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1555         DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1556         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1557         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1558         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1559         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1560         DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1561         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1562         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1563         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1564         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1565         DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1566         DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1567         DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1568         DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1569         DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1570         DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1571         DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1572         DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1573         DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1574         DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1575         DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1576         DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1577         DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1578         DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1579         DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1580         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1581         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1582         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1583         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1584         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1585         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1586         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1587         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1588         DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1589         DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1590         DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1591         DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1592         DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1593         DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1594         DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1595         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1596         DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1597         DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1598         DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1599         DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1600         DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1601         DEBUGFS_REG32(DC_WIN_POSITION),
1602         DEBUGFS_REG32(DC_WIN_SIZE),
1603         DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1604         DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1605         DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1606         DEBUGFS_REG32(DC_WIN_DDA_INC),
1607         DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1608         DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1609         DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1610         DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1611         DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1612         DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1613         DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1614         DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1615         DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1616         DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1617         DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1618         DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1619         DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1620         DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1621         DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1622         DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1623         DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1624         DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1625         DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1626         DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1627         DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1628         DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1629         DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1630         DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1631         DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1632 };
1633
1634 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1635 {
1636         struct drm_info_node *node = s->private;
1637         struct tegra_dc *dc = node->info_ent->data;
1638         unsigned int i;
1639         int err = 0;
1640
1641         drm_modeset_lock(&dc->base.mutex, NULL);
1642
1643         if (!dc->base.state->active) {
1644                 err = -EBUSY;
1645                 goto unlock;
1646         }
1647
1648         for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1649                 unsigned int offset = tegra_dc_regs[i].offset;
1650
1651                 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1652                            offset, tegra_dc_readl(dc, offset));
1653         }
1654
1655 unlock:
1656         drm_modeset_unlock(&dc->base.mutex);
1657         return err;
1658 }
1659
1660 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1661 {
1662         struct drm_info_node *node = s->private;
1663         struct tegra_dc *dc = node->info_ent->data;
1664         int err = 0;
1665         u32 value;
1666
1667         drm_modeset_lock(&dc->base.mutex, NULL);
1668
1669         if (!dc->base.state->active) {
1670                 err = -EBUSY;
1671                 goto unlock;
1672         }
1673
1674         value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1675         tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1676         tegra_dc_commit(dc);
1677
1678         drm_crtc_wait_one_vblank(&dc->base);
1679         drm_crtc_wait_one_vblank(&dc->base);
1680
1681         value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1682         seq_printf(s, "%08x\n", value);
1683
1684         tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1685
1686 unlock:
1687         drm_modeset_unlock(&dc->base.mutex);
1688         return err;
1689 }
1690
1691 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1692 {
1693         struct drm_info_node *node = s->private;
1694         struct tegra_dc *dc = node->info_ent->data;
1695
1696         seq_printf(s, "frames: %lu\n", dc->stats.frames);
1697         seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1698         seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1699         seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1700
1701         seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1702         seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1703         seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1704         seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1705
1706         return 0;
1707 }
1708
1709 static struct drm_info_list debugfs_files[] = {
1710         { "regs", tegra_dc_show_regs, 0, NULL },
1711         { "crc", tegra_dc_show_crc, 0, NULL },
1712         { "stats", tegra_dc_show_stats, 0, NULL },
1713 };
1714
1715 static int tegra_dc_late_register(struct drm_crtc *crtc)
1716 {
1717         unsigned int i, count = ARRAY_SIZE(debugfs_files);
1718         struct drm_minor *minor = crtc->dev->primary;
1719         struct dentry *root;
1720         struct tegra_dc *dc = to_tegra_dc(crtc);
1721
1722 #ifdef CONFIG_DEBUG_FS
1723         root = crtc->debugfs_entry;
1724 #else
1725         root = NULL;
1726 #endif
1727
1728         dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1729                                     GFP_KERNEL);
1730         if (!dc->debugfs_files)
1731                 return -ENOMEM;
1732
1733         for (i = 0; i < count; i++)
1734                 dc->debugfs_files[i].data = dc;
1735
1736         drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1737
1738         return 0;
1739 }
1740
1741 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1742 {
1743         unsigned int count = ARRAY_SIZE(debugfs_files);
1744         struct drm_minor *minor = crtc->dev->primary;
1745         struct tegra_dc *dc = to_tegra_dc(crtc);
1746
1747         drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1748         kfree(dc->debugfs_files);
1749         dc->debugfs_files = NULL;
1750 }
1751
1752 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1753 {
1754         struct tegra_dc *dc = to_tegra_dc(crtc);
1755
1756         /* XXX vblank syncpoints don't work with nvdisplay yet */
1757         if (dc->syncpt && !dc->soc->has_nvdisplay)
1758                 return host1x_syncpt_read(dc->syncpt);
1759
1760         /* fallback to software emulated VBLANK counter */
1761         return (u32)drm_crtc_vblank_count(&dc->base);
1762 }
1763
1764 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1765 {
1766         struct tegra_dc *dc = to_tegra_dc(crtc);
1767         u32 value;
1768
1769         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1770         value |= VBLANK_INT;
1771         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1772
1773         return 0;
1774 }
1775
1776 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1777 {
1778         struct tegra_dc *dc = to_tegra_dc(crtc);
1779         u32 value;
1780
1781         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1782         value &= ~VBLANK_INT;
1783         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1784 }
1785
1786 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1787         .page_flip = drm_atomic_helper_page_flip,
1788         .set_config = drm_atomic_helper_set_config,
1789         .destroy = tegra_dc_destroy,
1790         .reset = tegra_crtc_reset,
1791         .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1792         .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1793         .late_register = tegra_dc_late_register,
1794         .early_unregister = tegra_dc_early_unregister,
1795         .get_vblank_counter = tegra_dc_get_vblank_counter,
1796         .enable_vblank = tegra_dc_enable_vblank,
1797         .disable_vblank = tegra_dc_disable_vblank,
1798 };
1799
1800 static int tegra_dc_set_timings(struct tegra_dc *dc,
1801                                 struct drm_display_mode *mode)
1802 {
1803         unsigned int h_ref_to_sync = 1;
1804         unsigned int v_ref_to_sync = 1;
1805         unsigned long value;
1806
1807         if (!dc->soc->has_nvdisplay) {
1808                 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1809
1810                 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1811                 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1812         }
1813
1814         value = ((mode->vsync_end - mode->vsync_start) << 16) |
1815                 ((mode->hsync_end - mode->hsync_start) <<  0);
1816         tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1817
1818         value = ((mode->vtotal - mode->vsync_end) << 16) |
1819                 ((mode->htotal - mode->hsync_end) <<  0);
1820         tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1821
1822         value = ((mode->vsync_start - mode->vdisplay) << 16) |
1823                 ((mode->hsync_start - mode->hdisplay) <<  0);
1824         tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1825
1826         value = (mode->vdisplay << 16) | mode->hdisplay;
1827         tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1828
1829         return 0;
1830 }
1831
1832 /**
1833  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1834  *     state
1835  * @dc: display controller
1836  * @crtc_state: CRTC atomic state
1837  * @clk: parent clock for display controller
1838  * @pclk: pixel clock
1839  * @div: shift clock divider
1840  *
1841  * Returns:
1842  * 0 on success or a negative error-code on failure.
1843  */
1844 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1845                                struct drm_crtc_state *crtc_state,
1846                                struct clk *clk, unsigned long pclk,
1847                                unsigned int div)
1848 {
1849         struct tegra_dc_state *state = to_dc_state(crtc_state);
1850
1851         if (!clk_has_parent(dc->clk, clk))
1852                 return -EINVAL;
1853
1854         state->clk = clk;
1855         state->pclk = pclk;
1856         state->div = div;
1857
1858         return 0;
1859 }
1860
1861 static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
1862                                           struct tegra_dc_state *state)
1863 {
1864         unsigned long rate, pstate;
1865         struct dev_pm_opp *opp;
1866         int err;
1867
1868         if (!dc->has_opp_table)
1869                 return;
1870
1871         /* calculate actual pixel clock rate which depends on internal divider */
1872         rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
1873
1874         /* find suitable OPP for the rate */
1875         opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
1876
1877         /*
1878          * Very high resolution modes may results in a clock rate that is
1879          * above the characterized maximum. In this case it's okay to fall
1880          * back to the characterized maximum.
1881          */
1882         if (opp == ERR_PTR(-ERANGE))
1883                 opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
1884
1885         if (IS_ERR(opp)) {
1886                 dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
1887                         rate, opp);
1888                 return;
1889         }
1890
1891         pstate = dev_pm_opp_get_required_pstate(opp, 0);
1892         dev_pm_opp_put(opp);
1893
1894         /*
1895          * The minimum core voltage depends on the pixel clock rate (which
1896          * depends on internal clock divider of the CRTC) and not on the
1897          * rate of the display controller clock. This is why we're not using
1898          * dev_pm_opp_set_rate() API and instead controlling the power domain
1899          * directly.
1900          */
1901         err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
1902         if (err)
1903                 dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
1904                         pstate, err);
1905 }
1906
1907 static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
1908                                     struct tegra_dc_state *state)
1909 {
1910         int err;
1911
1912         err = clk_set_parent(dc->clk, state->clk);
1913         if (err < 0)
1914                 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1915
1916         /*
1917          * Outputs may not want to change the parent clock rate. This is only
1918          * relevant to Tegra20 where only a single display PLL is available.
1919          * Since that PLL would typically be used for HDMI, an internal LVDS
1920          * panel would need to be driven by some other clock such as PLL_P
1921          * which is shared with other peripherals. Changing the clock rate
1922          * should therefore be avoided.
1923          */
1924         if (state->pclk > 0) {
1925                 err = clk_set_rate(state->clk, state->pclk);
1926                 if (err < 0)
1927                         dev_err(dc->dev,
1928                                 "failed to set clock rate to %lu Hz\n",
1929                                 state->pclk);
1930
1931                 err = clk_set_rate(dc->clk, state->pclk);
1932                 if (err < 0)
1933                         dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1934                                 dc->clk, state->pclk, err);
1935         }
1936
1937         DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1938                       state->div);
1939         DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1940
1941         tegra_dc_update_voltage_state(dc, state);
1942 }
1943
1944 static void tegra_dc_stop(struct tegra_dc *dc)
1945 {
1946         u32 value;
1947
1948         /* stop the display controller */
1949         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1950         value &= ~DISP_CTRL_MODE_MASK;
1951         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1952
1953         tegra_dc_commit(dc);
1954 }
1955
1956 static bool tegra_dc_idle(struct tegra_dc *dc)
1957 {
1958         u32 value;
1959
1960         value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1961
1962         return (value & DISP_CTRL_MODE_MASK) == 0;
1963 }
1964
1965 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1966 {
1967         timeout = jiffies + msecs_to_jiffies(timeout);
1968
1969         while (time_before(jiffies, timeout)) {
1970                 if (tegra_dc_idle(dc))
1971                         return 0;
1972
1973                 usleep_range(1000, 2000);
1974         }
1975
1976         dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1977         return -ETIMEDOUT;
1978 }
1979
1980 static void
1981 tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
1982                                    struct drm_atomic_state *state,
1983                                    bool prepare_bandwidth_transition)
1984 {
1985         const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
1986         u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
1987         const struct drm_plane_state *old_plane_state;
1988         const struct drm_crtc_state *old_crtc_state;
1989         struct tegra_dc_window window, old_window;
1990         struct tegra_dc *dc = to_tegra_dc(crtc);
1991         struct tegra_plane *tegra;
1992         struct drm_plane *plane;
1993
1994         if (dc->soc->has_nvdisplay)
1995                 return;
1996
1997         old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
1998
1999         if (!crtc->state->active) {
2000                 if (!old_crtc_state->active)
2001                         return;
2002
2003                 /*
2004                  * When CRTC is disabled on DPMS, the state of attached planes
2005                  * is kept unchanged. Hence we need to enforce removal of the
2006                  * bandwidths from the ICC paths.
2007                  */
2008                 drm_atomic_crtc_for_each_plane(plane, crtc) {
2009                         tegra = to_tegra_plane(plane);
2010
2011                         icc_set_bw(tegra->icc_mem, 0, 0);
2012                         icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2013                 }
2014
2015                 return;
2016         }
2017
2018         for_each_old_plane_in_state(old_crtc_state->state, plane,
2019                                     old_plane_state, i) {
2020                 old_tegra_state = to_const_tegra_plane_state(old_plane_state);
2021                 new_tegra_state = to_const_tegra_plane_state(plane->state);
2022                 tegra = to_tegra_plane(plane);
2023
2024                 /*
2025                  * We're iterating over the global atomic state and it contains
2026                  * planes from another CRTC, hence we need to filter out the
2027                  * planes unrelated to this CRTC.
2028                  */
2029                 if (tegra->dc != dc)
2030                         continue;
2031
2032                 new_avg_bw = new_tegra_state->avg_memory_bandwidth;
2033                 old_avg_bw = old_tegra_state->avg_memory_bandwidth;
2034
2035                 new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
2036                 old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
2037
2038                 /*
2039                  * See the comment related to !crtc->state->active above,
2040                  * which explains why bandwidths need to be updated when
2041                  * CRTC is turning ON.
2042                  */
2043                 if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
2044                     old_crtc_state->active)
2045                         continue;
2046
2047                 window.src.h = drm_rect_height(&plane->state->src) >> 16;
2048                 window.dst.h = drm_rect_height(&plane->state->dst);
2049
2050                 old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
2051                 old_window.dst.h = drm_rect_height(&old_plane_state->dst);
2052
2053                 /*
2054                  * During the preparation phase (atomic_begin), the memory
2055                  * freq should go high before the DC changes are committed
2056                  * if bandwidth requirement goes up, otherwise memory freq
2057                  * should to stay high if BW requirement goes down.  The
2058                  * opposite applies to the completion phase (post_commit).
2059                  */
2060                 if (prepare_bandwidth_transition) {
2061                         new_avg_bw = max(old_avg_bw, new_avg_bw);
2062                         new_peak_bw = max(old_peak_bw, new_peak_bw);
2063
2064                         if (tegra_plane_use_vertical_filtering(tegra, &old_window))
2065                                 window = old_window;
2066                 }
2067
2068                 icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
2069
2070                 if (tegra_plane_use_vertical_filtering(tegra, &window))
2071                         icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
2072                 else
2073                         icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2074         }
2075 }
2076
2077 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
2078                                       struct drm_atomic_state *state)
2079 {
2080         struct tegra_dc *dc = to_tegra_dc(crtc);
2081         u32 value;
2082         int err;
2083
2084         if (!tegra_dc_idle(dc)) {
2085                 tegra_dc_stop(dc);
2086
2087                 /*
2088                  * Ignore the return value, there isn't anything useful to do
2089                  * in case this fails.
2090                  */
2091                 tegra_dc_wait_idle(dc, 100);
2092         }
2093
2094         /*
2095          * This should really be part of the RGB encoder driver, but clearing
2096          * these bits has the side-effect of stopping the display controller.
2097          * When that happens no VBLANK interrupts will be raised. At the same
2098          * time the encoder is disabled before the display controller, so the
2099          * above code is always going to timeout waiting for the controller
2100          * to go idle.
2101          *
2102          * Given the close coupling between the RGB encoder and the display
2103          * controller doing it here is still kind of okay. None of the other
2104          * encoder drivers require these bits to be cleared.
2105          *
2106          * XXX: Perhaps given that the display controller is switched off at
2107          * this point anyway maybe clearing these bits isn't even useful for
2108          * the RGB encoder?
2109          */
2110         if (dc->rgb) {
2111                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2112                 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2113                            PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
2114                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2115         }
2116
2117         tegra_dc_stats_reset(&dc->stats);
2118         drm_crtc_vblank_off(crtc);
2119
2120         spin_lock_irq(&crtc->dev->event_lock);
2121
2122         if (crtc->state->event) {
2123                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
2124                 crtc->state->event = NULL;
2125         }
2126
2127         spin_unlock_irq(&crtc->dev->event_lock);
2128
2129         err = host1x_client_suspend(&dc->client);
2130         if (err < 0)
2131                 dev_err(dc->dev, "failed to suspend: %d\n", err);
2132
2133         if (dc->has_opp_table) {
2134                 err = dev_pm_genpd_set_performance_state(dc->dev, 0);
2135                 if (err)
2136                         dev_err(dc->dev,
2137                                 "failed to clear power domain state: %d\n", err);
2138         }
2139 }
2140
2141 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2142                                      struct drm_atomic_state *state)
2143 {
2144         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2145         struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2146         struct tegra_dc *dc = to_tegra_dc(crtc);
2147         u32 value;
2148         int err;
2149
2150         /* apply PLL changes */
2151         tegra_dc_set_clock_rate(dc, crtc_state);
2152
2153         err = host1x_client_resume(&dc->client);
2154         if (err < 0) {
2155                 dev_err(dc->dev, "failed to resume: %d\n", err);
2156                 return;
2157         }
2158
2159         /* initialize display controller */
2160         if (dc->syncpt) {
2161                 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2162
2163                 if (dc->soc->has_nvdisplay)
2164                         enable = 1 << 31;
2165                 else
2166                         enable = 1 << 8;
2167
2168                 value = SYNCPT_CNTRL_NO_STALL;
2169                 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2170
2171                 value = enable | syncpt;
2172                 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2173         }
2174
2175         if (dc->soc->has_nvdisplay) {
2176                 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2177                         DSC_OBUF_UF_INT;
2178                 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2179
2180                 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2181                         DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2182                         HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2183                         REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2184                         VBLANK_INT | FRAME_END_INT;
2185                 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2186
2187                 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2188                         FRAME_END_INT;
2189                 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2190
2191                 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2192                 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2193
2194                 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2195         } else {
2196                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2197                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2198                 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2199
2200                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2201                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2202                 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2203
2204                 /* initialize timer */
2205                 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2206                         WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2207                 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2208
2209                 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2210                         WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2211                 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2212
2213                 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2214                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2215                 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2216
2217                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2218                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2219                 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2220         }
2221
2222         if (dc->soc->supports_background_color)
2223                 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2224         else
2225                 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2226
2227         /* apply pixel clock changes */
2228         if (!dc->soc->has_nvdisplay) {
2229                 value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
2230                 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
2231         }
2232
2233         /* program display mode */
2234         tegra_dc_set_timings(dc, mode);
2235
2236         /* interlacing isn't supported yet, so disable it */
2237         if (dc->soc->supports_interlacing) {
2238                 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2239                 value &= ~INTERLACE_ENABLE;
2240                 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2241         }
2242
2243         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2244         value &= ~DISP_CTRL_MODE_MASK;
2245         value |= DISP_CTRL_MODE_C_DISPLAY;
2246         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2247
2248         if (!dc->soc->has_nvdisplay) {
2249                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2250                 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2251                          PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2252                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2253         }
2254
2255         /* enable underflow reporting and display red for missing pixels */
2256         if (dc->soc->has_nvdisplay) {
2257                 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2258                 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2259         }
2260
2261         if (dc->rgb) {
2262                 /* XXX: parameterize? */
2263                 value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
2264                 tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
2265         }
2266
2267         tegra_dc_commit(dc);
2268
2269         drm_crtc_vblank_on(crtc);
2270 }
2271
2272 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2273                                     struct drm_atomic_state *state)
2274 {
2275         unsigned long flags;
2276
2277         tegra_crtc_update_memory_bandwidth(crtc, state, true);
2278
2279         if (crtc->state->event) {
2280                 spin_lock_irqsave(&crtc->dev->event_lock, flags);
2281
2282                 if (drm_crtc_vblank_get(crtc) != 0)
2283                         drm_crtc_send_vblank_event(crtc, crtc->state->event);
2284                 else
2285                         drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2286
2287                 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2288
2289                 crtc->state->event = NULL;
2290         }
2291 }
2292
2293 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2294                                     struct drm_atomic_state *state)
2295 {
2296         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2297                                                                           crtc);
2298         struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2299         struct tegra_dc *dc = to_tegra_dc(crtc);
2300         u32 value;
2301
2302         value = dc_state->planes << 8 | GENERAL_UPDATE;
2303         tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2304         value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2305
2306         value = dc_state->planes | GENERAL_ACT_REQ;
2307         tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2308         value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2309 }
2310
2311 static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2312 {
2313         const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2314         const struct drm_format_info *fmt = state->fb->format;
2315         unsigned int src_w = drm_rect_width(&state->src) >> 16;
2316         unsigned int dst_w = drm_rect_width(&state->dst);
2317
2318         if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2319                 return false;
2320
2321         if (soc->supports_cursor)
2322                 return true;
2323
2324         if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2325                 return false;
2326
2327         return true;
2328 }
2329
2330 static unsigned long
2331 tegra_plane_overlap_mask(struct drm_crtc_state *state,
2332                          const struct drm_plane_state *plane_state)
2333 {
2334         const struct drm_plane_state *other_state;
2335         const struct tegra_plane *tegra;
2336         unsigned long overlap_mask = 0;
2337         struct drm_plane *plane;
2338         struct drm_rect rect;
2339
2340         if (!plane_state->visible || !plane_state->fb)
2341                 return 0;
2342
2343         /*
2344          * Data-prefetch FIFO will easily help to overcome temporal memory
2345          * pressure if other plane overlaps with the cursor plane.
2346          */
2347         if (tegra_plane_is_cursor(plane_state))
2348                 return 0;
2349
2350         drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2351                 rect = plane_state->dst;
2352
2353                 tegra = to_tegra_plane(other_state->plane);
2354
2355                 if (!other_state->visible || !other_state->fb)
2356                         continue;
2357
2358                 /*
2359                  * Ignore cursor plane overlaps because it's not practical to
2360                  * assume that it contributes to the bandwidth in overlapping
2361                  * area if window width is small.
2362                  */
2363                 if (tegra_plane_is_cursor(other_state))
2364                         continue;
2365
2366                 if (drm_rect_intersect(&rect, &other_state->dst))
2367                         overlap_mask |= BIT(tegra->index);
2368         }
2369
2370         return overlap_mask;
2371 }
2372
2373 static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2374                                                  struct drm_atomic_state *state)
2375 {
2376         ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2377         u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2378         bool all_planes_overlap_simultaneously = true;
2379         const struct tegra_plane_state *tegra_state;
2380         const struct drm_plane_state *plane_state;
2381         struct tegra_dc *dc = to_tegra_dc(crtc);
2382         const struct drm_crtc_state *old_state;
2383         struct drm_crtc_state *new_state;
2384         struct tegra_plane *tegra;
2385         struct drm_plane *plane;
2386
2387         /*
2388          * The nv-display uses shared planes.  The algorithm below assumes
2389          * maximum 3 planes per-CRTC, this assumption isn't applicable to
2390          * the nv-display.  Note that T124 support has additional windows,
2391          * but currently they aren't supported by the driver.
2392          */
2393         if (dc->soc->has_nvdisplay)
2394                 return 0;
2395
2396         new_state = drm_atomic_get_new_crtc_state(state, crtc);
2397         old_state = drm_atomic_get_old_crtc_state(state, crtc);
2398
2399         /*
2400          * For overlapping planes pixel's data is fetched for each plane at
2401          * the same time, hence bandwidths are accumulated in this case.
2402          * This needs to be taken into account for calculating total bandwidth
2403          * consumed by all planes.
2404          *
2405          * Here we get the overlapping state of each plane, which is a
2406          * bitmask of plane indices telling with what planes there is an
2407          * overlap. Note that bitmask[plane] includes BIT(plane) in order
2408          * to make further code nicer and simpler.
2409          */
2410         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2411                 tegra_state = to_const_tegra_plane_state(plane_state);
2412                 tegra = to_tegra_plane(plane);
2413
2414                 if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2415                         return -EINVAL;
2416
2417                 plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2418                 mask = tegra_plane_overlap_mask(new_state, plane_state);
2419                 overlap_mask[tegra->index] = mask;
2420
2421                 if (hweight_long(mask) != 3)
2422                         all_planes_overlap_simultaneously = false;
2423         }
2424
2425         /*
2426          * Then we calculate maximum bandwidth of each plane state.
2427          * The bandwidth includes the plane BW + BW of the "simultaneously"
2428          * overlapping planes, where "simultaneously" means areas where DC
2429          * fetches from the planes simultaneously during of scan-out process.
2430          *
2431          * For example, if plane A overlaps with planes B and C, but B and C
2432          * don't overlap, then the peak bandwidth will be either in area where
2433          * A-and-B or A-and-C planes overlap.
2434          *
2435          * The plane_peak_bw[] contains peak memory bandwidth values of
2436          * each plane, this information is needed by interconnect provider
2437          * in order to set up latency allowance based on the peak BW, see
2438          * tegra_crtc_update_memory_bandwidth().
2439          */
2440         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2441                 u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2442
2443                 /*
2444                  * Note that plane's atomic check doesn't touch the
2445                  * total_peak_memory_bandwidth of enabled plane, hence the
2446                  * current state contains the old bandwidth state from the
2447                  * previous CRTC commit.
2448                  */
2449                 tegra_state = to_const_tegra_plane_state(plane_state);
2450                 tegra = to_tegra_plane(plane);
2451
2452                 for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2453                         if (i == tegra->index)
2454                                 continue;
2455
2456                         if (all_planes_overlap_simultaneously)
2457                                 overlap_bw += plane_peak_bw[i];
2458                         else
2459                                 overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2460                 }
2461
2462                 new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2463                 old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2464
2465                 /*
2466                  * If plane's peak bandwidth changed (for example plane isn't
2467                  * overlapped anymore) and plane isn't in the atomic state,
2468                  * then add plane to the state in order to have the bandwidth
2469                  * updated.
2470                  */
2471                 if (old_peak_bw != new_peak_bw) {
2472                         struct tegra_plane_state *new_tegra_state;
2473                         struct drm_plane_state *new_plane_state;
2474
2475                         new_plane_state = drm_atomic_get_plane_state(state, plane);
2476                         if (IS_ERR(new_plane_state))
2477                                 return PTR_ERR(new_plane_state);
2478
2479                         new_tegra_state = to_tegra_plane_state(new_plane_state);
2480                         new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2481                 }
2482         }
2483
2484         return 0;
2485 }
2486
2487 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2488                                    struct drm_atomic_state *state)
2489 {
2490         int err;
2491
2492         err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2493         if (err)
2494                 return err;
2495
2496         return 0;
2497 }
2498
2499 void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2500                                    struct drm_atomic_state *state)
2501 {
2502         /*
2503          * Display bandwidth is allowed to go down only once hardware state
2504          * is known to be armed, i.e. state was committed and VBLANK event
2505          * received.
2506          */
2507         tegra_crtc_update_memory_bandwidth(crtc, state, false);
2508 }
2509
2510 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2511         .atomic_check = tegra_crtc_atomic_check,
2512         .atomic_begin = tegra_crtc_atomic_begin,
2513         .atomic_flush = tegra_crtc_atomic_flush,
2514         .atomic_enable = tegra_crtc_atomic_enable,
2515         .atomic_disable = tegra_crtc_atomic_disable,
2516 };
2517
2518 static irqreturn_t tegra_dc_irq(int irq, void *data)
2519 {
2520         struct tegra_dc *dc = data;
2521         unsigned long status;
2522
2523         status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2524         tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2525
2526         if (status & FRAME_END_INT) {
2527                 /*
2528                 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2529                 */
2530                 dc->stats.frames_total++;
2531                 dc->stats.frames++;
2532         }
2533
2534         if (status & VBLANK_INT) {
2535                 /*
2536                 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2537                 */
2538                 drm_crtc_handle_vblank(&dc->base);
2539                 dc->stats.vblank_total++;
2540                 dc->stats.vblank++;
2541         }
2542
2543         if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2544                 /*
2545                 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2546                 */
2547                 dc->stats.underflow_total++;
2548                 dc->stats.underflow++;
2549         }
2550
2551         if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2552                 /*
2553                 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2554                 */
2555                 dc->stats.overflow_total++;
2556                 dc->stats.overflow++;
2557         }
2558
2559         if (status & HEAD_UF_INT) {
2560                 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2561                 dc->stats.underflow_total++;
2562                 dc->stats.underflow++;
2563         }
2564
2565         return IRQ_HANDLED;
2566 }
2567
2568 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2569 {
2570         unsigned int i;
2571
2572         if (!dc->soc->wgrps)
2573                 return true;
2574
2575         for (i = 0; i < dc->soc->num_wgrps; i++) {
2576                 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2577
2578                 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2579                         return true;
2580         }
2581
2582         return false;
2583 }
2584
2585 static int tegra_dc_early_init(struct host1x_client *client)
2586 {
2587         struct drm_device *drm = dev_get_drvdata(client->host);
2588         struct tegra_drm *tegra = drm->dev_private;
2589
2590         tegra->num_crtcs++;
2591
2592         return 0;
2593 }
2594
2595 static int tegra_dc_init(struct host1x_client *client)
2596 {
2597         struct drm_device *drm = dev_get_drvdata(client->host);
2598         unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2599         struct tegra_dc *dc = host1x_client_to_dc(client);
2600         struct tegra_drm *tegra = drm->dev_private;
2601         struct drm_plane *primary = NULL;
2602         struct drm_plane *cursor = NULL;
2603         int err;
2604
2605         /*
2606          * DC has been reset by now, so VBLANK syncpoint can be released
2607          * for general use.
2608          */
2609         host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2610
2611         /*
2612          * XXX do not register DCs with no window groups because we cannot
2613          * assign a primary plane to them, which in turn will cause KMS to
2614          * crash.
2615          */
2616         if (!tegra_dc_has_window_groups(dc))
2617                 return 0;
2618
2619         /*
2620          * Set the display hub as the host1x client parent for the display
2621          * controller. This is needed for the runtime reference counting that
2622          * ensures the display hub is always powered when any of the display
2623          * controllers are.
2624          */
2625         if (dc->soc->has_nvdisplay)
2626                 client->parent = &tegra->hub->client;
2627
2628         dc->syncpt = host1x_syncpt_request(client, flags);
2629         if (!dc->syncpt)
2630                 dev_warn(dc->dev, "failed to allocate syncpoint\n");
2631
2632         err = host1x_client_iommu_attach(client);
2633         if (err < 0 && err != -ENODEV) {
2634                 dev_err(client->dev, "failed to attach to domain: %d\n", err);
2635                 return err;
2636         }
2637
2638         if (dc->soc->wgrps)
2639                 primary = tegra_dc_add_shared_planes(drm, dc);
2640         else
2641                 primary = tegra_dc_add_planes(drm, dc);
2642
2643         if (IS_ERR(primary)) {
2644                 err = PTR_ERR(primary);
2645                 goto cleanup;
2646         }
2647
2648         if (dc->soc->supports_cursor) {
2649                 cursor = tegra_dc_cursor_plane_create(drm, dc);
2650                 if (IS_ERR(cursor)) {
2651                         err = PTR_ERR(cursor);
2652                         goto cleanup;
2653                 }
2654         } else {
2655                 /* dedicate one overlay to mouse cursor */
2656                 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2657                 if (IS_ERR(cursor)) {
2658                         err = PTR_ERR(cursor);
2659                         goto cleanup;
2660                 }
2661         }
2662
2663         err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2664                                         &tegra_crtc_funcs, NULL);
2665         if (err < 0)
2666                 goto cleanup;
2667
2668         drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2669
2670         /*
2671          * Keep track of the minimum pitch alignment across all display
2672          * controllers.
2673          */
2674         if (dc->soc->pitch_align > tegra->pitch_align)
2675                 tegra->pitch_align = dc->soc->pitch_align;
2676
2677         /* track maximum resolution */
2678         if (dc->soc->has_nvdisplay)
2679                 drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2680         else
2681                 drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2682
2683         err = tegra_dc_rgb_init(drm, dc);
2684         if (err < 0 && err != -ENODEV) {
2685                 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2686                 goto cleanup;
2687         }
2688
2689         err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2690                                dev_name(dc->dev), dc);
2691         if (err < 0) {
2692                 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2693                         err);
2694                 goto cleanup;
2695         }
2696
2697         /*
2698          * Inherit the DMA parameters (such as maximum segment size) from the
2699          * parent host1x device.
2700          */
2701         client->dev->dma_parms = client->host->dma_parms;
2702
2703         return 0;
2704
2705 cleanup:
2706         if (!IS_ERR_OR_NULL(cursor))
2707                 drm_plane_cleanup(cursor);
2708
2709         if (!IS_ERR(primary))
2710                 drm_plane_cleanup(primary);
2711
2712         host1x_client_iommu_detach(client);
2713         host1x_syncpt_put(dc->syncpt);
2714
2715         return err;
2716 }
2717
2718 static int tegra_dc_exit(struct host1x_client *client)
2719 {
2720         struct tegra_dc *dc = host1x_client_to_dc(client);
2721         int err;
2722
2723         if (!tegra_dc_has_window_groups(dc))
2724                 return 0;
2725
2726         /* avoid a dangling pointer just in case this disappears */
2727         client->dev->dma_parms = NULL;
2728
2729         devm_free_irq(dc->dev, dc->irq, dc);
2730
2731         err = tegra_dc_rgb_exit(dc);
2732         if (err) {
2733                 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2734                 return err;
2735         }
2736
2737         host1x_client_iommu_detach(client);
2738         host1x_syncpt_put(dc->syncpt);
2739
2740         return 0;
2741 }
2742
2743 static int tegra_dc_late_exit(struct host1x_client *client)
2744 {
2745         struct drm_device *drm = dev_get_drvdata(client->host);
2746         struct tegra_drm *tegra = drm->dev_private;
2747
2748         tegra->num_crtcs--;
2749
2750         return 0;
2751 }
2752
2753 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2754 {
2755         struct tegra_dc *dc = host1x_client_to_dc(client);
2756         struct device *dev = client->dev;
2757         int err;
2758
2759         err = reset_control_assert(dc->rst);
2760         if (err < 0) {
2761                 dev_err(dev, "failed to assert reset: %d\n", err);
2762                 return err;
2763         }
2764
2765         if (dc->soc->has_powergate)
2766                 tegra_powergate_power_off(dc->powergate);
2767
2768         clk_disable_unprepare(dc->clk);
2769         pm_runtime_put_sync(dev);
2770
2771         return 0;
2772 }
2773
2774 static int tegra_dc_runtime_resume(struct host1x_client *client)
2775 {
2776         struct tegra_dc *dc = host1x_client_to_dc(client);
2777         struct device *dev = client->dev;
2778         int err;
2779
2780         err = pm_runtime_resume_and_get(dev);
2781         if (err < 0) {
2782                 dev_err(dev, "failed to get runtime PM: %d\n", err);
2783                 return err;
2784         }
2785
2786         if (dc->soc->has_powergate) {
2787                 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2788                                                         dc->rst);
2789                 if (err < 0) {
2790                         dev_err(dev, "failed to power partition: %d\n", err);
2791                         goto put_rpm;
2792                 }
2793         } else {
2794                 err = clk_prepare_enable(dc->clk);
2795                 if (err < 0) {
2796                         dev_err(dev, "failed to enable clock: %d\n", err);
2797                         goto put_rpm;
2798                 }
2799
2800                 err = reset_control_deassert(dc->rst);
2801                 if (err < 0) {
2802                         dev_err(dev, "failed to deassert reset: %d\n", err);
2803                         goto disable_clk;
2804                 }
2805         }
2806
2807         return 0;
2808
2809 disable_clk:
2810         clk_disable_unprepare(dc->clk);
2811 put_rpm:
2812         pm_runtime_put_sync(dev);
2813         return err;
2814 }
2815
2816 static const struct host1x_client_ops dc_client_ops = {
2817         .early_init = tegra_dc_early_init,
2818         .init = tegra_dc_init,
2819         .exit = tegra_dc_exit,
2820         .late_exit = tegra_dc_late_exit,
2821         .suspend = tegra_dc_runtime_suspend,
2822         .resume = tegra_dc_runtime_resume,
2823 };
2824
2825 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2826         .supports_background_color = false,
2827         .supports_interlacing = false,
2828         .supports_cursor = false,
2829         .supports_block_linear = false,
2830         .supports_sector_layout = false,
2831         .has_legacy_blending = true,
2832         .pitch_align = 8,
2833         .has_powergate = false,
2834         .coupled_pm = true,
2835         .has_nvdisplay = false,
2836         .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2837         .primary_formats = tegra20_primary_formats,
2838         .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2839         .overlay_formats = tegra20_overlay_formats,
2840         .modifiers = tegra20_modifiers,
2841         .has_win_a_without_filters = true,
2842         .has_win_b_vfilter_mem_client = true,
2843         .has_win_c_without_vert_filter = true,
2844         .plane_tiled_memory_bandwidth_x2 = false,
2845         .has_pll_d2_out0 = false,
2846 };
2847
2848 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2849         .supports_background_color = false,
2850         .supports_interlacing = false,
2851         .supports_cursor = false,
2852         .supports_block_linear = false,
2853         .supports_sector_layout = false,
2854         .has_legacy_blending = true,
2855         .pitch_align = 8,
2856         .has_powergate = false,
2857         .coupled_pm = false,
2858         .has_nvdisplay = false,
2859         .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2860         .primary_formats = tegra20_primary_formats,
2861         .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2862         .overlay_formats = tegra20_overlay_formats,
2863         .modifiers = tegra20_modifiers,
2864         .has_win_a_without_filters = false,
2865         .has_win_b_vfilter_mem_client = true,
2866         .has_win_c_without_vert_filter = false,
2867         .plane_tiled_memory_bandwidth_x2 = true,
2868         .has_pll_d2_out0 = true,
2869 };
2870
2871 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2872         .supports_background_color = false,
2873         .supports_interlacing = false,
2874         .supports_cursor = false,
2875         .supports_block_linear = false,
2876         .supports_sector_layout = false,
2877         .has_legacy_blending = true,
2878         .pitch_align = 64,
2879         .has_powergate = true,
2880         .coupled_pm = false,
2881         .has_nvdisplay = false,
2882         .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2883         .primary_formats = tegra114_primary_formats,
2884         .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2885         .overlay_formats = tegra114_overlay_formats,
2886         .modifiers = tegra20_modifiers,
2887         .has_win_a_without_filters = false,
2888         .has_win_b_vfilter_mem_client = false,
2889         .has_win_c_without_vert_filter = false,
2890         .plane_tiled_memory_bandwidth_x2 = true,
2891         .has_pll_d2_out0 = true,
2892 };
2893
2894 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2895         .supports_background_color = true,
2896         .supports_interlacing = true,
2897         .supports_cursor = true,
2898         .supports_block_linear = true,
2899         .supports_sector_layout = false,
2900         .has_legacy_blending = false,
2901         .pitch_align = 64,
2902         .has_powergate = true,
2903         .coupled_pm = false,
2904         .has_nvdisplay = false,
2905         .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2906         .primary_formats = tegra124_primary_formats,
2907         .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2908         .overlay_formats = tegra124_overlay_formats,
2909         .modifiers = tegra124_modifiers,
2910         .has_win_a_without_filters = false,
2911         .has_win_b_vfilter_mem_client = false,
2912         .has_win_c_without_vert_filter = false,
2913         .plane_tiled_memory_bandwidth_x2 = false,
2914         .has_pll_d2_out0 = true,
2915 };
2916
2917 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2918         .supports_background_color = true,
2919         .supports_interlacing = true,
2920         .supports_cursor = true,
2921         .supports_block_linear = true,
2922         .supports_sector_layout = false,
2923         .has_legacy_blending = false,
2924         .pitch_align = 64,
2925         .has_powergate = true,
2926         .coupled_pm = false,
2927         .has_nvdisplay = false,
2928         .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2929         .primary_formats = tegra114_primary_formats,
2930         .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2931         .overlay_formats = tegra114_overlay_formats,
2932         .modifiers = tegra124_modifiers,
2933         .has_win_a_without_filters = false,
2934         .has_win_b_vfilter_mem_client = false,
2935         .has_win_c_without_vert_filter = false,
2936         .plane_tiled_memory_bandwidth_x2 = false,
2937         .has_pll_d2_out0 = true,
2938 };
2939
2940 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2941         {
2942                 .index = 0,
2943                 .dc = 0,
2944                 .windows = (const unsigned int[]) { 0 },
2945                 .num_windows = 1,
2946         }, {
2947                 .index = 1,
2948                 .dc = 1,
2949                 .windows = (const unsigned int[]) { 1 },
2950                 .num_windows = 1,
2951         }, {
2952                 .index = 2,
2953                 .dc = 1,
2954                 .windows = (const unsigned int[]) { 2 },
2955                 .num_windows = 1,
2956         }, {
2957                 .index = 3,
2958                 .dc = 2,
2959                 .windows = (const unsigned int[]) { 3 },
2960                 .num_windows = 1,
2961         }, {
2962                 .index = 4,
2963                 .dc = 2,
2964                 .windows = (const unsigned int[]) { 4 },
2965                 .num_windows = 1,
2966         }, {
2967                 .index = 5,
2968                 .dc = 2,
2969                 .windows = (const unsigned int[]) { 5 },
2970                 .num_windows = 1,
2971         },
2972 };
2973
2974 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2975         .supports_background_color = true,
2976         .supports_interlacing = true,
2977         .supports_cursor = true,
2978         .supports_block_linear = true,
2979         .supports_sector_layout = false,
2980         .has_legacy_blending = false,
2981         .pitch_align = 64,
2982         .has_powergate = false,
2983         .coupled_pm = false,
2984         .has_nvdisplay = true,
2985         .wgrps = tegra186_dc_wgrps,
2986         .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2987         .plane_tiled_memory_bandwidth_x2 = false,
2988         .has_pll_d2_out0 = false,
2989 };
2990
2991 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2992         {
2993                 .index = 0,
2994                 .dc = 0,
2995                 .windows = (const unsigned int[]) { 0 },
2996                 .num_windows = 1,
2997         }, {
2998                 .index = 1,
2999                 .dc = 1,
3000                 .windows = (const unsigned int[]) { 1 },
3001                 .num_windows = 1,
3002         }, {
3003                 .index = 2,
3004                 .dc = 1,
3005                 .windows = (const unsigned int[]) { 2 },
3006                 .num_windows = 1,
3007         }, {
3008                 .index = 3,
3009                 .dc = 2,
3010                 .windows = (const unsigned int[]) { 3 },
3011                 .num_windows = 1,
3012         }, {
3013                 .index = 4,
3014                 .dc = 2,
3015                 .windows = (const unsigned int[]) { 4 },
3016                 .num_windows = 1,
3017         }, {
3018                 .index = 5,
3019                 .dc = 2,
3020                 .windows = (const unsigned int[]) { 5 },
3021                 .num_windows = 1,
3022         },
3023 };
3024
3025 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
3026         .supports_background_color = true,
3027         .supports_interlacing = true,
3028         .supports_cursor = true,
3029         .supports_block_linear = true,
3030         .supports_sector_layout = true,
3031         .has_legacy_blending = false,
3032         .pitch_align = 64,
3033         .has_powergate = false,
3034         .coupled_pm = false,
3035         .has_nvdisplay = true,
3036         .wgrps = tegra194_dc_wgrps,
3037         .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
3038         .plane_tiled_memory_bandwidth_x2 = false,
3039         .has_pll_d2_out0 = false,
3040 };
3041
3042 static const struct of_device_id tegra_dc_of_match[] = {
3043         {
3044                 .compatible = "nvidia,tegra194-dc",
3045                 .data = &tegra194_dc_soc_info,
3046         }, {
3047                 .compatible = "nvidia,tegra186-dc",
3048                 .data = &tegra186_dc_soc_info,
3049         }, {
3050                 .compatible = "nvidia,tegra210-dc",
3051                 .data = &tegra210_dc_soc_info,
3052         }, {
3053                 .compatible = "nvidia,tegra124-dc",
3054                 .data = &tegra124_dc_soc_info,
3055         }, {
3056                 .compatible = "nvidia,tegra114-dc",
3057                 .data = &tegra114_dc_soc_info,
3058         }, {
3059                 .compatible = "nvidia,tegra30-dc",
3060                 .data = &tegra30_dc_soc_info,
3061         }, {
3062                 .compatible = "nvidia,tegra20-dc",
3063                 .data = &tegra20_dc_soc_info,
3064         }, {
3065                 /* sentinel */
3066         }
3067 };
3068 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
3069
3070 static int tegra_dc_parse_dt(struct tegra_dc *dc)
3071 {
3072         struct device_node *np;
3073         u32 value = 0;
3074         int err;
3075
3076         err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
3077         if (err < 0) {
3078                 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
3079
3080                 /*
3081                  * If the nvidia,head property isn't present, try to find the
3082                  * correct head number by looking up the position of this
3083                  * display controller's node within the device tree. Assuming
3084                  * that the nodes are ordered properly in the DTS file and
3085                  * that the translation into a flattened device tree blob
3086                  * preserves that ordering this will actually yield the right
3087                  * head number.
3088                  *
3089                  * If those assumptions don't hold, this will still work for
3090                  * cases where only a single display controller is used.
3091                  */
3092                 for_each_matching_node(np, tegra_dc_of_match) {
3093                         if (np == dc->dev->of_node) {
3094                                 of_node_put(np);
3095                                 break;
3096                         }
3097
3098                         value++;
3099                 }
3100         }
3101
3102         dc->pipe = value;
3103
3104         return 0;
3105 }
3106
3107 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
3108 {
3109         struct tegra_dc *dc = dev_get_drvdata(dev);
3110         unsigned int pipe = (unsigned long)(void *)data;
3111
3112         return dc->pipe == pipe;
3113 }
3114
3115 static int tegra_dc_couple(struct tegra_dc *dc)
3116 {
3117         /*
3118          * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
3119          * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
3120          * POWER_CONTROL registers during CRTC enabling.
3121          */
3122         if (dc->soc->coupled_pm && dc->pipe == 1) {
3123                 struct device *companion;
3124                 struct tegra_dc *parent;
3125
3126                 companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
3127                                                tegra_dc_match_by_pipe);
3128                 if (!companion)
3129                         return -EPROBE_DEFER;
3130
3131                 parent = dev_get_drvdata(companion);
3132                 dc->client.parent = &parent->client;
3133
3134                 dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
3135         }
3136
3137         return 0;
3138 }
3139
3140 static int tegra_dc_init_opp_table(struct tegra_dc *dc)
3141 {
3142         struct tegra_core_opp_params opp_params = {};
3143         int err;
3144
3145         err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
3146         if (err && err != -ENODEV)
3147                 return err;
3148
3149         if (err)
3150                 dc->has_opp_table = false;
3151         else
3152                 dc->has_opp_table = true;
3153
3154         return 0;
3155 }
3156
3157 static int tegra_dc_probe(struct platform_device *pdev)
3158 {
3159         u64 dma_mask = dma_get_mask(pdev->dev.parent);
3160         struct tegra_dc *dc;
3161         int err;
3162
3163         err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
3164         if (err < 0) {
3165                 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
3166                 return err;
3167         }
3168
3169         dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
3170         if (!dc)
3171                 return -ENOMEM;
3172
3173         dc->soc = of_device_get_match_data(&pdev->dev);
3174
3175         INIT_LIST_HEAD(&dc->list);
3176         dc->dev = &pdev->dev;
3177
3178         err = tegra_dc_parse_dt(dc);
3179         if (err < 0)
3180                 return err;
3181
3182         err = tegra_dc_couple(dc);
3183         if (err < 0)
3184                 return err;
3185
3186         dc->clk = devm_clk_get(&pdev->dev, NULL);
3187         if (IS_ERR(dc->clk)) {
3188                 dev_err(&pdev->dev, "failed to get clock\n");
3189                 return PTR_ERR(dc->clk);
3190         }
3191
3192         dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3193         if (IS_ERR(dc->rst)) {
3194                 dev_err(&pdev->dev, "failed to get reset\n");
3195                 return PTR_ERR(dc->rst);
3196         }
3197
3198         /* assert reset and disable clock */
3199         err = clk_prepare_enable(dc->clk);
3200         if (err < 0)
3201                 return err;
3202
3203         usleep_range(2000, 4000);
3204
3205         err = reset_control_assert(dc->rst);
3206         if (err < 0)
3207                 return err;
3208
3209         usleep_range(2000, 4000);
3210
3211         clk_disable_unprepare(dc->clk);
3212
3213         if (dc->soc->has_powergate) {
3214                 if (dc->pipe == 0)
3215                         dc->powergate = TEGRA_POWERGATE_DIS;
3216                 else
3217                         dc->powergate = TEGRA_POWERGATE_DISB;
3218
3219                 tegra_powergate_power_off(dc->powergate);
3220         }
3221
3222         err = tegra_dc_init_opp_table(dc);
3223         if (err < 0)
3224                 return err;
3225
3226         dc->regs = devm_platform_ioremap_resource(pdev, 0);
3227         if (IS_ERR(dc->regs))
3228                 return PTR_ERR(dc->regs);
3229
3230         dc->irq = platform_get_irq(pdev, 0);
3231         if (dc->irq < 0)
3232                 return -ENXIO;
3233
3234         err = tegra_dc_rgb_probe(dc);
3235         if (err < 0 && err != -ENODEV)
3236                 return dev_err_probe(&pdev->dev, err,
3237                                      "failed to probe RGB output\n");
3238
3239         platform_set_drvdata(pdev, dc);
3240         pm_runtime_enable(&pdev->dev);
3241
3242         INIT_LIST_HEAD(&dc->client.list);
3243         dc->client.ops = &dc_client_ops;
3244         dc->client.dev = &pdev->dev;
3245
3246         err = host1x_client_register(&dc->client);
3247         if (err < 0) {
3248                 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3249                         err);
3250                 goto disable_pm;
3251         }
3252
3253         return 0;
3254
3255 disable_pm:
3256         pm_runtime_disable(&pdev->dev);
3257         tegra_dc_rgb_remove(dc);
3258
3259         return err;
3260 }
3261
3262 static int tegra_dc_remove(struct platform_device *pdev)
3263 {
3264         struct tegra_dc *dc = platform_get_drvdata(pdev);
3265         int err;
3266
3267         err = host1x_client_unregister(&dc->client);
3268         if (err < 0) {
3269                 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
3270                         err);
3271                 return err;
3272         }
3273
3274         err = tegra_dc_rgb_remove(dc);
3275         if (err < 0) {
3276                 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
3277                 return err;
3278         }
3279
3280         pm_runtime_disable(&pdev->dev);
3281
3282         return 0;
3283 }
3284
3285 struct platform_driver tegra_dc_driver = {
3286         .driver = {
3287                 .name = "tegra-dc",
3288                 .of_match_table = tegra_dc_of_match,
3289         },
3290         .probe = tegra_dc_probe,
3291         .remove = tegra_dc_remove,
3292 };