Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / rockchip / rockchip_drm_vop.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
4  * Author:Mark Yao <mark.yao@rock-chips.com>
5  */
6
7 #include <linux/clk.h>
8 #include <linux/component.h>
9 #include <linux/delay.h>
10 #include <linux/iopoll.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/overflow.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19
20 #include <drm/drm.h>
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_uapi.h>
23 #include <drm/drm_crtc.h>
24 #include <drm/drm_flip_work.h>
25 #include <drm/drm_fourcc.h>
26 #include <drm/drm_gem_atomic_helper.h>
27 #include <drm/drm_gem_framebuffer_helper.h>
28 #include <drm/drm_plane_helper.h>
29 #include <drm/drm_probe_helper.h>
30 #include <drm/drm_self_refresh_helper.h>
31 #include <drm/drm_vblank.h>
32
33 #ifdef CONFIG_DRM_ANALOGIX_DP
34 #include <drm/bridge/analogix_dp.h>
35 #endif
36
37 #include "rockchip_drm_drv.h"
38 #include "rockchip_drm_gem.h"
39 #include "rockchip_drm_fb.h"
40 #include "rockchip_drm_vop.h"
41 #include "rockchip_rgb.h"
42
43 #define VOP_WIN_SET(vop, win, name, v) \
44                 vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
45 #define VOP_SCL_SET(vop, win, name, v) \
46                 vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
47 #define VOP_SCL_SET_EXT(vop, win, name, v) \
48                 vop_reg_set(vop, &win->phy->scl->ext->name, \
49                             win->base, ~0, v, #name)
50
51 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
52         do { \
53                 if (win_yuv2yuv && win_yuv2yuv->name.mask) \
54                         vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
55         } while (0)
56
57 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
58         do { \
59                 if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
60                         vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
61         } while (0)
62
63 #define VOP_INTR_SET_MASK(vop, name, mask, v) \
64                 vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
65
66 #define VOP_REG_SET(vop, group, name, v) \
67                     vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
68
69 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
70         do { \
71                 int i, reg = 0, mask = 0; \
72                 for (i = 0; i < vop->data->intr->nintrs; i++) { \
73                         if (vop->data->intr->intrs[i] & type) { \
74                                 reg |= (v) << i; \
75                                 mask |= 1 << i; \
76                         } \
77                 } \
78                 VOP_INTR_SET_MASK(vop, name, mask, reg); \
79         } while (0)
80 #define VOP_INTR_GET_TYPE(vop, name, type) \
81                 vop_get_intr_type(vop, &vop->data->intr->name, type)
82
83 #define VOP_WIN_GET(vop, win, name) \
84                 vop_read_reg(vop, win->base, &win->phy->name)
85
86 #define VOP_WIN_HAS_REG(win, name) \
87         (!!(win->phy->name.mask))
88
89 #define VOP_WIN_GET_YRGBADDR(vop, win) \
90                 vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
91
92 #define VOP_WIN_TO_INDEX(vop_win) \
93         ((vop_win) - (vop_win)->vop->win)
94
95 #define VOP_AFBC_SET(vop, name, v) \
96         do { \
97                 if ((vop)->data->afbc) \
98                         vop_reg_set((vop), &(vop)->data->afbc->name, \
99                                     0, ~0, v, #name); \
100         } while (0)
101
102 #define to_vop(x) container_of(x, struct vop, crtc)
103 #define to_vop_win(x) container_of(x, struct vop_win, base)
104
105 #define AFBC_FMT_RGB565         0x0
106 #define AFBC_FMT_U8U8U8U8       0x5
107 #define AFBC_FMT_U8U8U8         0x4
108
109 #define AFBC_TILE_16x16         BIT(4)
110
111 /*
112  * The coefficients of the following matrix are all fixed points.
113  * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
114  * They are all represented in two's complement.
115  */
116 static const uint32_t bt601_yuv2rgb[] = {
117         0x4A8, 0x0,    0x662,
118         0x4A8, 0x1E6F, 0x1CBF,
119         0x4A8, 0x812,  0x0,
120         0x321168, 0x0877CF, 0x2EB127
121 };
122
123 enum vop_pending {
124         VOP_PENDING_FB_UNREF,
125 };
126
127 struct vop_win {
128         struct drm_plane base;
129         const struct vop_win_data *data;
130         const struct vop_win_yuv2yuv_data *yuv2yuv_data;
131         struct vop *vop;
132 };
133
134 struct rockchip_rgb;
135 struct vop {
136         struct drm_crtc crtc;
137         struct device *dev;
138         struct drm_device *drm_dev;
139         bool is_enabled;
140
141         struct completion dsp_hold_completion;
142         unsigned int win_enabled;
143
144         /* protected by dev->event_lock */
145         struct drm_pending_vblank_event *event;
146
147         struct drm_flip_work fb_unref_work;
148         unsigned long pending;
149
150         struct completion line_flag_completion;
151
152         const struct vop_data *data;
153
154         uint32_t *regsbak;
155         void __iomem *regs;
156         void __iomem *lut_regs;
157
158         /* physical map length of vop register */
159         uint32_t len;
160
161         /* one time only one process allowed to config the register */
162         spinlock_t reg_lock;
163         /* lock vop irq reg */
164         spinlock_t irq_lock;
165         /* protects crtc enable/disable */
166         struct mutex vop_lock;
167
168         unsigned int irq;
169
170         /* vop AHP clk */
171         struct clk *hclk;
172         /* vop dclk */
173         struct clk *dclk;
174         /* vop share memory frequency */
175         struct clk *aclk;
176
177         /* vop dclk reset */
178         struct reset_control *dclk_rst;
179
180         /* optional internal rgb encoder */
181         struct rockchip_rgb *rgb;
182
183         struct vop_win win[];
184 };
185
186 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
187 {
188         writel(v, vop->regs + offset);
189         vop->regsbak[offset >> 2] = v;
190 }
191
192 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
193 {
194         return readl(vop->regs + offset);
195 }
196
197 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
198                                     const struct vop_reg *reg)
199 {
200         return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
201 }
202
203 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
204                         uint32_t _offset, uint32_t _mask, uint32_t v,
205                         const char *reg_name)
206 {
207         int offset, mask, shift;
208
209         if (!reg || !reg->mask) {
210                 DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
211                 return;
212         }
213
214         offset = reg->offset + _offset;
215         mask = reg->mask & _mask;
216         shift = reg->shift;
217
218         if (reg->write_mask) {
219                 v = ((v << shift) & 0xffff) | (mask << (shift + 16));
220         } else {
221                 uint32_t cached_val = vop->regsbak[offset >> 2];
222
223                 v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
224                 vop->regsbak[offset >> 2] = v;
225         }
226
227         if (reg->relaxed)
228                 writel_relaxed(v, vop->regs + offset);
229         else
230                 writel(v, vop->regs + offset);
231 }
232
233 static inline uint32_t vop_get_intr_type(struct vop *vop,
234                                          const struct vop_reg *reg, int type)
235 {
236         uint32_t i, ret = 0;
237         uint32_t regs = vop_read_reg(vop, 0, reg);
238
239         for (i = 0; i < vop->data->intr->nintrs; i++) {
240                 if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
241                         ret |= vop->data->intr->intrs[i];
242         }
243
244         return ret;
245 }
246
247 static inline void vop_cfg_done(struct vop *vop)
248 {
249         VOP_REG_SET(vop, common, cfg_done, 1);
250 }
251
252 static bool has_rb_swapped(uint32_t format)
253 {
254         switch (format) {
255         case DRM_FORMAT_XBGR8888:
256         case DRM_FORMAT_ABGR8888:
257         case DRM_FORMAT_BGR888:
258         case DRM_FORMAT_BGR565:
259                 return true;
260         default:
261                 return false;
262         }
263 }
264
265 static enum vop_data_format vop_convert_format(uint32_t format)
266 {
267         switch (format) {
268         case DRM_FORMAT_XRGB8888:
269         case DRM_FORMAT_ARGB8888:
270         case DRM_FORMAT_XBGR8888:
271         case DRM_FORMAT_ABGR8888:
272                 return VOP_FMT_ARGB8888;
273         case DRM_FORMAT_RGB888:
274         case DRM_FORMAT_BGR888:
275                 return VOP_FMT_RGB888;
276         case DRM_FORMAT_RGB565:
277         case DRM_FORMAT_BGR565:
278                 return VOP_FMT_RGB565;
279         case DRM_FORMAT_NV12:
280                 return VOP_FMT_YUV420SP;
281         case DRM_FORMAT_NV16:
282                 return VOP_FMT_YUV422SP;
283         case DRM_FORMAT_NV24:
284                 return VOP_FMT_YUV444SP;
285         default:
286                 DRM_ERROR("unsupported format[%08x]\n", format);
287                 return -EINVAL;
288         }
289 }
290
291 static int vop_convert_afbc_format(uint32_t format)
292 {
293         switch (format) {
294         case DRM_FORMAT_XRGB8888:
295         case DRM_FORMAT_ARGB8888:
296         case DRM_FORMAT_XBGR8888:
297         case DRM_FORMAT_ABGR8888:
298                 return AFBC_FMT_U8U8U8U8;
299         case DRM_FORMAT_RGB888:
300         case DRM_FORMAT_BGR888:
301                 return AFBC_FMT_U8U8U8;
302         case DRM_FORMAT_RGB565:
303         case DRM_FORMAT_BGR565:
304                 return AFBC_FMT_RGB565;
305         /* either of the below should not be reachable */
306         default:
307                 DRM_WARN_ONCE("unsupported AFBC format[%08x]\n", format);
308                 return -EINVAL;
309         }
310
311         return -EINVAL;
312 }
313
314 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
315                                   uint32_t dst, bool is_horizontal,
316                                   int vsu_mode, int *vskiplines)
317 {
318         uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
319
320         if (vskiplines)
321                 *vskiplines = 0;
322
323         if (is_horizontal) {
324                 if (mode == SCALE_UP)
325                         val = GET_SCL_FT_BIC(src, dst);
326                 else if (mode == SCALE_DOWN)
327                         val = GET_SCL_FT_BILI_DN(src, dst);
328         } else {
329                 if (mode == SCALE_UP) {
330                         if (vsu_mode == SCALE_UP_BIL)
331                                 val = GET_SCL_FT_BILI_UP(src, dst);
332                         else
333                                 val = GET_SCL_FT_BIC(src, dst);
334                 } else if (mode == SCALE_DOWN) {
335                         if (vskiplines) {
336                                 *vskiplines = scl_get_vskiplines(src, dst);
337                                 val = scl_get_bili_dn_vskip(src, dst,
338                                                             *vskiplines);
339                         } else {
340                                 val = GET_SCL_FT_BILI_DN(src, dst);
341                         }
342                 }
343         }
344
345         return val;
346 }
347
348 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
349                              uint32_t src_w, uint32_t src_h, uint32_t dst_w,
350                              uint32_t dst_h, const struct drm_format_info *info)
351 {
352         uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
353         uint16_t cbcr_hor_scl_mode = SCALE_NONE;
354         uint16_t cbcr_ver_scl_mode = SCALE_NONE;
355         bool is_yuv = false;
356         uint16_t cbcr_src_w = src_w / info->hsub;
357         uint16_t cbcr_src_h = src_h / info->vsub;
358         uint16_t vsu_mode;
359         uint16_t lb_mode;
360         uint32_t val;
361         int vskiplines;
362
363         if (info->is_yuv)
364                 is_yuv = true;
365
366         if (dst_w > 3840) {
367                 DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
368                 return;
369         }
370
371         if (!win->phy->scl->ext) {
372                 VOP_SCL_SET(vop, win, scale_yrgb_x,
373                             scl_cal_scale2(src_w, dst_w));
374                 VOP_SCL_SET(vop, win, scale_yrgb_y,
375                             scl_cal_scale2(src_h, dst_h));
376                 if (is_yuv) {
377                         VOP_SCL_SET(vop, win, scale_cbcr_x,
378                                     scl_cal_scale2(cbcr_src_w, dst_w));
379                         VOP_SCL_SET(vop, win, scale_cbcr_y,
380                                     scl_cal_scale2(cbcr_src_h, dst_h));
381                 }
382                 return;
383         }
384
385         yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
386         yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
387
388         if (is_yuv) {
389                 cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
390                 cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
391                 if (cbcr_hor_scl_mode == SCALE_DOWN)
392                         lb_mode = scl_vop_cal_lb_mode(dst_w, true);
393                 else
394                         lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
395         } else {
396                 if (yrgb_hor_scl_mode == SCALE_DOWN)
397                         lb_mode = scl_vop_cal_lb_mode(dst_w, false);
398                 else
399                         lb_mode = scl_vop_cal_lb_mode(src_w, false);
400         }
401
402         VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
403         if (lb_mode == LB_RGB_3840X2) {
404                 if (yrgb_ver_scl_mode != SCALE_NONE) {
405                         DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
406                         return;
407                 }
408                 if (cbcr_ver_scl_mode != SCALE_NONE) {
409                         DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
410                         return;
411                 }
412                 vsu_mode = SCALE_UP_BIL;
413         } else if (lb_mode == LB_RGB_2560X4) {
414                 vsu_mode = SCALE_UP_BIL;
415         } else {
416                 vsu_mode = SCALE_UP_BIC;
417         }
418
419         val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
420                                 true, 0, NULL);
421         VOP_SCL_SET(vop, win, scale_yrgb_x, val);
422         val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
423                                 false, vsu_mode, &vskiplines);
424         VOP_SCL_SET(vop, win, scale_yrgb_y, val);
425
426         VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
427         VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
428
429         VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
430         VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
431         VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
432         VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
433         VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
434         if (is_yuv) {
435                 val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
436                                         dst_w, true, 0, NULL);
437                 VOP_SCL_SET(vop, win, scale_cbcr_x, val);
438                 val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
439                                         dst_h, false, vsu_mode, &vskiplines);
440                 VOP_SCL_SET(vop, win, scale_cbcr_y, val);
441
442                 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
443                 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
444                 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
445                 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
446                 VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
447                 VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
448                 VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
449         }
450 }
451
452 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
453 {
454         unsigned long flags;
455
456         if (WARN_ON(!vop->is_enabled))
457                 return;
458
459         spin_lock_irqsave(&vop->irq_lock, flags);
460
461         VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
462         VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
463
464         spin_unlock_irqrestore(&vop->irq_lock, flags);
465 }
466
467 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
468 {
469         unsigned long flags;
470
471         if (WARN_ON(!vop->is_enabled))
472                 return;
473
474         spin_lock_irqsave(&vop->irq_lock, flags);
475
476         VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
477
478         spin_unlock_irqrestore(&vop->irq_lock, flags);
479 }
480
481 /*
482  * (1) each frame starts at the start of the Vsync pulse which is signaled by
483  *     the "FRAME_SYNC" interrupt.
484  * (2) the active data region of each frame ends at dsp_vact_end
485  * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
486  *      to get "LINE_FLAG" interrupt at the end of the active on screen data.
487  *
488  * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
489  * Interrupts
490  * LINE_FLAG -------------------------------+
491  * FRAME_SYNC ----+                         |
492  *                |                         |
493  *                v                         v
494  *                | Vsync | Vbp |  Vactive  | Vfp |
495  *                        ^     ^           ^     ^
496  *                        |     |           |     |
497  *                        |     |           |     |
498  * dsp_vs_end ------------+     |           |     |   VOP_DSP_VTOTAL_VS_END
499  * dsp_vact_start --------------+           |     |   VOP_DSP_VACT_ST_END
500  * dsp_vact_end ----------------------------+     |   VOP_DSP_VACT_ST_END
501  * dsp_total -------------------------------------+   VOP_DSP_VTOTAL_VS_END
502  */
503 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
504 {
505         uint32_t line_flag_irq;
506         unsigned long flags;
507
508         spin_lock_irqsave(&vop->irq_lock, flags);
509
510         line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
511
512         spin_unlock_irqrestore(&vop->irq_lock, flags);
513
514         return !!line_flag_irq;
515 }
516
517 static void vop_line_flag_irq_enable(struct vop *vop)
518 {
519         unsigned long flags;
520
521         if (WARN_ON(!vop->is_enabled))
522                 return;
523
524         spin_lock_irqsave(&vop->irq_lock, flags);
525
526         VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
527         VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
528
529         spin_unlock_irqrestore(&vop->irq_lock, flags);
530 }
531
532 static void vop_line_flag_irq_disable(struct vop *vop)
533 {
534         unsigned long flags;
535
536         if (WARN_ON(!vop->is_enabled))
537                 return;
538
539         spin_lock_irqsave(&vop->irq_lock, flags);
540
541         VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
542
543         spin_unlock_irqrestore(&vop->irq_lock, flags);
544 }
545
546 static int vop_core_clks_enable(struct vop *vop)
547 {
548         int ret;
549
550         ret = clk_enable(vop->hclk);
551         if (ret < 0)
552                 return ret;
553
554         ret = clk_enable(vop->aclk);
555         if (ret < 0)
556                 goto err_disable_hclk;
557
558         return 0;
559
560 err_disable_hclk:
561         clk_disable(vop->hclk);
562         return ret;
563 }
564
565 static void vop_core_clks_disable(struct vop *vop)
566 {
567         clk_disable(vop->aclk);
568         clk_disable(vop->hclk);
569 }
570
571 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
572 {
573         const struct vop_win_data *win = vop_win->data;
574
575         if (win->phy->scl && win->phy->scl->ext) {
576                 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
577                 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
578                 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
579                 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
580         }
581
582         VOP_WIN_SET(vop, win, enable, 0);
583         vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
584 }
585
586 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
587 {
588         struct vop *vop = to_vop(crtc);
589         int ret, i;
590
591         ret = pm_runtime_get_sync(vop->dev);
592         if (ret < 0) {
593                 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
594                 return ret;
595         }
596
597         ret = vop_core_clks_enable(vop);
598         if (WARN_ON(ret < 0))
599                 goto err_put_pm_runtime;
600
601         ret = clk_enable(vop->dclk);
602         if (WARN_ON(ret < 0))
603                 goto err_disable_core;
604
605         /*
606          * Slave iommu shares power, irq and clock with vop.  It was associated
607          * automatically with this master device via common driver code.
608          * Now that we have enabled the clock we attach it to the shared drm
609          * mapping.
610          */
611         ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
612         if (ret) {
613                 DRM_DEV_ERROR(vop->dev,
614                               "failed to attach dma mapping, %d\n", ret);
615                 goto err_disable_dclk;
616         }
617
618         spin_lock(&vop->reg_lock);
619         for (i = 0; i < vop->len; i += 4)
620                 writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
621
622         /*
623          * We need to make sure that all windows are disabled before we
624          * enable the crtc. Otherwise we might try to scan from a destroyed
625          * buffer later.
626          *
627          * In the case of enable-after-PSR, we don't need to worry about this
628          * case since the buffer is guaranteed to be valid and disabling the
629          * window will result in screen glitches on PSR exit.
630          */
631         if (!old_state || !old_state->self_refresh_active) {
632                 for (i = 0; i < vop->data->win_size; i++) {
633                         struct vop_win *vop_win = &vop->win[i];
634
635                         vop_win_disable(vop, vop_win);
636                 }
637         }
638
639         if (vop->data->afbc) {
640                 struct rockchip_crtc_state *s;
641                 /*
642                  * Disable AFBC and forget there was a vop window with AFBC
643                  */
644                 VOP_AFBC_SET(vop, enable, 0);
645                 s = to_rockchip_crtc_state(crtc->state);
646                 s->enable_afbc = false;
647         }
648
649         vop_cfg_done(vop);
650
651         spin_unlock(&vop->reg_lock);
652
653         /*
654          * At here, vop clock & iommu is enable, R/W vop regs would be safe.
655          */
656         vop->is_enabled = true;
657
658         spin_lock(&vop->reg_lock);
659
660         VOP_REG_SET(vop, common, standby, 1);
661
662         spin_unlock(&vop->reg_lock);
663
664         drm_crtc_vblank_on(crtc);
665
666         return 0;
667
668 err_disable_dclk:
669         clk_disable(vop->dclk);
670 err_disable_core:
671         vop_core_clks_disable(vop);
672 err_put_pm_runtime:
673         pm_runtime_put_sync(vop->dev);
674         return ret;
675 }
676
677 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
678 {
679         struct vop *vop = to_vop(crtc);
680         int i;
681
682         spin_lock(&vop->reg_lock);
683
684         for (i = 0; i < vop->data->win_size; i++) {
685                 struct vop_win *vop_win = &vop->win[i];
686                 const struct vop_win_data *win = vop_win->data;
687
688                 VOP_WIN_SET(vop, win, enable,
689                             enabled && (vop->win_enabled & BIT(i)));
690         }
691         vop_cfg_done(vop);
692
693         spin_unlock(&vop->reg_lock);
694 }
695
696 static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
697                                     struct drm_atomic_state *state)
698 {
699         struct vop *vop = to_vop(crtc);
700
701         WARN_ON(vop->event);
702
703         if (crtc->state->self_refresh_active)
704                 rockchip_drm_set_win_enabled(crtc, false);
705
706         mutex_lock(&vop->vop_lock);
707
708         drm_crtc_vblank_off(crtc);
709
710         if (crtc->state->self_refresh_active)
711                 goto out;
712
713         /*
714          * Vop standby will take effect at end of current frame,
715          * if dsp hold valid irq happen, it means standby complete.
716          *
717          * we must wait standby complete when we want to disable aclk,
718          * if not, memory bus maybe dead.
719          */
720         reinit_completion(&vop->dsp_hold_completion);
721         vop_dsp_hold_valid_irq_enable(vop);
722
723         spin_lock(&vop->reg_lock);
724
725         VOP_REG_SET(vop, common, standby, 1);
726
727         spin_unlock(&vop->reg_lock);
728
729         wait_for_completion(&vop->dsp_hold_completion);
730
731         vop_dsp_hold_valid_irq_disable(vop);
732
733         vop->is_enabled = false;
734
735         /*
736          * vop standby complete, so iommu detach is safe.
737          */
738         rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
739
740         clk_disable(vop->dclk);
741         vop_core_clks_disable(vop);
742         pm_runtime_put(vop->dev);
743
744 out:
745         mutex_unlock(&vop->vop_lock);
746
747         if (crtc->state->event && !crtc->state->active) {
748                 spin_lock_irq(&crtc->dev->event_lock);
749                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
750                 spin_unlock_irq(&crtc->dev->event_lock);
751
752                 crtc->state->event = NULL;
753         }
754 }
755
756 static void vop_plane_destroy(struct drm_plane *plane)
757 {
758         drm_plane_cleanup(plane);
759 }
760
761 static inline bool rockchip_afbc(u64 modifier)
762 {
763         return modifier == ROCKCHIP_AFBC_MOD;
764 }
765
766 static bool rockchip_mod_supported(struct drm_plane *plane,
767                                    u32 format, u64 modifier)
768 {
769         if (modifier == DRM_FORMAT_MOD_LINEAR)
770                 return true;
771
772         if (!rockchip_afbc(modifier)) {
773                 DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier);
774
775                 return false;
776         }
777
778         return vop_convert_afbc_format(format) >= 0;
779 }
780
781 static int vop_plane_atomic_check(struct drm_plane *plane,
782                            struct drm_atomic_state *state)
783 {
784         struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
785                                                                                  plane);
786         struct drm_crtc *crtc = new_plane_state->crtc;
787         struct drm_crtc_state *crtc_state;
788         struct drm_framebuffer *fb = new_plane_state->fb;
789         struct vop_win *vop_win = to_vop_win(plane);
790         const struct vop_win_data *win = vop_win->data;
791         int ret;
792         int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
793                                         DRM_PLANE_HELPER_NO_SCALING;
794         int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
795                                         DRM_PLANE_HELPER_NO_SCALING;
796
797         if (!crtc || WARN_ON(!fb))
798                 return 0;
799
800         crtc_state = drm_atomic_get_existing_crtc_state(state,
801                                                         crtc);
802         if (WARN_ON(!crtc_state))
803                 return -EINVAL;
804
805         ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state,
806                                                   min_scale, max_scale,
807                                                   true, true);
808         if (ret)
809                 return ret;
810
811         if (!new_plane_state->visible)
812                 return 0;
813
814         ret = vop_convert_format(fb->format->format);
815         if (ret < 0)
816                 return ret;
817
818         /*
819          * Src.x1 can be odd when do clip, but yuv plane start point
820          * need align with 2 pixel.
821          */
822         if (fb->format->is_yuv && ((new_plane_state->src.x1 >> 16) % 2)) {
823                 DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n");
824                 return -EINVAL;
825         }
826
827         if (fb->format->is_yuv && new_plane_state->rotation & DRM_MODE_REFLECT_Y) {
828                 DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n");
829                 return -EINVAL;
830         }
831
832         if (rockchip_afbc(fb->modifier)) {
833                 struct vop *vop = to_vop(crtc);
834
835                 if (!vop->data->afbc) {
836                         DRM_ERROR("vop does not support AFBC\n");
837                         return -EINVAL;
838                 }
839
840                 ret = vop_convert_afbc_format(fb->format->format);
841                 if (ret < 0)
842                         return ret;
843
844                 if (new_plane_state->src.x1 || new_plane_state->src.y1) {
845                         DRM_ERROR("AFBC does not support offset display, xpos=%d, ypos=%d, offset=%d\n",
846                                   new_plane_state->src.x1,
847                                   new_plane_state->src.y1, fb->offsets[0]);
848                         return -EINVAL;
849                 }
850
851                 if (new_plane_state->rotation && new_plane_state->rotation != DRM_MODE_ROTATE_0) {
852                         DRM_ERROR("No rotation support in AFBC, rotation=%d\n",
853                                   new_plane_state->rotation);
854                         return -EINVAL;
855                 }
856         }
857
858         return 0;
859 }
860
861 static void vop_plane_atomic_disable(struct drm_plane *plane,
862                                      struct drm_atomic_state *state)
863 {
864         struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
865                                                                            plane);
866         struct vop_win *vop_win = to_vop_win(plane);
867         struct vop *vop = to_vop(old_state->crtc);
868
869         if (!old_state->crtc)
870                 return;
871
872         spin_lock(&vop->reg_lock);
873
874         vop_win_disable(vop, vop_win);
875
876         spin_unlock(&vop->reg_lock);
877 }
878
879 static void vop_plane_atomic_update(struct drm_plane *plane,
880                 struct drm_atomic_state *state)
881 {
882         struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
883                                                                            plane);
884         struct drm_crtc *crtc = new_state->crtc;
885         struct vop_win *vop_win = to_vop_win(plane);
886         const struct vop_win_data *win = vop_win->data;
887         const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
888         struct vop *vop = to_vop(new_state->crtc);
889         struct drm_framebuffer *fb = new_state->fb;
890         unsigned int actual_w, actual_h;
891         unsigned int dsp_stx, dsp_sty;
892         uint32_t act_info, dsp_info, dsp_st;
893         struct drm_rect *src = &new_state->src;
894         struct drm_rect *dest = &new_state->dst;
895         struct drm_gem_object *obj, *uv_obj;
896         struct rockchip_gem_object *rk_obj, *rk_uv_obj;
897         unsigned long offset;
898         dma_addr_t dma_addr;
899         uint32_t val;
900         bool rb_swap;
901         int win_index = VOP_WIN_TO_INDEX(vop_win);
902         int format;
903         int is_yuv = fb->format->is_yuv;
904         int i;
905
906         /*
907          * can't update plane when vop is disabled.
908          */
909         if (WARN_ON(!crtc))
910                 return;
911
912         if (WARN_ON(!vop->is_enabled))
913                 return;
914
915         if (!new_state->visible) {
916                 vop_plane_atomic_disable(plane, state);
917                 return;
918         }
919
920         obj = fb->obj[0];
921         rk_obj = to_rockchip_obj(obj);
922
923         actual_w = drm_rect_width(src) >> 16;
924         actual_h = drm_rect_height(src) >> 16;
925         act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
926
927         dsp_info = (drm_rect_height(dest) - 1) << 16;
928         dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
929
930         dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
931         dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
932         dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
933
934         offset = (src->x1 >> 16) * fb->format->cpp[0];
935         offset += (src->y1 >> 16) * fb->pitches[0];
936         dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
937
938         /*
939          * For y-mirroring we need to move address
940          * to the beginning of the last line.
941          */
942         if (new_state->rotation & DRM_MODE_REFLECT_Y)
943                 dma_addr += (actual_h - 1) * fb->pitches[0];
944
945         format = vop_convert_format(fb->format->format);
946
947         spin_lock(&vop->reg_lock);
948
949         if (rockchip_afbc(fb->modifier)) {
950                 int afbc_format = vop_convert_afbc_format(fb->format->format);
951
952                 VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16);
953                 VOP_AFBC_SET(vop, hreg_block_split, 0);
954                 VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win));
955                 VOP_AFBC_SET(vop, hdr_ptr, dma_addr);
956                 VOP_AFBC_SET(vop, pic_size, act_info);
957         }
958
959         VOP_WIN_SET(vop, win, format, format);
960         VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
961         VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
962         VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
963         VOP_WIN_SET(vop, win, y_mir_en,
964                     (new_state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
965         VOP_WIN_SET(vop, win, x_mir_en,
966                     (new_state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
967
968         if (is_yuv) {
969                 int hsub = fb->format->hsub;
970                 int vsub = fb->format->vsub;
971                 int bpp = fb->format->cpp[1];
972
973                 uv_obj = fb->obj[1];
974                 rk_uv_obj = to_rockchip_obj(uv_obj);
975
976                 offset = (src->x1 >> 16) * bpp / hsub;
977                 offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
978
979                 dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
980                 VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
981                 VOP_WIN_SET(vop, win, uv_mst, dma_addr);
982
983                 for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
984                         VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
985                                                         win_yuv2yuv,
986                                                         y2r_coefficients[i],
987                                                         bt601_yuv2rgb[i]);
988                 }
989         }
990
991         if (win->phy->scl)
992                 scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
993                                     drm_rect_width(dest), drm_rect_height(dest),
994                                     fb->format);
995
996         VOP_WIN_SET(vop, win, act_info, act_info);
997         VOP_WIN_SET(vop, win, dsp_info, dsp_info);
998         VOP_WIN_SET(vop, win, dsp_st, dsp_st);
999
1000         rb_swap = has_rb_swapped(fb->format->format);
1001         VOP_WIN_SET(vop, win, rb_swap, rb_swap);
1002
1003         /*
1004          * Blending win0 with the background color doesn't seem to work
1005          * correctly. We only get the background color, no matter the contents
1006          * of the win0 framebuffer.  However, blending pre-multiplied color
1007          * with the default opaque black default background color is a no-op,
1008          * so we can just disable blending to get the correct result.
1009          */
1010         if (fb->format->has_alpha && win_index > 0) {
1011                 VOP_WIN_SET(vop, win, dst_alpha_ctl,
1012                             DST_FACTOR_M0(ALPHA_SRC_INVERSE));
1013                 val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
1014                         SRC_ALPHA_M0(ALPHA_STRAIGHT) |
1015                         SRC_BLEND_M0(ALPHA_PER_PIX) |
1016                         SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
1017                         SRC_FACTOR_M0(ALPHA_ONE);
1018                 VOP_WIN_SET(vop, win, src_alpha_ctl, val);
1019
1020                 VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL);
1021                 VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX);
1022                 VOP_WIN_SET(vop, win, alpha_en, 1);
1023         } else {
1024                 VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
1025                 VOP_WIN_SET(vop, win, alpha_en, 0);
1026         }
1027
1028         VOP_WIN_SET(vop, win, enable, 1);
1029         vop->win_enabled |= BIT(win_index);
1030         spin_unlock(&vop->reg_lock);
1031 }
1032
1033 static int vop_plane_atomic_async_check(struct drm_plane *plane,
1034                                         struct drm_atomic_state *state)
1035 {
1036         struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1037                                                                                  plane);
1038         struct vop_win *vop_win = to_vop_win(plane);
1039         const struct vop_win_data *win = vop_win->data;
1040         int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
1041                                         DRM_PLANE_HELPER_NO_SCALING;
1042         int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
1043                                         DRM_PLANE_HELPER_NO_SCALING;
1044         struct drm_crtc_state *crtc_state;
1045
1046         if (plane != new_plane_state->crtc->cursor)
1047                 return -EINVAL;
1048
1049         if (!plane->state)
1050                 return -EINVAL;
1051
1052         if (!plane->state->fb)
1053                 return -EINVAL;
1054
1055         if (state)
1056                 crtc_state = drm_atomic_get_existing_crtc_state(state,
1057                                                                 new_plane_state->crtc);
1058         else /* Special case for asynchronous cursor updates. */
1059                 crtc_state = plane->crtc->state;
1060
1061         return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
1062                                                    min_scale, max_scale,
1063                                                    true, true);
1064 }
1065
1066 static void vop_plane_atomic_async_update(struct drm_plane *plane,
1067                                           struct drm_atomic_state *state)
1068 {
1069         struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
1070                                                                            plane);
1071         struct vop *vop = to_vop(plane->state->crtc);
1072         struct drm_framebuffer *old_fb = plane->state->fb;
1073
1074         plane->state->crtc_x = new_state->crtc_x;
1075         plane->state->crtc_y = new_state->crtc_y;
1076         plane->state->crtc_h = new_state->crtc_h;
1077         plane->state->crtc_w = new_state->crtc_w;
1078         plane->state->src_x = new_state->src_x;
1079         plane->state->src_y = new_state->src_y;
1080         plane->state->src_h = new_state->src_h;
1081         plane->state->src_w = new_state->src_w;
1082         swap(plane->state->fb, new_state->fb);
1083
1084         if (vop->is_enabled) {
1085                 vop_plane_atomic_update(plane, state);
1086                 spin_lock(&vop->reg_lock);
1087                 vop_cfg_done(vop);
1088                 spin_unlock(&vop->reg_lock);
1089
1090                 /*
1091                  * A scanout can still be occurring, so we can't drop the
1092                  * reference to the old framebuffer. To solve this we get a
1093                  * reference to old_fb and set a worker to release it later.
1094                  * FIXME: if we perform 500 async_update calls before the
1095                  * vblank, then we can have 500 different framebuffers waiting
1096                  * to be released.
1097                  */
1098                 if (old_fb && plane->state->fb != old_fb) {
1099                         drm_framebuffer_get(old_fb);
1100                         WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
1101                         drm_flip_work_queue(&vop->fb_unref_work, old_fb);
1102                         set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1103                 }
1104         }
1105 }
1106
1107 static const struct drm_plane_helper_funcs plane_helper_funcs = {
1108         .atomic_check = vop_plane_atomic_check,
1109         .atomic_update = vop_plane_atomic_update,
1110         .atomic_disable = vop_plane_atomic_disable,
1111         .atomic_async_check = vop_plane_atomic_async_check,
1112         .atomic_async_update = vop_plane_atomic_async_update,
1113 };
1114
1115 static const struct drm_plane_funcs vop_plane_funcs = {
1116         .update_plane   = drm_atomic_helper_update_plane,
1117         .disable_plane  = drm_atomic_helper_disable_plane,
1118         .destroy = vop_plane_destroy,
1119         .reset = drm_atomic_helper_plane_reset,
1120         .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
1121         .atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
1122         .format_mod_supported = rockchip_mod_supported,
1123 };
1124
1125 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
1126 {
1127         struct vop *vop = to_vop(crtc);
1128         unsigned long flags;
1129
1130         if (WARN_ON(!vop->is_enabled))
1131                 return -EPERM;
1132
1133         spin_lock_irqsave(&vop->irq_lock, flags);
1134
1135         VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
1136         VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
1137
1138         spin_unlock_irqrestore(&vop->irq_lock, flags);
1139
1140         return 0;
1141 }
1142
1143 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
1144 {
1145         struct vop *vop = to_vop(crtc);
1146         unsigned long flags;
1147
1148         if (WARN_ON(!vop->is_enabled))
1149                 return;
1150
1151         spin_lock_irqsave(&vop->irq_lock, flags);
1152
1153         VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
1154
1155         spin_unlock_irqrestore(&vop->irq_lock, flags);
1156 }
1157
1158 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1159                                 const struct drm_display_mode *mode,
1160                                 struct drm_display_mode *adjusted_mode)
1161 {
1162         struct vop *vop = to_vop(crtc);
1163         unsigned long rate;
1164
1165         /*
1166          * Clock craziness.
1167          *
1168          * Key points:
1169          *
1170          * - DRM works in in kHz.
1171          * - Clock framework works in Hz.
1172          * - Rockchip's clock driver picks the clock rate that is the
1173          *   same _OR LOWER_ than the one requested.
1174          *
1175          * Action plan:
1176          *
1177          * 1. Try to set the exact rate first, and confirm the clock framework
1178          *    can provide it.
1179          *
1180          * 2. If the clock framework cannot provide the exact rate, we should
1181          *    add 999 Hz to the requested rate.  That way if the clock we need
1182          *    is 60000001 Hz (~60 MHz) and DRM tells us to make 60000 kHz then
1183          *    the clock framework will actually give us the right clock.
1184          *
1185          * 3. Get the clock framework to round the rate for us to tell us
1186          *    what it will actually make.
1187          *
1188          * 4. Store the rounded up rate so that we don't need to worry about
1189          *    this in the actual clk_set_rate().
1190          */
1191         rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000);
1192         if (rate / 1000 != adjusted_mode->clock)
1193                 rate = clk_round_rate(vop->dclk,
1194                                       adjusted_mode->clock * 1000 + 999);
1195         adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);
1196
1197         return true;
1198 }
1199
1200 static bool vop_dsp_lut_is_enabled(struct vop *vop)
1201 {
1202         return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
1203 }
1204
1205 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
1206 {
1207         struct drm_color_lut *lut = crtc->state->gamma_lut->data;
1208         unsigned int i;
1209
1210         for (i = 0; i < crtc->gamma_size; i++) {
1211                 u32 word;
1212
1213                 word = (drm_color_lut_extract(lut[i].red, 10) << 20) |
1214                        (drm_color_lut_extract(lut[i].green, 10) << 10) |
1215                         drm_color_lut_extract(lut[i].blue, 10);
1216                 writel(word, vop->lut_regs + i * 4);
1217         }
1218 }
1219
1220 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
1221                                struct drm_crtc_state *old_state)
1222 {
1223         struct drm_crtc_state *state = crtc->state;
1224         unsigned int idle;
1225         int ret;
1226
1227         if (!vop->lut_regs)
1228                 return;
1229         /*
1230          * To disable gamma (gamma_lut is null) or to write
1231          * an update to the LUT, clear dsp_lut_en.
1232          */
1233         spin_lock(&vop->reg_lock);
1234         VOP_REG_SET(vop, common, dsp_lut_en, 0);
1235         vop_cfg_done(vop);
1236         spin_unlock(&vop->reg_lock);
1237
1238         /*
1239          * In order to write the LUT to the internal memory,
1240          * we need to first make sure the dsp_lut_en bit is cleared.
1241          */
1242         ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
1243                                  idle, !idle, 5, 30 * 1000);
1244         if (ret) {
1245                 DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
1246                 return;
1247         }
1248
1249         if (!state->gamma_lut)
1250                 return;
1251
1252         spin_lock(&vop->reg_lock);
1253         vop_crtc_write_gamma_lut(vop, crtc);
1254         VOP_REG_SET(vop, common, dsp_lut_en, 1);
1255         vop_cfg_done(vop);
1256         spin_unlock(&vop->reg_lock);
1257 }
1258
1259 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1260                                   struct drm_atomic_state *state)
1261 {
1262         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1263                                                                           crtc);
1264         struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1265                                                                               crtc);
1266         struct vop *vop = to_vop(crtc);
1267
1268         /*
1269          * Only update GAMMA if the 'active' flag is not changed,
1270          * otherwise it's updated by .atomic_enable.
1271          */
1272         if (crtc_state->color_mgmt_changed &&
1273             !crtc_state->active_changed)
1274                 vop_crtc_gamma_set(vop, crtc, old_crtc_state);
1275 }
1276
1277 static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1278                                    struct drm_atomic_state *state)
1279 {
1280         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
1281                                                                          crtc);
1282         struct vop *vop = to_vop(crtc);
1283         const struct vop_data *vop_data = vop->data;
1284         struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1285         struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1286         u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1287         u16 hdisplay = adjusted_mode->hdisplay;
1288         u16 htotal = adjusted_mode->htotal;
1289         u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1290         u16 hact_end = hact_st + hdisplay;
1291         u16 vdisplay = adjusted_mode->vdisplay;
1292         u16 vtotal = adjusted_mode->vtotal;
1293         u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1294         u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1295         u16 vact_end = vact_st + vdisplay;
1296         uint32_t pin_pol, val;
1297         int dither_bpc = s->output_bpc ? s->output_bpc : 10;
1298         int ret;
1299
1300         if (old_state && old_state->self_refresh_active) {
1301                 drm_crtc_vblank_on(crtc);
1302                 rockchip_drm_set_win_enabled(crtc, true);
1303                 return;
1304         }
1305
1306         /*
1307          * If we have a GAMMA LUT in the state, then let's make sure
1308          * it's updated. We might be coming out of suspend,
1309          * which means the LUT internal memory needs to be re-written.
1310          */
1311         if (crtc->state->gamma_lut)
1312                 vop_crtc_gamma_set(vop, crtc, old_state);
1313
1314         mutex_lock(&vop->vop_lock);
1315
1316         WARN_ON(vop->event);
1317
1318         ret = vop_enable(crtc, old_state);
1319         if (ret) {
1320                 mutex_unlock(&vop->vop_lock);
1321                 DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1322                 return;
1323         }
1324         pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1325                    BIT(HSYNC_POSITIVE) : 0;
1326         pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1327                    BIT(VSYNC_POSITIVE) : 0;
1328         VOP_REG_SET(vop, output, pin_pol, pin_pol);
1329         VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1330
1331         switch (s->output_type) {
1332         case DRM_MODE_CONNECTOR_LVDS:
1333                 VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
1334                 VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1335                 VOP_REG_SET(vop, output, rgb_en, 1);
1336                 break;
1337         case DRM_MODE_CONNECTOR_eDP:
1338                 VOP_REG_SET(vop, output, edp_dclk_pol, 1);
1339                 VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1340                 VOP_REG_SET(vop, output, edp_en, 1);
1341                 break;
1342         case DRM_MODE_CONNECTOR_HDMIA:
1343                 VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
1344                 VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1345                 VOP_REG_SET(vop, output, hdmi_en, 1);
1346                 break;
1347         case DRM_MODE_CONNECTOR_DSI:
1348                 VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
1349                 VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1350                 VOP_REG_SET(vop, output, mipi_en, 1);
1351                 VOP_REG_SET(vop, output, mipi_dual_channel_en,
1352                             !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1353                 break;
1354         case DRM_MODE_CONNECTOR_DisplayPort:
1355                 VOP_REG_SET(vop, output, dp_dclk_pol, 0);
1356                 VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1357                 VOP_REG_SET(vop, output, dp_en, 1);
1358                 break;
1359         default:
1360                 DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1361                               s->output_type);
1362         }
1363
1364         /*
1365          * if vop is not support RGB10 output, need force RGB10 to RGB888.
1366          */
1367         if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1368             !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1369                 s->output_mode = ROCKCHIP_OUT_MODE_P888;
1370
1371         if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
1372                 VOP_REG_SET(vop, common, pre_dither_down, 1);
1373         else
1374                 VOP_REG_SET(vop, common, pre_dither_down, 0);
1375
1376         if (dither_bpc == 6) {
1377                 VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
1378                 VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
1379                 VOP_REG_SET(vop, common, dither_down_en, 1);
1380         } else {
1381                 VOP_REG_SET(vop, common, dither_down_en, 0);
1382         }
1383
1384         VOP_REG_SET(vop, common, out_mode, s->output_mode);
1385
1386         VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1387         val = hact_st << 16;
1388         val |= hact_end;
1389         VOP_REG_SET(vop, modeset, hact_st_end, val);
1390         VOP_REG_SET(vop, modeset, hpost_st_end, val);
1391
1392         VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1393         val = vact_st << 16;
1394         val |= vact_end;
1395         VOP_REG_SET(vop, modeset, vact_st_end, val);
1396         VOP_REG_SET(vop, modeset, vpost_st_end, val);
1397
1398         VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1399
1400         clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1401
1402         VOP_REG_SET(vop, common, standby, 0);
1403         mutex_unlock(&vop->vop_lock);
1404 }
1405
1406 static bool vop_fs_irq_is_pending(struct vop *vop)
1407 {
1408         return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1409 }
1410
1411 static void vop_wait_for_irq_handler(struct vop *vop)
1412 {
1413         bool pending;
1414         int ret;
1415
1416         /*
1417          * Spin until frame start interrupt status bit goes low, which means
1418          * that interrupt handler was invoked and cleared it. The timeout of
1419          * 10 msecs is really too long, but it is just a safety measure if
1420          * something goes really wrong. The wait will only happen in the very
1421          * unlikely case of a vblank happening exactly at the same time and
1422          * shouldn't exceed microseconds range.
1423          */
1424         ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1425                                         !pending, 0, 10 * 1000);
1426         if (ret)
1427                 DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1428
1429         synchronize_irq(vop->irq);
1430 }
1431
1432 static int vop_crtc_atomic_check(struct drm_crtc *crtc,
1433                                  struct drm_atomic_state *state)
1434 {
1435         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1436                                                                           crtc);
1437         struct vop *vop = to_vop(crtc);
1438         struct drm_plane *plane;
1439         struct drm_plane_state *plane_state;
1440         struct rockchip_crtc_state *s;
1441         int afbc_planes = 0;
1442
1443         if (vop->lut_regs && crtc_state->color_mgmt_changed &&
1444             crtc_state->gamma_lut) {
1445                 unsigned int len;
1446
1447                 len = drm_color_lut_size(crtc_state->gamma_lut);
1448                 if (len != crtc->gamma_size) {
1449                         DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1450                                       len, crtc->gamma_size);
1451                         return -EINVAL;
1452                 }
1453         }
1454
1455         drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1456                 plane_state =
1457                         drm_atomic_get_plane_state(crtc_state->state, plane);
1458                 if (IS_ERR(plane_state)) {
1459                         DRM_DEBUG_KMS("Cannot get plane state for plane %s\n",
1460                                       plane->name);
1461                         return PTR_ERR(plane_state);
1462                 }
1463
1464                 if (drm_is_afbc(plane_state->fb->modifier))
1465                         ++afbc_planes;
1466         }
1467
1468         if (afbc_planes > 1) {
1469                 DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes);
1470                 return -EINVAL;
1471         }
1472
1473         s = to_rockchip_crtc_state(crtc_state);
1474         s->enable_afbc = afbc_planes > 0;
1475
1476         return 0;
1477 }
1478
1479 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1480                                   struct drm_atomic_state *state)
1481 {
1482         struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1483                                                                               crtc);
1484         struct drm_atomic_state *old_state = old_crtc_state->state;
1485         struct drm_plane_state *old_plane_state, *new_plane_state;
1486         struct vop *vop = to_vop(crtc);
1487         struct drm_plane *plane;
1488         struct rockchip_crtc_state *s;
1489         int i;
1490
1491         if (WARN_ON(!vop->is_enabled))
1492                 return;
1493
1494         spin_lock(&vop->reg_lock);
1495
1496         /* Enable AFBC if there is some AFBC window, disable otherwise. */
1497         s = to_rockchip_crtc_state(crtc->state);
1498         VOP_AFBC_SET(vop, enable, s->enable_afbc);
1499         vop_cfg_done(vop);
1500
1501         spin_unlock(&vop->reg_lock);
1502
1503         /*
1504          * There is a (rather unlikely) possiblity that a vblank interrupt
1505          * fired before we set the cfg_done bit. To avoid spuriously
1506          * signalling flip completion we need to wait for it to finish.
1507          */
1508         vop_wait_for_irq_handler(vop);
1509
1510         spin_lock_irq(&crtc->dev->event_lock);
1511         if (crtc->state->event) {
1512                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1513                 WARN_ON(vop->event);
1514
1515                 vop->event = crtc->state->event;
1516                 crtc->state->event = NULL;
1517         }
1518         spin_unlock_irq(&crtc->dev->event_lock);
1519
1520         for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1521                                        new_plane_state, i) {
1522                 if (!old_plane_state->fb)
1523                         continue;
1524
1525                 if (old_plane_state->fb == new_plane_state->fb)
1526                         continue;
1527
1528                 drm_framebuffer_get(old_plane_state->fb);
1529                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1530                 drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1531                 set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1532         }
1533 }
1534
1535 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1536         .mode_fixup = vop_crtc_mode_fixup,
1537         .atomic_check = vop_crtc_atomic_check,
1538         .atomic_begin = vop_crtc_atomic_begin,
1539         .atomic_flush = vop_crtc_atomic_flush,
1540         .atomic_enable = vop_crtc_atomic_enable,
1541         .atomic_disable = vop_crtc_atomic_disable,
1542 };
1543
1544 static void vop_crtc_destroy(struct drm_crtc *crtc)
1545 {
1546         drm_crtc_cleanup(crtc);
1547 }
1548
1549 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1550 {
1551         struct rockchip_crtc_state *rockchip_state;
1552
1553         rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
1554         if (!rockchip_state)
1555                 return NULL;
1556
1557         __drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1558         return &rockchip_state->base;
1559 }
1560
1561 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1562                                    struct drm_crtc_state *state)
1563 {
1564         struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1565
1566         __drm_atomic_helper_crtc_destroy_state(&s->base);
1567         kfree(s);
1568 }
1569
1570 static void vop_crtc_reset(struct drm_crtc *crtc)
1571 {
1572         struct rockchip_crtc_state *crtc_state =
1573                 kzalloc(sizeof(*crtc_state), GFP_KERNEL);
1574
1575         if (crtc->state)
1576                 vop_crtc_destroy_state(crtc, crtc->state);
1577
1578         __drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
1579 }
1580
1581 #ifdef CONFIG_DRM_ANALOGIX_DP
1582 static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1583 {
1584         struct drm_connector *connector;
1585         struct drm_connector_list_iter conn_iter;
1586
1587         drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1588         drm_for_each_connector_iter(connector, &conn_iter) {
1589                 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1590                         drm_connector_list_iter_end(&conn_iter);
1591                         return connector;
1592                 }
1593         }
1594         drm_connector_list_iter_end(&conn_iter);
1595
1596         return NULL;
1597 }
1598
1599 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1600                                    const char *source_name)
1601 {
1602         struct vop *vop = to_vop(crtc);
1603         struct drm_connector *connector;
1604         int ret;
1605
1606         connector = vop_get_edp_connector(vop);
1607         if (!connector)
1608                 return -EINVAL;
1609
1610         if (source_name && strcmp(source_name, "auto") == 0)
1611                 ret = analogix_dp_start_crc(connector);
1612         else if (!source_name)
1613                 ret = analogix_dp_stop_crc(connector);
1614         else
1615                 ret = -EINVAL;
1616
1617         return ret;
1618 }
1619
1620 static int
1621 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1622                            size_t *values_cnt)
1623 {
1624         if (source_name && strcmp(source_name, "auto") != 0)
1625                 return -EINVAL;
1626
1627         *values_cnt = 3;
1628         return 0;
1629 }
1630
1631 #else
1632 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1633                                    const char *source_name)
1634 {
1635         return -ENODEV;
1636 }
1637
1638 static int
1639 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1640                            size_t *values_cnt)
1641 {
1642         return -ENODEV;
1643 }
1644 #endif
1645
1646 static const struct drm_crtc_funcs vop_crtc_funcs = {
1647         .set_config = drm_atomic_helper_set_config,
1648         .page_flip = drm_atomic_helper_page_flip,
1649         .destroy = vop_crtc_destroy,
1650         .reset = vop_crtc_reset,
1651         .atomic_duplicate_state = vop_crtc_duplicate_state,
1652         .atomic_destroy_state = vop_crtc_destroy_state,
1653         .enable_vblank = vop_crtc_enable_vblank,
1654         .disable_vblank = vop_crtc_disable_vblank,
1655         .set_crc_source = vop_crtc_set_crc_source,
1656         .verify_crc_source = vop_crtc_verify_crc_source,
1657 };
1658
1659 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1660 {
1661         struct vop *vop = container_of(work, struct vop, fb_unref_work);
1662         struct drm_framebuffer *fb = val;
1663
1664         drm_crtc_vblank_put(&vop->crtc);
1665         drm_framebuffer_put(fb);
1666 }
1667
1668 static void vop_handle_vblank(struct vop *vop)
1669 {
1670         struct drm_device *drm = vop->drm_dev;
1671         struct drm_crtc *crtc = &vop->crtc;
1672
1673         spin_lock(&drm->event_lock);
1674         if (vop->event) {
1675                 drm_crtc_send_vblank_event(crtc, vop->event);
1676                 drm_crtc_vblank_put(crtc);
1677                 vop->event = NULL;
1678         }
1679         spin_unlock(&drm->event_lock);
1680
1681         if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1682                 drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1683 }
1684
1685 static irqreturn_t vop_isr(int irq, void *data)
1686 {
1687         struct vop *vop = data;
1688         struct drm_crtc *crtc = &vop->crtc;
1689         uint32_t active_irqs;
1690         int ret = IRQ_NONE;
1691
1692         /*
1693          * The irq is shared with the iommu. If the runtime-pm state of the
1694          * vop-device is disabled the irq has to be targeted at the iommu.
1695          */
1696         if (!pm_runtime_get_if_in_use(vop->dev))
1697                 return IRQ_NONE;
1698
1699         if (vop_core_clks_enable(vop)) {
1700                 DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1701                 goto out;
1702         }
1703
1704         /*
1705          * interrupt register has interrupt status, enable and clear bits, we
1706          * must hold irq_lock to avoid a race with enable/disable_vblank().
1707         */
1708         spin_lock(&vop->irq_lock);
1709
1710         active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1711         /* Clear all active interrupt sources */
1712         if (active_irqs)
1713                 VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1714
1715         spin_unlock(&vop->irq_lock);
1716
1717         /* This is expected for vop iommu irqs, since the irq is shared */
1718         if (!active_irqs)
1719                 goto out_disable;
1720
1721         if (active_irqs & DSP_HOLD_VALID_INTR) {
1722                 complete(&vop->dsp_hold_completion);
1723                 active_irqs &= ~DSP_HOLD_VALID_INTR;
1724                 ret = IRQ_HANDLED;
1725         }
1726
1727         if (active_irqs & LINE_FLAG_INTR) {
1728                 complete(&vop->line_flag_completion);
1729                 active_irqs &= ~LINE_FLAG_INTR;
1730                 ret = IRQ_HANDLED;
1731         }
1732
1733         if (active_irqs & FS_INTR) {
1734                 drm_crtc_handle_vblank(crtc);
1735                 vop_handle_vblank(vop);
1736                 active_irqs &= ~FS_INTR;
1737                 ret = IRQ_HANDLED;
1738         }
1739
1740         /* Unhandled irqs are spurious. */
1741         if (active_irqs)
1742                 DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1743                               active_irqs);
1744
1745 out_disable:
1746         vop_core_clks_disable(vop);
1747 out:
1748         pm_runtime_put(vop->dev);
1749         return ret;
1750 }
1751
1752 static void vop_plane_add_properties(struct drm_plane *plane,
1753                                      const struct vop_win_data *win_data)
1754 {
1755         unsigned int flags = 0;
1756
1757         flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1758         flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1759         if (flags)
1760                 drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1761                                                    DRM_MODE_ROTATE_0 | flags);
1762 }
1763
1764 static int vop_create_crtc(struct vop *vop)
1765 {
1766         const struct vop_data *vop_data = vop->data;
1767         struct device *dev = vop->dev;
1768         struct drm_device *drm_dev = vop->drm_dev;
1769         struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1770         struct drm_crtc *crtc = &vop->crtc;
1771         struct device_node *port;
1772         int ret;
1773         int i;
1774
1775         /*
1776          * Create drm_plane for primary and cursor planes first, since we need
1777          * to pass them to drm_crtc_init_with_planes, which sets the
1778          * "possible_crtcs" to the newly initialized crtc.
1779          */
1780         for (i = 0; i < vop_data->win_size; i++) {
1781                 struct vop_win *vop_win = &vop->win[i];
1782                 const struct vop_win_data *win_data = vop_win->data;
1783
1784                 if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1785                     win_data->type != DRM_PLANE_TYPE_CURSOR)
1786                         continue;
1787
1788                 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1789                                                0, &vop_plane_funcs,
1790                                                win_data->phy->data_formats,
1791                                                win_data->phy->nformats,
1792                                                win_data->phy->format_modifiers,
1793                                                win_data->type, NULL);
1794                 if (ret) {
1795                         DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1796                                       ret);
1797                         goto err_cleanup_planes;
1798                 }
1799
1800                 plane = &vop_win->base;
1801                 drm_plane_helper_add(plane, &plane_helper_funcs);
1802                 vop_plane_add_properties(plane, win_data);
1803                 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1804                         primary = plane;
1805                 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1806                         cursor = plane;
1807         }
1808
1809         ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1810                                         &vop_crtc_funcs, NULL);
1811         if (ret)
1812                 goto err_cleanup_planes;
1813
1814         drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1815         if (vop->lut_regs) {
1816                 drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
1817                 drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
1818         }
1819
1820         /*
1821          * Create drm_planes for overlay windows with possible_crtcs restricted
1822          * to the newly created crtc.
1823          */
1824         for (i = 0; i < vop_data->win_size; i++) {
1825                 struct vop_win *vop_win = &vop->win[i];
1826                 const struct vop_win_data *win_data = vop_win->data;
1827                 unsigned long possible_crtcs = drm_crtc_mask(crtc);
1828
1829                 if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1830                         continue;
1831
1832                 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1833                                                possible_crtcs,
1834                                                &vop_plane_funcs,
1835                                                win_data->phy->data_formats,
1836                                                win_data->phy->nformats,
1837                                                win_data->phy->format_modifiers,
1838                                                win_data->type, NULL);
1839                 if (ret) {
1840                         DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1841                                       ret);
1842                         goto err_cleanup_crtc;
1843                 }
1844                 drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1845                 vop_plane_add_properties(&vop_win->base, win_data);
1846         }
1847
1848         port = of_get_child_by_name(dev->of_node, "port");
1849         if (!port) {
1850                 DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1851                               dev->of_node);
1852                 ret = -ENOENT;
1853                 goto err_cleanup_crtc;
1854         }
1855
1856         drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1857                            vop_fb_unref_worker);
1858
1859         init_completion(&vop->dsp_hold_completion);
1860         init_completion(&vop->line_flag_completion);
1861         crtc->port = port;
1862
1863         ret = drm_self_refresh_helper_init(crtc);
1864         if (ret)
1865                 DRM_DEV_DEBUG_KMS(vop->dev,
1866                         "Failed to init %s with SR helpers %d, ignoring\n",
1867                         crtc->name, ret);
1868
1869         return 0;
1870
1871 err_cleanup_crtc:
1872         drm_crtc_cleanup(crtc);
1873 err_cleanup_planes:
1874         list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1875                                  head)
1876                 drm_plane_cleanup(plane);
1877         return ret;
1878 }
1879
1880 static void vop_destroy_crtc(struct vop *vop)
1881 {
1882         struct drm_crtc *crtc = &vop->crtc;
1883         struct drm_device *drm_dev = vop->drm_dev;
1884         struct drm_plane *plane, *tmp;
1885
1886         drm_self_refresh_helper_cleanup(crtc);
1887
1888         of_node_put(crtc->port);
1889
1890         /*
1891          * We need to cleanup the planes now.  Why?
1892          *
1893          * The planes are "&vop->win[i].base".  That means the memory is
1894          * all part of the big "struct vop" chunk of memory.  That memory
1895          * was devm allocated and associated with this component.  We need to
1896          * free it ourselves before vop_unbind() finishes.
1897          */
1898         list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1899                                  head)
1900                 vop_plane_destroy(plane);
1901
1902         /*
1903          * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1904          * references the CRTC.
1905          */
1906         drm_crtc_cleanup(crtc);
1907         drm_flip_work_cleanup(&vop->fb_unref_work);
1908 }
1909
1910 static int vop_initial(struct vop *vop)
1911 {
1912         struct reset_control *ahb_rst;
1913         int i, ret;
1914
1915         vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1916         if (IS_ERR(vop->hclk)) {
1917                 DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
1918                 return PTR_ERR(vop->hclk);
1919         }
1920         vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1921         if (IS_ERR(vop->aclk)) {
1922                 DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
1923                 return PTR_ERR(vop->aclk);
1924         }
1925         vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1926         if (IS_ERR(vop->dclk)) {
1927                 DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
1928                 return PTR_ERR(vop->dclk);
1929         }
1930
1931         ret = pm_runtime_get_sync(vop->dev);
1932         if (ret < 0) {
1933                 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
1934                 return ret;
1935         }
1936
1937         ret = clk_prepare(vop->dclk);
1938         if (ret < 0) {
1939                 DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
1940                 goto err_put_pm_runtime;
1941         }
1942
1943         /* Enable both the hclk and aclk to setup the vop */
1944         ret = clk_prepare_enable(vop->hclk);
1945         if (ret < 0) {
1946                 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
1947                 goto err_unprepare_dclk;
1948         }
1949
1950         ret = clk_prepare_enable(vop->aclk);
1951         if (ret < 0) {
1952                 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
1953                 goto err_disable_hclk;
1954         }
1955
1956         /*
1957          * do hclk_reset, reset all vop registers.
1958          */
1959         ahb_rst = devm_reset_control_get(vop->dev, "ahb");
1960         if (IS_ERR(ahb_rst)) {
1961                 DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
1962                 ret = PTR_ERR(ahb_rst);
1963                 goto err_disable_aclk;
1964         }
1965         reset_control_assert(ahb_rst);
1966         usleep_range(10, 20);
1967         reset_control_deassert(ahb_rst);
1968
1969         VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
1970         VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
1971
1972         for (i = 0; i < vop->len; i += sizeof(u32))
1973                 vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
1974
1975         VOP_REG_SET(vop, misc, global_regdone_en, 1);
1976         VOP_REG_SET(vop, common, dsp_blank, 0);
1977
1978         for (i = 0; i < vop->data->win_size; i++) {
1979                 struct vop_win *vop_win = &vop->win[i];
1980                 const struct vop_win_data *win = vop_win->data;
1981                 int channel = i * 2 + 1;
1982
1983                 VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
1984                 vop_win_disable(vop, vop_win);
1985                 VOP_WIN_SET(vop, win, gate, 1);
1986         }
1987
1988         vop_cfg_done(vop);
1989
1990         /*
1991          * do dclk_reset, let all config take affect.
1992          */
1993         vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
1994         if (IS_ERR(vop->dclk_rst)) {
1995                 DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
1996                 ret = PTR_ERR(vop->dclk_rst);
1997                 goto err_disable_aclk;
1998         }
1999         reset_control_assert(vop->dclk_rst);
2000         usleep_range(10, 20);
2001         reset_control_deassert(vop->dclk_rst);
2002
2003         clk_disable(vop->hclk);
2004         clk_disable(vop->aclk);
2005
2006         vop->is_enabled = false;
2007
2008         pm_runtime_put_sync(vop->dev);
2009
2010         return 0;
2011
2012 err_disable_aclk:
2013         clk_disable_unprepare(vop->aclk);
2014 err_disable_hclk:
2015         clk_disable_unprepare(vop->hclk);
2016 err_unprepare_dclk:
2017         clk_unprepare(vop->dclk);
2018 err_put_pm_runtime:
2019         pm_runtime_put_sync(vop->dev);
2020         return ret;
2021 }
2022
2023 /*
2024  * Initialize the vop->win array elements.
2025  */
2026 static void vop_win_init(struct vop *vop)
2027 {
2028         const struct vop_data *vop_data = vop->data;
2029         unsigned int i;
2030
2031         for (i = 0; i < vop_data->win_size; i++) {
2032                 struct vop_win *vop_win = &vop->win[i];
2033                 const struct vop_win_data *win_data = &vop_data->win[i];
2034
2035                 vop_win->data = win_data;
2036                 vop_win->vop = vop;
2037
2038                 if (vop_data->win_yuv2yuv)
2039                         vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
2040         }
2041 }
2042
2043 /**
2044  * rockchip_drm_wait_vact_end
2045  * @crtc: CRTC to enable line flag
2046  * @mstimeout: millisecond for timeout
2047  *
2048  * Wait for vact_end line flag irq or timeout.
2049  *
2050  * Returns:
2051  * Zero on success, negative errno on failure.
2052  */
2053 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
2054 {
2055         struct vop *vop = to_vop(crtc);
2056         unsigned long jiffies_left;
2057         int ret = 0;
2058
2059         if (!crtc || !vop->is_enabled)
2060                 return -ENODEV;
2061
2062         mutex_lock(&vop->vop_lock);
2063         if (mstimeout <= 0) {
2064                 ret = -EINVAL;
2065                 goto out;
2066         }
2067
2068         if (vop_line_flag_irq_is_enabled(vop)) {
2069                 ret = -EBUSY;
2070                 goto out;
2071         }
2072
2073         reinit_completion(&vop->line_flag_completion);
2074         vop_line_flag_irq_enable(vop);
2075
2076         jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
2077                                                    msecs_to_jiffies(mstimeout));
2078         vop_line_flag_irq_disable(vop);
2079
2080         if (jiffies_left == 0) {
2081                 DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
2082                 ret = -ETIMEDOUT;
2083                 goto out;
2084         }
2085
2086 out:
2087         mutex_unlock(&vop->vop_lock);
2088         return ret;
2089 }
2090 EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
2091
2092 static int vop_bind(struct device *dev, struct device *master, void *data)
2093 {
2094         struct platform_device *pdev = to_platform_device(dev);
2095         const struct vop_data *vop_data;
2096         struct drm_device *drm_dev = data;
2097         struct vop *vop;
2098         struct resource *res;
2099         int ret, irq;
2100
2101         vop_data = of_device_get_match_data(dev);
2102         if (!vop_data)
2103                 return -ENODEV;
2104
2105         /* Allocate vop struct and its vop_win array */
2106         vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
2107                            GFP_KERNEL);
2108         if (!vop)
2109                 return -ENOMEM;
2110
2111         vop->dev = dev;
2112         vop->data = vop_data;
2113         vop->drm_dev = drm_dev;
2114         dev_set_drvdata(dev, vop);
2115
2116         vop_win_init(vop);
2117
2118         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2119         vop->len = resource_size(res);
2120         vop->regs = devm_ioremap_resource(dev, res);
2121         if (IS_ERR(vop->regs))
2122                 return PTR_ERR(vop->regs);
2123
2124         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2125         if (res) {
2126                 if (!vop_data->lut_size) {
2127                         DRM_DEV_ERROR(dev, "no gamma LUT size defined\n");
2128                         return -EINVAL;
2129                 }
2130                 vop->lut_regs = devm_ioremap_resource(dev, res);
2131                 if (IS_ERR(vop->lut_regs))
2132                         return PTR_ERR(vop->lut_regs);
2133         }
2134
2135         vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
2136         if (!vop->regsbak)
2137                 return -ENOMEM;
2138
2139         irq = platform_get_irq(pdev, 0);
2140         if (irq < 0) {
2141                 DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
2142                 return irq;
2143         }
2144         vop->irq = (unsigned int)irq;
2145
2146         spin_lock_init(&vop->reg_lock);
2147         spin_lock_init(&vop->irq_lock);
2148         mutex_init(&vop->vop_lock);
2149
2150         ret = vop_create_crtc(vop);
2151         if (ret)
2152                 return ret;
2153
2154         pm_runtime_enable(&pdev->dev);
2155
2156         ret = vop_initial(vop);
2157         if (ret < 0) {
2158                 DRM_DEV_ERROR(&pdev->dev,
2159                               "cannot initial vop dev - err %d\n", ret);
2160                 goto err_disable_pm_runtime;
2161         }
2162
2163         ret = devm_request_irq(dev, vop->irq, vop_isr,
2164                                IRQF_SHARED, dev_name(dev), vop);
2165         if (ret)
2166                 goto err_disable_pm_runtime;
2167
2168         if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
2169                 vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev);
2170                 if (IS_ERR(vop->rgb)) {
2171                         ret = PTR_ERR(vop->rgb);
2172                         goto err_disable_pm_runtime;
2173                 }
2174         }
2175
2176         return 0;
2177
2178 err_disable_pm_runtime:
2179         pm_runtime_disable(&pdev->dev);
2180         vop_destroy_crtc(vop);
2181         return ret;
2182 }
2183
2184 static void vop_unbind(struct device *dev, struct device *master, void *data)
2185 {
2186         struct vop *vop = dev_get_drvdata(dev);
2187
2188         if (vop->rgb)
2189                 rockchip_rgb_fini(vop->rgb);
2190
2191         pm_runtime_disable(dev);
2192         vop_destroy_crtc(vop);
2193
2194         clk_unprepare(vop->aclk);
2195         clk_unprepare(vop->hclk);
2196         clk_unprepare(vop->dclk);
2197 }
2198
2199 const struct component_ops vop_component_ops = {
2200         .bind = vop_bind,
2201         .unbind = vop_unbind,
2202 };
2203 EXPORT_SYMBOL_GPL(vop_component_ops);