2 * Copyright 2011 Red Hat Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
31 #include <linux/dma-mapping.h>
32 #include <linux/hdmi.h>
33 #include <linux/component.h>
34 #include <linux/iopoll.h>
36 #include <drm/display/drm_dp_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fb_helper.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
45 #include <nvif/push507c.h>
47 #include <nvif/class.h>
48 #include <nvif/cl0002.h>
49 #include <nvif/cl5070.h>
50 #include <nvif/event.h>
51 #include <nvif/if0014.h>
52 #include <nvif/timer.h>
54 #include <nvhw/class/cl507c.h>
55 #include <nvhw/class/cl507d.h>
56 #include <nvhw/class/cl837d.h>
57 #include <nvhw/class/cl887d.h>
58 #include <nvhw/class/cl907d.h>
59 #include <nvhw/class/cl917d.h>
61 #include "nouveau_drv.h"
62 #include "nouveau_dma.h"
63 #include "nouveau_gem.h"
64 #include "nouveau_connector.h"
65 #include "nouveau_encoder.h"
66 #include "nouveau_fence.h"
67 #include "nouveau_fbcon.h"
69 #include <subdev/bios/dp.h>
71 /******************************************************************************
73 *****************************************************************************/
76 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
77 const s32 *oclass, u8 head, void *data, u32 size,
78 struct nv50_chan *chan)
80 struct nvif_sclass *sclass;
83 chan->device = device;
85 ret = n = nvif_object_sclass_get(disp, &sclass);
90 for (i = 0; i < n; i++) {
91 if (sclass[i].oclass == oclass[0]) {
92 ret = nvif_object_ctor(disp, "kmsChan", 0,
93 oclass[0], data, size,
96 nvif_object_map(&chan->user, NULL, 0);
97 nvif_object_sclass_put(&sclass);
104 nvif_object_sclass_put(&sclass);
109 nv50_chan_destroy(struct nv50_chan *chan)
111 nvif_object_dtor(&chan->user);
114 /******************************************************************************
116 *****************************************************************************/
119 nv50_dmac_destroy(struct nv50_dmac *dmac)
121 nvif_object_dtor(&dmac->vram);
122 nvif_object_dtor(&dmac->sync);
124 nv50_chan_destroy(&dmac->base);
126 nvif_mem_dtor(&dmac->_push.mem);
130 nv50_dmac_kick(struct nvif_push *push)
132 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
134 dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr;
135 if (dmac->put != dmac->cur) {
136 /* Push buffer fetches are not coherent with BAR1, we need to ensure
137 * writes have been flushed right through to VRAM before writing PUT.
139 if (dmac->push->mem.type & NVIF_MEM_VRAM) {
140 struct nvif_device *device = dmac->base.device;
141 nvif_wr32(&device->object, 0x070000, 0x00000001);
142 nvif_msec(device, 2000,
143 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
148 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
149 dmac->put = dmac->cur;
152 push->bgn = push->cur;
156 nv50_dmac_free(struct nv50_dmac *dmac)
158 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
159 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */
160 return get - dmac->cur - 5;
161 return dmac->max - dmac->cur;
165 nv50_dmac_wind(struct nv50_dmac *dmac)
167 /* Wait for GET to depart from the beginning of the push buffer to
168 * prevent writing PUT == GET, which would be ignored by HW.
170 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
172 /* Corner-case, HW idle, but non-committed work pending. */
174 nv50_dmac_kick(dmac->push);
176 if (nvif_msec(dmac->base.device, 2000,
177 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
183 PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0));
189 nv50_dmac_wait(struct nvif_push *push, u32 size)
191 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
194 if (WARN_ON(size > dmac->max))
197 dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr;
198 if (dmac->cur + size >= dmac->max) {
199 int ret = nv50_dmac_wind(dmac);
203 push->cur = dmac->_push.mem.object.map.ptr;
204 push->cur = push->cur + dmac->cur;
205 nv50_dmac_kick(push);
208 if (nvif_msec(dmac->base.device, 2000,
209 if ((free = nv50_dmac_free(dmac)) >= size)
216 push->bgn = dmac->_push.mem.object.map.ptr;
217 push->bgn = push->bgn + dmac->cur;
218 push->cur = push->bgn;
219 push->end = push->cur + free;
223 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)");
224 static int nv50_dmac_vram_pushbuf = -1;
225 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400);
228 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
229 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf,
230 struct nv50_dmac *dmac)
232 struct nouveau_cli *cli = (void *)device->object.client;
233 struct nvif_disp_chan_v0 *args = data;
234 u8 type = NVIF_MEM_COHERENT;
237 mutex_init(&dmac->lock);
239 /* Pascal added support for 47-bit physical addresses, but some
240 * parts of EVO still only accept 40-bit PAs.
242 * To avoid issues on systems with large amounts of RAM, and on
243 * systems where an IOMMU maps pages at a high address, we need
244 * to allocate push buffers in VRAM instead.
246 * This appears to match NVIDIA's behaviour on Pascal.
248 if ((nv50_dmac_vram_pushbuf > 0) ||
249 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL))
250 type |= NVIF_MEM_VRAM;
252 ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000,
257 dmac->ptr = dmac->_push.mem.object.map.ptr;
258 dmac->_push.wait = nv50_dmac_wait;
259 dmac->_push.kick = nv50_dmac_kick;
260 dmac->push = &dmac->_push;
261 dmac->push->bgn = dmac->_push.mem.object.map.ptr;
262 dmac->push->cur = dmac->push->bgn;
263 dmac->push->end = dmac->push->bgn;
264 dmac->max = 0x1000/4 - 1;
266 /* EVO channels are affected by a HW bug where the last 12 DWORDs
267 * of the push buffer aren't able to be used safely.
269 if (disp->oclass < GV100_DISP)
272 args->pushbuf = nvif_handle(&dmac->_push.mem.object);
274 ret = nv50_chan_create(device, disp, oclass, head, data, size,
282 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
284 &(struct nv_dma_v0) {
285 .target = NV_DMA_V0_TARGET_VRAM,
286 .access = NV_DMA_V0_ACCESS_RDWR,
287 .start = syncbuf + 0x0000,
288 .limit = syncbuf + 0x0fff,
289 }, sizeof(struct nv_dma_v0),
294 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
296 &(struct nv_dma_v0) {
297 .target = NV_DMA_V0_TARGET_VRAM,
298 .access = NV_DMA_V0_ACCESS_RDWR,
300 .limit = device->info.ram_user - 1,
301 }, sizeof(struct nv_dma_v0),
309 /******************************************************************************
310 * Output path helpers
311 *****************************************************************************/
313 nv50_outp_dump_caps(struct nouveau_drm *drm,
314 struct nouveau_encoder *outp)
316 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n",
317 outp->base.base.name, outp->caps.dp_interlace);
321 nv50_outp_release(struct nouveau_encoder *nv_encoder)
323 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
325 struct nv50_disp_mthd_v1 base;
328 .base.method = NV50_DISP_MTHD_V1_RELEASE,
329 .base.hasht = nv_encoder->dcb->hasht,
330 .base.hashm = nv_encoder->dcb->hashm,
333 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
335 nv_encoder->link = 0;
339 nv50_outp_acquire(struct nouveau_encoder *nv_encoder, bool hda)
341 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
342 struct nv50_disp *disp = nv50_disp(drm->dev);
344 struct nv50_disp_mthd_v1 base;
345 struct nv50_disp_acquire_v0 info;
348 .base.method = NV50_DISP_MTHD_V1_ACQUIRE,
349 .base.hasht = nv_encoder->dcb->hasht,
350 .base.hashm = nv_encoder->dcb->hashm,
355 ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
357 NV_ERROR(drm, "error acquiring output path: %d\n", ret);
361 nv_encoder->or = args.info.or;
362 nv_encoder->link = args.info.link;
367 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
368 struct drm_crtc_state *crtc_state,
369 struct drm_connector_state *conn_state,
370 struct drm_display_mode *native_mode)
372 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
373 struct drm_display_mode *mode = &crtc_state->mode;
374 struct drm_connector *connector = conn_state->connector;
375 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
376 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
378 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
379 asyc->scaler.full = false;
383 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
384 switch (connector->connector_type) {
385 case DRM_MODE_CONNECTOR_LVDS:
386 case DRM_MODE_CONNECTOR_eDP:
387 /* Don't force scaler for EDID modes with
388 * same size as the native one (e.g. different
391 if (mode->hdisplay == native_mode->hdisplay &&
392 mode->vdisplay == native_mode->vdisplay &&
393 mode->type & DRM_MODE_TYPE_DRIVER)
396 asyc->scaler.full = true;
405 if (!drm_mode_equal(adjusted_mode, mode)) {
406 drm_mode_copy(adjusted_mode, mode);
407 crtc_state->mode_changed = true;
414 nv50_outp_atomic_check(struct drm_encoder *encoder,
415 struct drm_crtc_state *crtc_state,
416 struct drm_connector_state *conn_state)
418 struct drm_connector *connector = conn_state->connector;
419 struct nouveau_connector *nv_connector = nouveau_connector(connector);
420 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
423 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
424 nv_connector->native_mode);
428 if (crtc_state->mode_changed || crtc_state->connectors_changed)
429 asyh->or.bpc = connector->display_info.bpc;
434 struct nouveau_connector *
435 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
437 struct drm_connector *connector;
438 struct drm_connector_state *connector_state;
439 struct drm_encoder *encoder = to_drm_encoder(outp);
442 for_each_new_connector_in_state(state, connector, connector_state, i) {
443 if (connector_state->best_encoder == encoder)
444 return nouveau_connector(connector);
450 struct nouveau_connector *
451 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
453 struct drm_connector *connector;
454 struct drm_connector_state *connector_state;
455 struct drm_encoder *encoder = to_drm_encoder(outp);
458 for_each_old_connector_in_state(state, connector, connector_state, i) {
459 if (connector_state->best_encoder == encoder)
460 return nouveau_connector(connector);
466 static struct nouveau_crtc *
467 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp)
469 struct drm_crtc *crtc;
470 struct drm_crtc_state *crtc_state;
471 const u32 mask = drm_encoder_mask(&outp->base.base);
474 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
475 if (crtc_state->encoder_mask & mask)
476 return nouveau_crtc(crtc);
482 /******************************************************************************
484 *****************************************************************************/
486 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
488 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
489 struct nv50_core *core = nv50_disp(encoder->dev)->core;
490 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
492 core->func->dac->ctrl(core, nv_encoder->or, ctrl, NULL);
493 nv_encoder->crtc = NULL;
494 nv50_outp_release(nv_encoder);
498 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
500 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
501 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
502 struct nv50_head_atom *asyh =
503 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
504 struct nv50_core *core = nv50_disp(encoder->dev)->core;
507 switch (nv_crtc->index) {
508 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
509 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
510 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
511 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
517 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
519 nv50_outp_acquire(nv_encoder, false);
521 core->func->dac->ctrl(core, nv_encoder->or, ctrl, asyh);
524 nv_encoder->crtc = &nv_crtc->base;
527 static enum drm_connector_status
528 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
530 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
534 loadval = nouveau_drm(encoder->dev)->vbios.dactestval;
538 ret = nvif_outp_load_detect(&nv_encoder->outp, loadval);
540 return connector_status_disconnected;
542 return connector_status_connected;
545 static const struct drm_encoder_helper_funcs
547 .atomic_check = nv50_outp_atomic_check,
548 .atomic_enable = nv50_dac_atomic_enable,
549 .atomic_disable = nv50_dac_atomic_disable,
550 .detect = nv50_dac_detect
554 nv50_dac_destroy(struct drm_encoder *encoder)
556 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
558 nvif_outp_dtor(&nv_encoder->outp);
560 drm_encoder_cleanup(encoder);
564 static const struct drm_encoder_funcs
566 .destroy = nv50_dac_destroy,
570 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
572 struct nouveau_drm *drm = nouveau_drm(connector->dev);
573 struct nv50_disp *disp = nv50_disp(connector->dev);
574 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
575 struct nvkm_i2c_bus *bus;
576 struct nouveau_encoder *nv_encoder;
577 struct drm_encoder *encoder;
578 int type = DRM_MODE_ENCODER_DAC;
580 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
583 nv_encoder->dcb = dcbe;
585 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
587 nv_encoder->i2c = &bus->i2c;
589 encoder = to_drm_encoder(nv_encoder);
590 encoder->possible_crtcs = dcbe->heads;
591 encoder->possible_clones = 0;
592 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
593 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
594 drm_encoder_helper_add(encoder, &nv50_dac_help);
596 drm_connector_attach_encoder(connector, encoder);
597 return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
601 * audio component binding for ELD notification
604 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
607 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
608 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
613 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
614 bool *enabled, unsigned char *buf, int max_bytes)
616 struct drm_device *drm_dev = dev_get_drvdata(kdev);
617 struct nouveau_drm *drm = nouveau_drm(drm_dev);
618 struct drm_encoder *encoder;
619 struct nouveau_encoder *nv_encoder;
620 struct nouveau_crtc *nv_crtc;
625 mutex_lock(&drm->audio.lock);
627 drm_for_each_encoder(encoder, drm->dev) {
628 struct nouveau_connector *nv_connector = NULL;
630 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
633 nv_encoder = nouveau_encoder(encoder);
634 nv_connector = nouveau_connector(nv_encoder->audio.connector);
635 nv_crtc = nouveau_crtc(nv_encoder->crtc);
637 if (!nv_crtc || nv_encoder->or != port || nv_crtc->index != dev_id)
640 *enabled = nv_encoder->audio.enabled;
642 ret = drm_eld_size(nv_connector->base.eld);
643 memcpy(buf, nv_connector->base.eld,
644 min(max_bytes, ret));
649 mutex_unlock(&drm->audio.lock);
654 static const struct drm_audio_component_ops nv50_audio_component_ops = {
655 .get_eld = nv50_audio_component_get_eld,
659 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
662 struct drm_device *drm_dev = dev_get_drvdata(kdev);
663 struct nouveau_drm *drm = nouveau_drm(drm_dev);
664 struct drm_audio_component *acomp = data;
666 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
669 drm_modeset_lock_all(drm_dev);
670 acomp->ops = &nv50_audio_component_ops;
672 drm->audio.component = acomp;
673 drm_modeset_unlock_all(drm_dev);
678 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
681 struct drm_device *drm_dev = dev_get_drvdata(kdev);
682 struct nouveau_drm *drm = nouveau_drm(drm_dev);
683 struct drm_audio_component *acomp = data;
685 drm_modeset_lock_all(drm_dev);
686 drm->audio.component = NULL;
689 drm_modeset_unlock_all(drm_dev);
692 static const struct component_ops nv50_audio_component_bind_ops = {
693 .bind = nv50_audio_component_bind,
694 .unbind = nv50_audio_component_unbind,
698 nv50_audio_component_init(struct nouveau_drm *drm)
700 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
703 drm->audio.component_registered = true;
704 mutex_init(&drm->audio.lock);
708 nv50_audio_component_fini(struct nouveau_drm *drm)
710 if (!drm->audio.component_registered)
713 component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
714 drm->audio.component_registered = false;
715 mutex_destroy(&drm->audio.lock);
718 /******************************************************************************
720 *****************************************************************************/
722 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
724 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
725 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
726 struct nv50_disp *disp = nv50_disp(encoder->dev);
728 struct nv50_disp_mthd_v1 base;
729 struct nv50_disp_sor_hda_eld_v0 eld;
732 .base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
733 .base.hasht = nv_encoder->dcb->hasht,
734 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
735 (0x0100 << nv_crtc->index),
738 mutex_lock(&drm->audio.lock);
739 if (nv_encoder->audio.enabled) {
740 nv_encoder->audio.enabled = false;
741 nv_encoder->audio.connector = NULL;
742 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
744 mutex_unlock(&drm->audio.lock);
746 nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
751 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
752 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
753 struct drm_display_mode *mode)
755 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
756 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
757 struct nv50_disp *disp = nv50_disp(encoder->dev);
760 struct nv50_disp_mthd_v1 mthd;
761 struct nv50_disp_sor_hda_eld_v0 eld;
763 u8 data[sizeof(nv_connector->base.eld)];
765 .base.mthd.version = 1,
766 .base.mthd.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
767 .base.mthd.hasht = nv_encoder->dcb->hasht,
768 .base.mthd.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
769 (0x0100 << nv_crtc->index),
772 if (!drm_detect_monitor_audio(nv_connector->edid))
775 mutex_lock(&drm->audio.lock);
777 memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
779 nvif_mthd(&disp->disp->object, 0, &args,
780 sizeof(args.base) + drm_eld_size(args.data));
781 nv_encoder->audio.enabled = true;
782 nv_encoder->audio.connector = &nv_connector->base;
784 mutex_unlock(&drm->audio.lock);
786 nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
790 /******************************************************************************
792 *****************************************************************************/
794 nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
796 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
797 struct nv50_disp *disp = nv50_disp(encoder->dev);
799 struct nv50_disp_mthd_v1 base;
800 struct nv50_disp_sor_hdmi_pwr_v0 pwr;
803 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
804 .base.hasht = nv_encoder->dcb->hasht,
805 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
806 (0x0100 << nv_crtc->index),
809 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
813 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
814 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
815 struct drm_display_mode *mode)
817 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
818 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
819 struct nv50_disp *disp = nv50_disp(encoder->dev);
821 struct nv50_disp_mthd_v1 base;
822 struct nv50_disp_sor_hdmi_pwr_v0 pwr;
823 u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */
826 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
827 .base.hasht = nv_encoder->dcb->hasht,
828 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
829 (0x0100 << nv_crtc->index),
831 .pwr.rekey = 56, /* binary driver, and tegra, constant */
833 struct drm_hdmi_info *hdmi;
835 union hdmi_infoframe avi_frame;
836 union hdmi_infoframe vendor_frame;
837 bool high_tmds_clock_ratio = false, scrambling = false;
842 if (!drm_detect_hdmi_monitor(nv_connector->edid))
845 hdmi = &nv_connector->base.display_info.hdmi;
847 ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi,
848 &nv_connector->base, mode);
850 drm_hdmi_avi_infoframe_quant_range(&avi_frame.avi,
851 &nv_connector->base, mode,
852 HDMI_QUANTIZATION_RANGE_FULL);
853 /* We have an AVI InfoFrame, populate it to the display */
854 args.pwr.avi_infoframe_length
855 = hdmi_infoframe_pack(&avi_frame, args.infoframes, 17);
858 ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi,
859 &nv_connector->base, mode);
861 /* We have a Vendor InfoFrame, populate it to the display */
862 args.pwr.vendor_infoframe_length
863 = hdmi_infoframe_pack(&vendor_frame,
865 + args.pwr.avi_infoframe_length,
869 max_ac_packet = mode->htotal - mode->hdisplay;
870 max_ac_packet -= args.pwr.rekey;
871 max_ac_packet -= 18; /* constant from tegra */
872 args.pwr.max_ac_packet = max_ac_packet / 32;
874 if (hdmi->scdc.scrambling.supported) {
875 high_tmds_clock_ratio = mode->clock > 340000;
876 scrambling = high_tmds_clock_ratio ||
877 hdmi->scdc.scrambling.low_rates;
881 NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling |
882 NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio;
884 size = sizeof(args.base)
886 + args.pwr.avi_infoframe_length
887 + args.pwr.vendor_infoframe_length;
888 nvif_mthd(&disp->disp->object, 0, &args, size);
890 nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
892 /* If SCDC is supported by the downstream monitor, update
893 * divider / scrambling settings to what we programmed above.
895 if (!hdmi->scdc.scrambling.supported)
898 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config);
900 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
903 config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
904 config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio;
905 config |= SCDC_SCRAMBLING_ENABLE * scrambling;
906 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config);
908 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
912 /******************************************************************************
914 *****************************************************************************/
915 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
916 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
917 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
920 struct nv50_mstm *mstm;
921 struct drm_dp_mst_port *port;
922 struct drm_connector connector;
924 struct drm_display_mode *native;
929 struct drm_encoder encoder;
931 /* head is statically assigned on msto creation */
932 struct nv50_head *head;
933 struct nv50_mstc *mstc;
938 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
940 struct nv50_msto *msto;
942 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
943 return nouveau_encoder(encoder);
945 msto = nv50_msto(encoder);
948 return msto->mstc->mstm->outp;
952 nv50_msto_cleanup(struct drm_atomic_state *state,
953 struct drm_dp_mst_topology_state *mst_state,
954 struct drm_dp_mst_topology_mgr *mgr,
955 struct nv50_msto *msto)
957 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
958 struct drm_dp_mst_atomic_payload *payload =
959 drm_atomic_get_mst_payload_state(mst_state, msto->mstc->port);
961 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
963 if (msto->disabled) {
965 msto->disabled = false;
966 } else if (msto->enabled) {
967 drm_dp_add_payload_part2(mgr, state, payload);
968 msto->enabled = false;
973 nv50_msto_prepare(struct drm_atomic_state *state,
974 struct drm_dp_mst_topology_state *mst_state,
975 struct drm_dp_mst_topology_mgr *mgr,
976 struct nv50_msto *msto)
978 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
979 struct nv50_mstc *mstc = msto->mstc;
980 struct nv50_mstm *mstm = mstc->mstm;
981 struct drm_dp_mst_atomic_payload *payload;
983 struct nv50_disp_mthd_v1 base;
984 struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi;
987 .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI,
988 .base.hasht = mstm->outp->dcb->hasht,
989 .base.hashm = (0xf0ff & mstm->outp->dcb->hashm) |
990 (0x0100 << msto->head->base.index),
993 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
995 payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port);
997 // TODO: Figure out if we want to do a better job of handling VCPI allocation failures here?
998 if (msto->disabled) {
999 drm_dp_remove_payload(mgr, mst_state, payload);
1002 drm_dp_add_payload_part1(mgr, mst_state, payload);
1004 args.vcpi.start_slot = payload->vc_start_slot;
1005 args.vcpi.num_slots = payload->time_slots;
1006 args.vcpi.pbn = payload->pbn;
1007 args.vcpi.aligned_pbn = payload->time_slots * mst_state->pbn_div;
1010 NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n",
1011 msto->encoder.name, msto->head->base.base.name,
1012 args.vcpi.start_slot, args.vcpi.num_slots,
1013 args.vcpi.pbn, args.vcpi.aligned_pbn);
1015 nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args));
1019 nv50_msto_atomic_check(struct drm_encoder *encoder,
1020 struct drm_crtc_state *crtc_state,
1021 struct drm_connector_state *conn_state)
1023 struct drm_atomic_state *state = crtc_state->state;
1024 struct drm_connector *connector = conn_state->connector;
1025 struct drm_dp_mst_topology_state *mst_state;
1026 struct nv50_mstc *mstc = nv50_mstc(connector);
1027 struct nv50_mstm *mstm = mstc->mstm;
1028 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
1032 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
1037 if (!drm_atomic_crtc_needs_modeset(crtc_state))
1041 * When restoring duplicated states, we need to make sure that the bw
1042 * remains the same and avoid recalculating it, as the connector's bpc
1043 * may have changed after the state was duplicated
1045 if (!state->duplicated) {
1046 const int clock = crtc_state->adjusted_mode.clock;
1048 asyh->or.bpc = connector->display_info.bpc;
1049 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3,
1053 mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr);
1054 if (IS_ERR(mst_state))
1055 return PTR_ERR(mst_state);
1057 if (!mst_state->pbn_div) {
1058 struct nouveau_encoder *outp = mstc->mstm->outp;
1060 mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr,
1061 outp->dp.link_bw, outp->dp.link_nr);
1064 slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn);
1068 asyh->dp.tu = slots;
1074 nv50_dp_bpc_to_depth(unsigned int bpc)
1077 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
1078 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
1080 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
1085 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1087 struct nv50_msto *msto = nv50_msto(encoder);
1088 struct nv50_head *head = msto->head;
1089 struct nv50_head_atom *asyh =
1090 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base));
1091 struct nv50_mstc *mstc = NULL;
1092 struct nv50_mstm *mstm = NULL;
1093 struct drm_connector *connector;
1094 struct drm_connector_list_iter conn_iter;
1097 drm_connector_list_iter_begin(encoder->dev, &conn_iter);
1098 drm_for_each_connector_iter(connector, &conn_iter) {
1099 if (connector->state->best_encoder == &msto->encoder) {
1100 mstc = nv50_mstc(connector);
1105 drm_connector_list_iter_end(&conn_iter);
1111 nv50_outp_acquire(mstm->outp, false /*XXX: MST audio.*/);
1113 if (mstm->outp->link & 1)
1114 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1116 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1118 mstm->outp->update(mstm->outp, head->base.index, asyh, proto,
1119 nv50_dp_bpc_to_depth(asyh->or.bpc));
1122 msto->enabled = true;
1123 mstm->modified = true;
1127 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1129 struct nv50_msto *msto = nv50_msto(encoder);
1130 struct nv50_mstc *mstc = msto->mstc;
1131 struct nv50_mstm *mstm = mstc->mstm;
1133 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
1134 mstm->modified = true;
1136 mstm->disabled = true;
1137 msto->disabled = true;
1140 static const struct drm_encoder_helper_funcs
1142 .atomic_disable = nv50_msto_atomic_disable,
1143 .atomic_enable = nv50_msto_atomic_enable,
1144 .atomic_check = nv50_msto_atomic_check,
1148 nv50_msto_destroy(struct drm_encoder *encoder)
1150 struct nv50_msto *msto = nv50_msto(encoder);
1151 drm_encoder_cleanup(&msto->encoder);
1155 static const struct drm_encoder_funcs
1157 .destroy = nv50_msto_destroy,
1160 static struct nv50_msto *
1161 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1163 struct nv50_msto *msto;
1166 msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1168 return ERR_PTR(-ENOMEM);
1170 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1171 DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1174 return ERR_PTR(ret);
1177 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1178 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1183 static struct drm_encoder *
1184 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1185 struct drm_atomic_state *state)
1187 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state,
1189 struct nv50_mstc *mstc = nv50_mstc(connector);
1190 struct drm_crtc *crtc = connector_state->crtc;
1192 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1195 return &nv50_head(crtc)->msto->encoder;
1198 static enum drm_mode_status
1199 nv50_mstc_mode_valid(struct drm_connector *connector,
1200 struct drm_display_mode *mode)
1202 struct nv50_mstc *mstc = nv50_mstc(connector);
1203 struct nouveau_encoder *outp = mstc->mstm->outp;
1205 /* TODO: calculate the PBN from the dotclock and validate against the
1206 * MSTB's max possible PBN
1209 return nv50_dp_mode_valid(connector, outp, mode, NULL);
1213 nv50_mstc_get_modes(struct drm_connector *connector)
1215 struct nv50_mstc *mstc = nv50_mstc(connector);
1218 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1219 drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1221 ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1224 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1225 * to 8 to save bandwidth on the topology. In the future, we'll want
1226 * to properly fix this by dynamically selecting the highest possible
1227 * bpc that would fit in the topology
1229 if (connector->display_info.bpc)
1230 connector->display_info.bpc =
1231 clamp(connector->display_info.bpc, 6U, 8U);
1233 connector->display_info.bpc = 8;
1236 drm_mode_destroy(mstc->connector.dev, mstc->native);
1237 mstc->native = nouveau_conn_native_mode(&mstc->connector);
1242 nv50_mstc_atomic_check(struct drm_connector *connector,
1243 struct drm_atomic_state *state)
1245 struct nv50_mstc *mstc = nv50_mstc(connector);
1246 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1248 return drm_dp_atomic_release_time_slots(state, mgr, mstc->port);
1252 nv50_mstc_detect(struct drm_connector *connector,
1253 struct drm_modeset_acquire_ctx *ctx, bool force)
1255 struct nv50_mstc *mstc = nv50_mstc(connector);
1258 if (drm_connector_is_unregistered(connector))
1259 return connector_status_disconnected;
1261 ret = pm_runtime_get_sync(connector->dev->dev);
1262 if (ret < 0 && ret != -EACCES) {
1263 pm_runtime_put_autosuspend(connector->dev->dev);
1264 return connector_status_disconnected;
1267 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1269 if (ret != connector_status_connected)
1273 pm_runtime_mark_last_busy(connector->dev->dev);
1274 pm_runtime_put_autosuspend(connector->dev->dev);
1278 static const struct drm_connector_helper_funcs
1280 .get_modes = nv50_mstc_get_modes,
1281 .mode_valid = nv50_mstc_mode_valid,
1282 .atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1283 .atomic_check = nv50_mstc_atomic_check,
1284 .detect_ctx = nv50_mstc_detect,
1288 nv50_mstc_destroy(struct drm_connector *connector)
1290 struct nv50_mstc *mstc = nv50_mstc(connector);
1292 drm_connector_cleanup(&mstc->connector);
1293 drm_dp_mst_put_port_malloc(mstc->port);
1298 static const struct drm_connector_funcs
1300 .reset = nouveau_conn_reset,
1301 .fill_modes = drm_helper_probe_single_connector_modes,
1302 .destroy = nv50_mstc_destroy,
1303 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1304 .atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1305 .atomic_set_property = nouveau_conn_atomic_set_property,
1306 .atomic_get_property = nouveau_conn_atomic_get_property,
1310 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1311 const char *path, struct nv50_mstc **pmstc)
1313 struct drm_device *dev = mstm->outp->base.base.dev;
1314 struct drm_crtc *crtc;
1315 struct nv50_mstc *mstc;
1318 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1323 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1324 DRM_MODE_CONNECTOR_DisplayPort);
1331 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1333 mstc->connector.funcs->reset(&mstc->connector);
1334 nouveau_conn_attach_properties(&mstc->connector);
1336 drm_for_each_crtc(crtc, dev) {
1337 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1340 drm_connector_attach_encoder(&mstc->connector,
1341 &nv50_head(crtc)->msto->encoder);
1344 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1345 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1346 drm_connector_set_path_property(&mstc->connector, path);
1347 drm_dp_mst_get_port_malloc(port);
1352 nv50_mstm_cleanup(struct drm_atomic_state *state,
1353 struct drm_dp_mst_topology_state *mst_state,
1354 struct nv50_mstm *mstm)
1356 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1357 struct drm_encoder *encoder;
1359 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1360 drm_dp_check_act_status(&mstm->mgr);
1362 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1363 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1364 struct nv50_msto *msto = nv50_msto(encoder);
1365 struct nv50_mstc *mstc = msto->mstc;
1366 if (mstc && mstc->mstm == mstm)
1367 nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto);
1371 mstm->modified = false;
1375 nv50_mstm_prepare(struct drm_atomic_state *state,
1376 struct drm_dp_mst_topology_state *mst_state,
1377 struct nv50_mstm *mstm)
1379 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1380 struct drm_encoder *encoder;
1382 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1384 /* Disable payloads first */
1385 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1386 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1387 struct nv50_msto *msto = nv50_msto(encoder);
1388 struct nv50_mstc *mstc = msto->mstc;
1389 if (mstc && mstc->mstm == mstm && msto->disabled)
1390 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1394 /* Add payloads for new heads, while also updating the start slots of any unmodified (but
1395 * active) heads that may have had their VC slots shifted left after the previous step
1397 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1398 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1399 struct nv50_msto *msto = nv50_msto(encoder);
1400 struct nv50_mstc *mstc = msto->mstc;
1401 if (mstc && mstc->mstm == mstm && !msto->disabled)
1402 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1406 if (mstm->disabled) {
1408 nv50_outp_release(mstm->outp);
1409 mstm->disabled = false;
1413 static struct drm_connector *
1414 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1415 struct drm_dp_mst_port *port, const char *path)
1417 struct nv50_mstm *mstm = nv50_mstm(mgr);
1418 struct nv50_mstc *mstc;
1421 ret = nv50_mstc_new(mstm, port, path, &mstc);
1425 return &mstc->connector;
1428 static const struct drm_dp_mst_topology_cbs
1430 .add_connector = nv50_mstm_add_connector,
1434 nv50_mstm_service(struct nouveau_drm *drm,
1435 struct nouveau_connector *nv_connector,
1436 struct nv50_mstm *mstm)
1438 struct drm_dp_aux *aux = &nv_connector->aux;
1439 bool handled = true, ret = true;
1444 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1450 drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled);
1454 rc = drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1],
1463 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n",
1464 nv_connector->base.name, rc);
1470 nv50_mstm_remove(struct nv50_mstm *mstm)
1472 mstm->is_mst = false;
1473 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1477 nv50_mstm_enable(struct nv50_mstm *mstm, int state)
1479 struct nouveau_encoder *outp = mstm->outp;
1481 struct nv50_disp_mthd_v1 base;
1482 struct nv50_disp_sor_dp_mst_link_v0 mst;
1485 .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK,
1486 .base.hasht = outp->dcb->hasht,
1487 .base.hashm = outp->dcb->hashm,
1490 struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev);
1491 struct nvif_object *disp = &drm->display->disp.object;
1493 return nvif_mthd(disp, 0, &args, sizeof(args));
1497 nv50_mstm_detect(struct nouveau_encoder *outp)
1499 struct nv50_mstm *mstm = outp->dp.mstm;
1500 struct drm_dp_aux *aux;
1503 if (!mstm || !mstm->can_mst)
1506 aux = mstm->mgr.aux;
1508 /* Clear any leftover MST state we didn't set ourselves by first
1509 * disabling MST if it was already enabled
1511 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1515 /* And start enabling */
1516 ret = nv50_mstm_enable(mstm, true);
1520 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true);
1522 nv50_mstm_enable(mstm, false);
1526 mstm->is_mst = true;
1531 nv50_mstm_fini(struct nouveau_encoder *outp)
1533 struct nv50_mstm *mstm = outp->dp.mstm;
1538 /* Don't change the MST state of this connector until we've finished
1539 * resuming, since we can't safely grab hpd_irq_lock in our resume
1540 * path to protect mstm->is_mst without potentially deadlocking
1542 mutex_lock(&outp->dp.hpd_irq_lock);
1543 mstm->suspended = true;
1544 mutex_unlock(&outp->dp.hpd_irq_lock);
1547 drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1551 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime)
1553 struct nv50_mstm *mstm = outp->dp.mstm;
1560 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1562 nv50_mstm_remove(mstm);
1565 mutex_lock(&outp->dp.hpd_irq_lock);
1566 mstm->suspended = false;
1567 mutex_unlock(&outp->dp.hpd_irq_lock);
1570 drm_kms_helper_hotplug_event(mstm->mgr.dev);
1574 nv50_mstm_del(struct nv50_mstm **pmstm)
1576 struct nv50_mstm *mstm = *pmstm;
1578 drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1585 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1586 int conn_base_id, struct nv50_mstm **pmstm)
1588 const int max_payloads = hweight8(outp->dcb->heads);
1589 struct drm_device *dev = outp->base.base.dev;
1590 struct nv50_mstm *mstm;
1593 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1596 mstm->mgr.cbs = &nv50_mstm;
1598 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1599 max_payloads, conn_base_id);
1606 /******************************************************************************
1608 *****************************************************************************/
1610 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1611 struct nv50_head_atom *asyh, u8 proto, u8 depth)
1613 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1614 struct nv50_core *core = disp->core;
1617 nv_encoder->ctrl &= ~BIT(head);
1618 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
1619 nv_encoder->ctrl = 0;
1621 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
1622 nv_encoder->ctrl |= BIT(head);
1623 asyh->or.depth = depth;
1626 core->func->sor->ctrl(core, nv_encoder->or, nv_encoder->ctrl, asyh);
1629 /* TODO: Should we extend this to PWM-only backlights?
1630 * As well, should we add a DRM helper for waiting for the backlight to acknowledge
1631 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a
1632 * fixed time delay from the vbios…
1635 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1637 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1638 struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1639 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder);
1640 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1641 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
1642 struct nouveau_backlight *backlight = nv_connector->backlight;
1644 struct drm_dp_aux *aux = &nv_connector->aux;
1648 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1649 if (backlight && backlight->uses_dpcd) {
1650 ret = drm_edp_backlight_disable(aux, &backlight->edp_info);
1652 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n",
1653 nv_connector->base.base.id, nv_connector->base.name, ret);
1657 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
1658 ret = drm_dp_dpcd_readb(aux, DP_SET_POWER, &pwr);
1661 pwr &= ~DP_SET_POWER_MASK;
1662 pwr |= DP_SET_POWER_D3;
1663 drm_dp_dpcd_writeb(aux, DP_SET_POWER, pwr);
1667 nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
1668 nv50_audio_disable(encoder, nv_crtc);
1669 nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc);
1670 nv50_outp_release(nv_encoder);
1671 nv_encoder->crtc = NULL;
1675 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1677 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1678 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1679 struct nv50_head_atom *asyh =
1680 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1681 struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1683 struct nv50_disp_mthd_v1 base;
1684 struct nv50_disp_sor_lvds_script_v0 lvds;
1687 .base.method = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT,
1688 .base.hasht = nv_encoder->dcb->hasht,
1689 .base.hashm = nv_encoder->dcb->hashm,
1691 struct nv50_disp *disp = nv50_disp(encoder->dev);
1692 struct drm_device *dev = encoder->dev;
1693 struct nouveau_drm *drm = nouveau_drm(dev);
1694 struct nouveau_connector *nv_connector;
1695 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1696 struct nouveau_backlight *backlight;
1698 struct nvbios *bios = &drm->vbios;
1700 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
1701 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
1703 nv_connector = nv50_outp_get_new_connector(state, nv_encoder);
1704 nv_encoder->crtc = &nv_crtc->base;
1706 if ((disp->disp->object.oclass == GT214_DISP ||
1707 disp->disp->object.oclass >= GF110_DISP) &&
1708 drm_detect_monitor_audio(nv_connector->edid))
1710 nv50_outp_acquire(nv_encoder, hda);
1712 switch (nv_encoder->dcb->type) {
1713 case DCB_OUTPUT_TMDS:
1714 if (nv_encoder->link & 1) {
1715 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
1716 /* Only enable dual-link if:
1717 * - Need to (i.e. rate > 165MHz)
1719 * - Not an HDMI monitor, since there's no dual-link
1722 if (mode->clock >= 165000 &&
1723 nv_encoder->dcb->duallink_possible &&
1724 !drm_detect_hdmi_monitor(nv_connector->edid))
1725 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
1727 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
1730 nv50_hdmi_enable(&nv_encoder->base.base, nv_crtc, nv_connector, state, mode);
1732 case DCB_OUTPUT_LVDS:
1733 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
1735 if (bios->fp_no_ddc) {
1736 if (bios->fp.dual_link)
1737 lvds.lvds.script |= 0x0100;
1738 if (bios->fp.if_is_24bit)
1739 lvds.lvds.script |= 0x0200;
1741 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1742 if (((u8 *)nv_connector->edid)[121] == 2)
1743 lvds.lvds.script |= 0x0100;
1745 if (mode->clock >= bios->fp.duallink_transition_clk) {
1746 lvds.lvds.script |= 0x0100;
1749 if (lvds.lvds.script & 0x0100) {
1750 if (bios->fp.strapless_is_24bit & 2)
1751 lvds.lvds.script |= 0x0200;
1753 if (bios->fp.strapless_is_24bit & 1)
1754 lvds.lvds.script |= 0x0200;
1757 if (asyh->or.bpc == 8)
1758 lvds.lvds.script |= 0x0200;
1761 nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds));
1764 depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1766 if (nv_encoder->link & 1)
1767 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1769 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1771 nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
1773 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1774 backlight = nv_connector->backlight;
1775 if (backlight && backlight->uses_dpcd)
1776 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info,
1777 (u16)backlight->dev->props.brightness);
1786 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1789 static const struct drm_encoder_helper_funcs
1791 .atomic_check = nv50_outp_atomic_check,
1792 .atomic_enable = nv50_sor_atomic_enable,
1793 .atomic_disable = nv50_sor_atomic_disable,
1797 nv50_sor_destroy(struct drm_encoder *encoder)
1799 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1801 nvif_outp_dtor(&nv_encoder->outp);
1803 nv50_mstm_del(&nv_encoder->dp.mstm);
1804 drm_encoder_cleanup(encoder);
1806 if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1807 mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1812 static const struct drm_encoder_funcs
1814 .destroy = nv50_sor_destroy,
1817 bool nv50_has_mst(struct nouveau_drm *drm)
1819 struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
1821 u8 ver, hdr, cnt, len;
1823 data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len);
1824 return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04);
1828 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1830 struct nouveau_connector *nv_connector = nouveau_connector(connector);
1831 struct nouveau_drm *drm = nouveau_drm(connector->dev);
1832 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1833 struct nouveau_encoder *nv_encoder;
1834 struct drm_encoder *encoder;
1835 struct nv50_disp *disp = nv50_disp(connector->dev);
1838 switch (dcbe->type) {
1839 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1840 case DCB_OUTPUT_TMDS:
1843 type = DRM_MODE_ENCODER_TMDS;
1847 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1850 nv_encoder->dcb = dcbe;
1851 nv_encoder->update = nv50_sor_update;
1853 encoder = to_drm_encoder(nv_encoder);
1854 encoder->possible_crtcs = dcbe->heads;
1855 encoder->possible_clones = 0;
1856 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1857 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1858 drm_encoder_helper_add(encoder, &nv50_sor_help);
1860 drm_connector_attach_encoder(connector, encoder);
1862 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1863 nv50_outp_dump_caps(drm, nv_encoder);
1865 if (dcbe->type == DCB_OUTPUT_DP) {
1866 struct nvkm_i2c_aux *aux =
1867 nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1869 mutex_init(&nv_encoder->dp.hpd_irq_lock);
1872 if (disp->disp->object.oclass < GF110_DISP) {
1873 /* HW has no support for address-only
1874 * transactions, so we're required to
1875 * use custom I2C-over-AUX code.
1877 nv_encoder->i2c = &aux->i2c;
1879 nv_encoder->i2c = &nv_connector->aux.ddc;
1881 nv_encoder->aux = aux;
1884 if (nv_connector->type != DCB_CONNECTOR_eDP &&
1885 nv50_has_mst(drm)) {
1886 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1887 16, nv_connector->base.base.id,
1888 &nv_encoder->dp.mstm);
1893 struct nvkm_i2c_bus *bus =
1894 nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1896 nv_encoder->i2c = &bus->i2c;
1899 return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
1902 /******************************************************************************
1904 *****************************************************************************/
1906 nv50_pior_atomic_check(struct drm_encoder *encoder,
1907 struct drm_crtc_state *crtc_state,
1908 struct drm_connector_state *conn_state)
1910 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1913 crtc_state->adjusted_mode.clock *= 2;
1918 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1920 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1921 struct nv50_core *core = nv50_disp(encoder->dev)->core;
1922 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
1924 core->func->pior->ctrl(core, nv_encoder->or, ctrl, NULL);
1925 nv_encoder->crtc = NULL;
1926 nv50_outp_release(nv_encoder);
1930 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1932 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1933 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1934 struct nv50_head_atom *asyh =
1935 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1936 struct nv50_core *core = nv50_disp(encoder->dev)->core;
1939 switch (nv_crtc->index) {
1940 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
1941 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
1947 nv50_outp_acquire(nv_encoder, false);
1949 switch (asyh->or.bpc) {
1950 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
1951 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
1952 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
1953 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
1956 switch (nv_encoder->dcb->type) {
1957 case DCB_OUTPUT_TMDS:
1959 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1966 core->func->pior->ctrl(core, nv_encoder->or, ctrl, asyh);
1967 nv_encoder->crtc = &nv_crtc->base;
1970 static const struct drm_encoder_helper_funcs
1972 .atomic_check = nv50_pior_atomic_check,
1973 .atomic_enable = nv50_pior_atomic_enable,
1974 .atomic_disable = nv50_pior_atomic_disable,
1978 nv50_pior_destroy(struct drm_encoder *encoder)
1980 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1982 nvif_outp_dtor(&nv_encoder->outp);
1984 drm_encoder_cleanup(encoder);
1988 static const struct drm_encoder_funcs
1990 .destroy = nv50_pior_destroy,
1994 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
1996 struct drm_device *dev = connector->dev;
1997 struct nouveau_drm *drm = nouveau_drm(dev);
1998 struct nv50_disp *disp = nv50_disp(dev);
1999 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
2000 struct nvkm_i2c_bus *bus = NULL;
2001 struct nvkm_i2c_aux *aux = NULL;
2002 struct i2c_adapter *ddc;
2003 struct nouveau_encoder *nv_encoder;
2004 struct drm_encoder *encoder;
2007 switch (dcbe->type) {
2008 case DCB_OUTPUT_TMDS:
2009 bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
2010 ddc = bus ? &bus->i2c : NULL;
2011 type = DRM_MODE_ENCODER_TMDS;
2014 aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
2015 ddc = aux ? &aux->i2c : NULL;
2016 type = DRM_MODE_ENCODER_TMDS;
2022 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
2025 nv_encoder->dcb = dcbe;
2026 nv_encoder->i2c = ddc;
2027 nv_encoder->aux = aux;
2029 encoder = to_drm_encoder(nv_encoder);
2030 encoder->possible_crtcs = dcbe->heads;
2031 encoder->possible_clones = 0;
2032 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
2033 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
2034 drm_encoder_helper_add(encoder, &nv50_pior_help);
2036 drm_connector_attach_encoder(connector, encoder);
2038 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
2039 nv50_outp_dump_caps(drm, nv_encoder);
2041 return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
2044 /******************************************************************************
2046 *****************************************************************************/
2049 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
2051 struct drm_dp_mst_topology_mgr *mgr;
2052 struct drm_dp_mst_topology_state *mst_state;
2053 struct nouveau_drm *drm = nouveau_drm(state->dev);
2054 struct nv50_disp *disp = nv50_disp(drm->dev);
2055 struct nv50_core *core = disp->core;
2056 struct nv50_mstm *mstm;
2059 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
2061 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
2062 mstm = nv50_mstm(mgr);
2064 nv50_mstm_prepare(state, mst_state, mstm);
2067 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
2068 core->func->update(core, interlock, true);
2069 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
2070 disp->core->chan.base.device))
2071 NV_ERROR(drm, "core notifier timeout\n");
2073 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
2074 mstm = nv50_mstm(mgr);
2076 nv50_mstm_cleanup(state, mst_state, mstm);
2081 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
2083 struct drm_plane_state *new_plane_state;
2084 struct drm_plane *plane;
2087 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2088 struct nv50_wndw *wndw = nv50_wndw(plane);
2089 if (interlock[wndw->interlock.type] & wndw->interlock.data) {
2090 if (wndw->func->update)
2091 wndw->func->update(wndw, interlock);
2097 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
2099 struct drm_device *dev = state->dev;
2100 struct drm_crtc_state *new_crtc_state, *old_crtc_state;
2101 struct drm_crtc *crtc;
2102 struct drm_plane_state *new_plane_state;
2103 struct drm_plane *plane;
2104 struct nouveau_drm *drm = nouveau_drm(dev);
2105 struct nv50_disp *disp = nv50_disp(dev);
2106 struct nv50_atom *atom = nv50_atom(state);
2107 struct nv50_core *core = disp->core;
2108 struct nv50_outp_atom *outp, *outt;
2109 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
2111 bool flushed = false;
2113 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
2114 nv50_crc_atomic_stop_reporting(state);
2115 drm_atomic_helper_wait_for_fences(dev, state, false);
2116 drm_atomic_helper_wait_for_dependencies(state);
2117 drm_dp_mst_atomic_wait_for_dependencies(state);
2118 drm_atomic_helper_update_legacy_modeset_state(dev, state);
2119 drm_atomic_helper_calc_timestamping_constants(state);
2121 if (atom->lock_core)
2122 mutex_lock(&disp->mutex);
2124 /* Disable head(s). */
2125 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2126 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2127 struct nv50_head *head = nv50_head(crtc);
2129 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
2130 asyh->clr.mask, asyh->set.mask);
2132 if (old_crtc_state->active && !new_crtc_state->active) {
2133 pm_runtime_put_noidle(dev->dev);
2134 drm_crtc_vblank_off(crtc);
2137 if (asyh->clr.mask) {
2138 nv50_head_flush_clr(head, asyh, atom->flush_disable);
2139 interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2143 /* Disable plane(s). */
2144 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2145 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2146 struct nv50_wndw *wndw = nv50_wndw(plane);
2148 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
2149 asyw->clr.mask, asyw->set.mask);
2150 if (!asyw->clr.mask)
2153 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
2156 /* Disable output path(s). */
2157 list_for_each_entry(outp, &atom->outp, head) {
2158 const struct drm_encoder_helper_funcs *help;
2159 struct drm_encoder *encoder;
2161 encoder = outp->encoder;
2162 help = encoder->helper_private;
2164 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2165 outp->clr.mask, outp->set.mask);
2167 if (outp->clr.mask) {
2168 help->atomic_disable(encoder, state);
2169 interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2170 if (outp->flush_disable) {
2171 nv50_disp_atomic_commit_wndw(state, interlock);
2172 nv50_disp_atomic_commit_core(state, interlock);
2173 memset(interlock, 0x00, sizeof(interlock));
2180 /* Flush disable. */
2181 if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2182 if (atom->flush_disable) {
2183 nv50_disp_atomic_commit_wndw(state, interlock);
2184 nv50_disp_atomic_commit_core(state, interlock);
2185 memset(interlock, 0x00, sizeof(interlock));
2192 nv50_crc_atomic_release_notifier_contexts(state);
2193 nv50_crc_atomic_init_notifier_contexts(state);
2195 /* Update output path(s). */
2196 list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2197 const struct drm_encoder_helper_funcs *help;
2198 struct drm_encoder *encoder;
2200 encoder = outp->encoder;
2201 help = encoder->helper_private;
2203 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2204 outp->set.mask, outp->clr.mask);
2206 if (outp->set.mask) {
2207 help->atomic_enable(encoder, state);
2208 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2211 list_del(&outp->head);
2215 /* Update head(s). */
2216 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2217 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2218 struct nv50_head *head = nv50_head(crtc);
2220 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2221 asyh->set.mask, asyh->clr.mask);
2223 if (asyh->set.mask) {
2224 nv50_head_flush_set(head, asyh);
2225 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2228 if (new_crtc_state->active) {
2229 if (!old_crtc_state->active) {
2230 drm_crtc_vblank_on(crtc);
2231 pm_runtime_get_noresume(dev->dev);
2233 if (new_crtc_state->event)
2234 drm_crtc_vblank_get(crtc);
2238 /* Update window->head assignment.
2240 * This has to happen in an update that's not interlocked with
2241 * any window channels to avoid hitting HW error checks.
2243 *TODO: Proper handling of window ownership (Turing apparently
2244 * supports non-fixed mappings).
2246 if (core->assign_windows) {
2247 core->func->wndw.owner(core);
2248 nv50_disp_atomic_commit_core(state, interlock);
2249 core->assign_windows = false;
2250 interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2253 /* Finish updating head(s)...
2255 * NVD is rather picky about both where window assignments can change,
2256 * *and* about certain core and window channel states matching.
2258 * The EFI GOP driver on newer GPUs configures window channels with a
2259 * different output format to what we do, and the core channel update
2260 * in the assign_windows case above would result in a state mismatch.
2262 * Delay some of the head update until after that point to workaround
2263 * the issue. This only affects the initial modeset.
2265 * TODO: handle this better when adding flexible window mapping
2267 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2268 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2269 struct nv50_head *head = nv50_head(crtc);
2271 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2272 asyh->set.mask, asyh->clr.mask);
2274 if (asyh->set.mask) {
2275 nv50_head_flush_set_wndw(head, asyh);
2276 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2280 /* Update plane(s). */
2281 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2282 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2283 struct nv50_wndw *wndw = nv50_wndw(plane);
2285 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2286 asyw->set.mask, asyw->clr.mask);
2287 if ( !asyw->set.mask &&
2288 (!asyw->clr.mask || atom->flush_disable))
2291 nv50_wndw_flush_set(wndw, interlock, asyw);
2295 nv50_disp_atomic_commit_wndw(state, interlock);
2297 if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2298 if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2299 interlock[NV50_DISP_INTERLOCK_OVLY] ||
2300 interlock[NV50_DISP_INTERLOCK_WNDW] ||
2301 !atom->state.legacy_cursor_update)
2302 nv50_disp_atomic_commit_core(state, interlock);
2304 disp->core->func->update(disp->core, interlock, false);
2307 if (atom->lock_core)
2308 mutex_unlock(&disp->mutex);
2310 /* Wait for HW to signal completion. */
2311 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2312 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2313 struct nv50_wndw *wndw = nv50_wndw(plane);
2314 int ret = nv50_wndw_wait_armed(wndw, asyw);
2316 NV_ERROR(drm, "%s: timeout\n", plane->name);
2319 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2320 if (new_crtc_state->event) {
2321 unsigned long flags;
2322 /* Get correct count/ts if racing with vblank irq */
2323 if (new_crtc_state->active)
2324 drm_crtc_accurate_vblank_count(crtc);
2325 spin_lock_irqsave(&crtc->dev->event_lock, flags);
2326 drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2327 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2329 new_crtc_state->event = NULL;
2330 if (new_crtc_state->active)
2331 drm_crtc_vblank_put(crtc);
2335 nv50_crc_atomic_start_reporting(state);
2337 nv50_crc_atomic_release_notifier_contexts(state);
2339 drm_atomic_helper_commit_hw_done(state);
2340 drm_atomic_helper_cleanup_planes(dev, state);
2341 drm_atomic_helper_commit_cleanup_done(state);
2342 drm_atomic_state_put(state);
2344 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2345 pm_runtime_mark_last_busy(dev->dev);
2346 pm_runtime_put_autosuspend(dev->dev);
2350 nv50_disp_atomic_commit_work(struct work_struct *work)
2352 struct drm_atomic_state *state =
2353 container_of(work, typeof(*state), commit_work);
2354 nv50_disp_atomic_commit_tail(state);
2358 nv50_disp_atomic_commit(struct drm_device *dev,
2359 struct drm_atomic_state *state, bool nonblock)
2361 struct drm_plane_state *new_plane_state;
2362 struct drm_plane *plane;
2365 ret = pm_runtime_get_sync(dev->dev);
2366 if (ret < 0 && ret != -EACCES) {
2367 pm_runtime_put_autosuspend(dev->dev);
2371 ret = drm_atomic_helper_setup_commit(state, nonblock);
2375 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2377 ret = drm_atomic_helper_prepare_planes(dev, state);
2382 ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2387 ret = drm_atomic_helper_swap_state(state, true);
2391 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2392 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2393 struct nv50_wndw *wndw = nv50_wndw(plane);
2395 if (asyw->set.image)
2396 nv50_wndw_ntfy_enable(wndw, asyw);
2399 drm_atomic_state_get(state);
2402 * Grab another RPM ref for the commit tail, which will release the
2403 * ref when it's finished
2405 pm_runtime_get_noresume(dev->dev);
2408 queue_work(system_unbound_wq, &state->commit_work);
2410 nv50_disp_atomic_commit_tail(state);
2414 drm_atomic_helper_cleanup_planes(dev, state);
2416 pm_runtime_put_autosuspend(dev->dev);
2420 static struct nv50_outp_atom *
2421 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2423 struct nv50_outp_atom *outp;
2425 list_for_each_entry(outp, &atom->outp, head) {
2426 if (outp->encoder == encoder)
2430 outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2432 return ERR_PTR(-ENOMEM);
2434 list_add(&outp->head, &atom->outp);
2435 outp->encoder = encoder;
2440 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2441 struct drm_connector_state *old_connector_state)
2443 struct drm_encoder *encoder = old_connector_state->best_encoder;
2444 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2445 struct drm_crtc *crtc;
2446 struct nv50_outp_atom *outp;
2448 if (!(crtc = old_connector_state->crtc))
2451 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2452 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2453 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2454 outp = nv50_disp_outp_atomic_add(atom, encoder);
2456 return PTR_ERR(outp);
2458 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
2459 outp->flush_disable = true;
2460 atom->flush_disable = true;
2462 outp->clr.ctrl = true;
2463 atom->lock_core = true;
2470 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2471 struct drm_connector_state *connector_state)
2473 struct drm_encoder *encoder = connector_state->best_encoder;
2474 struct drm_crtc_state *new_crtc_state;
2475 struct drm_crtc *crtc;
2476 struct nv50_outp_atom *outp;
2478 if (!(crtc = connector_state->crtc))
2481 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2482 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2483 outp = nv50_disp_outp_atomic_add(atom, encoder);
2485 return PTR_ERR(outp);
2487 outp->set.ctrl = true;
2488 atom->lock_core = true;
2495 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2497 struct nv50_atom *atom = nv50_atom(state);
2498 struct nv50_core *core = nv50_disp(dev)->core;
2499 struct drm_connector_state *old_connector_state, *new_connector_state;
2500 struct drm_connector *connector;
2501 struct drm_crtc_state *new_crtc_state;
2502 struct drm_crtc *crtc;
2503 struct nv50_head *head;
2504 struct nv50_head_atom *asyh;
2507 if (core->assign_windows && core->func->head->static_wndw_map) {
2508 drm_for_each_crtc(crtc, dev) {
2509 new_crtc_state = drm_atomic_get_crtc_state(state,
2511 if (IS_ERR(new_crtc_state))
2512 return PTR_ERR(new_crtc_state);
2514 head = nv50_head(crtc);
2515 asyh = nv50_head_atom(new_crtc_state);
2516 core->func->head->static_wndw_map(head, asyh);
2520 /* We need to handle colour management on a per-plane basis. */
2521 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2522 if (new_crtc_state->color_mgmt_changed) {
2523 ret = drm_atomic_add_affected_planes(state, crtc);
2529 ret = drm_atomic_helper_check(dev, state);
2533 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2534 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2538 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2543 ret = drm_dp_mst_atomic_check(state);
2547 nv50_crc_atomic_check_outp(atom);
2553 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2555 struct nv50_atom *atom = nv50_atom(state);
2556 struct nv50_outp_atom *outp, *outt;
2558 list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2559 list_del(&outp->head);
2563 drm_atomic_state_default_clear(state);
2567 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2569 struct nv50_atom *atom = nv50_atom(state);
2570 drm_atomic_state_default_release(&atom->state);
2574 static struct drm_atomic_state *
2575 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2577 struct nv50_atom *atom;
2578 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2579 drm_atomic_state_init(dev, &atom->state) < 0) {
2583 INIT_LIST_HEAD(&atom->outp);
2584 return &atom->state;
2587 static const struct drm_mode_config_funcs
2589 .fb_create = nouveau_user_framebuffer_create,
2590 .output_poll_changed = nouveau_fbcon_output_poll_changed,
2591 .atomic_check = nv50_disp_atomic_check,
2592 .atomic_commit = nv50_disp_atomic_commit,
2593 .atomic_state_alloc = nv50_disp_atomic_state_alloc,
2594 .atomic_state_clear = nv50_disp_atomic_state_clear,
2595 .atomic_state_free = nv50_disp_atomic_state_free,
2598 static const struct drm_mode_config_helper_funcs
2599 nv50_disp_helper_func = {
2600 .atomic_commit_setup = drm_dp_mst_atomic_setup_commit,
2603 /******************************************************************************
2605 *****************************************************************************/
2608 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend)
2610 struct nouveau_drm *drm = nouveau_drm(dev);
2611 struct drm_encoder *encoder;
2613 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2614 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
2615 nv50_mstm_fini(nouveau_encoder(encoder));
2619 cancel_work_sync(&drm->hpd_work);
2623 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2625 struct nv50_core *core = nv50_disp(dev)->core;
2626 struct drm_encoder *encoder;
2628 if (resume || runtime)
2629 core->func->init(core);
2631 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2632 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2633 struct nouveau_encoder *nv_encoder =
2634 nouveau_encoder(encoder);
2635 nv50_mstm_init(nv_encoder, runtime);
2643 nv50_display_destroy(struct drm_device *dev)
2645 struct nv50_disp *disp = nv50_disp(dev);
2647 nv50_audio_component_fini(nouveau_drm(dev));
2649 nvif_object_unmap(&disp->caps);
2650 nvif_object_dtor(&disp->caps);
2651 nv50_core_del(&disp->core);
2653 nouveau_bo_unmap(disp->sync);
2655 nouveau_bo_unpin(disp->sync);
2656 nouveau_bo_ref(NULL, &disp->sync);
2658 nouveau_display(dev)->priv = NULL;
2663 nv50_display_create(struct drm_device *dev)
2665 struct nvif_device *device = &nouveau_drm(dev)->client.device;
2666 struct nouveau_drm *drm = nouveau_drm(dev);
2667 struct dcb_table *dcb = &drm->vbios.dcb;
2668 struct drm_connector *connector, *tmp;
2669 struct nv50_disp *disp;
2670 struct dcb_output *dcbe;
2672 bool has_mst = nv50_has_mst(drm);
2674 disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2678 mutex_init(&disp->mutex);
2680 nouveau_display(dev)->priv = disp;
2681 nouveau_display(dev)->dtor = nv50_display_destroy;
2682 nouveau_display(dev)->init = nv50_display_init;
2683 nouveau_display(dev)->fini = nv50_display_fini;
2684 disp->disp = &nouveau_display(dev)->disp;
2685 dev->mode_config.funcs = &nv50_disp_func;
2686 dev->mode_config.helper_private = &nv50_disp_helper_func;
2687 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2688 dev->mode_config.normalize_zpos = true;
2690 /* small shared memory area we use for notifiers and semaphores */
2691 ret = nouveau_bo_new(&drm->client, 4096, 0x1000,
2692 NOUVEAU_GEM_DOMAIN_VRAM,
2693 0, 0x0000, NULL, NULL, &disp->sync);
2695 ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true);
2697 ret = nouveau_bo_map(disp->sync);
2699 nouveau_bo_unpin(disp->sync);
2702 nouveau_bo_ref(NULL, &disp->sync);
2708 /* allocate master evo channel */
2709 ret = nv50_core_new(drm, &disp->core);
2713 disp->core->func->init(disp->core);
2714 if (disp->core->func->caps_init) {
2715 ret = disp->core->func->caps_init(drm, disp);
2720 /* Assign the correct format modifiers */
2721 if (disp->disp->object.oclass >= TU102_DISP)
2722 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2724 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
2725 nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2727 nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2729 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later
2730 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The
2731 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to
2732 * small page allocations in prepare_fb(). When this is implemented, we should also force
2733 * large pages (128K) for ovly fbs in order to fix Kepler ovlys.
2734 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using
2737 if (disp->disp->object.oclass >= GM107_DISP) {
2738 dev->mode_config.cursor_width = 256;
2739 dev->mode_config.cursor_height = 256;
2740 } else if (disp->disp->object.oclass >= GK104_DISP) {
2741 dev->mode_config.cursor_width = 128;
2742 dev->mode_config.cursor_height = 128;
2744 dev->mode_config.cursor_width = 64;
2745 dev->mode_config.cursor_height = 64;
2748 /* create crtc objects to represent the hw heads */
2749 if (disp->disp->object.oclass >= GV100_DISP)
2750 crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
2752 if (disp->disp->object.oclass >= GF110_DISP)
2753 crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
2757 for (i = 0; i < fls(crtcs); i++) {
2758 struct nv50_head *head;
2760 if (!(crtcs & (1 << i)))
2763 head = nv50_head_create(dev, i);
2765 ret = PTR_ERR(head);
2770 head->msto = nv50_msto_new(dev, head, i);
2771 if (IS_ERR(head->msto)) {
2772 ret = PTR_ERR(head->msto);
2778 * FIXME: This is a hack to workaround the following
2781 * https://gitlab.gnome.org/GNOME/mutter/issues/759
2782 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
2784 * Once these issues are closed, this should be
2787 head->msto->encoder.possible_crtcs = crtcs;
2791 /* create encoder/connector objects based on VBIOS DCB table */
2792 for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2793 connector = nouveau_connector_create(dev, dcbe);
2794 if (IS_ERR(connector))
2797 if (dcbe->location == DCB_LOC_ON_CHIP) {
2798 switch (dcbe->type) {
2799 case DCB_OUTPUT_TMDS:
2800 case DCB_OUTPUT_LVDS:
2802 ret = nv50_sor_create(connector, dcbe);
2804 case DCB_OUTPUT_ANALOG:
2805 ret = nv50_dac_create(connector, dcbe);
2812 ret = nv50_pior_create(connector, dcbe);
2816 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2817 dcbe->location, dcbe->type,
2818 ffs(dcbe->or) - 1, ret);
2823 /* cull any connectors we created that don't have an encoder */
2824 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2825 if (connector->possible_encoders)
2828 NV_WARN(drm, "%s has no encoders, removing\n",
2830 connector->funcs->destroy(connector);
2833 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2834 dev->vblank_disable_immediate = true;
2836 nv50_audio_component_init(drm);
2840 nv50_display_destroy(dev);
2844 /******************************************************************************
2846 *****************************************************************************/
2848 /****************************************************************
2849 * Log2(block height) ----------------------------+ *
2850 * Page Kind ----------------------------------+ | *
2851 * Gob Height/Page Kind Generation ------+ | | *
2852 * Sector layout -------+ | | | *
2853 * Compression ------+ | | | | */
2854 const u64 disp50xx_modifiers[] = { /* | | | | | */
2855 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
2856 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
2857 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
2858 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
2859 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
2860 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
2861 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
2862 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
2863 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
2864 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
2865 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
2866 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
2867 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
2868 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
2869 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
2870 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
2871 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
2872 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
2873 DRM_FORMAT_MOD_LINEAR,
2874 DRM_FORMAT_MOD_INVALID
2877 /****************************************************************
2878 * Log2(block height) ----------------------------+ *
2879 * Page Kind ----------------------------------+ | *
2880 * Gob Height/Page Kind Generation ------+ | | *
2881 * Sector layout -------+ | | | *
2882 * Compression ------+ | | | | */
2883 const u64 disp90xx_modifiers[] = { /* | | | | | */
2884 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
2885 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
2886 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
2887 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
2888 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
2889 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
2890 DRM_FORMAT_MOD_LINEAR,
2891 DRM_FORMAT_MOD_INVALID