drm/connector: Change DRM card alias from underscore to hyphen
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / nouveau / nouveau_svm.c
1 /*
2  * Copyright 2018 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "nouveau_svm.h"
23 #include "nouveau_drv.h"
24 #include "nouveau_chan.h"
25 #include "nouveau_dmem.h"
26
27 #include <nvif/event.h>
28 #include <nvif/object.h>
29 #include <nvif/vmm.h>
30
31 #include <nvif/class.h>
32 #include <nvif/clb069.h>
33 #include <nvif/ifc00d.h>
34
35 #include <linux/sched/mm.h>
36 #include <linux/sort.h>
37 #include <linux/hmm.h>
38 #include <linux/memremap.h>
39 #include <linux/rmap.h>
40
41 struct nouveau_svm {
42         struct nouveau_drm *drm;
43         struct mutex mutex;
44         struct list_head inst;
45
46         struct nouveau_svm_fault_buffer {
47                 int id;
48                 struct nvif_object object;
49                 u32 entries;
50                 u32 getaddr;
51                 u32 putaddr;
52                 u32 get;
53                 u32 put;
54                 struct nvif_event notify;
55                 struct work_struct work;
56
57                 struct nouveau_svm_fault {
58                         u64 inst;
59                         u64 addr;
60                         u64 time;
61                         u32 engine;
62                         u8  gpc;
63                         u8  hub;
64                         u8  access;
65                         u8  client;
66                         u8  fault;
67                         struct nouveau_svmm *svmm;
68                 } **fault;
69                 int fault_nr;
70         } buffer[1];
71 };
72
73 #define FAULT_ACCESS_READ 0
74 #define FAULT_ACCESS_WRITE 1
75 #define FAULT_ACCESS_ATOMIC 2
76 #define FAULT_ACCESS_PREFETCH 3
77
78 #define SVM_DBG(s,f,a...) NV_DEBUG((s)->drm, "svm: "f"\n", ##a)
79 #define SVM_ERR(s,f,a...) NV_WARN((s)->drm, "svm: "f"\n", ##a)
80
81 struct nouveau_pfnmap_args {
82         struct nvif_ioctl_v0 i;
83         struct nvif_ioctl_mthd_v0 m;
84         struct nvif_vmm_pfnmap_v0 p;
85 };
86
87 struct nouveau_ivmm {
88         struct nouveau_svmm *svmm;
89         u64 inst;
90         struct list_head head;
91 };
92
93 static struct nouveau_ivmm *
94 nouveau_ivmm_find(struct nouveau_svm *svm, u64 inst)
95 {
96         struct nouveau_ivmm *ivmm;
97         list_for_each_entry(ivmm, &svm->inst, head) {
98                 if (ivmm->inst == inst)
99                         return ivmm;
100         }
101         return NULL;
102 }
103
104 #define SVMM_DBG(s,f,a...)                                                     \
105         NV_DEBUG((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
106 #define SVMM_ERR(s,f,a...)                                                     \
107         NV_WARN((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
108
109 int
110 nouveau_svmm_bind(struct drm_device *dev, void *data,
111                   struct drm_file *file_priv)
112 {
113         struct nouveau_cli *cli = nouveau_cli(file_priv);
114         struct drm_nouveau_svm_bind *args = data;
115         unsigned target, cmd, priority;
116         unsigned long addr, end;
117         struct mm_struct *mm;
118
119         args->va_start &= PAGE_MASK;
120         args->va_end = ALIGN(args->va_end, PAGE_SIZE);
121
122         /* Sanity check arguments */
123         if (args->reserved0 || args->reserved1)
124                 return -EINVAL;
125         if (args->header & (~NOUVEAU_SVM_BIND_VALID_MASK))
126                 return -EINVAL;
127         if (args->va_start >= args->va_end)
128                 return -EINVAL;
129
130         cmd = args->header >> NOUVEAU_SVM_BIND_COMMAND_SHIFT;
131         cmd &= NOUVEAU_SVM_BIND_COMMAND_MASK;
132         switch (cmd) {
133         case NOUVEAU_SVM_BIND_COMMAND__MIGRATE:
134                 break;
135         default:
136                 return -EINVAL;
137         }
138
139         priority = args->header >> NOUVEAU_SVM_BIND_PRIORITY_SHIFT;
140         priority &= NOUVEAU_SVM_BIND_PRIORITY_MASK;
141
142         /* FIXME support CPU target ie all target value < GPU_VRAM */
143         target = args->header >> NOUVEAU_SVM_BIND_TARGET_SHIFT;
144         target &= NOUVEAU_SVM_BIND_TARGET_MASK;
145         switch (target) {
146         case NOUVEAU_SVM_BIND_TARGET__GPU_VRAM:
147                 break;
148         default:
149                 return -EINVAL;
150         }
151
152         /*
153          * FIXME: For now refuse non 0 stride, we need to change the migrate
154          * kernel function to handle stride to avoid to create a mess within
155          * each device driver.
156          */
157         if (args->stride)
158                 return -EINVAL;
159
160         /*
161          * Ok we are ask to do something sane, for now we only support migrate
162          * commands but we will add things like memory policy (what to do on
163          * page fault) and maybe some other commands.
164          */
165
166         mm = get_task_mm(current);
167         if (!mm) {
168                 return -EINVAL;
169         }
170         mmap_read_lock(mm);
171
172         if (!cli->svm.svmm) {
173                 mmap_read_unlock(mm);
174                 mmput(mm);
175                 return -EINVAL;
176         }
177
178         for (addr = args->va_start, end = args->va_end; addr < end;) {
179                 struct vm_area_struct *vma;
180                 unsigned long next;
181
182                 vma = find_vma_intersection(mm, addr, end);
183                 if (!vma)
184                         break;
185
186                 addr = max(addr, vma->vm_start);
187                 next = min(vma->vm_end, end);
188                 /* This is a best effort so we ignore errors */
189                 nouveau_dmem_migrate_vma(cli->drm, cli->svm.svmm, vma, addr,
190                                          next);
191                 addr = next;
192         }
193
194         /*
195          * FIXME Return the number of page we have migrated, again we need to
196          * update the migrate API to return that information so that we can
197          * report it to user space.
198          */
199         args->result = 0;
200
201         mmap_read_unlock(mm);
202         mmput(mm);
203
204         return 0;
205 }
206
207 /* Unlink channel instance from SVMM. */
208 void
209 nouveau_svmm_part(struct nouveau_svmm *svmm, u64 inst)
210 {
211         struct nouveau_ivmm *ivmm;
212         if (svmm) {
213                 mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
214                 ivmm = nouveau_ivmm_find(svmm->vmm->cli->drm->svm, inst);
215                 if (ivmm) {
216                         list_del(&ivmm->head);
217                         kfree(ivmm);
218                 }
219                 mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
220         }
221 }
222
223 /* Link channel instance to SVMM. */
224 int
225 nouveau_svmm_join(struct nouveau_svmm *svmm, u64 inst)
226 {
227         struct nouveau_ivmm *ivmm;
228         if (svmm) {
229                 if (!(ivmm = kmalloc(sizeof(*ivmm), GFP_KERNEL)))
230                         return -ENOMEM;
231                 ivmm->svmm = svmm;
232                 ivmm->inst = inst;
233
234                 mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
235                 list_add(&ivmm->head, &svmm->vmm->cli->drm->svm->inst);
236                 mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
237         }
238         return 0;
239 }
240
241 /* Invalidate SVMM address-range on GPU. */
242 void
243 nouveau_svmm_invalidate(struct nouveau_svmm *svmm, u64 start, u64 limit)
244 {
245         if (limit > start) {
246                 nvif_object_mthd(&svmm->vmm->vmm.object, NVIF_VMM_V0_PFNCLR,
247                                  &(struct nvif_vmm_pfnclr_v0) {
248                                         .addr = start,
249                                         .size = limit - start,
250                                  }, sizeof(struct nvif_vmm_pfnclr_v0));
251         }
252 }
253
254 static int
255 nouveau_svmm_invalidate_range_start(struct mmu_notifier *mn,
256                                     const struct mmu_notifier_range *update)
257 {
258         struct nouveau_svmm *svmm =
259                 container_of(mn, struct nouveau_svmm, notifier);
260         unsigned long start = update->start;
261         unsigned long limit = update->end;
262
263         if (!mmu_notifier_range_blockable(update))
264                 return -EAGAIN;
265
266         SVMM_DBG(svmm, "invalidate %016lx-%016lx", start, limit);
267
268         mutex_lock(&svmm->mutex);
269         if (unlikely(!svmm->vmm))
270                 goto out;
271
272         /*
273          * Ignore invalidation callbacks for device private pages since
274          * the invalidation is handled as part of the migration process.
275          */
276         if (update->event == MMU_NOTIFY_MIGRATE &&
277             update->owner == svmm->vmm->cli->drm->dev)
278                 goto out;
279
280         if (limit > svmm->unmanaged.start && start < svmm->unmanaged.limit) {
281                 if (start < svmm->unmanaged.start) {
282                         nouveau_svmm_invalidate(svmm, start,
283                                                 svmm->unmanaged.limit);
284                 }
285                 start = svmm->unmanaged.limit;
286         }
287
288         nouveau_svmm_invalidate(svmm, start, limit);
289
290 out:
291         mutex_unlock(&svmm->mutex);
292         return 0;
293 }
294
295 static void nouveau_svmm_free_notifier(struct mmu_notifier *mn)
296 {
297         kfree(container_of(mn, struct nouveau_svmm, notifier));
298 }
299
300 static const struct mmu_notifier_ops nouveau_mn_ops = {
301         .invalidate_range_start = nouveau_svmm_invalidate_range_start,
302         .free_notifier = nouveau_svmm_free_notifier,
303 };
304
305 void
306 nouveau_svmm_fini(struct nouveau_svmm **psvmm)
307 {
308         struct nouveau_svmm *svmm = *psvmm;
309         if (svmm) {
310                 mutex_lock(&svmm->mutex);
311                 svmm->vmm = NULL;
312                 mutex_unlock(&svmm->mutex);
313                 mmu_notifier_put(&svmm->notifier);
314                 *psvmm = NULL;
315         }
316 }
317
318 int
319 nouveau_svmm_init(struct drm_device *dev, void *data,
320                   struct drm_file *file_priv)
321 {
322         struct nouveau_cli *cli = nouveau_cli(file_priv);
323         struct nouveau_svmm *svmm;
324         struct drm_nouveau_svm_init *args = data;
325         int ret;
326
327         /* We need to fail if svm is disabled */
328         if (!cli->drm->svm)
329                 return -ENOSYS;
330
331         /* Allocate tracking for SVM-enabled VMM. */
332         if (!(svmm = kzalloc(sizeof(*svmm), GFP_KERNEL)))
333                 return -ENOMEM;
334         svmm->vmm = &cli->svm;
335         svmm->unmanaged.start = args->unmanaged_addr;
336         svmm->unmanaged.limit = args->unmanaged_addr + args->unmanaged_size;
337         mutex_init(&svmm->mutex);
338
339         /* Check that SVM isn't already enabled for the client. */
340         mutex_lock(&cli->mutex);
341         if (cli->svm.cli) {
342                 ret = -EBUSY;
343                 goto out_free;
344         }
345
346         /* Allocate a new GPU VMM that can support SVM (managed by the
347          * client, with replayable faults enabled).
348          *
349          * All future channel/memory allocations will make use of this
350          * VMM instead of the standard one.
351          */
352         ret = nvif_vmm_ctor(&cli->mmu, "svmVmm",
353                             cli->vmm.vmm.object.oclass, MANAGED,
354                             args->unmanaged_addr, args->unmanaged_size,
355                             &(struct gp100_vmm_v0) {
356                                 .fault_replay = true,
357                             }, sizeof(struct gp100_vmm_v0), &cli->svm.vmm);
358         if (ret)
359                 goto out_free;
360
361         mmap_write_lock(current->mm);
362         svmm->notifier.ops = &nouveau_mn_ops;
363         ret = __mmu_notifier_register(&svmm->notifier, current->mm);
364         if (ret)
365                 goto out_mm_unlock;
366         /* Note, ownership of svmm transfers to mmu_notifier */
367
368         cli->svm.svmm = svmm;
369         cli->svm.cli = cli;
370         mmap_write_unlock(current->mm);
371         mutex_unlock(&cli->mutex);
372         return 0;
373
374 out_mm_unlock:
375         mmap_write_unlock(current->mm);
376 out_free:
377         mutex_unlock(&cli->mutex);
378         kfree(svmm);
379         return ret;
380 }
381
382 /* Issue fault replay for GPU to retry accesses that faulted previously. */
383 static void
384 nouveau_svm_fault_replay(struct nouveau_svm *svm)
385 {
386         SVM_DBG(svm, "replay");
387         WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
388                                  GP100_VMM_VN_FAULT_REPLAY,
389                                  &(struct gp100_vmm_fault_replay_vn) {},
390                                  sizeof(struct gp100_vmm_fault_replay_vn)));
391 }
392
393 /* Cancel a replayable fault that could not be handled.
394  *
395  * Cancelling the fault will trigger recovery to reset the engine
396  * and kill the offending channel (ie. GPU SIGSEGV).
397  */
398 static void
399 nouveau_svm_fault_cancel(struct nouveau_svm *svm,
400                          u64 inst, u8 hub, u8 gpc, u8 client)
401 {
402         SVM_DBG(svm, "cancel %016llx %d %02x %02x", inst, hub, gpc, client);
403         WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
404                                  GP100_VMM_VN_FAULT_CANCEL,
405                                  &(struct gp100_vmm_fault_cancel_v0) {
406                                         .hub = hub,
407                                         .gpc = gpc,
408                                         .client = client,
409                                         .inst = inst,
410                                  }, sizeof(struct gp100_vmm_fault_cancel_v0)));
411 }
412
413 static void
414 nouveau_svm_fault_cancel_fault(struct nouveau_svm *svm,
415                                struct nouveau_svm_fault *fault)
416 {
417         nouveau_svm_fault_cancel(svm, fault->inst,
418                                       fault->hub,
419                                       fault->gpc,
420                                       fault->client);
421 }
422
423 static int
424 nouveau_svm_fault_priority(u8 fault)
425 {
426         switch (fault) {
427         case FAULT_ACCESS_PREFETCH:
428                 return 0;
429         case FAULT_ACCESS_READ:
430                 return 1;
431         case FAULT_ACCESS_WRITE:
432                 return 2;
433         case FAULT_ACCESS_ATOMIC:
434                 return 3;
435         default:
436                 WARN_ON_ONCE(1);
437                 return -1;
438         }
439 }
440
441 static int
442 nouveau_svm_fault_cmp(const void *a, const void *b)
443 {
444         const struct nouveau_svm_fault *fa = *(struct nouveau_svm_fault **)a;
445         const struct nouveau_svm_fault *fb = *(struct nouveau_svm_fault **)b;
446         int ret;
447         if ((ret = (s64)fa->inst - fb->inst))
448                 return ret;
449         if ((ret = (s64)fa->addr - fb->addr))
450                 return ret;
451         return nouveau_svm_fault_priority(fa->access) -
452                 nouveau_svm_fault_priority(fb->access);
453 }
454
455 static void
456 nouveau_svm_fault_cache(struct nouveau_svm *svm,
457                         struct nouveau_svm_fault_buffer *buffer, u32 offset)
458 {
459         struct nvif_object *memory = &buffer->object;
460         const u32 instlo = nvif_rd32(memory, offset + 0x00);
461         const u32 insthi = nvif_rd32(memory, offset + 0x04);
462         const u32 addrlo = nvif_rd32(memory, offset + 0x08);
463         const u32 addrhi = nvif_rd32(memory, offset + 0x0c);
464         const u32 timelo = nvif_rd32(memory, offset + 0x10);
465         const u32 timehi = nvif_rd32(memory, offset + 0x14);
466         const u32 engine = nvif_rd32(memory, offset + 0x18);
467         const u32   info = nvif_rd32(memory, offset + 0x1c);
468         const u64   inst = (u64)insthi << 32 | instlo;
469         const u8     gpc = (info & 0x1f000000) >> 24;
470         const u8     hub = (info & 0x00100000) >> 20;
471         const u8  client = (info & 0x00007f00) >> 8;
472         struct nouveau_svm_fault *fault;
473
474         //XXX: i think we're supposed to spin waiting */
475         if (WARN_ON(!(info & 0x80000000)))
476                 return;
477
478         nvif_mask(memory, offset + 0x1c, 0x80000000, 0x00000000);
479
480         if (!buffer->fault[buffer->fault_nr]) {
481                 fault = kmalloc(sizeof(*fault), GFP_KERNEL);
482                 if (WARN_ON(!fault)) {
483                         nouveau_svm_fault_cancel(svm, inst, hub, gpc, client);
484                         return;
485                 }
486                 buffer->fault[buffer->fault_nr] = fault;
487         }
488
489         fault = buffer->fault[buffer->fault_nr++];
490         fault->inst   = inst;
491         fault->addr   = (u64)addrhi << 32 | addrlo;
492         fault->time   = (u64)timehi << 32 | timelo;
493         fault->engine = engine;
494         fault->gpc    = gpc;
495         fault->hub    = hub;
496         fault->access = (info & 0x000f0000) >> 16;
497         fault->client = client;
498         fault->fault  = (info & 0x0000001f);
499
500         SVM_DBG(svm, "fault %016llx %016llx %02x",
501                 fault->inst, fault->addr, fault->access);
502 }
503
504 struct svm_notifier {
505         struct mmu_interval_notifier notifier;
506         struct nouveau_svmm *svmm;
507 };
508
509 static bool nouveau_svm_range_invalidate(struct mmu_interval_notifier *mni,
510                                          const struct mmu_notifier_range *range,
511                                          unsigned long cur_seq)
512 {
513         struct svm_notifier *sn =
514                 container_of(mni, struct svm_notifier, notifier);
515
516         if (range->event == MMU_NOTIFY_EXCLUSIVE &&
517             range->owner == sn->svmm->vmm->cli->drm->dev)
518                 return true;
519
520         /*
521          * serializes the update to mni->invalidate_seq done by caller and
522          * prevents invalidation of the PTE from progressing while HW is being
523          * programmed. This is very hacky and only works because the normal
524          * notifier that does invalidation is always called after the range
525          * notifier.
526          */
527         if (mmu_notifier_range_blockable(range))
528                 mutex_lock(&sn->svmm->mutex);
529         else if (!mutex_trylock(&sn->svmm->mutex))
530                 return false;
531         mmu_interval_set_seq(mni, cur_seq);
532         mutex_unlock(&sn->svmm->mutex);
533         return true;
534 }
535
536 static const struct mmu_interval_notifier_ops nouveau_svm_mni_ops = {
537         .invalidate = nouveau_svm_range_invalidate,
538 };
539
540 static void nouveau_hmm_convert_pfn(struct nouveau_drm *drm,
541                                     struct hmm_range *range,
542                                     struct nouveau_pfnmap_args *args)
543 {
544         struct page *page;
545
546         /*
547          * The address prepared here is passed through nvif_object_ioctl()
548          * to an eventual DMA map in something like gp100_vmm_pgt_pfn()
549          *
550          * This is all just encoding the internal hmm representation into a
551          * different nouveau internal representation.
552          */
553         if (!(range->hmm_pfns[0] & HMM_PFN_VALID)) {
554                 args->p.phys[0] = 0;
555                 return;
556         }
557
558         page = hmm_pfn_to_page(range->hmm_pfns[0]);
559         /*
560          * Only map compound pages to the GPU if the CPU is also mapping the
561          * page as a compound page. Otherwise, the PTE protections might not be
562          * consistent (e.g., CPU only maps part of a compound page).
563          * Note that the underlying page might still be larger than the
564          * CPU mapping (e.g., a PUD sized compound page partially mapped with
565          * a PMD sized page table entry).
566          */
567         if (hmm_pfn_to_map_order(range->hmm_pfns[0])) {
568                 unsigned long addr = args->p.addr;
569
570                 args->p.page = hmm_pfn_to_map_order(range->hmm_pfns[0]) +
571                                 PAGE_SHIFT;
572                 args->p.size = 1UL << args->p.page;
573                 args->p.addr &= ~(args->p.size - 1);
574                 page -= (addr - args->p.addr) >> PAGE_SHIFT;
575         }
576         if (is_device_private_page(page))
577                 args->p.phys[0] = nouveau_dmem_page_addr(page) |
578                                 NVIF_VMM_PFNMAP_V0_V |
579                                 NVIF_VMM_PFNMAP_V0_VRAM;
580         else
581                 args->p.phys[0] = page_to_phys(page) |
582                                 NVIF_VMM_PFNMAP_V0_V |
583                                 NVIF_VMM_PFNMAP_V0_HOST;
584         if (range->hmm_pfns[0] & HMM_PFN_WRITE)
585                 args->p.phys[0] |= NVIF_VMM_PFNMAP_V0_W;
586 }
587
588 static int nouveau_atomic_range_fault(struct nouveau_svmm *svmm,
589                                struct nouveau_drm *drm,
590                                struct nouveau_pfnmap_args *args, u32 size,
591                                struct svm_notifier *notifier)
592 {
593         unsigned long timeout =
594                 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
595         struct mm_struct *mm = svmm->notifier.mm;
596         struct page *page;
597         unsigned long start = args->p.addr;
598         unsigned long notifier_seq;
599         int ret = 0;
600
601         ret = mmu_interval_notifier_insert(&notifier->notifier, mm,
602                                         args->p.addr, args->p.size,
603                                         &nouveau_svm_mni_ops);
604         if (ret)
605                 return ret;
606
607         while (true) {
608                 if (time_after(jiffies, timeout)) {
609                         ret = -EBUSY;
610                         goto out;
611                 }
612
613                 notifier_seq = mmu_interval_read_begin(&notifier->notifier);
614                 mmap_read_lock(mm);
615                 ret = make_device_exclusive_range(mm, start, start + PAGE_SIZE,
616                                             &page, drm->dev);
617                 mmap_read_unlock(mm);
618                 if (ret <= 0 || !page) {
619                         ret = -EINVAL;
620                         goto out;
621                 }
622
623                 mutex_lock(&svmm->mutex);
624                 if (!mmu_interval_read_retry(&notifier->notifier,
625                                              notifier_seq))
626                         break;
627                 mutex_unlock(&svmm->mutex);
628         }
629
630         /* Map the page on the GPU. */
631         args->p.page = 12;
632         args->p.size = PAGE_SIZE;
633         args->p.addr = start;
634         args->p.phys[0] = page_to_phys(page) |
635                 NVIF_VMM_PFNMAP_V0_V |
636                 NVIF_VMM_PFNMAP_V0_W |
637                 NVIF_VMM_PFNMAP_V0_A |
638                 NVIF_VMM_PFNMAP_V0_HOST;
639
640         ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL);
641         mutex_unlock(&svmm->mutex);
642
643         unlock_page(page);
644         put_page(page);
645
646 out:
647         mmu_interval_notifier_remove(&notifier->notifier);
648         return ret;
649 }
650
651 static int nouveau_range_fault(struct nouveau_svmm *svmm,
652                                struct nouveau_drm *drm,
653                                struct nouveau_pfnmap_args *args, u32 size,
654                                unsigned long hmm_flags,
655                                struct svm_notifier *notifier)
656 {
657         unsigned long timeout =
658                 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
659         /* Have HMM fault pages within the fault window to the GPU. */
660         unsigned long hmm_pfns[1];
661         struct hmm_range range = {
662                 .notifier = &notifier->notifier,
663                 .default_flags = hmm_flags,
664                 .hmm_pfns = hmm_pfns,
665                 .dev_private_owner = drm->dev,
666         };
667         struct mm_struct *mm = svmm->notifier.mm;
668         int ret;
669
670         ret = mmu_interval_notifier_insert(&notifier->notifier, mm,
671                                         args->p.addr, args->p.size,
672                                         &nouveau_svm_mni_ops);
673         if (ret)
674                 return ret;
675
676         range.start = notifier->notifier.interval_tree.start;
677         range.end = notifier->notifier.interval_tree.last + 1;
678
679         while (true) {
680                 if (time_after(jiffies, timeout)) {
681                         ret = -EBUSY;
682                         goto out;
683                 }
684
685                 range.notifier_seq = mmu_interval_read_begin(range.notifier);
686                 mmap_read_lock(mm);
687                 ret = hmm_range_fault(&range);
688                 mmap_read_unlock(mm);
689                 if (ret) {
690                         if (ret == -EBUSY)
691                                 continue;
692                         goto out;
693                 }
694
695                 mutex_lock(&svmm->mutex);
696                 if (mmu_interval_read_retry(range.notifier,
697                                             range.notifier_seq)) {
698                         mutex_unlock(&svmm->mutex);
699                         continue;
700                 }
701                 break;
702         }
703
704         nouveau_hmm_convert_pfn(drm, &range, args);
705
706         ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL);
707         mutex_unlock(&svmm->mutex);
708
709 out:
710         mmu_interval_notifier_remove(&notifier->notifier);
711
712         return ret;
713 }
714
715 static void
716 nouveau_svm_fault(struct work_struct *work)
717 {
718         struct nouveau_svm_fault_buffer *buffer = container_of(work, typeof(*buffer), work);
719         struct nouveau_svm *svm = container_of(buffer, typeof(*svm), buffer[buffer->id]);
720         struct nvif_object *device = &svm->drm->client.device.object;
721         struct nouveau_svmm *svmm;
722         struct {
723                 struct nouveau_pfnmap_args i;
724                 u64 phys[1];
725         } args;
726         unsigned long hmm_flags;
727         u64 inst, start, limit;
728         int fi, fn;
729         int replay = 0, atomic = 0, ret;
730
731         /* Parse available fault buffer entries into a cache, and update
732          * the GET pointer so HW can reuse the entries.
733          */
734         SVM_DBG(svm, "fault handler");
735         if (buffer->get == buffer->put) {
736                 buffer->put = nvif_rd32(device, buffer->putaddr);
737                 buffer->get = nvif_rd32(device, buffer->getaddr);
738                 if (buffer->get == buffer->put)
739                         return;
740         }
741         buffer->fault_nr = 0;
742
743         SVM_DBG(svm, "get %08x put %08x", buffer->get, buffer->put);
744         while (buffer->get != buffer->put) {
745                 nouveau_svm_fault_cache(svm, buffer, buffer->get * 0x20);
746                 if (++buffer->get == buffer->entries)
747                         buffer->get = 0;
748         }
749         nvif_wr32(device, buffer->getaddr, buffer->get);
750         SVM_DBG(svm, "%d fault(s) pending", buffer->fault_nr);
751
752         /* Sort parsed faults by instance pointer to prevent unnecessary
753          * instance to SVMM translations, followed by address and access
754          * type to reduce the amount of work when handling the faults.
755          */
756         sort(buffer->fault, buffer->fault_nr, sizeof(*buffer->fault),
757              nouveau_svm_fault_cmp, NULL);
758
759         /* Lookup SVMM structure for each unique instance pointer. */
760         mutex_lock(&svm->mutex);
761         for (fi = 0, svmm = NULL; fi < buffer->fault_nr; fi++) {
762                 if (!svmm || buffer->fault[fi]->inst != inst) {
763                         struct nouveau_ivmm *ivmm =
764                                 nouveau_ivmm_find(svm, buffer->fault[fi]->inst);
765                         svmm = ivmm ? ivmm->svmm : NULL;
766                         inst = buffer->fault[fi]->inst;
767                         SVM_DBG(svm, "inst %016llx -> svm-%p", inst, svmm);
768                 }
769                 buffer->fault[fi]->svmm = svmm;
770         }
771         mutex_unlock(&svm->mutex);
772
773         /* Process list of faults. */
774         args.i.i.version = 0;
775         args.i.i.type = NVIF_IOCTL_V0_MTHD;
776         args.i.m.version = 0;
777         args.i.m.method = NVIF_VMM_V0_PFNMAP;
778         args.i.p.version = 0;
779
780         for (fi = 0; fn = fi + 1, fi < buffer->fault_nr; fi = fn) {
781                 struct svm_notifier notifier;
782                 struct mm_struct *mm;
783
784                 /* Cancel any faults from non-SVM channels. */
785                 if (!(svmm = buffer->fault[fi]->svmm)) {
786                         nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
787                         continue;
788                 }
789                 SVMM_DBG(svmm, "addr %016llx", buffer->fault[fi]->addr);
790
791                 /* We try and group handling of faults within a small
792                  * window into a single update.
793                  */
794                 start = buffer->fault[fi]->addr;
795                 limit = start + PAGE_SIZE;
796                 if (start < svmm->unmanaged.limit)
797                         limit = min_t(u64, limit, svmm->unmanaged.start);
798
799                 /*
800                  * Prepare the GPU-side update of all pages within the
801                  * fault window, determining required pages and access
802                  * permissions based on pending faults.
803                  */
804                 args.i.p.addr = start;
805                 args.i.p.page = PAGE_SHIFT;
806                 args.i.p.size = PAGE_SIZE;
807                 /*
808                  * Determine required permissions based on GPU fault
809                  * access flags.
810                  */
811                 switch (buffer->fault[fi]->access) {
812                 case 0: /* READ. */
813                         hmm_flags = HMM_PFN_REQ_FAULT;
814                         break;
815                 case 2: /* ATOMIC. */
816                         atomic = true;
817                         break;
818                 case 3: /* PREFETCH. */
819                         hmm_flags = 0;
820                         break;
821                 default:
822                         hmm_flags = HMM_PFN_REQ_FAULT | HMM_PFN_REQ_WRITE;
823                         break;
824                 }
825
826                 mm = svmm->notifier.mm;
827                 if (!mmget_not_zero(mm)) {
828                         nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
829                         continue;
830                 }
831
832                 notifier.svmm = svmm;
833                 if (atomic)
834                         ret = nouveau_atomic_range_fault(svmm, svm->drm,
835                                                          &args.i, sizeof(args),
836                                                          &notifier);
837                 else
838                         ret = nouveau_range_fault(svmm, svm->drm, &args.i,
839                                                   sizeof(args), hmm_flags,
840                                                   &notifier);
841                 mmput(mm);
842
843                 limit = args.i.p.addr + args.i.p.size;
844                 for (fn = fi; ++fn < buffer->fault_nr; ) {
845                         /* It's okay to skip over duplicate addresses from the
846                          * same SVMM as faults are ordered by access type such
847                          * that only the first one needs to be handled.
848                          *
849                          * ie. WRITE faults appear first, thus any handling of
850                          * pending READ faults will already be satisfied.
851                          * But if a large page is mapped, make sure subsequent
852                          * fault addresses have sufficient access permission.
853                          */
854                         if (buffer->fault[fn]->svmm != svmm ||
855                             buffer->fault[fn]->addr >= limit ||
856                             (buffer->fault[fi]->access == FAULT_ACCESS_READ &&
857                              !(args.phys[0] & NVIF_VMM_PFNMAP_V0_V)) ||
858                             (buffer->fault[fi]->access != FAULT_ACCESS_READ &&
859                              buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH &&
860                              !(args.phys[0] & NVIF_VMM_PFNMAP_V0_W)) ||
861                             (buffer->fault[fi]->access != FAULT_ACCESS_READ &&
862                              buffer->fault[fi]->access != FAULT_ACCESS_WRITE &&
863                              buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH &&
864                              !(args.phys[0] & NVIF_VMM_PFNMAP_V0_A)))
865                                 break;
866                 }
867
868                 /* If handling failed completely, cancel all faults. */
869                 if (ret) {
870                         while (fi < fn) {
871                                 struct nouveau_svm_fault *fault =
872                                         buffer->fault[fi++];
873
874                                 nouveau_svm_fault_cancel_fault(svm, fault);
875                         }
876                 } else
877                         replay++;
878         }
879
880         /* Issue fault replay to the GPU. */
881         if (replay)
882                 nouveau_svm_fault_replay(svm);
883 }
884
885 static int
886 nouveau_svm_event(struct nvif_event *event, void *argv, u32 argc)
887 {
888         struct nouveau_svm_fault_buffer *buffer = container_of(event, typeof(*buffer), notify);
889
890         schedule_work(&buffer->work);
891         return NVIF_EVENT_KEEP;
892 }
893
894 static struct nouveau_pfnmap_args *
895 nouveau_pfns_to_args(void *pfns)
896 {
897         return container_of(pfns, struct nouveau_pfnmap_args, p.phys);
898 }
899
900 u64 *
901 nouveau_pfns_alloc(unsigned long npages)
902 {
903         struct nouveau_pfnmap_args *args;
904
905         args = kzalloc(struct_size(args, p.phys, npages), GFP_KERNEL);
906         if (!args)
907                 return NULL;
908
909         args->i.type = NVIF_IOCTL_V0_MTHD;
910         args->m.method = NVIF_VMM_V0_PFNMAP;
911         args->p.page = PAGE_SHIFT;
912
913         return args->p.phys;
914 }
915
916 void
917 nouveau_pfns_free(u64 *pfns)
918 {
919         struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
920
921         kfree(args);
922 }
923
924 void
925 nouveau_pfns_map(struct nouveau_svmm *svmm, struct mm_struct *mm,
926                  unsigned long addr, u64 *pfns, unsigned long npages)
927 {
928         struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
929         int ret;
930
931         args->p.addr = addr;
932         args->p.size = npages << PAGE_SHIFT;
933
934         mutex_lock(&svmm->mutex);
935
936         ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args,
937                                 struct_size(args, p.phys, npages), NULL);
938
939         mutex_unlock(&svmm->mutex);
940 }
941
942 static void
943 nouveau_svm_fault_buffer_fini(struct nouveau_svm *svm, int id)
944 {
945         struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
946
947         nvif_event_block(&buffer->notify);
948         flush_work(&buffer->work);
949 }
950
951 static int
952 nouveau_svm_fault_buffer_init(struct nouveau_svm *svm, int id)
953 {
954         struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
955         struct nvif_object *device = &svm->drm->client.device.object;
956
957         buffer->get = nvif_rd32(device, buffer->getaddr);
958         buffer->put = nvif_rd32(device, buffer->putaddr);
959         SVM_DBG(svm, "get %08x put %08x (init)", buffer->get, buffer->put);
960
961         return nvif_event_allow(&buffer->notify);
962 }
963
964 static void
965 nouveau_svm_fault_buffer_dtor(struct nouveau_svm *svm, int id)
966 {
967         struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
968         int i;
969
970         if (!nvif_object_constructed(&buffer->object))
971                 return;
972
973         nouveau_svm_fault_buffer_fini(svm, id);
974
975         if (buffer->fault) {
976                 for (i = 0; buffer->fault[i] && i < buffer->entries; i++)
977                         kfree(buffer->fault[i]);
978                 kvfree(buffer->fault);
979         }
980
981         nvif_event_dtor(&buffer->notify);
982         nvif_object_dtor(&buffer->object);
983 }
984
985 static int
986 nouveau_svm_fault_buffer_ctor(struct nouveau_svm *svm, s32 oclass, int id)
987 {
988         struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
989         struct nouveau_drm *drm = svm->drm;
990         struct nvif_object *device = &drm->client.device.object;
991         struct nvif_clb069_v0 args = {};
992         int ret;
993
994         buffer->id = id;
995
996         ret = nvif_object_ctor(device, "svmFaultBuffer", 0, oclass, &args,
997                                sizeof(args), &buffer->object);
998         if (ret < 0) {
999                 SVM_ERR(svm, "Fault buffer allocation failed: %d", ret);
1000                 return ret;
1001         }
1002
1003         nvif_object_map(&buffer->object, NULL, 0);
1004         buffer->entries = args.entries;
1005         buffer->getaddr = args.get;
1006         buffer->putaddr = args.put;
1007         INIT_WORK(&buffer->work, nouveau_svm_fault);
1008
1009         ret = nvif_event_ctor(&buffer->object, "svmFault", id, nouveau_svm_event, true, NULL, 0,
1010                               &buffer->notify);
1011         if (ret)
1012                 return ret;
1013
1014         buffer->fault = kvcalloc(sizeof(*buffer->fault), buffer->entries, GFP_KERNEL);
1015         if (!buffer->fault)
1016                 return -ENOMEM;
1017
1018         return nouveau_svm_fault_buffer_init(svm, id);
1019 }
1020
1021 void
1022 nouveau_svm_resume(struct nouveau_drm *drm)
1023 {
1024         struct nouveau_svm *svm = drm->svm;
1025         if (svm)
1026                 nouveau_svm_fault_buffer_init(svm, 0);
1027 }
1028
1029 void
1030 nouveau_svm_suspend(struct nouveau_drm *drm)
1031 {
1032         struct nouveau_svm *svm = drm->svm;
1033         if (svm)
1034                 nouveau_svm_fault_buffer_fini(svm, 0);
1035 }
1036
1037 void
1038 nouveau_svm_fini(struct nouveau_drm *drm)
1039 {
1040         struct nouveau_svm *svm = drm->svm;
1041         if (svm) {
1042                 nouveau_svm_fault_buffer_dtor(svm, 0);
1043                 kfree(drm->svm);
1044                 drm->svm = NULL;
1045         }
1046 }
1047
1048 void
1049 nouveau_svm_init(struct nouveau_drm *drm)
1050 {
1051         static const struct nvif_mclass buffers[] = {
1052                 {   VOLTA_FAULT_BUFFER_A, 0 },
1053                 { MAXWELL_FAULT_BUFFER_A, 0 },
1054                 {}
1055         };
1056         struct nouveau_svm *svm;
1057         int ret;
1058
1059         /* Disable on Volta and newer until channel recovery is fixed,
1060          * otherwise clients will have a trivial way to trash the GPU
1061          * for everyone.
1062          */
1063         if (drm->client.device.info.family > NV_DEVICE_INFO_V0_PASCAL)
1064                 return;
1065
1066         if (!(drm->svm = svm = kzalloc(sizeof(*drm->svm), GFP_KERNEL)))
1067                 return;
1068
1069         drm->svm->drm = drm;
1070         mutex_init(&drm->svm->mutex);
1071         INIT_LIST_HEAD(&drm->svm->inst);
1072
1073         ret = nvif_mclass(&drm->client.device.object, buffers);
1074         if (ret < 0) {
1075                 SVM_DBG(svm, "No supported fault buffer class");
1076                 nouveau_svm_fini(drm);
1077                 return;
1078         }
1079
1080         ret = nouveau_svm_fault_buffer_ctor(svm, buffers[ret].oclass, 0);
1081         if (ret) {
1082                 nouveau_svm_fini(drm);
1083                 return;
1084         }
1085
1086         SVM_DBG(svm, "Initialised");
1087 }