1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012 Avionic Design GmbH
4 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iommu.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_domain.h>
17 #include <linux/pm_opp.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
21 #include <soc/tegra/common.h>
22 #include <soc/tegra/pmc.h>
24 #include <drm/drm_atomic.h>
25 #include <drm/drm_atomic_helper.h>
26 #include <drm/drm_blend.h>
27 #include <drm/drm_debugfs.h>
28 #include <drm/drm_fourcc.h>
29 #include <drm/drm_framebuffer.h>
30 #include <drm/drm_vblank.h>
38 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
39 struct drm_crtc_state *state);
41 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
49 /* Reads the active copy of a register. */
50 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
54 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
55 value = tegra_dc_readl(dc, offset);
56 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
61 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
64 if (offset >= 0x500 && offset <= 0x638) {
65 offset = 0x000 + (offset - 0x500);
66 return plane->offset + offset;
69 if (offset >= 0x700 && offset <= 0x719) {
70 offset = 0x180 + (offset - 0x700);
71 return plane->offset + offset;
74 if (offset >= 0x800 && offset <= 0x839) {
75 offset = 0x1c0 + (offset - 0x800);
76 return plane->offset + offset;
79 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
81 return plane->offset + offset;
84 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
87 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
90 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
93 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
96 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
98 struct device_node *np = dc->dev->of_node;
99 struct of_phandle_iterator it;
102 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
103 if (it.node == dev->of_node)
110 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
111 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
112 * Latching happens mmediately if the display controller is in STOP mode or
113 * on the next frame boundary otherwise.
115 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
116 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
117 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
118 * into the ACTIVE copy, either immediately if the display controller is in
119 * STOP mode, or at the next frame boundary otherwise.
121 void tegra_dc_commit(struct tegra_dc *dc)
123 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
124 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
127 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
130 fixed20_12 outf = dfixed_init(out);
131 fixed20_12 inf = dfixed_init(in);
152 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
153 inf.full -= dfixed_const(1);
155 dda_inc = dfixed_div(inf, outf);
156 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
161 static inline u32 compute_initial_dda(unsigned int in)
163 fixed20_12 inf = dfixed_init(in);
164 return dfixed_frac(inf);
167 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
169 u32 background[3] = {
170 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
171 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
172 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
174 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
175 BLEND_COLOR_KEY_NONE;
176 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
177 struct tegra_plane_state *state;
181 /* disable blending for non-overlapping case */
182 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
183 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
185 state = to_tegra_plane_state(plane->base.state);
189 * Since custom fix-weight blending isn't utilized and weight
190 * of top window is set to max, we can enforce dependent
191 * blending which in this case results in transparent bottom
192 * window if top window is opaque and if top window enables
193 * alpha blending, then bottom window is getting alpha value
194 * of 1 minus the sum of alpha components of the overlapping
197 background[0] |= BLEND_CONTROL_DEPENDENT;
198 background[1] |= BLEND_CONTROL_DEPENDENT;
201 * The region where three windows overlap is the intersection
202 * of the two regions where two windows overlap. It contributes
203 * to the area if all of the windows on top of it have an alpha
206 switch (state->base.normalized_zpos) {
208 if (state->blending[0].alpha &&
209 state->blending[1].alpha)
210 background[2] |= BLEND_CONTROL_DEPENDENT;
214 background[2] |= BLEND_CONTROL_DEPENDENT;
219 * Enable alpha blending if pixel format has an alpha
222 foreground |= BLEND_CONTROL_ALPHA;
225 * If any of the windows on top of this window is opaque, it
226 * will completely conceal this window within that area. If
227 * top window has an alpha component, it is blended over the
230 for (i = 0; i < 2; i++) {
231 if (state->blending[i].alpha &&
232 state->blending[i].top)
233 background[i] |= BLEND_CONTROL_DEPENDENT;
236 switch (state->base.normalized_zpos) {
238 if (state->blending[0].alpha &&
239 state->blending[1].alpha)
240 background[2] |= BLEND_CONTROL_DEPENDENT;
245 * When both middle and topmost windows have an alpha,
246 * these windows a mixed together and then the result
247 * is blended over the bottom window.
249 if (state->blending[0].alpha &&
250 state->blending[0].top)
251 background[2] |= BLEND_CONTROL_ALPHA;
253 if (state->blending[1].alpha &&
254 state->blending[1].top)
255 background[2] |= BLEND_CONTROL_ALPHA;
260 switch (state->base.normalized_zpos) {
262 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
263 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
264 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
269 * If window B / C is topmost, then X / Y registers are
270 * matching the order of blending[...] state indices,
271 * otherwise a swap is required.
273 if (!state->blending[0].top && state->blending[1].top) {
274 blending[0] = foreground;
275 blending[1] = background[1];
277 blending[0] = background[0];
278 blending[1] = foreground;
281 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
282 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
283 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
287 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
288 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
289 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
294 static void tegra_plane_setup_blending(struct tegra_plane *plane,
295 const struct tegra_dc_window *window)
299 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
300 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
301 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
302 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
304 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
305 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
306 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
307 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
309 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
310 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
314 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
315 const struct tegra_dc_window *window)
317 struct tegra_dc *dc = plane->dc;
319 if (window->src.w == window->dst.w)
322 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
329 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
330 const struct tegra_dc_window *window)
332 struct tegra_dc *dc = plane->dc;
334 if (window->src.h == window->dst.h)
337 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
340 if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
346 static void tegra_dc_setup_window(struct tegra_plane *plane,
347 const struct tegra_dc_window *window)
349 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
350 struct tegra_dc *dc = plane->dc;
356 * For YUV planar modes, the number of bytes per pixel takes into
357 * account only the luma component and therefore is 1.
359 yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL);
361 bpp = window->bits_per_pixel / 8;
363 bpp = (planes > 1) ? 1 : 2;
365 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
366 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
368 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
369 tegra_plane_writel(plane, value, DC_WIN_POSITION);
371 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
372 tegra_plane_writel(plane, value, DC_WIN_SIZE);
374 h_offset = window->src.x * bpp;
375 v_offset = window->src.y;
376 h_size = window->src.w * bpp;
377 v_size = window->src.h;
379 if (window->reflect_x)
380 h_offset += (window->src.w - 1) * bpp;
382 if (window->reflect_y)
383 v_offset += window->src.h - 1;
385 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
386 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
389 * For DDA computations the number of bytes per pixel for YUV planar
390 * modes needs to take into account all Y, U and V components.
392 if (yuv && planes > 1)
395 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
396 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
398 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
399 tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
401 h_dda = compute_initial_dda(window->src.x);
402 v_dda = compute_initial_dda(window->src.y);
404 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
405 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
407 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
408 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
410 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
412 if (yuv && planes > 1) {
413 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
416 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
418 value = window->stride[1] << 16 | window->stride[0];
419 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
421 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
424 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
425 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
427 if (dc->soc->supports_block_linear) {
428 unsigned long height = window->tiling.value;
430 switch (window->tiling.mode) {
431 case TEGRA_BO_TILING_MODE_PITCH:
432 value = DC_WINBUF_SURFACE_KIND_PITCH;
435 case TEGRA_BO_TILING_MODE_TILED:
436 value = DC_WINBUF_SURFACE_KIND_TILED;
439 case TEGRA_BO_TILING_MODE_BLOCK:
440 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
441 DC_WINBUF_SURFACE_KIND_BLOCK;
445 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
447 switch (window->tiling.mode) {
448 case TEGRA_BO_TILING_MODE_PITCH:
449 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
450 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
453 case TEGRA_BO_TILING_MODE_TILED:
454 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
455 DC_WIN_BUFFER_ADDR_MODE_TILE;
458 case TEGRA_BO_TILING_MODE_BLOCK:
460 * No need to handle this here because ->atomic_check
461 * will already have filtered it out.
466 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
472 /* setup default colorspace conversion coefficients */
473 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
474 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
475 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
476 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
477 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
478 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
479 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
480 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
483 } else if (window->bits_per_pixel < 24) {
484 value |= COLOR_EXPAND;
487 if (window->reflect_x)
488 value |= H_DIRECTION;
490 if (window->reflect_y)
491 value |= V_DIRECTION;
493 if (tegra_plane_use_horizontal_filtering(plane, window)) {
495 * Enable horizontal 6-tap filter and set filtering
496 * coefficients to the default values defined in TRM.
498 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
499 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
500 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
501 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
502 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
503 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
504 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
505 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
506 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
507 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
508 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
509 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
510 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
511 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
512 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
513 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
518 if (tegra_plane_use_vertical_filtering(plane, window)) {
522 * Enable vertical 2-tap filter and set filtering
523 * coefficients to the default values defined in TRM.
525 for (i = 0, k = 128; i < 16; i++, k -= 8)
526 tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
531 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
533 if (dc->soc->has_legacy_blending)
534 tegra_plane_setup_blending_legacy(plane);
536 tegra_plane_setup_blending(plane, window);
539 static const u32 tegra20_primary_formats[] = {
546 /* non-native formats */
553 static const u64 tegra20_modifiers[] = {
554 DRM_FORMAT_MOD_LINEAR,
555 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
556 DRM_FORMAT_MOD_INVALID
559 static const u32 tegra114_primary_formats[] = {
566 /* new on Tegra114 */
581 static const u32 tegra124_primary_formats[] = {
588 /* new on Tegra114 */
601 /* new on Tegra124 */
606 static const u64 tegra124_modifiers[] = {
607 DRM_FORMAT_MOD_LINEAR,
608 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
609 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
610 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
611 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
612 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
613 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
614 DRM_FORMAT_MOD_INVALID
617 static int tegra_plane_atomic_check(struct drm_plane *plane,
618 struct drm_atomic_state *state)
620 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
622 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
623 unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
626 unsigned int rotation = new_plane_state->rotation;
627 struct tegra_bo_tiling *tiling = &plane_state->tiling;
628 struct tegra_plane *tegra = to_tegra_plane(plane);
629 struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
632 plane_state->peak_memory_bandwidth = 0;
633 plane_state->avg_memory_bandwidth = 0;
635 /* no need for further checks if the plane is being disabled */
636 if (!new_plane_state->crtc) {
637 plane_state->total_peak_memory_bandwidth = 0;
641 err = tegra_plane_format(new_plane_state->fb->format->format,
642 &plane_state->format,
648 * Tegra20 and Tegra30 are special cases here because they support
649 * only variants of specific formats with an alpha component, but not
650 * the corresponding opaque formats. However, the opaque formats can
651 * be emulated by disabling alpha blending for the plane.
653 if (dc->soc->has_legacy_blending) {
654 err = tegra_plane_setup_legacy_state(tegra, plane_state);
659 err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
663 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
664 !dc->soc->supports_block_linear) {
665 DRM_ERROR("hardware doesn't support block linear mode\n");
670 * Older userspace used custom BO flag in order to specify the Y
671 * reflection, while modern userspace uses the generic DRM rotation
672 * property in order to achieve the same result. The legacy BO flag
673 * duplicates the DRM rotation property when both are set.
675 if (tegra_fb_is_bottom_up(new_plane_state->fb))
676 rotation |= DRM_MODE_REFLECT_Y;
678 rotation = drm_rotation_simplify(rotation, supported_rotation);
680 if (rotation & DRM_MODE_REFLECT_X)
681 plane_state->reflect_x = true;
683 plane_state->reflect_x = false;
685 if (rotation & DRM_MODE_REFLECT_Y)
686 plane_state->reflect_y = true;
688 plane_state->reflect_y = false;
691 * Tegra doesn't support different strides for U and V planes so we
692 * error out if the user tries to display a framebuffer with such a
695 if (new_plane_state->fb->format->num_planes > 2) {
696 if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
697 DRM_ERROR("unsupported UV-plane configuration\n");
702 err = tegra_plane_state_add(tegra, new_plane_state);
709 static void tegra_plane_atomic_disable(struct drm_plane *plane,
710 struct drm_atomic_state *state)
712 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
714 struct tegra_plane *p = to_tegra_plane(plane);
717 /* rien ne va plus */
718 if (!old_state || !old_state->crtc)
721 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
722 value &= ~WIN_ENABLE;
723 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
726 static void tegra_plane_atomic_update(struct drm_plane *plane,
727 struct drm_atomic_state *state)
729 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
731 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
732 struct drm_framebuffer *fb = new_state->fb;
733 struct tegra_plane *p = to_tegra_plane(plane);
734 struct tegra_dc_window window;
737 /* rien ne va plus */
738 if (!new_state->crtc || !new_state->fb)
741 if (!new_state->visible)
742 return tegra_plane_atomic_disable(plane, state);
744 memset(&window, 0, sizeof(window));
745 window.src.x = new_state->src.x1 >> 16;
746 window.src.y = new_state->src.y1 >> 16;
747 window.src.w = drm_rect_width(&new_state->src) >> 16;
748 window.src.h = drm_rect_height(&new_state->src) >> 16;
749 window.dst.x = new_state->dst.x1;
750 window.dst.y = new_state->dst.y1;
751 window.dst.w = drm_rect_width(&new_state->dst);
752 window.dst.h = drm_rect_height(&new_state->dst);
753 window.bits_per_pixel = fb->format->cpp[0] * 8;
754 window.reflect_x = tegra_plane_state->reflect_x;
755 window.reflect_y = tegra_plane_state->reflect_y;
757 /* copy from state */
758 window.zpos = new_state->normalized_zpos;
759 window.tiling = tegra_plane_state->tiling;
760 window.format = tegra_plane_state->format;
761 window.swap = tegra_plane_state->swap;
763 for (i = 0; i < fb->format->num_planes; i++) {
764 window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
767 * Tegra uses a shared stride for UV planes. Framebuffers are
768 * already checked for this in the tegra_plane_atomic_check()
769 * function, so it's safe to ignore the V-plane pitch here.
772 window.stride[i] = fb->pitches[i];
775 tegra_dc_setup_window(p, &window);
778 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
779 .prepare_fb = tegra_plane_prepare_fb,
780 .cleanup_fb = tegra_plane_cleanup_fb,
781 .atomic_check = tegra_plane_atomic_check,
782 .atomic_disable = tegra_plane_atomic_disable,
783 .atomic_update = tegra_plane_atomic_update,
786 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
789 * Ideally this would use drm_crtc_mask(), but that would require the
790 * CRTC to already be in the mode_config's list of CRTCs. However, it
791 * will only be added to that list in the drm_crtc_init_with_planes()
792 * (in tegra_dc_init()), which in turn requires registration of these
793 * planes. So we have ourselves a nice little chicken and egg problem
796 * We work around this by manually creating the mask from the number
797 * of CRTCs that have been registered, and should therefore always be
798 * the same as drm_crtc_index() after registration.
800 return 1 << drm->mode_config.num_crtc;
803 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
806 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
807 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
808 struct tegra_plane *plane;
809 unsigned int num_formats;
810 const u64 *modifiers;
814 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
816 return ERR_PTR(-ENOMEM);
818 /* Always use window A as primary window */
819 plane->offset = 0xa00;
823 num_formats = dc->soc->num_primary_formats;
824 formats = dc->soc->primary_formats;
825 modifiers = dc->soc->modifiers;
827 err = tegra_plane_interconnect_init(plane);
833 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
834 &tegra_plane_funcs, formats,
835 num_formats, modifiers, type, NULL);
841 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
842 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
844 err = drm_plane_create_rotation_property(&plane->base,
847 DRM_MODE_ROTATE_180 |
851 dev_err(dc->dev, "failed to create rotation property: %d\n",
857 static const u32 tegra_legacy_cursor_plane_formats[] = {
861 static const u32 tegra_cursor_plane_formats[] = {
865 static int tegra_cursor_atomic_check(struct drm_plane *plane,
866 struct drm_atomic_state *state)
868 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
870 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
871 struct tegra_plane *tegra = to_tegra_plane(plane);
874 plane_state->peak_memory_bandwidth = 0;
875 plane_state->avg_memory_bandwidth = 0;
877 /* no need for further checks if the plane is being disabled */
878 if (!new_plane_state->crtc) {
879 plane_state->total_peak_memory_bandwidth = 0;
883 /* scaling not supported for cursor */
884 if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
885 (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
888 /* only square cursors supported */
889 if (new_plane_state->src_w != new_plane_state->src_h)
892 if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
893 new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
896 err = tegra_plane_state_add(tegra, new_plane_state);
903 static void __tegra_cursor_atomic_update(struct drm_plane *plane,
904 struct drm_plane_state *new_state)
906 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
907 struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
908 struct tegra_drm *tegra = plane->dev->dev_private;
909 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
910 u64 dma_mask = *dc->dev->dma_mask;
915 /* rien ne va plus */
916 if (!new_state->crtc || !new_state->fb)
920 * Legacy display supports hardware clipping of the cursor, but
921 * nvdisplay relies on software to clip the cursor to the screen.
923 if (!dc->soc->has_nvdisplay)
924 value |= CURSOR_CLIP_DISPLAY;
926 switch (new_state->crtc_w) {
928 value |= CURSOR_SIZE_32x32;
932 value |= CURSOR_SIZE_64x64;
936 value |= CURSOR_SIZE_128x128;
940 value |= CURSOR_SIZE_256x256;
944 WARN(1, "cursor size %ux%u not supported\n",
945 new_state->crtc_w, new_state->crtc_h);
949 value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
950 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
952 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
953 value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
954 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
957 /* enable cursor and set blend mode */
958 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
959 value |= CURSOR_ENABLE;
960 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
962 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
963 value &= ~CURSOR_DST_BLEND_MASK;
964 value &= ~CURSOR_SRC_BLEND_MASK;
966 if (dc->soc->has_nvdisplay)
967 value &= ~CURSOR_COMPOSITION_MODE_XOR;
969 value |= CURSOR_MODE_NORMAL;
971 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
972 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
973 value |= CURSOR_ALPHA;
974 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
976 /* nvdisplay relies on software for clipping */
977 if (dc->soc->has_nvdisplay) {
980 x = new_state->dst.x1;
981 y = new_state->dst.y1;
983 drm_rect_fp_to_int(&src, &new_state->src);
985 value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
986 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
988 value = (drm_rect_height(&src) & tegra->vmask) << 16 |
989 (drm_rect_width(&src) & tegra->hmask);
990 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
992 x = new_state->crtc_x;
993 y = new_state->crtc_y;
996 /* position the cursor */
997 value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
998 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
1001 static void tegra_cursor_atomic_update(struct drm_plane *plane,
1002 struct drm_atomic_state *state)
1004 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1006 __tegra_cursor_atomic_update(plane, new_state);
1009 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
1010 struct drm_atomic_state *state)
1012 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
1014 struct tegra_dc *dc;
1017 /* rien ne va plus */
1018 if (!old_state || !old_state->crtc)
1021 dc = to_tegra_dc(old_state->crtc);
1023 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1024 value &= ~CURSOR_ENABLE;
1025 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1028 static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state)
1030 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1031 struct drm_crtc_state *crtc_state;
1032 int min_scale, max_scale;
1035 crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc);
1036 if (WARN_ON(!crtc_state))
1039 if (!crtc_state->active)
1042 if (plane->state->crtc != new_state->crtc ||
1043 plane->state->src_w != new_state->src_w ||
1044 plane->state->src_h != new_state->src_h ||
1045 plane->state->crtc_w != new_state->crtc_w ||
1046 plane->state->crtc_h != new_state->crtc_h ||
1047 plane->state->fb != new_state->fb ||
1048 plane->state->fb == NULL)
1051 min_scale = (1 << 16) / 8;
1052 max_scale = (8 << 16) / 1;
1054 err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
1059 if (new_state->visible != plane->state->visible)
1065 static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
1066 struct drm_atomic_state *state)
1068 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1069 struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
1071 plane->state->src_x = new_state->src_x;
1072 plane->state->src_y = new_state->src_y;
1073 plane->state->crtc_x = new_state->crtc_x;
1074 plane->state->crtc_y = new_state->crtc_y;
1076 if (new_state->visible) {
1077 struct tegra_plane *p = to_tegra_plane(plane);
1080 __tegra_cursor_atomic_update(plane, new_state);
1082 value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
1083 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1084 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1086 value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
1087 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1088 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1092 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1093 .prepare_fb = tegra_plane_prepare_fb,
1094 .cleanup_fb = tegra_plane_cleanup_fb,
1095 .atomic_check = tegra_cursor_atomic_check,
1096 .atomic_update = tegra_cursor_atomic_update,
1097 .atomic_disable = tegra_cursor_atomic_disable,
1098 .atomic_async_check = tegra_cursor_atomic_async_check,
1099 .atomic_async_update = tegra_cursor_atomic_async_update,
1102 static const uint64_t linear_modifiers[] = {
1103 DRM_FORMAT_MOD_LINEAR,
1104 DRM_FORMAT_MOD_INVALID
1107 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1108 struct tegra_dc *dc)
1110 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1111 struct tegra_plane *plane;
1112 unsigned int num_formats;
1116 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1118 return ERR_PTR(-ENOMEM);
1121 * This index is kind of fake. The cursor isn't a regular plane, but
1122 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1123 * use the same programming. Setting this fake index here allows the
1124 * code in tegra_add_plane_state() to do the right thing without the
1125 * need to special-casing the cursor plane.
1130 if (!dc->soc->has_nvdisplay) {
1131 num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1132 formats = tegra_legacy_cursor_plane_formats;
1134 err = tegra_plane_interconnect_init(plane);
1137 return ERR_PTR(err);
1140 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1141 formats = tegra_cursor_plane_formats;
1144 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1145 &tegra_plane_funcs, formats,
1146 num_formats, linear_modifiers,
1147 DRM_PLANE_TYPE_CURSOR, NULL);
1150 return ERR_PTR(err);
1153 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1154 drm_plane_create_zpos_immutable_property(&plane->base, 255);
1156 return &plane->base;
1159 static const u32 tegra20_overlay_formats[] = {
1160 DRM_FORMAT_ARGB4444,
1161 DRM_FORMAT_ARGB1555,
1163 DRM_FORMAT_RGBA5551,
1164 DRM_FORMAT_ABGR8888,
1165 DRM_FORMAT_ARGB8888,
1166 /* non-native formats */
1167 DRM_FORMAT_XRGB1555,
1168 DRM_FORMAT_RGBX5551,
1169 DRM_FORMAT_XBGR8888,
1170 DRM_FORMAT_XRGB8888,
1171 /* planar formats */
1178 static const u32 tegra114_overlay_formats[] = {
1179 DRM_FORMAT_ARGB4444,
1180 DRM_FORMAT_ARGB1555,
1182 DRM_FORMAT_RGBA5551,
1183 DRM_FORMAT_ABGR8888,
1184 DRM_FORMAT_ARGB8888,
1185 /* new on Tegra114 */
1186 DRM_FORMAT_ABGR4444,
1187 DRM_FORMAT_ABGR1555,
1188 DRM_FORMAT_BGRA5551,
1189 DRM_FORMAT_XRGB1555,
1190 DRM_FORMAT_RGBX5551,
1191 DRM_FORMAT_XBGR1555,
1192 DRM_FORMAT_BGRX5551,
1194 DRM_FORMAT_BGRA8888,
1195 DRM_FORMAT_RGBA8888,
1196 DRM_FORMAT_XRGB8888,
1197 DRM_FORMAT_XBGR8888,
1198 /* planar formats */
1203 /* semi-planar formats */
1212 static const u32 tegra124_overlay_formats[] = {
1213 DRM_FORMAT_ARGB4444,
1214 DRM_FORMAT_ARGB1555,
1216 DRM_FORMAT_RGBA5551,
1217 DRM_FORMAT_ABGR8888,
1218 DRM_FORMAT_ARGB8888,
1219 /* new on Tegra114 */
1220 DRM_FORMAT_ABGR4444,
1221 DRM_FORMAT_ABGR1555,
1222 DRM_FORMAT_BGRA5551,
1223 DRM_FORMAT_XRGB1555,
1224 DRM_FORMAT_RGBX5551,
1225 DRM_FORMAT_XBGR1555,
1226 DRM_FORMAT_BGRX5551,
1228 DRM_FORMAT_BGRA8888,
1229 DRM_FORMAT_RGBA8888,
1230 DRM_FORMAT_XRGB8888,
1231 DRM_FORMAT_XBGR8888,
1232 /* new on Tegra124 */
1233 DRM_FORMAT_RGBX8888,
1234 DRM_FORMAT_BGRX8888,
1235 /* planar formats */
1240 DRM_FORMAT_YUV420, /* YU12 */
1241 DRM_FORMAT_YUV422, /* YU16 */
1242 DRM_FORMAT_YUV444, /* YU24 */
1243 /* semi-planar formats */
1252 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1253 struct tegra_dc *dc,
1257 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1258 struct tegra_plane *plane;
1259 unsigned int num_formats;
1260 enum drm_plane_type type;
1264 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1266 return ERR_PTR(-ENOMEM);
1268 plane->offset = 0xa00 + 0x200 * index;
1269 plane->index = index;
1272 num_formats = dc->soc->num_overlay_formats;
1273 formats = dc->soc->overlay_formats;
1275 err = tegra_plane_interconnect_init(plane);
1278 return ERR_PTR(err);
1282 type = DRM_PLANE_TYPE_OVERLAY;
1284 type = DRM_PLANE_TYPE_CURSOR;
1286 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1287 &tegra_plane_funcs, formats,
1288 num_formats, linear_modifiers,
1292 return ERR_PTR(err);
1295 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1296 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1298 err = drm_plane_create_rotation_property(&plane->base,
1301 DRM_MODE_ROTATE_180 |
1302 DRM_MODE_REFLECT_X |
1303 DRM_MODE_REFLECT_Y);
1305 dev_err(dc->dev, "failed to create rotation property: %d\n",
1308 return &plane->base;
1311 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1312 struct tegra_dc *dc)
1314 struct drm_plane *plane, *primary = NULL;
1317 for (i = 0; i < dc->soc->num_wgrps; i++) {
1318 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1320 if (wgrp->dc == dc->pipe) {
1321 for (j = 0; j < wgrp->num_windows; j++) {
1322 unsigned int index = wgrp->windows[j];
1324 plane = tegra_shared_plane_create(drm, dc,
1331 * Choose the first shared plane owned by this
1332 * head as the primary plane.
1335 plane->type = DRM_PLANE_TYPE_PRIMARY;
1345 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1346 struct tegra_dc *dc)
1348 struct drm_plane *planes[2], *primary;
1349 unsigned int planes_num;
1353 primary = tegra_primary_plane_create(drm, dc);
1354 if (IS_ERR(primary))
1357 if (dc->soc->supports_cursor)
1362 for (i = 0; i < planes_num; i++) {
1363 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1365 if (IS_ERR(planes[i])) {
1366 err = PTR_ERR(planes[i]);
1369 planes[i]->funcs->destroy(planes[i]);
1371 primary->funcs->destroy(primary);
1372 return ERR_PTR(err);
1379 static void tegra_dc_destroy(struct drm_crtc *crtc)
1381 drm_crtc_cleanup(crtc);
1384 static void tegra_crtc_reset(struct drm_crtc *crtc)
1386 struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1389 tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1391 __drm_atomic_helper_crtc_reset(crtc, &state->base);
1394 static struct drm_crtc_state *
1395 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1397 struct tegra_dc_state *state = to_dc_state(crtc->state);
1398 struct tegra_dc_state *copy;
1400 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1404 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base);
1405 copy->clk = state->clk;
1406 copy->pclk = state->pclk;
1407 copy->div = state->div;
1408 copy->planes = state->planes;
1413 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1414 struct drm_crtc_state *state)
1416 __drm_atomic_helper_crtc_destroy_state(state);
1420 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1422 static const struct debugfs_reg32 tegra_dc_regs[] = {
1423 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1424 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1425 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1426 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1427 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1428 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1429 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1430 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1431 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1432 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1433 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1434 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1435 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1436 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1437 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1438 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1439 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1440 DEBUGFS_REG32(DC_CMD_INT_STATUS),
1441 DEBUGFS_REG32(DC_CMD_INT_MASK),
1442 DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1443 DEBUGFS_REG32(DC_CMD_INT_TYPE),
1444 DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1445 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1446 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1447 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1448 DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1449 DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1450 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1451 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1452 DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1453 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1454 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1455 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1456 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1457 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1458 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1459 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1460 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1461 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1462 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1463 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1464 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1465 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1466 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1467 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1468 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1469 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1470 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1471 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1472 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1473 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1474 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1475 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1476 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1477 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1478 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1479 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1480 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1481 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1482 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1483 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1484 DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1485 DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1486 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1487 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1488 DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1489 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1490 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1491 DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1492 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1493 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1494 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1495 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1496 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1497 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1498 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1499 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1500 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1501 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1502 DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1503 DEBUGFS_REG32(DC_DISP_ACTIVE),
1504 DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1505 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1506 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1507 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1508 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1509 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1510 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1511 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1512 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1513 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1514 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1515 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1516 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1517 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1518 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1519 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1520 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1521 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1522 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1523 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1524 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1525 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1526 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1527 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1528 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1529 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1530 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1531 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1532 DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1533 DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1534 DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1535 DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1536 DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1537 DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1538 DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1539 DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1540 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1541 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1542 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1543 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1544 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1545 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1546 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1547 DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1548 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1549 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1550 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1551 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1552 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1553 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1554 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1555 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1556 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1557 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1558 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1559 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1560 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1561 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1562 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1563 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1564 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1565 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1566 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1567 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1568 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1569 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1570 DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1571 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1572 DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1573 DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1574 DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1575 DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1576 DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1577 DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1578 DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1579 DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1580 DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1581 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1582 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1583 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1584 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1585 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1586 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1587 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1588 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1589 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1590 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1591 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1592 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1593 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1594 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1595 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1596 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1597 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1598 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1599 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1600 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1601 DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1602 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1603 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1604 DEBUGFS_REG32(DC_WIN_POSITION),
1605 DEBUGFS_REG32(DC_WIN_SIZE),
1606 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1607 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1608 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1609 DEBUGFS_REG32(DC_WIN_DDA_INC),
1610 DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1611 DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1612 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1613 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1614 DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1615 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1616 DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1617 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1618 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1619 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1620 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1621 DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1622 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1623 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1624 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1625 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1626 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1627 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1628 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1629 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1630 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1631 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1632 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1633 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1634 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1637 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1639 struct drm_info_node *node = s->private;
1640 struct tegra_dc *dc = node->info_ent->data;
1644 drm_modeset_lock(&dc->base.mutex, NULL);
1646 if (!dc->base.state->active) {
1651 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1652 unsigned int offset = tegra_dc_regs[i].offset;
1654 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1655 offset, tegra_dc_readl(dc, offset));
1659 drm_modeset_unlock(&dc->base.mutex);
1663 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1665 struct drm_info_node *node = s->private;
1666 struct tegra_dc *dc = node->info_ent->data;
1670 drm_modeset_lock(&dc->base.mutex, NULL);
1672 if (!dc->base.state->active) {
1677 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1678 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1679 tegra_dc_commit(dc);
1681 drm_crtc_wait_one_vblank(&dc->base);
1682 drm_crtc_wait_one_vblank(&dc->base);
1684 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1685 seq_printf(s, "%08x\n", value);
1687 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1690 drm_modeset_unlock(&dc->base.mutex);
1694 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1696 struct drm_info_node *node = s->private;
1697 struct tegra_dc *dc = node->info_ent->data;
1699 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1700 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1701 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1702 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1704 seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1705 seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1706 seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1707 seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1712 static struct drm_info_list debugfs_files[] = {
1713 { "regs", tegra_dc_show_regs, 0, NULL },
1714 { "crc", tegra_dc_show_crc, 0, NULL },
1715 { "stats", tegra_dc_show_stats, 0, NULL },
1718 static int tegra_dc_late_register(struct drm_crtc *crtc)
1720 unsigned int i, count = ARRAY_SIZE(debugfs_files);
1721 struct drm_minor *minor = crtc->dev->primary;
1722 struct dentry *root;
1723 struct tegra_dc *dc = to_tegra_dc(crtc);
1725 #ifdef CONFIG_DEBUG_FS
1726 root = crtc->debugfs_entry;
1731 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1733 if (!dc->debugfs_files)
1736 for (i = 0; i < count; i++)
1737 dc->debugfs_files[i].data = dc;
1739 drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1744 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1746 unsigned int count = ARRAY_SIZE(debugfs_files);
1747 struct drm_minor *minor = crtc->dev->primary;
1748 struct tegra_dc *dc = to_tegra_dc(crtc);
1750 drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1751 kfree(dc->debugfs_files);
1752 dc->debugfs_files = NULL;
1755 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1757 struct tegra_dc *dc = to_tegra_dc(crtc);
1759 /* XXX vblank syncpoints don't work with nvdisplay yet */
1760 if (dc->syncpt && !dc->soc->has_nvdisplay)
1761 return host1x_syncpt_read(dc->syncpt);
1763 /* fallback to software emulated VBLANK counter */
1764 return (u32)drm_crtc_vblank_count(&dc->base);
1767 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1769 struct tegra_dc *dc = to_tegra_dc(crtc);
1772 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1773 value |= VBLANK_INT;
1774 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1779 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1781 struct tegra_dc *dc = to_tegra_dc(crtc);
1784 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1785 value &= ~VBLANK_INT;
1786 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1789 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1790 .page_flip = drm_atomic_helper_page_flip,
1791 .set_config = drm_atomic_helper_set_config,
1792 .destroy = tegra_dc_destroy,
1793 .reset = tegra_crtc_reset,
1794 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1795 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1796 .late_register = tegra_dc_late_register,
1797 .early_unregister = tegra_dc_early_unregister,
1798 .get_vblank_counter = tegra_dc_get_vblank_counter,
1799 .enable_vblank = tegra_dc_enable_vblank,
1800 .disable_vblank = tegra_dc_disable_vblank,
1803 static int tegra_dc_set_timings(struct tegra_dc *dc,
1804 struct drm_display_mode *mode)
1806 unsigned int h_ref_to_sync = 1;
1807 unsigned int v_ref_to_sync = 1;
1808 unsigned long value;
1810 if (!dc->soc->has_nvdisplay) {
1811 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1813 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1814 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1817 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1818 ((mode->hsync_end - mode->hsync_start) << 0);
1819 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1821 value = ((mode->vtotal - mode->vsync_end) << 16) |
1822 ((mode->htotal - mode->hsync_end) << 0);
1823 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1825 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1826 ((mode->hsync_start - mode->hdisplay) << 0);
1827 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1829 value = (mode->vdisplay << 16) | mode->hdisplay;
1830 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1836 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1838 * @dc: display controller
1839 * @crtc_state: CRTC atomic state
1840 * @clk: parent clock for display controller
1841 * @pclk: pixel clock
1842 * @div: shift clock divider
1845 * 0 on success or a negative error-code on failure.
1847 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1848 struct drm_crtc_state *crtc_state,
1849 struct clk *clk, unsigned long pclk,
1852 struct tegra_dc_state *state = to_dc_state(crtc_state);
1854 if (!clk_has_parent(dc->clk, clk))
1864 static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
1865 struct tegra_dc_state *state)
1867 unsigned long rate, pstate;
1868 struct dev_pm_opp *opp;
1871 if (!dc->has_opp_table)
1874 /* calculate actual pixel clock rate which depends on internal divider */
1875 rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
1877 /* find suitable OPP for the rate */
1878 opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
1881 * Very high resolution modes may results in a clock rate that is
1882 * above the characterized maximum. In this case it's okay to fall
1883 * back to the characterized maximum.
1885 if (opp == ERR_PTR(-ERANGE))
1886 opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
1889 dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
1894 pstate = dev_pm_opp_get_required_pstate(opp, 0);
1895 dev_pm_opp_put(opp);
1898 * The minimum core voltage depends on the pixel clock rate (which
1899 * depends on internal clock divider of the CRTC) and not on the
1900 * rate of the display controller clock. This is why we're not using
1901 * dev_pm_opp_set_rate() API and instead controlling the power domain
1904 err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
1906 dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
1910 static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
1911 struct tegra_dc_state *state)
1915 err = clk_set_parent(dc->clk, state->clk);
1917 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1920 * Outputs may not want to change the parent clock rate. This is only
1921 * relevant to Tegra20 where only a single display PLL is available.
1922 * Since that PLL would typically be used for HDMI, an internal LVDS
1923 * panel would need to be driven by some other clock such as PLL_P
1924 * which is shared with other peripherals. Changing the clock rate
1925 * should therefore be avoided.
1927 if (state->pclk > 0) {
1928 err = clk_set_rate(state->clk, state->pclk);
1931 "failed to set clock rate to %lu Hz\n",
1934 err = clk_set_rate(dc->clk, state->pclk);
1936 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1937 dc->clk, state->pclk, err);
1940 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1942 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1944 tegra_dc_update_voltage_state(dc, state);
1947 static void tegra_dc_stop(struct tegra_dc *dc)
1951 /* stop the display controller */
1952 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1953 value &= ~DISP_CTRL_MODE_MASK;
1954 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1956 tegra_dc_commit(dc);
1959 static bool tegra_dc_idle(struct tegra_dc *dc)
1963 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1965 return (value & DISP_CTRL_MODE_MASK) == 0;
1968 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1970 timeout = jiffies + msecs_to_jiffies(timeout);
1972 while (time_before(jiffies, timeout)) {
1973 if (tegra_dc_idle(dc))
1976 usleep_range(1000, 2000);
1979 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1984 tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
1985 struct drm_atomic_state *state,
1986 bool prepare_bandwidth_transition)
1988 const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
1989 u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
1990 const struct drm_plane_state *old_plane_state;
1991 const struct drm_crtc_state *old_crtc_state;
1992 struct tegra_dc_window window, old_window;
1993 struct tegra_dc *dc = to_tegra_dc(crtc);
1994 struct tegra_plane *tegra;
1995 struct drm_plane *plane;
1997 if (dc->soc->has_nvdisplay)
2000 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
2002 if (!crtc->state->active) {
2003 if (!old_crtc_state->active)
2007 * When CRTC is disabled on DPMS, the state of attached planes
2008 * is kept unchanged. Hence we need to enforce removal of the
2009 * bandwidths from the ICC paths.
2011 drm_atomic_crtc_for_each_plane(plane, crtc) {
2012 tegra = to_tegra_plane(plane);
2014 icc_set_bw(tegra->icc_mem, 0, 0);
2015 icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2021 for_each_old_plane_in_state(old_crtc_state->state, plane,
2022 old_plane_state, i) {
2023 old_tegra_state = to_const_tegra_plane_state(old_plane_state);
2024 new_tegra_state = to_const_tegra_plane_state(plane->state);
2025 tegra = to_tegra_plane(plane);
2028 * We're iterating over the global atomic state and it contains
2029 * planes from another CRTC, hence we need to filter out the
2030 * planes unrelated to this CRTC.
2032 if (tegra->dc != dc)
2035 new_avg_bw = new_tegra_state->avg_memory_bandwidth;
2036 old_avg_bw = old_tegra_state->avg_memory_bandwidth;
2038 new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
2039 old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
2042 * See the comment related to !crtc->state->active above,
2043 * which explains why bandwidths need to be updated when
2044 * CRTC is turning ON.
2046 if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
2047 old_crtc_state->active)
2050 window.src.h = drm_rect_height(&plane->state->src) >> 16;
2051 window.dst.h = drm_rect_height(&plane->state->dst);
2053 old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
2054 old_window.dst.h = drm_rect_height(&old_plane_state->dst);
2057 * During the preparation phase (atomic_begin), the memory
2058 * freq should go high before the DC changes are committed
2059 * if bandwidth requirement goes up, otherwise memory freq
2060 * should to stay high if BW requirement goes down. The
2061 * opposite applies to the completion phase (post_commit).
2063 if (prepare_bandwidth_transition) {
2064 new_avg_bw = max(old_avg_bw, new_avg_bw);
2065 new_peak_bw = max(old_peak_bw, new_peak_bw);
2067 if (tegra_plane_use_vertical_filtering(tegra, &old_window))
2068 window = old_window;
2071 icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
2073 if (tegra_plane_use_vertical_filtering(tegra, &window))
2074 icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
2076 icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2080 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
2081 struct drm_atomic_state *state)
2083 struct tegra_dc *dc = to_tegra_dc(crtc);
2087 if (!tegra_dc_idle(dc)) {
2091 * Ignore the return value, there isn't anything useful to do
2092 * in case this fails.
2094 tegra_dc_wait_idle(dc, 100);
2098 * This should really be part of the RGB encoder driver, but clearing
2099 * these bits has the side-effect of stopping the display controller.
2100 * When that happens no VBLANK interrupts will be raised. At the same
2101 * time the encoder is disabled before the display controller, so the
2102 * above code is always going to timeout waiting for the controller
2105 * Given the close coupling between the RGB encoder and the display
2106 * controller doing it here is still kind of okay. None of the other
2107 * encoder drivers require these bits to be cleared.
2109 * XXX: Perhaps given that the display controller is switched off at
2110 * this point anyway maybe clearing these bits isn't even useful for
2114 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2115 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2116 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
2117 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2120 tegra_dc_stats_reset(&dc->stats);
2121 drm_crtc_vblank_off(crtc);
2123 spin_lock_irq(&crtc->dev->event_lock);
2125 if (crtc->state->event) {
2126 drm_crtc_send_vblank_event(crtc, crtc->state->event);
2127 crtc->state->event = NULL;
2130 spin_unlock_irq(&crtc->dev->event_lock);
2132 err = host1x_client_suspend(&dc->client);
2134 dev_err(dc->dev, "failed to suspend: %d\n", err);
2136 if (dc->has_opp_table) {
2137 err = dev_pm_genpd_set_performance_state(dc->dev, 0);
2140 "failed to clear power domain state: %d\n", err);
2144 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2145 struct drm_atomic_state *state)
2147 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2148 struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2149 struct tegra_dc *dc = to_tegra_dc(crtc);
2153 /* apply PLL changes */
2154 tegra_dc_set_clock_rate(dc, crtc_state);
2156 err = host1x_client_resume(&dc->client);
2158 dev_err(dc->dev, "failed to resume: %d\n", err);
2162 /* initialize display controller */
2164 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2166 if (dc->soc->has_nvdisplay)
2171 value = SYNCPT_CNTRL_NO_STALL;
2172 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2174 value = enable | syncpt;
2175 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2178 if (dc->soc->has_nvdisplay) {
2179 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2181 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2183 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2184 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2185 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2186 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2187 VBLANK_INT | FRAME_END_INT;
2188 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2190 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2192 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2194 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2195 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2197 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2199 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2200 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2201 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2203 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2204 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2205 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2207 /* initialize timer */
2208 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2209 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2210 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2212 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2213 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2214 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2216 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2217 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2218 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2220 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2221 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2222 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2225 if (dc->soc->supports_background_color)
2226 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2228 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2230 /* apply pixel clock changes */
2231 if (!dc->soc->has_nvdisplay) {
2232 value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
2233 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
2236 /* program display mode */
2237 tegra_dc_set_timings(dc, mode);
2239 /* interlacing isn't supported yet, so disable it */
2240 if (dc->soc->supports_interlacing) {
2241 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2242 value &= ~INTERLACE_ENABLE;
2243 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2246 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2247 value &= ~DISP_CTRL_MODE_MASK;
2248 value |= DISP_CTRL_MODE_C_DISPLAY;
2249 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2251 if (!dc->soc->has_nvdisplay) {
2252 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2253 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2254 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2255 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2258 /* enable underflow reporting and display red for missing pixels */
2259 if (dc->soc->has_nvdisplay) {
2260 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2261 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2265 /* XXX: parameterize? */
2266 value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
2267 tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
2270 tegra_dc_commit(dc);
2272 drm_crtc_vblank_on(crtc);
2275 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2276 struct drm_atomic_state *state)
2278 unsigned long flags;
2280 tegra_crtc_update_memory_bandwidth(crtc, state, true);
2282 if (crtc->state->event) {
2283 spin_lock_irqsave(&crtc->dev->event_lock, flags);
2285 if (drm_crtc_vblank_get(crtc) != 0)
2286 drm_crtc_send_vblank_event(crtc, crtc->state->event);
2288 drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2290 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2292 crtc->state->event = NULL;
2296 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2297 struct drm_atomic_state *state)
2299 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2301 struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2302 struct tegra_dc *dc = to_tegra_dc(crtc);
2305 value = dc_state->planes << 8 | GENERAL_UPDATE;
2306 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2307 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2309 value = dc_state->planes | GENERAL_ACT_REQ;
2310 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2311 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2314 static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2316 const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2317 const struct drm_format_info *fmt = state->fb->format;
2318 unsigned int src_w = drm_rect_width(&state->src) >> 16;
2319 unsigned int dst_w = drm_rect_width(&state->dst);
2321 if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2324 if (soc->supports_cursor)
2327 if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2333 static unsigned long
2334 tegra_plane_overlap_mask(struct drm_crtc_state *state,
2335 const struct drm_plane_state *plane_state)
2337 const struct drm_plane_state *other_state;
2338 const struct tegra_plane *tegra;
2339 unsigned long overlap_mask = 0;
2340 struct drm_plane *plane;
2341 struct drm_rect rect;
2343 if (!plane_state->visible || !plane_state->fb)
2347 * Data-prefetch FIFO will easily help to overcome temporal memory
2348 * pressure if other plane overlaps with the cursor plane.
2350 if (tegra_plane_is_cursor(plane_state))
2353 drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2354 rect = plane_state->dst;
2356 tegra = to_tegra_plane(other_state->plane);
2358 if (!other_state->visible || !other_state->fb)
2362 * Ignore cursor plane overlaps because it's not practical to
2363 * assume that it contributes to the bandwidth in overlapping
2364 * area if window width is small.
2366 if (tegra_plane_is_cursor(other_state))
2369 if (drm_rect_intersect(&rect, &other_state->dst))
2370 overlap_mask |= BIT(tegra->index);
2373 return overlap_mask;
2376 static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2377 struct drm_atomic_state *state)
2379 ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2380 u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2381 bool all_planes_overlap_simultaneously = true;
2382 const struct tegra_plane_state *tegra_state;
2383 const struct drm_plane_state *plane_state;
2384 struct tegra_dc *dc = to_tegra_dc(crtc);
2385 struct drm_crtc_state *new_state;
2386 struct tegra_plane *tegra;
2387 struct drm_plane *plane;
2390 * The nv-display uses shared planes. The algorithm below assumes
2391 * maximum 3 planes per-CRTC, this assumption isn't applicable to
2392 * the nv-display. Note that T124 support has additional windows,
2393 * but currently they aren't supported by the driver.
2395 if (dc->soc->has_nvdisplay)
2398 new_state = drm_atomic_get_new_crtc_state(state, crtc);
2401 * For overlapping planes pixel's data is fetched for each plane at
2402 * the same time, hence bandwidths are accumulated in this case.
2403 * This needs to be taken into account for calculating total bandwidth
2404 * consumed by all planes.
2406 * Here we get the overlapping state of each plane, which is a
2407 * bitmask of plane indices telling with what planes there is an
2408 * overlap. Note that bitmask[plane] includes BIT(plane) in order
2409 * to make further code nicer and simpler.
2411 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2412 tegra_state = to_const_tegra_plane_state(plane_state);
2413 tegra = to_tegra_plane(plane);
2415 if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2418 plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2419 mask = tegra_plane_overlap_mask(new_state, plane_state);
2420 overlap_mask[tegra->index] = mask;
2422 if (hweight_long(mask) != 3)
2423 all_planes_overlap_simultaneously = false;
2427 * Then we calculate maximum bandwidth of each plane state.
2428 * The bandwidth includes the plane BW + BW of the "simultaneously"
2429 * overlapping planes, where "simultaneously" means areas where DC
2430 * fetches from the planes simultaneously during of scan-out process.
2432 * For example, if plane A overlaps with planes B and C, but B and C
2433 * don't overlap, then the peak bandwidth will be either in area where
2434 * A-and-B or A-and-C planes overlap.
2436 * The plane_peak_bw[] contains peak memory bandwidth values of
2437 * each plane, this information is needed by interconnect provider
2438 * in order to set up latency allowance based on the peak BW, see
2439 * tegra_crtc_update_memory_bandwidth().
2441 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2442 u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2445 * Note that plane's atomic check doesn't touch the
2446 * total_peak_memory_bandwidth of enabled plane, hence the
2447 * current state contains the old bandwidth state from the
2448 * previous CRTC commit.
2450 tegra_state = to_const_tegra_plane_state(plane_state);
2451 tegra = to_tegra_plane(plane);
2453 for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2454 if (i == tegra->index)
2457 if (all_planes_overlap_simultaneously)
2458 overlap_bw += plane_peak_bw[i];
2460 overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2463 new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2464 old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2467 * If plane's peak bandwidth changed (for example plane isn't
2468 * overlapped anymore) and plane isn't in the atomic state,
2469 * then add plane to the state in order to have the bandwidth
2472 if (old_peak_bw != new_peak_bw) {
2473 struct tegra_plane_state *new_tegra_state;
2474 struct drm_plane_state *new_plane_state;
2476 new_plane_state = drm_atomic_get_plane_state(state, plane);
2477 if (IS_ERR(new_plane_state))
2478 return PTR_ERR(new_plane_state);
2480 new_tegra_state = to_tegra_plane_state(new_plane_state);
2481 new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2488 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2489 struct drm_atomic_state *state)
2493 err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2500 void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2501 struct drm_atomic_state *state)
2504 * Display bandwidth is allowed to go down only once hardware state
2505 * is known to be armed, i.e. state was committed and VBLANK event
2508 tegra_crtc_update_memory_bandwidth(crtc, state, false);
2511 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2512 .atomic_check = tegra_crtc_atomic_check,
2513 .atomic_begin = tegra_crtc_atomic_begin,
2514 .atomic_flush = tegra_crtc_atomic_flush,
2515 .atomic_enable = tegra_crtc_atomic_enable,
2516 .atomic_disable = tegra_crtc_atomic_disable,
2519 static irqreturn_t tegra_dc_irq(int irq, void *data)
2521 struct tegra_dc *dc = data;
2522 unsigned long status;
2524 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2525 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2527 if (status & FRAME_END_INT) {
2529 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2531 dc->stats.frames_total++;
2535 if (status & VBLANK_INT) {
2537 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2539 drm_crtc_handle_vblank(&dc->base);
2540 dc->stats.vblank_total++;
2544 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2546 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2548 dc->stats.underflow_total++;
2549 dc->stats.underflow++;
2552 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2554 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2556 dc->stats.overflow_total++;
2557 dc->stats.overflow++;
2560 if (status & HEAD_UF_INT) {
2561 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2562 dc->stats.underflow_total++;
2563 dc->stats.underflow++;
2569 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2573 if (!dc->soc->wgrps)
2576 for (i = 0; i < dc->soc->num_wgrps; i++) {
2577 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2579 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2586 static int tegra_dc_early_init(struct host1x_client *client)
2588 struct drm_device *drm = dev_get_drvdata(client->host);
2589 struct tegra_drm *tegra = drm->dev_private;
2596 static int tegra_dc_init(struct host1x_client *client)
2598 struct drm_device *drm = dev_get_drvdata(client->host);
2599 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2600 struct tegra_dc *dc = host1x_client_to_dc(client);
2601 struct tegra_drm *tegra = drm->dev_private;
2602 struct drm_plane *primary = NULL;
2603 struct drm_plane *cursor = NULL;
2607 * DC has been reset by now, so VBLANK syncpoint can be released
2610 host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2613 * XXX do not register DCs with no window groups because we cannot
2614 * assign a primary plane to them, which in turn will cause KMS to
2617 if (!tegra_dc_has_window_groups(dc))
2621 * Set the display hub as the host1x client parent for the display
2622 * controller. This is needed for the runtime reference counting that
2623 * ensures the display hub is always powered when any of the display
2626 if (dc->soc->has_nvdisplay)
2627 client->parent = &tegra->hub->client;
2629 dc->syncpt = host1x_syncpt_request(client, flags);
2631 dev_warn(dc->dev, "failed to allocate syncpoint\n");
2633 err = host1x_client_iommu_attach(client);
2634 if (err < 0 && err != -ENODEV) {
2635 dev_err(client->dev, "failed to attach to domain: %d\n", err);
2640 primary = tegra_dc_add_shared_planes(drm, dc);
2642 primary = tegra_dc_add_planes(drm, dc);
2644 if (IS_ERR(primary)) {
2645 err = PTR_ERR(primary);
2649 if (dc->soc->supports_cursor) {
2650 cursor = tegra_dc_cursor_plane_create(drm, dc);
2651 if (IS_ERR(cursor)) {
2652 err = PTR_ERR(cursor);
2656 /* dedicate one overlay to mouse cursor */
2657 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2658 if (IS_ERR(cursor)) {
2659 err = PTR_ERR(cursor);
2664 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2665 &tegra_crtc_funcs, NULL);
2669 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2672 * Keep track of the minimum pitch alignment across all display
2675 if (dc->soc->pitch_align > tegra->pitch_align)
2676 tegra->pitch_align = dc->soc->pitch_align;
2678 /* track maximum resolution */
2679 if (dc->soc->has_nvdisplay)
2680 drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2682 drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2684 err = tegra_dc_rgb_init(drm, dc);
2685 if (err < 0 && err != -ENODEV) {
2686 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2690 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2691 dev_name(dc->dev), dc);
2693 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2699 * Inherit the DMA parameters (such as maximum segment size) from the
2700 * parent host1x device.
2702 client->dev->dma_parms = client->host->dma_parms;
2707 if (!IS_ERR_OR_NULL(cursor))
2708 drm_plane_cleanup(cursor);
2710 if (!IS_ERR(primary))
2711 drm_plane_cleanup(primary);
2713 host1x_client_iommu_detach(client);
2714 host1x_syncpt_put(dc->syncpt);
2719 static int tegra_dc_exit(struct host1x_client *client)
2721 struct tegra_dc *dc = host1x_client_to_dc(client);
2724 if (!tegra_dc_has_window_groups(dc))
2727 /* avoid a dangling pointer just in case this disappears */
2728 client->dev->dma_parms = NULL;
2730 devm_free_irq(dc->dev, dc->irq, dc);
2732 err = tegra_dc_rgb_exit(dc);
2734 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2738 host1x_client_iommu_detach(client);
2739 host1x_syncpt_put(dc->syncpt);
2744 static int tegra_dc_late_exit(struct host1x_client *client)
2746 struct drm_device *drm = dev_get_drvdata(client->host);
2747 struct tegra_drm *tegra = drm->dev_private;
2754 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2756 struct tegra_dc *dc = host1x_client_to_dc(client);
2757 struct device *dev = client->dev;
2760 err = reset_control_assert(dc->rst);
2762 dev_err(dev, "failed to assert reset: %d\n", err);
2766 if (dc->soc->has_powergate)
2767 tegra_powergate_power_off(dc->powergate);
2769 clk_disable_unprepare(dc->clk);
2770 pm_runtime_put_sync(dev);
2775 static int tegra_dc_runtime_resume(struct host1x_client *client)
2777 struct tegra_dc *dc = host1x_client_to_dc(client);
2778 struct device *dev = client->dev;
2781 err = pm_runtime_resume_and_get(dev);
2783 dev_err(dev, "failed to get runtime PM: %d\n", err);
2787 if (dc->soc->has_powergate) {
2788 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2791 dev_err(dev, "failed to power partition: %d\n", err);
2795 err = clk_prepare_enable(dc->clk);
2797 dev_err(dev, "failed to enable clock: %d\n", err);
2801 err = reset_control_deassert(dc->rst);
2803 dev_err(dev, "failed to deassert reset: %d\n", err);
2811 clk_disable_unprepare(dc->clk);
2813 pm_runtime_put_sync(dev);
2817 static const struct host1x_client_ops dc_client_ops = {
2818 .early_init = tegra_dc_early_init,
2819 .init = tegra_dc_init,
2820 .exit = tegra_dc_exit,
2821 .late_exit = tegra_dc_late_exit,
2822 .suspend = tegra_dc_runtime_suspend,
2823 .resume = tegra_dc_runtime_resume,
2826 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2827 .supports_background_color = false,
2828 .supports_interlacing = false,
2829 .supports_cursor = false,
2830 .supports_block_linear = false,
2831 .supports_sector_layout = false,
2832 .has_legacy_blending = true,
2834 .has_powergate = false,
2836 .has_nvdisplay = false,
2837 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2838 .primary_formats = tegra20_primary_formats,
2839 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2840 .overlay_formats = tegra20_overlay_formats,
2841 .modifiers = tegra20_modifiers,
2842 .has_win_a_without_filters = true,
2843 .has_win_b_vfilter_mem_client = true,
2844 .has_win_c_without_vert_filter = true,
2845 .plane_tiled_memory_bandwidth_x2 = false,
2846 .has_pll_d2_out0 = false,
2849 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2850 .supports_background_color = false,
2851 .supports_interlacing = false,
2852 .supports_cursor = false,
2853 .supports_block_linear = false,
2854 .supports_sector_layout = false,
2855 .has_legacy_blending = true,
2857 .has_powergate = false,
2858 .coupled_pm = false,
2859 .has_nvdisplay = false,
2860 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2861 .primary_formats = tegra20_primary_formats,
2862 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2863 .overlay_formats = tegra20_overlay_formats,
2864 .modifiers = tegra20_modifiers,
2865 .has_win_a_without_filters = false,
2866 .has_win_b_vfilter_mem_client = true,
2867 .has_win_c_without_vert_filter = false,
2868 .plane_tiled_memory_bandwidth_x2 = true,
2869 .has_pll_d2_out0 = true,
2872 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2873 .supports_background_color = false,
2874 .supports_interlacing = false,
2875 .supports_cursor = false,
2876 .supports_block_linear = false,
2877 .supports_sector_layout = false,
2878 .has_legacy_blending = true,
2880 .has_powergate = true,
2881 .coupled_pm = false,
2882 .has_nvdisplay = false,
2883 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2884 .primary_formats = tegra114_primary_formats,
2885 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2886 .overlay_formats = tegra114_overlay_formats,
2887 .modifiers = tegra20_modifiers,
2888 .has_win_a_without_filters = false,
2889 .has_win_b_vfilter_mem_client = false,
2890 .has_win_c_without_vert_filter = false,
2891 .plane_tiled_memory_bandwidth_x2 = true,
2892 .has_pll_d2_out0 = true,
2895 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2896 .supports_background_color = true,
2897 .supports_interlacing = true,
2898 .supports_cursor = true,
2899 .supports_block_linear = true,
2900 .supports_sector_layout = false,
2901 .has_legacy_blending = false,
2903 .has_powergate = true,
2904 .coupled_pm = false,
2905 .has_nvdisplay = false,
2906 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2907 .primary_formats = tegra124_primary_formats,
2908 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2909 .overlay_formats = tegra124_overlay_formats,
2910 .modifiers = tegra124_modifiers,
2911 .has_win_a_without_filters = false,
2912 .has_win_b_vfilter_mem_client = false,
2913 .has_win_c_without_vert_filter = false,
2914 .plane_tiled_memory_bandwidth_x2 = false,
2915 .has_pll_d2_out0 = true,
2918 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2919 .supports_background_color = true,
2920 .supports_interlacing = true,
2921 .supports_cursor = true,
2922 .supports_block_linear = true,
2923 .supports_sector_layout = false,
2924 .has_legacy_blending = false,
2926 .has_powergate = true,
2927 .coupled_pm = false,
2928 .has_nvdisplay = false,
2929 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2930 .primary_formats = tegra114_primary_formats,
2931 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2932 .overlay_formats = tegra114_overlay_formats,
2933 .modifiers = tegra124_modifiers,
2934 .has_win_a_without_filters = false,
2935 .has_win_b_vfilter_mem_client = false,
2936 .has_win_c_without_vert_filter = false,
2937 .plane_tiled_memory_bandwidth_x2 = false,
2938 .has_pll_d2_out0 = true,
2941 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2945 .windows = (const unsigned int[]) { 0 },
2950 .windows = (const unsigned int[]) { 1 },
2955 .windows = (const unsigned int[]) { 2 },
2960 .windows = (const unsigned int[]) { 3 },
2965 .windows = (const unsigned int[]) { 4 },
2970 .windows = (const unsigned int[]) { 5 },
2975 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2976 .supports_background_color = true,
2977 .supports_interlacing = true,
2978 .supports_cursor = true,
2979 .supports_block_linear = true,
2980 .supports_sector_layout = false,
2981 .has_legacy_blending = false,
2983 .has_powergate = false,
2984 .coupled_pm = false,
2985 .has_nvdisplay = true,
2986 .wgrps = tegra186_dc_wgrps,
2987 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2988 .plane_tiled_memory_bandwidth_x2 = false,
2989 .has_pll_d2_out0 = false,
2992 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2996 .windows = (const unsigned int[]) { 0 },
3001 .windows = (const unsigned int[]) { 1 },
3006 .windows = (const unsigned int[]) { 2 },
3011 .windows = (const unsigned int[]) { 3 },
3016 .windows = (const unsigned int[]) { 4 },
3021 .windows = (const unsigned int[]) { 5 },
3026 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
3027 .supports_background_color = true,
3028 .supports_interlacing = true,
3029 .supports_cursor = true,
3030 .supports_block_linear = true,
3031 .supports_sector_layout = true,
3032 .has_legacy_blending = false,
3034 .has_powergate = false,
3035 .coupled_pm = false,
3036 .has_nvdisplay = true,
3037 .wgrps = tegra194_dc_wgrps,
3038 .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
3039 .plane_tiled_memory_bandwidth_x2 = false,
3040 .has_pll_d2_out0 = false,
3043 static const struct of_device_id tegra_dc_of_match[] = {
3045 .compatible = "nvidia,tegra194-dc",
3046 .data = &tegra194_dc_soc_info,
3048 .compatible = "nvidia,tegra186-dc",
3049 .data = &tegra186_dc_soc_info,
3051 .compatible = "nvidia,tegra210-dc",
3052 .data = &tegra210_dc_soc_info,
3054 .compatible = "nvidia,tegra124-dc",
3055 .data = &tegra124_dc_soc_info,
3057 .compatible = "nvidia,tegra114-dc",
3058 .data = &tegra114_dc_soc_info,
3060 .compatible = "nvidia,tegra30-dc",
3061 .data = &tegra30_dc_soc_info,
3063 .compatible = "nvidia,tegra20-dc",
3064 .data = &tegra20_dc_soc_info,
3069 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
3071 static int tegra_dc_parse_dt(struct tegra_dc *dc)
3073 struct device_node *np;
3077 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
3079 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
3082 * If the nvidia,head property isn't present, try to find the
3083 * correct head number by looking up the position of this
3084 * display controller's node within the device tree. Assuming
3085 * that the nodes are ordered properly in the DTS file and
3086 * that the translation into a flattened device tree blob
3087 * preserves that ordering this will actually yield the right
3090 * If those assumptions don't hold, this will still work for
3091 * cases where only a single display controller is used.
3093 for_each_matching_node(np, tegra_dc_of_match) {
3094 if (np == dc->dev->of_node) {
3108 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
3110 struct tegra_dc *dc = dev_get_drvdata(dev);
3111 unsigned int pipe = (unsigned long)(void *)data;
3113 return dc->pipe == pipe;
3116 static int tegra_dc_couple(struct tegra_dc *dc)
3119 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
3120 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
3121 * POWER_CONTROL registers during CRTC enabling.
3123 if (dc->soc->coupled_pm && dc->pipe == 1) {
3124 struct device *companion;
3125 struct tegra_dc *parent;
3127 companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
3128 tegra_dc_match_by_pipe);
3130 return -EPROBE_DEFER;
3132 parent = dev_get_drvdata(companion);
3133 dc->client.parent = &parent->client;
3135 dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
3141 static int tegra_dc_init_opp_table(struct tegra_dc *dc)
3143 struct tegra_core_opp_params opp_params = {};
3146 err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
3147 if (err && err != -ENODEV)
3151 dc->has_opp_table = false;
3153 dc->has_opp_table = true;
3158 static int tegra_dc_probe(struct platform_device *pdev)
3160 u64 dma_mask = dma_get_mask(pdev->dev.parent);
3161 struct tegra_dc *dc;
3164 err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
3166 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
3170 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
3174 dc->soc = of_device_get_match_data(&pdev->dev);
3176 INIT_LIST_HEAD(&dc->list);
3177 dc->dev = &pdev->dev;
3179 err = tegra_dc_parse_dt(dc);
3183 err = tegra_dc_couple(dc);
3187 dc->clk = devm_clk_get(&pdev->dev, NULL);
3188 if (IS_ERR(dc->clk)) {
3189 dev_err(&pdev->dev, "failed to get clock\n");
3190 return PTR_ERR(dc->clk);
3193 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3194 if (IS_ERR(dc->rst)) {
3195 dev_err(&pdev->dev, "failed to get reset\n");
3196 return PTR_ERR(dc->rst);
3199 /* assert reset and disable clock */
3200 err = clk_prepare_enable(dc->clk);
3204 usleep_range(2000, 4000);
3206 err = reset_control_assert(dc->rst);
3208 clk_disable_unprepare(dc->clk);
3212 usleep_range(2000, 4000);
3214 clk_disable_unprepare(dc->clk);
3216 if (dc->soc->has_powergate) {
3218 dc->powergate = TEGRA_POWERGATE_DIS;
3220 dc->powergate = TEGRA_POWERGATE_DISB;
3222 tegra_powergate_power_off(dc->powergate);
3225 err = tegra_dc_init_opp_table(dc);
3229 dc->regs = devm_platform_ioremap_resource(pdev, 0);
3230 if (IS_ERR(dc->regs))
3231 return PTR_ERR(dc->regs);
3233 dc->irq = platform_get_irq(pdev, 0);
3237 err = tegra_dc_rgb_probe(dc);
3238 if (err < 0 && err != -ENODEV)
3239 return dev_err_probe(&pdev->dev, err,
3240 "failed to probe RGB output\n");
3242 platform_set_drvdata(pdev, dc);
3243 pm_runtime_enable(&pdev->dev);
3245 INIT_LIST_HEAD(&dc->client.list);
3246 dc->client.ops = &dc_client_ops;
3247 dc->client.dev = &pdev->dev;
3249 err = host1x_client_register(&dc->client);
3251 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3259 pm_runtime_disable(&pdev->dev);
3260 tegra_dc_rgb_remove(dc);
3265 static void tegra_dc_remove(struct platform_device *pdev)
3267 struct tegra_dc *dc = platform_get_drvdata(pdev);
3269 host1x_client_unregister(&dc->client);
3271 tegra_dc_rgb_remove(dc);
3273 pm_runtime_disable(&pdev->dev);
3276 struct platform_driver tegra_dc_driver = {
3279 .of_match_table = tegra_dc_of_match,
3281 .probe = tegra_dc_probe,
3282 .remove_new = tegra_dc_remove,