Merge tag 'drm-misc-next-fixes-2023-09-01' of git://anongit.freedesktop.org/drm/drm...
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / msm / disp / dpu1 / dpu_hw_top.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
3  */
4
5 #include "dpu_hwio.h"
6 #include "dpu_hw_catalog.h"
7 #include "dpu_hw_top.h"
8 #include "dpu_kms.h"
9
10 #define FLD_SPLIT_DISPLAY_CMD             BIT(1)
11 #define FLD_SMART_PANEL_FREE_RUN          BIT(2)
12 #define FLD_INTF_1_SW_TRG_MUX             BIT(4)
13 #define FLD_INTF_2_SW_TRG_MUX             BIT(8)
14 #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF
15
16 #define TRAFFIC_SHAPER_EN                 BIT(31)
17 #define TRAFFIC_SHAPER_RD_CLIENT(num)     (0x030 + (num * 4))
18 #define TRAFFIC_SHAPER_WR_CLIENT(num)     (0x060 + (num * 4))
19 #define TRAFFIC_SHAPER_FIXPOINT_FACTOR    4
20
21 #define MDP_TICK_COUNT                    16
22 #define XO_CLK_RATE                       19200
23 #define MS_TICKS_IN_SEC                   1000
24
25 #define CALCULATE_WD_LOAD_VALUE(fps) \
26         ((uint32_t)((MS_TICKS_IN_SEC * XO_CLK_RATE)/(MDP_TICK_COUNT * fps)))
27
28 static void dpu_hw_setup_split_pipe(struct dpu_hw_mdp *mdp,
29                 struct split_pipe_cfg *cfg)
30 {
31         struct dpu_hw_blk_reg_map *c;
32         u32 upper_pipe = 0;
33         u32 lower_pipe = 0;
34
35         if (!mdp || !cfg)
36                 return;
37
38         c = &mdp->hw;
39
40         if (cfg->en) {
41                 if (cfg->mode == INTF_MODE_CMD) {
42                         lower_pipe = FLD_SPLIT_DISPLAY_CMD;
43                         /* interface controlling sw trigger */
44                         if (cfg->intf == INTF_2)
45                                 lower_pipe |= FLD_INTF_1_SW_TRG_MUX;
46                         else
47                                 lower_pipe |= FLD_INTF_2_SW_TRG_MUX;
48                         upper_pipe = lower_pipe;
49                 } else {
50                         if (cfg->intf == INTF_2) {
51                                 lower_pipe = FLD_INTF_1_SW_TRG_MUX;
52                                 upper_pipe = FLD_INTF_2_SW_TRG_MUX;
53                         } else {
54                                 lower_pipe = FLD_INTF_2_SW_TRG_MUX;
55                                 upper_pipe = FLD_INTF_1_SW_TRG_MUX;
56                         }
57                 }
58         }
59
60         DPU_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0);
61         DPU_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe);
62         DPU_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe);
63         DPU_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1);
64 }
65
66 static bool dpu_hw_setup_clk_force_ctrl(struct dpu_hw_mdp *mdp,
67                 enum dpu_clk_ctrl_type clk_ctrl, bool enable)
68 {
69         struct dpu_hw_blk_reg_map *c;
70         u32 reg_off, bit_off;
71         u32 reg_val, new_val;
72         bool clk_forced_on;
73
74         if (!mdp)
75                 return false;
76
77         c = &mdp->hw;
78
79         if (clk_ctrl <= DPU_CLK_CTRL_NONE || clk_ctrl >= DPU_CLK_CTRL_MAX)
80                 return false;
81
82         reg_off = mdp->caps->clk_ctrls[clk_ctrl].reg_off;
83         bit_off = mdp->caps->clk_ctrls[clk_ctrl].bit_off;
84
85         reg_val = DPU_REG_READ(c, reg_off);
86
87         if (enable)
88                 new_val = reg_val | BIT(bit_off);
89         else
90                 new_val = reg_val & ~BIT(bit_off);
91
92         DPU_REG_WRITE(c, reg_off, new_val);
93
94         clk_forced_on = !(reg_val & BIT(bit_off));
95
96         return clk_forced_on;
97 }
98
99
100 static void dpu_hw_get_danger_status(struct dpu_hw_mdp *mdp,
101                 struct dpu_danger_safe_status *status)
102 {
103         struct dpu_hw_blk_reg_map *c;
104         u32 value;
105
106         if (!mdp || !status)
107                 return;
108
109         c = &mdp->hw;
110
111         value = DPU_REG_READ(c, DANGER_STATUS);
112         status->mdp = (value >> 0) & 0x3;
113         status->sspp[SSPP_VIG0] = (value >> 4) & 0x3;
114         status->sspp[SSPP_VIG1] = (value >> 6) & 0x3;
115         status->sspp[SSPP_VIG2] = (value >> 8) & 0x3;
116         status->sspp[SSPP_VIG3] = (value >> 10) & 0x3;
117         status->sspp[SSPP_RGB0] = (value >> 12) & 0x3;
118         status->sspp[SSPP_RGB1] = (value >> 14) & 0x3;
119         status->sspp[SSPP_RGB2] = (value >> 16) & 0x3;
120         status->sspp[SSPP_RGB3] = (value >> 18) & 0x3;
121         status->sspp[SSPP_DMA0] = (value >> 20) & 0x3;
122         status->sspp[SSPP_DMA1] = (value >> 22) & 0x3;
123         status->sspp[SSPP_DMA2] = (value >> 28) & 0x3;
124         status->sspp[SSPP_DMA3] = (value >> 30) & 0x3;
125         status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3;
126         status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3;
127 }
128
129 static void dpu_hw_setup_vsync_source(struct dpu_hw_mdp *mdp,
130                 struct dpu_vsync_source_cfg *cfg)
131 {
132         struct dpu_hw_blk_reg_map *c;
133         u32 reg, wd_load_value, wd_ctl, wd_ctl2;
134
135         if (!mdp || !cfg)
136                 return;
137
138         c = &mdp->hw;
139
140         if (cfg->vsync_source >= DPU_VSYNC_SOURCE_WD_TIMER_4 &&
141                         cfg->vsync_source <= DPU_VSYNC_SOURCE_WD_TIMER_0) {
142                 switch (cfg->vsync_source) {
143                 case DPU_VSYNC_SOURCE_WD_TIMER_4:
144                         wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE;
145                         wd_ctl = MDP_WD_TIMER_4_CTL;
146                         wd_ctl2 = MDP_WD_TIMER_4_CTL2;
147                         break;
148                 case DPU_VSYNC_SOURCE_WD_TIMER_3:
149                         wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE;
150                         wd_ctl = MDP_WD_TIMER_3_CTL;
151                         wd_ctl2 = MDP_WD_TIMER_3_CTL2;
152                         break;
153                 case DPU_VSYNC_SOURCE_WD_TIMER_2:
154                         wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE;
155                         wd_ctl = MDP_WD_TIMER_2_CTL;
156                         wd_ctl2 = MDP_WD_TIMER_2_CTL2;
157                         break;
158                 case DPU_VSYNC_SOURCE_WD_TIMER_1:
159                         wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE;
160                         wd_ctl = MDP_WD_TIMER_1_CTL;
161                         wd_ctl2 = MDP_WD_TIMER_1_CTL2;
162                         break;
163                 case DPU_VSYNC_SOURCE_WD_TIMER_0:
164                 default:
165                         wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE;
166                         wd_ctl = MDP_WD_TIMER_0_CTL;
167                         wd_ctl2 = MDP_WD_TIMER_0_CTL2;
168                         break;
169                 }
170
171                 DPU_REG_WRITE(c, wd_load_value,
172                         CALCULATE_WD_LOAD_VALUE(cfg->frame_rate));
173
174                 DPU_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */
175                 reg = DPU_REG_READ(c, wd_ctl2);
176                 reg |= BIT(8);          /* enable heartbeat timer */
177                 reg |= BIT(0);          /* enable WD timer */
178                 DPU_REG_WRITE(c, wd_ctl2, reg);
179
180                 /* make sure that timers are enabled/disabled for vsync state */
181                 wmb();
182         }
183 }
184
185 static void dpu_hw_setup_vsync_source_and_vsync_sel(struct dpu_hw_mdp *mdp,
186                 struct dpu_vsync_source_cfg *cfg)
187 {
188         struct dpu_hw_blk_reg_map *c;
189         u32 reg, i;
190         static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18};
191
192         if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber)))
193                 return;
194
195         c = &mdp->hw;
196
197         reg = DPU_REG_READ(c, MDP_VSYNC_SEL);
198         for (i = 0; i < cfg->pp_count; i++) {
199                 int pp_idx = cfg->ppnumber[i] - PINGPONG_0;
200
201                 if (pp_idx >= ARRAY_SIZE(pp_offset))
202                         continue;
203
204                 reg &= ~(0xf << pp_offset[pp_idx]);
205                 reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx];
206         }
207         DPU_REG_WRITE(c, MDP_VSYNC_SEL, reg);
208
209         dpu_hw_setup_vsync_source(mdp, cfg);
210 }
211
212 static void dpu_hw_get_safe_status(struct dpu_hw_mdp *mdp,
213                 struct dpu_danger_safe_status *status)
214 {
215         struct dpu_hw_blk_reg_map *c;
216         u32 value;
217
218         if (!mdp || !status)
219                 return;
220
221         c = &mdp->hw;
222
223         value = DPU_REG_READ(c, SAFE_STATUS);
224         status->mdp = (value >> 0) & 0x1;
225         status->sspp[SSPP_VIG0] = (value >> 4) & 0x1;
226         status->sspp[SSPP_VIG1] = (value >> 6) & 0x1;
227         status->sspp[SSPP_VIG2] = (value >> 8) & 0x1;
228         status->sspp[SSPP_VIG3] = (value >> 10) & 0x1;
229         status->sspp[SSPP_RGB0] = (value >> 12) & 0x1;
230         status->sspp[SSPP_RGB1] = (value >> 14) & 0x1;
231         status->sspp[SSPP_RGB2] = (value >> 16) & 0x1;
232         status->sspp[SSPP_RGB3] = (value >> 18) & 0x1;
233         status->sspp[SSPP_DMA0] = (value >> 20) & 0x1;
234         status->sspp[SSPP_DMA1] = (value >> 22) & 0x1;
235         status->sspp[SSPP_DMA2] = (value >> 28) & 0x1;
236         status->sspp[SSPP_DMA3] = (value >> 30) & 0x1;
237         status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1;
238         status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1;
239 }
240
241 static void dpu_hw_intf_audio_select(struct dpu_hw_mdp *mdp)
242 {
243         struct dpu_hw_blk_reg_map *c;
244
245         if (!mdp)
246                 return;
247
248         c = &mdp->hw;
249
250         DPU_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1);
251 }
252
253 static void _setup_mdp_ops(struct dpu_hw_mdp_ops *ops,
254                 unsigned long cap)
255 {
256         ops->setup_split_pipe = dpu_hw_setup_split_pipe;
257         ops->setup_clk_force_ctrl = dpu_hw_setup_clk_force_ctrl;
258         ops->get_danger_status = dpu_hw_get_danger_status;
259
260         if (cap & BIT(DPU_MDP_VSYNC_SEL))
261                 ops->setup_vsync_source = dpu_hw_setup_vsync_source_and_vsync_sel;
262         else
263                 ops->setup_vsync_source = dpu_hw_setup_vsync_source;
264
265         ops->get_safe_status = dpu_hw_get_safe_status;
266
267         if (cap & BIT(DPU_MDP_AUDIO_SELECT))
268                 ops->intf_audio_select = dpu_hw_intf_audio_select;
269 }
270
271 struct dpu_hw_mdp *dpu_hw_mdptop_init(const struct dpu_mdp_cfg *cfg,
272                 void __iomem *addr,
273                 const struct dpu_mdss_cfg *m)
274 {
275         struct dpu_hw_mdp *mdp;
276
277         if (!addr)
278                 return ERR_PTR(-EINVAL);
279
280         mdp = kzalloc(sizeof(*mdp), GFP_KERNEL);
281         if (!mdp)
282                 return ERR_PTR(-ENOMEM);
283
284         mdp->hw.blk_addr = addr + cfg->base;
285         mdp->hw.log_mask = DPU_DBG_MASK_TOP;
286
287         /*
288          * Assign ops
289          */
290         mdp->caps = cfg;
291         _setup_mdp_ops(&mdp->ops, mdp->caps->features);
292
293         return mdp;
294 }
295
296 void dpu_hw_mdp_destroy(struct dpu_hw_mdp *mdp)
297 {
298         kfree(mdp);
299 }
300