2 * Copyright 2018 Red Hat Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
22 #include "nouveau_svm.h"
23 #include "nouveau_drv.h"
24 #include "nouveau_chan.h"
25 #include "nouveau_dmem.h"
27 #include <nvif/event.h>
28 #include <nvif/object.h>
31 #include <nvif/class.h>
32 #include <nvif/clb069.h>
33 #include <nvif/ifc00d.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sort.h>
37 #include <linux/hmm.h>
38 #include <linux/memremap.h>
39 #include <linux/rmap.h>
42 struct nouveau_drm *drm;
44 struct list_head inst;
46 struct nouveau_svm_fault_buffer {
48 struct nvif_object object;
54 struct nvif_event notify;
55 struct work_struct work;
57 struct nouveau_svm_fault {
67 struct nouveau_svmm *svmm;
73 #define FAULT_ACCESS_READ 0
74 #define FAULT_ACCESS_WRITE 1
75 #define FAULT_ACCESS_ATOMIC 2
76 #define FAULT_ACCESS_PREFETCH 3
78 #define SVM_DBG(s,f,a...) NV_DEBUG((s)->drm, "svm: "f"\n", ##a)
79 #define SVM_ERR(s,f,a...) NV_WARN((s)->drm, "svm: "f"\n", ##a)
81 struct nouveau_pfnmap_args {
82 struct nvif_ioctl_v0 i;
83 struct nvif_ioctl_mthd_v0 m;
84 struct nvif_vmm_pfnmap_v0 p;
88 struct nouveau_svmm *svmm;
90 struct list_head head;
93 static struct nouveau_ivmm *
94 nouveau_ivmm_find(struct nouveau_svm *svm, u64 inst)
96 struct nouveau_ivmm *ivmm;
97 list_for_each_entry(ivmm, &svm->inst, head) {
98 if (ivmm->inst == inst)
104 #define SVMM_DBG(s,f,a...) \
105 NV_DEBUG((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
106 #define SVMM_ERR(s,f,a...) \
107 NV_WARN((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
110 nouveau_svmm_bind(struct drm_device *dev, void *data,
111 struct drm_file *file_priv)
113 struct nouveau_cli *cli = nouveau_cli(file_priv);
114 struct drm_nouveau_svm_bind *args = data;
115 unsigned target, cmd, priority;
116 unsigned long addr, end;
117 struct mm_struct *mm;
119 args->va_start &= PAGE_MASK;
120 args->va_end = ALIGN(args->va_end, PAGE_SIZE);
122 /* Sanity check arguments */
123 if (args->reserved0 || args->reserved1)
125 if (args->header & (~NOUVEAU_SVM_BIND_VALID_MASK))
127 if (args->va_start >= args->va_end)
130 cmd = args->header >> NOUVEAU_SVM_BIND_COMMAND_SHIFT;
131 cmd &= NOUVEAU_SVM_BIND_COMMAND_MASK;
133 case NOUVEAU_SVM_BIND_COMMAND__MIGRATE:
139 priority = args->header >> NOUVEAU_SVM_BIND_PRIORITY_SHIFT;
140 priority &= NOUVEAU_SVM_BIND_PRIORITY_MASK;
142 /* FIXME support CPU target ie all target value < GPU_VRAM */
143 target = args->header >> NOUVEAU_SVM_BIND_TARGET_SHIFT;
144 target &= NOUVEAU_SVM_BIND_TARGET_MASK;
146 case NOUVEAU_SVM_BIND_TARGET__GPU_VRAM:
153 * FIXME: For now refuse non 0 stride, we need to change the migrate
154 * kernel function to handle stride to avoid to create a mess within
155 * each device driver.
161 * Ok we are ask to do something sane, for now we only support migrate
162 * commands but we will add things like memory policy (what to do on
163 * page fault) and maybe some other commands.
166 mm = get_task_mm(current);
172 if (!cli->svm.svmm) {
173 mmap_read_unlock(mm);
178 for (addr = args->va_start, end = args->va_end; addr < end;) {
179 struct vm_area_struct *vma;
182 vma = find_vma_intersection(mm, addr, end);
186 addr = max(addr, vma->vm_start);
187 next = min(vma->vm_end, end);
188 /* This is a best effort so we ignore errors */
189 nouveau_dmem_migrate_vma(cli->drm, cli->svm.svmm, vma, addr,
195 * FIXME Return the number of page we have migrated, again we need to
196 * update the migrate API to return that information so that we can
197 * report it to user space.
201 mmap_read_unlock(mm);
207 /* Unlink channel instance from SVMM. */
209 nouveau_svmm_part(struct nouveau_svmm *svmm, u64 inst)
211 struct nouveau_ivmm *ivmm;
213 mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
214 ivmm = nouveau_ivmm_find(svmm->vmm->cli->drm->svm, inst);
216 list_del(&ivmm->head);
219 mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
223 /* Link channel instance to SVMM. */
225 nouveau_svmm_join(struct nouveau_svmm *svmm, u64 inst)
227 struct nouveau_ivmm *ivmm;
229 if (!(ivmm = kmalloc(sizeof(*ivmm), GFP_KERNEL)))
234 mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
235 list_add(&ivmm->head, &svmm->vmm->cli->drm->svm->inst);
236 mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
241 /* Invalidate SVMM address-range on GPU. */
243 nouveau_svmm_invalidate(struct nouveau_svmm *svmm, u64 start, u64 limit)
246 nvif_object_mthd(&svmm->vmm->vmm.object, NVIF_VMM_V0_PFNCLR,
247 &(struct nvif_vmm_pfnclr_v0) {
249 .size = limit - start,
250 }, sizeof(struct nvif_vmm_pfnclr_v0));
255 nouveau_svmm_invalidate_range_start(struct mmu_notifier *mn,
256 const struct mmu_notifier_range *update)
258 struct nouveau_svmm *svmm =
259 container_of(mn, struct nouveau_svmm, notifier);
260 unsigned long start = update->start;
261 unsigned long limit = update->end;
263 if (!mmu_notifier_range_blockable(update))
266 SVMM_DBG(svmm, "invalidate %016lx-%016lx", start, limit);
268 mutex_lock(&svmm->mutex);
269 if (unlikely(!svmm->vmm))
273 * Ignore invalidation callbacks for device private pages since
274 * the invalidation is handled as part of the migration process.
276 if (update->event == MMU_NOTIFY_MIGRATE &&
277 update->owner == svmm->vmm->cli->drm->dev)
280 if (limit > svmm->unmanaged.start && start < svmm->unmanaged.limit) {
281 if (start < svmm->unmanaged.start) {
282 nouveau_svmm_invalidate(svmm, start,
283 svmm->unmanaged.limit);
285 start = svmm->unmanaged.limit;
288 nouveau_svmm_invalidate(svmm, start, limit);
291 mutex_unlock(&svmm->mutex);
295 static void nouveau_svmm_free_notifier(struct mmu_notifier *mn)
297 kfree(container_of(mn, struct nouveau_svmm, notifier));
300 static const struct mmu_notifier_ops nouveau_mn_ops = {
301 .invalidate_range_start = nouveau_svmm_invalidate_range_start,
302 .free_notifier = nouveau_svmm_free_notifier,
306 nouveau_svmm_fini(struct nouveau_svmm **psvmm)
308 struct nouveau_svmm *svmm = *psvmm;
310 mutex_lock(&svmm->mutex);
312 mutex_unlock(&svmm->mutex);
313 mmu_notifier_put(&svmm->notifier);
319 nouveau_svmm_init(struct drm_device *dev, void *data,
320 struct drm_file *file_priv)
322 struct nouveau_cli *cli = nouveau_cli(file_priv);
323 struct nouveau_svmm *svmm;
324 struct drm_nouveau_svm_init *args = data;
327 /* We need to fail if svm is disabled */
331 /* Allocate tracking for SVM-enabled VMM. */
332 if (!(svmm = kzalloc(sizeof(*svmm), GFP_KERNEL)))
334 svmm->vmm = &cli->svm;
335 svmm->unmanaged.start = args->unmanaged_addr;
336 svmm->unmanaged.limit = args->unmanaged_addr + args->unmanaged_size;
337 mutex_init(&svmm->mutex);
339 /* Check that SVM isn't already enabled for the client. */
340 mutex_lock(&cli->mutex);
346 /* Allocate a new GPU VMM that can support SVM (managed by the
347 * client, with replayable faults enabled).
349 * All future channel/memory allocations will make use of this
350 * VMM instead of the standard one.
352 ret = nvif_vmm_ctor(&cli->mmu, "svmVmm",
353 cli->vmm.vmm.object.oclass, MANAGED,
354 args->unmanaged_addr, args->unmanaged_size,
355 &(struct gp100_vmm_v0) {
356 .fault_replay = true,
357 }, sizeof(struct gp100_vmm_v0), &cli->svm.vmm);
361 mmap_write_lock(current->mm);
362 svmm->notifier.ops = &nouveau_mn_ops;
363 ret = __mmu_notifier_register(&svmm->notifier, current->mm);
366 /* Note, ownership of svmm transfers to mmu_notifier */
368 cli->svm.svmm = svmm;
370 mmap_write_unlock(current->mm);
371 mutex_unlock(&cli->mutex);
375 mmap_write_unlock(current->mm);
377 mutex_unlock(&cli->mutex);
382 /* Issue fault replay for GPU to retry accesses that faulted previously. */
384 nouveau_svm_fault_replay(struct nouveau_svm *svm)
386 SVM_DBG(svm, "replay");
387 WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
388 GP100_VMM_VN_FAULT_REPLAY,
389 &(struct gp100_vmm_fault_replay_vn) {},
390 sizeof(struct gp100_vmm_fault_replay_vn)));
393 /* Cancel a replayable fault that could not be handled.
395 * Cancelling the fault will trigger recovery to reset the engine
396 * and kill the offending channel (ie. GPU SIGSEGV).
399 nouveau_svm_fault_cancel(struct nouveau_svm *svm,
400 u64 inst, u8 hub, u8 gpc, u8 client)
402 SVM_DBG(svm, "cancel %016llx %d %02x %02x", inst, hub, gpc, client);
403 WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
404 GP100_VMM_VN_FAULT_CANCEL,
405 &(struct gp100_vmm_fault_cancel_v0) {
410 }, sizeof(struct gp100_vmm_fault_cancel_v0)));
414 nouveau_svm_fault_cancel_fault(struct nouveau_svm *svm,
415 struct nouveau_svm_fault *fault)
417 nouveau_svm_fault_cancel(svm, fault->inst,
424 nouveau_svm_fault_priority(u8 fault)
427 case FAULT_ACCESS_PREFETCH:
429 case FAULT_ACCESS_READ:
431 case FAULT_ACCESS_WRITE:
433 case FAULT_ACCESS_ATOMIC:
442 nouveau_svm_fault_cmp(const void *a, const void *b)
444 const struct nouveau_svm_fault *fa = *(struct nouveau_svm_fault **)a;
445 const struct nouveau_svm_fault *fb = *(struct nouveau_svm_fault **)b;
447 if ((ret = (s64)fa->inst - fb->inst))
449 if ((ret = (s64)fa->addr - fb->addr))
451 return nouveau_svm_fault_priority(fa->access) -
452 nouveau_svm_fault_priority(fb->access);
456 nouveau_svm_fault_cache(struct nouveau_svm *svm,
457 struct nouveau_svm_fault_buffer *buffer, u32 offset)
459 struct nvif_object *memory = &buffer->object;
460 const u32 instlo = nvif_rd32(memory, offset + 0x00);
461 const u32 insthi = nvif_rd32(memory, offset + 0x04);
462 const u32 addrlo = nvif_rd32(memory, offset + 0x08);
463 const u32 addrhi = nvif_rd32(memory, offset + 0x0c);
464 const u32 timelo = nvif_rd32(memory, offset + 0x10);
465 const u32 timehi = nvif_rd32(memory, offset + 0x14);
466 const u32 engine = nvif_rd32(memory, offset + 0x18);
467 const u32 info = nvif_rd32(memory, offset + 0x1c);
468 const u64 inst = (u64)insthi << 32 | instlo;
469 const u8 gpc = (info & 0x1f000000) >> 24;
470 const u8 hub = (info & 0x00100000) >> 20;
471 const u8 client = (info & 0x00007f00) >> 8;
472 struct nouveau_svm_fault *fault;
474 //XXX: i think we're supposed to spin waiting */
475 if (WARN_ON(!(info & 0x80000000)))
478 nvif_mask(memory, offset + 0x1c, 0x80000000, 0x00000000);
480 if (!buffer->fault[buffer->fault_nr]) {
481 fault = kmalloc(sizeof(*fault), GFP_KERNEL);
482 if (WARN_ON(!fault)) {
483 nouveau_svm_fault_cancel(svm, inst, hub, gpc, client);
486 buffer->fault[buffer->fault_nr] = fault;
489 fault = buffer->fault[buffer->fault_nr++];
491 fault->addr = (u64)addrhi << 32 | addrlo;
492 fault->time = (u64)timehi << 32 | timelo;
493 fault->engine = engine;
496 fault->access = (info & 0x000f0000) >> 16;
497 fault->client = client;
498 fault->fault = (info & 0x0000001f);
500 SVM_DBG(svm, "fault %016llx %016llx %02x",
501 fault->inst, fault->addr, fault->access);
504 struct svm_notifier {
505 struct mmu_interval_notifier notifier;
506 struct nouveau_svmm *svmm;
509 static bool nouveau_svm_range_invalidate(struct mmu_interval_notifier *mni,
510 const struct mmu_notifier_range *range,
511 unsigned long cur_seq)
513 struct svm_notifier *sn =
514 container_of(mni, struct svm_notifier, notifier);
516 if (range->event == MMU_NOTIFY_EXCLUSIVE &&
517 range->owner == sn->svmm->vmm->cli->drm->dev)
521 * serializes the update to mni->invalidate_seq done by caller and
522 * prevents invalidation of the PTE from progressing while HW is being
523 * programmed. This is very hacky and only works because the normal
524 * notifier that does invalidation is always called after the range
527 if (mmu_notifier_range_blockable(range))
528 mutex_lock(&sn->svmm->mutex);
529 else if (!mutex_trylock(&sn->svmm->mutex))
531 mmu_interval_set_seq(mni, cur_seq);
532 mutex_unlock(&sn->svmm->mutex);
536 static const struct mmu_interval_notifier_ops nouveau_svm_mni_ops = {
537 .invalidate = nouveau_svm_range_invalidate,
540 static void nouveau_hmm_convert_pfn(struct nouveau_drm *drm,
541 struct hmm_range *range,
542 struct nouveau_pfnmap_args *args)
547 * The address prepared here is passed through nvif_object_ioctl()
548 * to an eventual DMA map in something like gp100_vmm_pgt_pfn()
550 * This is all just encoding the internal hmm representation into a
551 * different nouveau internal representation.
553 if (!(range->hmm_pfns[0] & HMM_PFN_VALID)) {
558 page = hmm_pfn_to_page(range->hmm_pfns[0]);
560 * Only map compound pages to the GPU if the CPU is also mapping the
561 * page as a compound page. Otherwise, the PTE protections might not be
562 * consistent (e.g., CPU only maps part of a compound page).
563 * Note that the underlying page might still be larger than the
564 * CPU mapping (e.g., a PUD sized compound page partially mapped with
565 * a PMD sized page table entry).
567 if (hmm_pfn_to_map_order(range->hmm_pfns[0])) {
568 unsigned long addr = args->p.addr;
570 args->p.page = hmm_pfn_to_map_order(range->hmm_pfns[0]) +
572 args->p.size = 1UL << args->p.page;
573 args->p.addr &= ~(args->p.size - 1);
574 page -= (addr - args->p.addr) >> PAGE_SHIFT;
576 if (is_device_private_page(page))
577 args->p.phys[0] = nouveau_dmem_page_addr(page) |
578 NVIF_VMM_PFNMAP_V0_V |
579 NVIF_VMM_PFNMAP_V0_VRAM;
581 args->p.phys[0] = page_to_phys(page) |
582 NVIF_VMM_PFNMAP_V0_V |
583 NVIF_VMM_PFNMAP_V0_HOST;
584 if (range->hmm_pfns[0] & HMM_PFN_WRITE)
585 args->p.phys[0] |= NVIF_VMM_PFNMAP_V0_W;
588 static int nouveau_atomic_range_fault(struct nouveau_svmm *svmm,
589 struct nouveau_drm *drm,
590 struct nouveau_pfnmap_args *args, u32 size,
591 struct svm_notifier *notifier)
593 unsigned long timeout =
594 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
595 struct mm_struct *mm = svmm->notifier.mm;
597 unsigned long start = args->p.addr;
598 unsigned long notifier_seq;
601 ret = mmu_interval_notifier_insert(¬ifier->notifier, mm,
602 args->p.addr, args->p.size,
603 &nouveau_svm_mni_ops);
608 if (time_after(jiffies, timeout)) {
613 notifier_seq = mmu_interval_read_begin(¬ifier->notifier);
615 ret = make_device_exclusive_range(mm, start, start + PAGE_SIZE,
617 mmap_read_unlock(mm);
618 if (ret <= 0 || !page) {
623 mutex_lock(&svmm->mutex);
624 if (!mmu_interval_read_retry(¬ifier->notifier,
627 mutex_unlock(&svmm->mutex);
630 /* Map the page on the GPU. */
632 args->p.size = PAGE_SIZE;
633 args->p.addr = start;
634 args->p.phys[0] = page_to_phys(page) |
635 NVIF_VMM_PFNMAP_V0_V |
636 NVIF_VMM_PFNMAP_V0_W |
637 NVIF_VMM_PFNMAP_V0_A |
638 NVIF_VMM_PFNMAP_V0_HOST;
640 ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL);
641 mutex_unlock(&svmm->mutex);
647 mmu_interval_notifier_remove(¬ifier->notifier);
651 static int nouveau_range_fault(struct nouveau_svmm *svmm,
652 struct nouveau_drm *drm,
653 struct nouveau_pfnmap_args *args, u32 size,
654 unsigned long hmm_flags,
655 struct svm_notifier *notifier)
657 unsigned long timeout =
658 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
659 /* Have HMM fault pages within the fault window to the GPU. */
660 unsigned long hmm_pfns[1];
661 struct hmm_range range = {
662 .notifier = ¬ifier->notifier,
663 .default_flags = hmm_flags,
664 .hmm_pfns = hmm_pfns,
665 .dev_private_owner = drm->dev,
667 struct mm_struct *mm = svmm->notifier.mm;
670 ret = mmu_interval_notifier_insert(¬ifier->notifier, mm,
671 args->p.addr, args->p.size,
672 &nouveau_svm_mni_ops);
676 range.start = notifier->notifier.interval_tree.start;
677 range.end = notifier->notifier.interval_tree.last + 1;
680 if (time_after(jiffies, timeout)) {
685 range.notifier_seq = mmu_interval_read_begin(range.notifier);
687 ret = hmm_range_fault(&range);
688 mmap_read_unlock(mm);
695 mutex_lock(&svmm->mutex);
696 if (mmu_interval_read_retry(range.notifier,
697 range.notifier_seq)) {
698 mutex_unlock(&svmm->mutex);
704 nouveau_hmm_convert_pfn(drm, &range, args);
706 ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL);
707 mutex_unlock(&svmm->mutex);
710 mmu_interval_notifier_remove(¬ifier->notifier);
716 nouveau_svm_fault(struct work_struct *work)
718 struct nouveau_svm_fault_buffer *buffer = container_of(work, typeof(*buffer), work);
719 struct nouveau_svm *svm = container_of(buffer, typeof(*svm), buffer[buffer->id]);
720 struct nvif_object *device = &svm->drm->client.device.object;
721 struct nouveau_svmm *svmm;
723 struct nouveau_pfnmap_args i;
726 unsigned long hmm_flags;
727 u64 inst, start, limit;
729 int replay = 0, atomic = 0, ret;
731 /* Parse available fault buffer entries into a cache, and update
732 * the GET pointer so HW can reuse the entries.
734 SVM_DBG(svm, "fault handler");
735 if (buffer->get == buffer->put) {
736 buffer->put = nvif_rd32(device, buffer->putaddr);
737 buffer->get = nvif_rd32(device, buffer->getaddr);
738 if (buffer->get == buffer->put)
741 buffer->fault_nr = 0;
743 SVM_DBG(svm, "get %08x put %08x", buffer->get, buffer->put);
744 while (buffer->get != buffer->put) {
745 nouveau_svm_fault_cache(svm, buffer, buffer->get * 0x20);
746 if (++buffer->get == buffer->entries)
749 nvif_wr32(device, buffer->getaddr, buffer->get);
750 SVM_DBG(svm, "%d fault(s) pending", buffer->fault_nr);
752 /* Sort parsed faults by instance pointer to prevent unnecessary
753 * instance to SVMM translations, followed by address and access
754 * type to reduce the amount of work when handling the faults.
756 sort(buffer->fault, buffer->fault_nr, sizeof(*buffer->fault),
757 nouveau_svm_fault_cmp, NULL);
759 /* Lookup SVMM structure for each unique instance pointer. */
760 mutex_lock(&svm->mutex);
761 for (fi = 0, svmm = NULL; fi < buffer->fault_nr; fi++) {
762 if (!svmm || buffer->fault[fi]->inst != inst) {
763 struct nouveau_ivmm *ivmm =
764 nouveau_ivmm_find(svm, buffer->fault[fi]->inst);
765 svmm = ivmm ? ivmm->svmm : NULL;
766 inst = buffer->fault[fi]->inst;
767 SVM_DBG(svm, "inst %016llx -> svm-%p", inst, svmm);
769 buffer->fault[fi]->svmm = svmm;
771 mutex_unlock(&svm->mutex);
773 /* Process list of faults. */
774 args.i.i.version = 0;
775 args.i.i.type = NVIF_IOCTL_V0_MTHD;
776 args.i.m.version = 0;
777 args.i.m.method = NVIF_VMM_V0_PFNMAP;
778 args.i.p.version = 0;
780 for (fi = 0; fn = fi + 1, fi < buffer->fault_nr; fi = fn) {
781 struct svm_notifier notifier;
782 struct mm_struct *mm;
784 /* Cancel any faults from non-SVM channels. */
785 if (!(svmm = buffer->fault[fi]->svmm)) {
786 nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
789 SVMM_DBG(svmm, "addr %016llx", buffer->fault[fi]->addr);
791 /* We try and group handling of faults within a small
792 * window into a single update.
794 start = buffer->fault[fi]->addr;
795 limit = start + PAGE_SIZE;
796 if (start < svmm->unmanaged.limit)
797 limit = min_t(u64, limit, svmm->unmanaged.start);
800 * Prepare the GPU-side update of all pages within the
801 * fault window, determining required pages and access
802 * permissions based on pending faults.
804 args.i.p.addr = start;
805 args.i.p.page = PAGE_SHIFT;
806 args.i.p.size = PAGE_SIZE;
808 * Determine required permissions based on GPU fault
811 switch (buffer->fault[fi]->access) {
813 hmm_flags = HMM_PFN_REQ_FAULT;
815 case 2: /* ATOMIC. */
818 case 3: /* PREFETCH. */
822 hmm_flags = HMM_PFN_REQ_FAULT | HMM_PFN_REQ_WRITE;
826 mm = svmm->notifier.mm;
827 if (!mmget_not_zero(mm)) {
828 nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
832 notifier.svmm = svmm;
834 ret = nouveau_atomic_range_fault(svmm, svm->drm,
835 &args.i, sizeof(args),
838 ret = nouveau_range_fault(svmm, svm->drm, &args.i,
839 sizeof(args), hmm_flags,
843 limit = args.i.p.addr + args.i.p.size;
844 for (fn = fi; ++fn < buffer->fault_nr; ) {
845 /* It's okay to skip over duplicate addresses from the
846 * same SVMM as faults are ordered by access type such
847 * that only the first one needs to be handled.
849 * ie. WRITE faults appear first, thus any handling of
850 * pending READ faults will already be satisfied.
851 * But if a large page is mapped, make sure subsequent
852 * fault addresses have sufficient access permission.
854 if (buffer->fault[fn]->svmm != svmm ||
855 buffer->fault[fn]->addr >= limit ||
856 (buffer->fault[fi]->access == FAULT_ACCESS_READ &&
857 !(args.phys[0] & NVIF_VMM_PFNMAP_V0_V)) ||
858 (buffer->fault[fi]->access != FAULT_ACCESS_READ &&
859 buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH &&
860 !(args.phys[0] & NVIF_VMM_PFNMAP_V0_W)) ||
861 (buffer->fault[fi]->access != FAULT_ACCESS_READ &&
862 buffer->fault[fi]->access != FAULT_ACCESS_WRITE &&
863 buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH &&
864 !(args.phys[0] & NVIF_VMM_PFNMAP_V0_A)))
868 /* If handling failed completely, cancel all faults. */
871 struct nouveau_svm_fault *fault =
874 nouveau_svm_fault_cancel_fault(svm, fault);
880 /* Issue fault replay to the GPU. */
882 nouveau_svm_fault_replay(svm);
886 nouveau_svm_event(struct nvif_event *event, void *argv, u32 argc)
888 struct nouveau_svm_fault_buffer *buffer = container_of(event, typeof(*buffer), notify);
890 schedule_work(&buffer->work);
891 return NVIF_EVENT_KEEP;
894 static struct nouveau_pfnmap_args *
895 nouveau_pfns_to_args(void *pfns)
897 return container_of(pfns, struct nouveau_pfnmap_args, p.phys);
901 nouveau_pfns_alloc(unsigned long npages)
903 struct nouveau_pfnmap_args *args;
905 args = kzalloc(struct_size(args, p.phys, npages), GFP_KERNEL);
909 args->i.type = NVIF_IOCTL_V0_MTHD;
910 args->m.method = NVIF_VMM_V0_PFNMAP;
911 args->p.page = PAGE_SHIFT;
917 nouveau_pfns_free(u64 *pfns)
919 struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
925 nouveau_pfns_map(struct nouveau_svmm *svmm, struct mm_struct *mm,
926 unsigned long addr, u64 *pfns, unsigned long npages)
928 struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
932 args->p.size = npages << PAGE_SHIFT;
934 mutex_lock(&svmm->mutex);
936 ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args,
937 struct_size(args, p.phys, npages), NULL);
939 mutex_unlock(&svmm->mutex);
943 nouveau_svm_fault_buffer_fini(struct nouveau_svm *svm, int id)
945 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
947 nvif_event_block(&buffer->notify);
948 flush_work(&buffer->work);
952 nouveau_svm_fault_buffer_init(struct nouveau_svm *svm, int id)
954 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
955 struct nvif_object *device = &svm->drm->client.device.object;
957 buffer->get = nvif_rd32(device, buffer->getaddr);
958 buffer->put = nvif_rd32(device, buffer->putaddr);
959 SVM_DBG(svm, "get %08x put %08x (init)", buffer->get, buffer->put);
961 return nvif_event_allow(&buffer->notify);
965 nouveau_svm_fault_buffer_dtor(struct nouveau_svm *svm, int id)
967 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
970 if (!nvif_object_constructed(&buffer->object))
973 nouveau_svm_fault_buffer_fini(svm, id);
976 for (i = 0; buffer->fault[i] && i < buffer->entries; i++)
977 kfree(buffer->fault[i]);
978 kvfree(buffer->fault);
981 nvif_event_dtor(&buffer->notify);
982 nvif_object_dtor(&buffer->object);
986 nouveau_svm_fault_buffer_ctor(struct nouveau_svm *svm, s32 oclass, int id)
988 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
989 struct nouveau_drm *drm = svm->drm;
990 struct nvif_object *device = &drm->client.device.object;
991 struct nvif_clb069_v0 args = {};
996 ret = nvif_object_ctor(device, "svmFaultBuffer", 0, oclass, &args,
997 sizeof(args), &buffer->object);
999 SVM_ERR(svm, "Fault buffer allocation failed: %d", ret);
1003 nvif_object_map(&buffer->object, NULL, 0);
1004 buffer->entries = args.entries;
1005 buffer->getaddr = args.get;
1006 buffer->putaddr = args.put;
1007 INIT_WORK(&buffer->work, nouveau_svm_fault);
1009 ret = nvif_event_ctor(&buffer->object, "svmFault", id, nouveau_svm_event, true, NULL, 0,
1014 buffer->fault = kvcalloc(sizeof(*buffer->fault), buffer->entries, GFP_KERNEL);
1018 return nouveau_svm_fault_buffer_init(svm, id);
1022 nouveau_svm_resume(struct nouveau_drm *drm)
1024 struct nouveau_svm *svm = drm->svm;
1026 nouveau_svm_fault_buffer_init(svm, 0);
1030 nouveau_svm_suspend(struct nouveau_drm *drm)
1032 struct nouveau_svm *svm = drm->svm;
1034 nouveau_svm_fault_buffer_fini(svm, 0);
1038 nouveau_svm_fini(struct nouveau_drm *drm)
1040 struct nouveau_svm *svm = drm->svm;
1042 nouveau_svm_fault_buffer_dtor(svm, 0);
1049 nouveau_svm_init(struct nouveau_drm *drm)
1051 static const struct nvif_mclass buffers[] = {
1052 { VOLTA_FAULT_BUFFER_A, 0 },
1053 { MAXWELL_FAULT_BUFFER_A, 0 },
1056 struct nouveau_svm *svm;
1059 /* Disable on Volta and newer until channel recovery is fixed,
1060 * otherwise clients will have a trivial way to trash the GPU
1063 if (drm->client.device.info.family > NV_DEVICE_INFO_V0_PASCAL)
1066 if (!(drm->svm = svm = kzalloc(sizeof(*drm->svm), GFP_KERNEL)))
1069 drm->svm->drm = drm;
1070 mutex_init(&drm->svm->mutex);
1071 INIT_LIST_HEAD(&drm->svm->inst);
1073 ret = nvif_mclass(&drm->client.device.object, buffers);
1075 SVM_DBG(svm, "No supported fault buffer class");
1076 nouveau_svm_fini(drm);
1080 ret = nouveau_svm_fault_buffer_ctor(svm, buffers[ret].oclass, 0);
1082 nouveau_svm_fini(drm);
1086 SVM_DBG(svm, "Initialised");