1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
7 #include "msm_gpu_trace.h"
9 #include "a6xx_gmu.xml.h"
11 #include <linux/bitfield.h>
12 #include <linux/devfreq.h>
13 #include <linux/nvmem-consumer.h>
14 #include <linux/soc/qcom/llcc-qcom.h>
18 static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
20 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
21 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
23 /* Check that the GMU is idle */
24 if (!a6xx_gmu_isidle(&a6xx_gpu->gmu))
27 /* Check tha the CX master is idle */
28 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
29 ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
32 return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
33 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
36 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
38 /* wait for CP to drain ringbuffer: */
39 if (!adreno_idle(gpu, ring))
42 if (spin_until(_a6xx_check_idle(gpu))) {
43 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
44 gpu->name, __builtin_return_address(0),
45 gpu_read(gpu, REG_A6XX_RBBM_STATUS),
46 gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
47 gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
48 gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
55 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
57 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
58 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
60 /* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */
61 if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) {
62 OUT_PKT7(ring, CP_WHERE_AM_I, 2);
63 OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring)));
64 OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring)));
68 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
73 update_shadow_rptr(gpu, ring);
75 spin_lock_irqsave(&ring->preempt_lock, flags);
77 /* Copy the shadow to the actual register */
78 ring->cur = ring->next;
80 /* Make sure to wrap wptr if we need to */
81 wptr = get_wptr(ring);
83 spin_unlock_irqrestore(&ring->preempt_lock, flags);
85 /* Make sure everything is posted before making a decision */
88 gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
91 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
94 OUT_PKT7(ring, CP_REG_TO_MEM, 3);
95 OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) |
96 CP_REG_TO_MEM_0_CNT(2) |
98 OUT_RING(ring, lower_32_bits(iova));
99 OUT_RING(ring, upper_32_bits(iova));
102 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu,
103 struct msm_ringbuffer *ring, struct msm_file_private *ctx)
107 u64 memptr = rbmemptr(ring, ttbr0);
109 if (ctx->seqno == a6xx_gpu->cur_ctx_seqno)
112 if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid))
115 /* Execute the table update */
116 OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4);
117 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr)));
120 CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) |
121 CP_SMMU_TABLE_UPDATE_1_ASID(asid));
122 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0));
123 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0));
126 * Write the new TTBR0 to the memstore. This is good for debugging.
128 OUT_PKT7(ring, CP_MEM_WRITE, 4);
129 OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr)));
130 OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr)));
131 OUT_RING(ring, lower_32_bits(ttbr));
132 OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr));
135 * And finally, trigger a uche flush to be sure there isn't anything
136 * lingering in that part of the GPU
139 OUT_PKT7(ring, CP_EVENT_WRITE, 1);
140 OUT_RING(ring, 0x31);
142 a6xx_gpu->cur_ctx_seqno = ctx->seqno;
145 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
147 unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
148 struct msm_drm_private *priv = gpu->dev->dev_private;
149 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
150 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
151 struct msm_ringbuffer *ring = submit->ring;
152 unsigned int i, ibs = 0;
154 a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx);
156 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
157 rbmemptr_stats(ring, index, cpcycles_start));
160 * For PM4 the GMU register offsets are calculated from the base of the
161 * GPU registers so we need to add 0x1a800 to the register value on A630
162 * to get the right value from PM4.
164 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
165 rbmemptr_stats(ring, index, alwayson_start));
167 /* Invalidate CCU depth and color */
168 OUT_PKT7(ring, CP_EVENT_WRITE, 1);
169 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH));
171 OUT_PKT7(ring, CP_EVENT_WRITE, 1);
172 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR));
174 /* Submit the commands */
175 for (i = 0; i < submit->nr_cmds; i++) {
176 switch (submit->cmd[i].type) {
177 case MSM_SUBMIT_CMD_IB_TARGET_BUF:
179 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
180 if (priv->lastctx == submit->queue->ctx)
183 case MSM_SUBMIT_CMD_BUF:
184 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
185 OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
186 OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
187 OUT_RING(ring, submit->cmd[i].size);
193 * Periodically update shadow-wptr if needed, so that we
194 * can see partial progress of submits with large # of
195 * cmds.. otherwise we could needlessly stall waiting for
196 * ringbuffer state, simply due to looking at a shadow
197 * rptr value that has not been updated
200 update_shadow_rptr(gpu, ring);
203 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
204 rbmemptr_stats(ring, index, cpcycles_end));
205 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
206 rbmemptr_stats(ring, index, alwayson_end));
208 /* Write the fence to the scratch register */
209 OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
210 OUT_RING(ring, submit->seqno);
213 * Execute a CACHE_FLUSH_TS event. This will ensure that the
214 * timestamp is written to the memory and then triggers the interrupt
216 OUT_PKT7(ring, CP_EVENT_WRITE, 4);
217 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
218 CP_EVENT_WRITE_0_IRQ);
219 OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
220 OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
221 OUT_RING(ring, submit->seqno);
223 trace_msm_gpu_submit_flush(submit,
224 gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
225 REG_A6XX_CP_ALWAYS_ON_COUNTER_HI));
227 a6xx_flush(gpu, ring);
230 const struct adreno_reglist a630_hwcg[] = {
231 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
232 {REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
233 {REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
234 {REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
235 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
236 {REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
237 {REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
238 {REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
239 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
240 {REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
241 {REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
242 {REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
243 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
244 {REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
245 {REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
246 {REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
247 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
248 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
249 {REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
250 {REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
251 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
252 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
253 {REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
254 {REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
255 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
256 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
257 {REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
258 {REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
259 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
260 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
261 {REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
262 {REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
263 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
264 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
265 {REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
266 {REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
267 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
268 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
269 {REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
270 {REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
271 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
272 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
273 {REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
274 {REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
275 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
276 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
277 {REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
278 {REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
279 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
280 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
281 {REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
282 {REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
283 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
284 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
285 {REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
286 {REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
287 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
288 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
289 {REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
290 {REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
291 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
292 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
293 {REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
294 {REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
295 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
296 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
297 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
298 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
299 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
300 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
301 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
302 {REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
303 {REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
304 {REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
305 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
306 {REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
307 {REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
308 {REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
309 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
310 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
311 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
312 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
313 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
314 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
315 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
316 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
317 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
318 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
319 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
320 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
321 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
322 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
323 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
324 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
325 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
326 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
327 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
328 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
329 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
330 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
331 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
332 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
333 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
334 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
335 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
339 const struct adreno_reglist a640_hwcg[] = {
340 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
341 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
342 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
343 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
344 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
345 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
346 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
347 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
348 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
349 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
350 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
351 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
352 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
353 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
354 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
355 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
356 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
357 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
358 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
359 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
360 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022},
361 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
362 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
363 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
364 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
365 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
366 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
367 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
368 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
369 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
370 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
371 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
372 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
373 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
374 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
375 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
376 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
377 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
378 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
379 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
380 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
381 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
382 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
383 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
384 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
385 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
386 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
387 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
388 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
392 const struct adreno_reglist a650_hwcg[] = {
393 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
394 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
395 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
396 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
397 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
398 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
399 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
400 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
401 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
402 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
403 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
404 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
405 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
406 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
407 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
408 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
409 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
410 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
411 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
412 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
413 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
414 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
415 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
416 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
417 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
418 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
419 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
420 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
421 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
422 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
423 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
424 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
425 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
426 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
427 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
428 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
429 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
430 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
431 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
432 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777},
433 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
434 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
435 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
436 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
437 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
438 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
439 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
440 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
441 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
445 const struct adreno_reglist a660_hwcg[] = {
446 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
447 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
448 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
449 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
450 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
451 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
452 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
453 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
454 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
455 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
456 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
457 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
458 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
459 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
460 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
461 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
462 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
463 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
464 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
465 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
466 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
467 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
468 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
469 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
470 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
471 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
472 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
473 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
474 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
475 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
476 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
477 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
478 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
479 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
480 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
481 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
482 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
483 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
484 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
485 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
486 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
487 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
488 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
489 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
490 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
491 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
492 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
493 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
494 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
498 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
500 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
501 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
502 struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
503 const struct adreno_reglist *reg;
505 u32 val, clock_cntl_on;
507 if (!adreno_gpu->info->hwcg)
510 if (adreno_is_a630(adreno_gpu))
511 clock_cntl_on = 0x8aa8aa02;
513 clock_cntl_on = 0x8aa8aa82;
515 val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
517 /* Don't re-program the registers if they are already correct */
518 if ((!state && !val) || (state && (val == clock_cntl_on)))
521 /* Disable SP clock before programming HWCG registers */
522 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
524 for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++)
525 gpu_write(gpu, reg->offset, state ? reg->value : 0);
527 /* Enable SP clock */
528 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
530 gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0);
533 /* For a615, a616, a618, A619, a630, a640 and a680 */
534 static const u32 a6xx_protect[] = {
535 A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
536 A6XX_PROTECT_RDONLY(0x00501, 0x0005),
537 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
538 A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
539 A6XX_PROTECT_NORDWR(0x00510, 0x0000),
540 A6XX_PROTECT_NORDWR(0x00534, 0x0000),
541 A6XX_PROTECT_NORDWR(0x00800, 0x0082),
542 A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
543 A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
544 A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
545 A6XX_PROTECT_NORDWR(0x00900, 0x004d),
546 A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
547 A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
548 A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
549 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
550 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
551 A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
552 A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
553 A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
554 A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
555 A6XX_PROTECT_NORDWR(0x09624, 0x01db),
556 A6XX_PROTECT_NORDWR(0x09e70, 0x0001),
557 A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
558 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
559 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
560 A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
561 A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
562 A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
563 A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
564 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
565 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
566 A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */
569 /* These are for a620 and a650 */
570 static const u32 a650_protect[] = {
571 A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
572 A6XX_PROTECT_RDONLY(0x00501, 0x0005),
573 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
574 A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
575 A6XX_PROTECT_NORDWR(0x00510, 0x0000),
576 A6XX_PROTECT_NORDWR(0x00534, 0x0000),
577 A6XX_PROTECT_NORDWR(0x00800, 0x0082),
578 A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
579 A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
580 A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
581 A6XX_PROTECT_NORDWR(0x00900, 0x004d),
582 A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
583 A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
584 A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
585 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
586 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
587 A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
588 A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
589 A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
590 A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
591 A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
592 A6XX_PROTECT_NORDWR(0x09624, 0x01db),
593 A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
594 A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
595 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
596 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
597 A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
598 A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
599 A6XX_PROTECT_NORDWR(0x0b608, 0x0007),
600 A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
601 A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
602 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
603 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
604 A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
605 A6XX_PROTECT_NORDWR(0x1a800, 0x1fff),
606 A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
607 A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
608 A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
609 A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
612 /* These are for a635 and a660 */
613 static const u32 a660_protect[] = {
614 A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
615 A6XX_PROTECT_RDONLY(0x00501, 0x0005),
616 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
617 A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
618 A6XX_PROTECT_NORDWR(0x00510, 0x0000),
619 A6XX_PROTECT_NORDWR(0x00534, 0x0000),
620 A6XX_PROTECT_NORDWR(0x00800, 0x0082),
621 A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
622 A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
623 A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
624 A6XX_PROTECT_NORDWR(0x00900, 0x004d),
625 A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
626 A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
627 A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
628 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
629 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
630 A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
631 A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
632 A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
633 A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
634 A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
635 A6XX_PROTECT_NORDWR(0x09624, 0x01db),
636 A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
637 A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
638 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
639 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
640 A6XX_PROTECT_NORDWR(0x0ae50, 0x012f),
641 A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
642 A6XX_PROTECT_NORDWR(0x0b608, 0x0006),
643 A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
644 A6XX_PROTECT_NORDWR(0x0be20, 0x015f),
645 A6XX_PROTECT_NORDWR(0x0d000, 0x05ff),
646 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
647 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
648 A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
649 A6XX_PROTECT_NORDWR(0x1a400, 0x1fff),
650 A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
651 A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
652 A6XX_PROTECT_NORDWR(0x1f860, 0x0000),
653 A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
654 A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
657 static void a6xx_set_cp_protect(struct msm_gpu *gpu)
659 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
660 const u32 *regs = a6xx_protect;
661 unsigned i, count = ARRAY_SIZE(a6xx_protect), count_max = 32;
663 BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32);
664 BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48);
666 if (adreno_is_a650(adreno_gpu)) {
668 count = ARRAY_SIZE(a650_protect);
670 } else if (adreno_is_a660_family(adreno_gpu)) {
672 count = ARRAY_SIZE(a660_protect);
677 * Enable access protection to privileged registers, fault on an access
678 * protect violation and select the last span to protect from the start
679 * address all the way to the end of the register address space
681 gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, BIT(0) | BIT(1) | BIT(3));
683 for (i = 0; i < count - 1; i++)
684 gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]);
685 /* last CP_PROTECT to have "infinite" length on the last entry */
686 gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]);
689 static void a6xx_set_ubwc_config(struct msm_gpu *gpu)
691 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
694 u32 rgb565_predicator = 0;
695 u32 uavflagprd_inv = 0;
697 /* a618 is using the hw default values */
698 if (adreno_is_a618(adreno_gpu))
701 if (adreno_is_a640_family(adreno_gpu))
704 if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) {
705 /* TODO: get ddr type from bootloader and use 2 for LPDDR4 */
708 rgb565_predicator = 1;
712 if (adreno_is_7c3(adreno_gpu)) {
715 rgb565_predicator = 1;
719 gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL,
720 rgb565_predicator << 11 | amsbc << 4 | lower_bit << 1);
721 gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, lower_bit << 1);
722 gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL,
723 uavflagprd_inv << 4 | lower_bit << 1);
724 gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, lower_bit << 21);
727 static int a6xx_cp_init(struct msm_gpu *gpu)
729 struct msm_ringbuffer *ring = gpu->rb[0];
731 OUT_PKT7(ring, CP_ME_INIT, 8);
733 OUT_RING(ring, 0x0000002f);
735 /* Enable multiple hardware contexts */
736 OUT_RING(ring, 0x00000003);
738 /* Enable error detection */
739 OUT_RING(ring, 0x20000000);
741 /* Don't enable header dump */
742 OUT_RING(ring, 0x00000000);
743 OUT_RING(ring, 0x00000000);
745 /* No workarounds enabled */
746 OUT_RING(ring, 0x00000000);
748 /* Pad rest of the cmds with 0's */
749 OUT_RING(ring, 0x00000000);
750 OUT_RING(ring, 0x00000000);
752 a6xx_flush(gpu, ring);
753 return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
757 * Check that the microcode version is new enough to include several key
758 * security fixes. Return true if the ucode is safe.
760 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu,
761 struct drm_gem_object *obj)
763 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
764 struct msm_gpu *gpu = &adreno_gpu->base;
765 const char *sqe_name = adreno_gpu->info->fw[ADRENO_FW_SQE];
766 u32 *buf = msm_gem_get_vaddr(obj);
773 * Targets up to a640 (a618, a630 and a640) need to check for a
774 * microcode version that is patched to support the whereami opcode or
775 * one that is new enough to include it by default.
777 * a650 tier targets don't need whereami but still need to be
778 * equal to or newer than 0.95 for other security fixes
780 * a660 targets have all the critical security fixes from the start
782 if (!strcmp(sqe_name, "a630_sqe.fw")) {
784 * If the lowest nibble is 0xa that is an indication that this
785 * microcode has been patched. The actual version is in dword
786 * [3] but we only care about the patchlevel which is the lowest
787 * nibble of dword [3]
789 * Otherwise check that the firmware is greater than or equal
790 * to 1.90 which was the first version that had this fix built
793 if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) ||
794 (buf[0] & 0xfff) >= 0x190) {
795 a6xx_gpu->has_whereami = true;
800 DRM_DEV_ERROR(&gpu->pdev->dev,
801 "a630 SQE ucode is too old. Have version %x need at least %x\n",
802 buf[0] & 0xfff, 0x190);
803 } else if (!strcmp(sqe_name, "a650_sqe.fw")) {
804 if ((buf[0] & 0xfff) >= 0x095) {
809 DRM_DEV_ERROR(&gpu->pdev->dev,
810 "a650 SQE ucode is too old. Have version %x need at least %x\n",
811 buf[0] & 0xfff, 0x095);
812 } else if (!strcmp(sqe_name, "a660_sqe.fw")) {
815 DRM_DEV_ERROR(&gpu->pdev->dev,
816 "unknown GPU, add it to a6xx_ucode_check_version()!!\n");
819 msm_gem_put_vaddr(obj);
823 static int a6xx_ucode_init(struct msm_gpu *gpu)
825 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
826 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
828 if (!a6xx_gpu->sqe_bo) {
829 a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
830 adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
832 if (IS_ERR(a6xx_gpu->sqe_bo)) {
833 int ret = PTR_ERR(a6xx_gpu->sqe_bo);
835 a6xx_gpu->sqe_bo = NULL;
836 DRM_DEV_ERROR(&gpu->pdev->dev,
837 "Could not allocate SQE ucode: %d\n", ret);
842 msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
843 if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) {
844 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
845 drm_gem_object_put(a6xx_gpu->sqe_bo);
847 a6xx_gpu->sqe_bo = NULL;
852 gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE,
853 REG_A6XX_CP_SQE_INSTR_BASE+1, a6xx_gpu->sqe_iova);
858 static int a6xx_zap_shader_init(struct msm_gpu *gpu)
866 ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
872 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
873 A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
874 A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
875 A6XX_RBBM_INT_0_MASK_CP_IB2 | \
876 A6XX_RBBM_INT_0_MASK_CP_IB1 | \
877 A6XX_RBBM_INT_0_MASK_CP_RB | \
878 A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
879 A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
880 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
881 A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
882 A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
884 static int hw_init(struct msm_gpu *gpu)
886 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
887 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
890 /* Make sure the GMU keeps the GPU on while we set it up */
891 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
893 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
896 * Disable the trusted memory range - we don't actually supported secure
897 * memory rendering at this point in time and we don't want to block off
898 * part of the virtual memory space.
900 gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
901 REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000);
902 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
904 /* Turn on 64 bit addressing for all blocks */
905 gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1);
906 gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1);
907 gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
908 gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1);
909 gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1);
910 gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
911 gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1);
912 gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1);
913 gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
914 gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1);
915 gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
916 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
918 /* enable hardware clockgating */
919 a6xx_set_hwcg(gpu, true);
922 if (adreno_is_a640_family(adreno_gpu) ||
923 adreno_is_a650_family(adreno_gpu)) {
924 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620);
925 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620);
926 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620);
927 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
928 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
929 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3);
931 gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
934 if (adreno_is_a630(adreno_gpu))
935 gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
937 /* Make all blocks contribute to the GPU BUSY perf counter */
938 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
940 /* Disable L2 bypass in the UCHE */
941 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0);
942 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff);
943 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000);
944 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff);
945 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000);
946 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff);
948 if (!adreno_is_a650_family(adreno_gpu)) {
949 /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
950 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO,
951 REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000);
953 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO,
954 REG_A6XX_UCHE_GMEM_RANGE_MAX_HI,
955 0x00100000 + adreno_gpu->gmem - 1);
958 gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
959 gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
961 if (adreno_is_a640_family(adreno_gpu) ||
962 adreno_is_a650_family(adreno_gpu))
963 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140);
965 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
966 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
968 if (adreno_is_a660_family(adreno_gpu))
969 gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020);
971 /* Setting the mem pool size */
972 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
974 /* Setting the primFifo thresholds default values,
975 * and vccCacheSkipDis=1 bit (0x200) for A640 and newer
977 if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
978 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
979 else if (adreno_is_a640_family(adreno_gpu) || adreno_is_7c3(adreno_gpu))
980 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200);
981 else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
982 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
984 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000);
986 /* Set the AHB default slave response to "ERROR" */
987 gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
989 /* Turn on performance counters */
990 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
992 /* Select CP0 to always count cycles */
993 gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT);
995 a6xx_set_ubwc_config(gpu);
997 /* Enable fault detection */
998 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL,
999 (1 << 30) | 0x1fffff);
1001 gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1);
1003 /* Set weights for bicubic filtering */
1004 if (adreno_is_a650_family(adreno_gpu)) {
1005 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0);
1006 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1,
1008 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2,
1010 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3,
1012 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4,
1016 /* Protect registers from the CP */
1017 a6xx_set_cp_protect(gpu);
1019 if (adreno_is_a660_family(adreno_gpu)) {
1020 gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1);
1021 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0);
1024 /* Set dualQ + disable afull for A660 GPU */
1025 if (adreno_is_a660(adreno_gpu))
1026 gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906);
1028 /* Enable expanded apriv for targets that support it */
1029 if (gpu->hw_apriv) {
1030 gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL,
1031 (1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1));
1034 /* Enable interrupts */
1035 gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK);
1037 ret = adreno_hw_init(gpu);
1041 ret = a6xx_ucode_init(gpu);
1045 /* Set the ringbuffer address */
1046 gpu_write64(gpu, REG_A6XX_CP_RB_BASE, REG_A6XX_CP_RB_BASE_HI,
1049 /* Targets that support extended APRIV can use the RPTR shadow from
1050 * hardware but all the other ones need to disable the feature. Targets
1051 * that support the WHERE_AM_I opcode can use that instead
1053 if (adreno_gpu->base.hw_apriv)
1054 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT);
1056 gpu_write(gpu, REG_A6XX_CP_RB_CNTL,
1057 MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
1060 * Expanded APRIV and targets that support WHERE_AM_I both need a
1061 * privileged buffer to store the RPTR shadow
1064 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) {
1065 if (!a6xx_gpu->shadow_bo) {
1066 a6xx_gpu->shadow = msm_gem_kernel_new(gpu->dev,
1067 sizeof(u32) * gpu->nr_rings,
1068 MSM_BO_WC | MSM_BO_MAP_PRIV,
1069 gpu->aspace, &a6xx_gpu->shadow_bo,
1070 &a6xx_gpu->shadow_iova);
1072 if (IS_ERR(a6xx_gpu->shadow))
1073 return PTR_ERR(a6xx_gpu->shadow);
1076 gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR_LO,
1077 REG_A6XX_CP_RB_RPTR_ADDR_HI,
1078 shadowptr(a6xx_gpu, gpu->rb[0]));
1081 /* Always come up on rb 0 */
1082 a6xx_gpu->cur_ring = gpu->rb[0];
1084 a6xx_gpu->cur_ctx_seqno = 0;
1086 /* Enable the SQE_to start the CP engine */
1087 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
1089 ret = a6xx_cp_init(gpu);
1094 * Try to load a zap shader into the secure world. If successful
1095 * we can use the CP to switch out of secure mode. If not then we
1096 * have no resource but to try to switch ourselves out manually. If we
1097 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
1098 * be blocked and a permissions violation will soon follow.
1100 ret = a6xx_zap_shader_init(gpu);
1102 OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
1103 OUT_RING(gpu->rb[0], 0x00000000);
1105 a6xx_flush(gpu, gpu->rb[0]);
1106 if (!a6xx_idle(gpu, gpu->rb[0]))
1108 } else if (ret == -ENODEV) {
1110 * This device does not use zap shader (but print a warning
1111 * just in case someone got their dt wrong.. hopefully they
1112 * have a debug UART to realize the error of their ways...
1113 * if you mess this up you are about to crash horribly)
1115 dev_warn_once(gpu->dev->dev,
1116 "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
1117 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
1125 * Tell the GMU that we are done touching the GPU and it can start power
1128 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
1130 if (a6xx_gpu->gmu.legacy) {
1131 /* Take the GMU out of its special boot mode */
1132 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
1138 static int a6xx_hw_init(struct msm_gpu *gpu)
1140 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1141 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1144 mutex_lock(&a6xx_gpu->gmu.lock);
1146 mutex_unlock(&a6xx_gpu->gmu.lock);
1151 static void a6xx_dump(struct msm_gpu *gpu)
1153 DRM_DEV_INFO(&gpu->pdev->dev, "status: %08x\n",
1154 gpu_read(gpu, REG_A6XX_RBBM_STATUS));
1158 #define VBIF_RESET_ACK_TIMEOUT 100
1159 #define VBIF_RESET_ACK_MASK 0x00f0
1161 static void a6xx_recover(struct msm_gpu *gpu)
1163 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1164 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1167 adreno_dump_info(gpu);
1169 for (i = 0; i < 8; i++)
1170 DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
1171 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
1177 * Turn off keep alive that might have been enabled by the hang
1180 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0);
1182 gpu->funcs->pm_suspend(gpu);
1183 gpu->funcs->pm_resume(gpu);
1185 msm_gpu_hw_init(gpu);
1188 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid)
1190 static const char *uche_clients[7] = {
1191 "VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ",
1195 if (mid < 1 || mid > 3)
1199 * The source of the data depends on the mid ID read from FSYNR1.
1200 * and the client ID read from the UCHE block
1202 val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF);
1204 /* mid = 3 is most precise and refers to only one block per client */
1206 return uche_clients[val & 7];
1208 /* For mid=2 the source is TP or VFD except when the client id is 0 */
1210 return ((val & 7) == 0) ? "TP" : "TP|VFD";
1212 /* For mid=1 just return "UCHE" as a catchall for everything else */
1216 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id)
1223 return "CDP Prefetch";
1225 return a6xx_uche_fault_block(gpu, id);
1228 #define ARM_SMMU_FSR_TF BIT(1)
1229 #define ARM_SMMU_FSR_PF BIT(3)
1230 #define ARM_SMMU_FSR_EF BIT(4)
1232 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data)
1234 struct msm_gpu *gpu = arg;
1235 struct adreno_smmu_fault_info *info = data;
1236 const char *type = "UNKNOWN";
1238 bool do_devcoredump = info && !READ_ONCE(gpu->crashstate);
1241 * If we aren't going to be resuming later from fault_worker, then do
1244 if (!do_devcoredump) {
1245 gpu->aspace->mmu->funcs->resume_translation(gpu->aspace->mmu);
1249 * Print a default message if we couldn't get the data from the
1253 pr_warn_ratelimited("*** gpu fault: iova=%.16lx flags=%d (%u,%u,%u,%u)\n",
1255 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1256 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1257 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1258 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1263 if (info->fsr & ARM_SMMU_FSR_TF)
1264 type = "TRANSLATION";
1265 else if (info->fsr & ARM_SMMU_FSR_PF)
1266 type = "PERMISSION";
1267 else if (info->fsr & ARM_SMMU_FSR_EF)
1270 block = a6xx_fault_block(gpu, info->fsynr1 & 0xff);
1272 pr_warn_ratelimited("*** gpu fault: ttbr0=%.16llx iova=%.16lx dir=%s type=%s source=%s (%u,%u,%u,%u)\n",
1274 flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ",
1276 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1277 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1278 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1279 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1281 if (do_devcoredump) {
1282 /* Turn off the hangcheck timer to keep it from bothering us */
1283 del_timer(&gpu->hangcheck_timer);
1285 gpu->fault_info.ttbr0 = info->ttbr0;
1286 gpu->fault_info.iova = iova;
1287 gpu->fault_info.flags = flags;
1288 gpu->fault_info.type = type;
1289 gpu->fault_info.block = block;
1291 kthread_queue_work(gpu->worker, &gpu->fault_work);
1297 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
1299 u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
1301 if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
1304 gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
1305 val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
1306 dev_err_ratelimited(&gpu->pdev->dev,
1307 "CP | opcode error | possible opcode=0x%8.8X\n",
1311 if (status & A6XX_CP_INT_CP_UCODE_ERROR)
1312 dev_err_ratelimited(&gpu->pdev->dev,
1313 "CP ucode error interrupt\n");
1315 if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
1316 dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
1317 gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
1319 if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
1320 u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
1322 dev_err_ratelimited(&gpu->pdev->dev,
1323 "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
1324 val & (1 << 20) ? "READ" : "WRITE",
1325 (val & 0x3ffff), val);
1328 if (status & A6XX_CP_INT_CP_AHB_ERROR)
1329 dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
1331 if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
1332 dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
1334 if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
1335 dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
1339 static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
1341 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1342 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1343 struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
1346 * If stalled on SMMU fault, we could trip the GPU's hang detection,
1347 * but the fault handler will trigger the devcore dump, and we want
1348 * to otherwise resume normally rather than killing the submit, so
1351 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT)
1355 * Force the GPU to stay on until after we finish
1356 * collecting information
1358 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
1360 DRM_DEV_ERROR(&gpu->pdev->dev,
1361 "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
1362 ring ? ring->id : -1, ring ? ring->seqno : 0,
1363 gpu_read(gpu, REG_A6XX_RBBM_STATUS),
1364 gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
1365 gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
1366 gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI),
1367 gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
1368 gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI),
1369 gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
1371 /* Turn off the hangcheck timer to keep it from bothering us */
1372 del_timer(&gpu->hangcheck_timer);
1374 kthread_queue_work(gpu->worker, &gpu->recover_work);
1377 static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
1379 u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
1381 gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
1383 if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
1384 a6xx_fault_detect_irq(gpu);
1386 if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
1387 dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
1389 if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
1390 a6xx_cp_hw_err_irq(gpu);
1392 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
1393 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
1395 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
1396 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
1398 if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
1399 dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
1401 if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
1402 msm_gpu_retire(gpu);
1407 static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or)
1409 return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or);
1412 static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value)
1414 return msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2));
1417 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu)
1419 llcc_slice_deactivate(a6xx_gpu->llc_slice);
1420 llcc_slice_deactivate(a6xx_gpu->htw_llc_slice);
1423 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu)
1425 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1426 struct msm_gpu *gpu = &adreno_gpu->base;
1427 u32 gpu_scid, cntl1_regval = 0;
1429 if (IS_ERR(a6xx_gpu->llc_mmio))
1432 if (!llcc_slice_activate(a6xx_gpu->llc_slice)) {
1433 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice);
1436 cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) |
1437 (gpu_scid << 15) | (gpu_scid << 20);
1441 * For targets with a MMU500, activate the slice but don't program the
1442 * register. The XBL will take care of that.
1444 if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) {
1445 if (!a6xx_gpu->have_mmu500) {
1446 u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice);
1448 gpuhtw_scid &= 0x1f;
1449 cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid);
1457 * Program the slice IDs for the various GPU blocks and GPU MMU
1460 if (!a6xx_gpu->have_mmu500) {
1461 a6xx_llc_write(a6xx_gpu,
1462 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval);
1465 * Program cacheability overrides to not allocate cache
1466 * lines on a write miss
1468 a6xx_llc_rmw(a6xx_gpu,
1469 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03);
1473 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), cntl1_regval);
1475 /* On A660, the SCID programming for UCHE traffic is done in
1476 * A6XX_GBIF_SCACHE_CNTL0[14:10]
1478 if (adreno_is_a660_family(adreno_gpu))
1479 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) |
1480 (1 << 8), (gpu_scid << 10) | (1 << 8));
1483 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu)
1485 llcc_slice_putd(a6xx_gpu->llc_slice);
1486 llcc_slice_putd(a6xx_gpu->htw_llc_slice);
1489 static void a6xx_llc_slices_init(struct platform_device *pdev,
1490 struct a6xx_gpu *a6xx_gpu)
1492 struct device_node *phandle;
1495 * There is a different programming path for targets with an mmu500
1496 * attached, so detect if that is the case
1498 phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0);
1499 a6xx_gpu->have_mmu500 = (phandle &&
1500 of_device_is_compatible(phandle, "arm,mmu-500"));
1501 of_node_put(phandle);
1503 if (a6xx_gpu->have_mmu500)
1504 a6xx_gpu->llc_mmio = NULL;
1506 a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem", "gpu_cx");
1508 a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU);
1509 a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW);
1511 if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1512 a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL);
1515 static int a6xx_pm_resume(struct msm_gpu *gpu)
1517 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1518 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1521 gpu->needs_hw_init = true;
1523 trace_msm_gpu_resume(0);
1525 mutex_lock(&a6xx_gpu->gmu.lock);
1526 ret = a6xx_gmu_resume(a6xx_gpu);
1527 mutex_unlock(&a6xx_gpu->gmu.lock);
1531 msm_devfreq_resume(gpu);
1533 a6xx_llc_activate(a6xx_gpu);
1538 static int a6xx_pm_suspend(struct msm_gpu *gpu)
1540 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1541 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1544 trace_msm_gpu_suspend(0);
1546 a6xx_llc_deactivate(a6xx_gpu);
1548 msm_devfreq_suspend(gpu);
1550 mutex_lock(&a6xx_gpu->gmu.lock);
1551 ret = a6xx_gmu_stop(a6xx_gpu);
1552 mutex_unlock(&a6xx_gpu->gmu.lock);
1556 if (a6xx_gpu->shadow_bo)
1557 for (i = 0; i < gpu->nr_rings; i++)
1558 a6xx_gpu->shadow[i] = 0;
1563 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
1565 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1566 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1568 mutex_lock(&a6xx_gpu->gmu.lock);
1570 /* Force the GPU power on so we can read this register */
1571 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1573 *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
1574 REG_A6XX_CP_ALWAYS_ON_COUNTER_HI);
1576 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1578 mutex_unlock(&a6xx_gpu->gmu.lock);
1583 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
1585 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1586 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1588 return a6xx_gpu->cur_ring;
1591 static void a6xx_destroy(struct msm_gpu *gpu)
1593 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1594 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1596 if (a6xx_gpu->sqe_bo) {
1597 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
1598 drm_gem_object_put(a6xx_gpu->sqe_bo);
1601 if (a6xx_gpu->shadow_bo) {
1602 msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace);
1603 drm_gem_object_put(a6xx_gpu->shadow_bo);
1606 a6xx_llc_slices_destroy(a6xx_gpu);
1608 a6xx_gmu_remove(a6xx_gpu);
1610 adreno_gpu_cleanup(adreno_gpu);
1615 static unsigned long a6xx_gpu_busy(struct msm_gpu *gpu)
1617 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1618 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1619 u64 busy_cycles, busy_time;
1622 /* Only read the gpu busy if the hardware is already active */
1623 if (pm_runtime_get_if_in_use(a6xx_gpu->gmu.dev) == 0)
1626 busy_cycles = gmu_read64(&a6xx_gpu->gmu,
1627 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
1628 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
1630 busy_time = (busy_cycles - gpu->devfreq.busy_cycles) * 10;
1631 do_div(busy_time, 192);
1633 gpu->devfreq.busy_cycles = busy_cycles;
1635 pm_runtime_put(a6xx_gpu->gmu.dev);
1637 if (WARN_ON(busy_time > ~0LU))
1640 return (unsigned long)busy_time;
1643 void a6xx_gpu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp)
1645 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1646 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1648 mutex_lock(&a6xx_gpu->gmu.lock);
1649 a6xx_gmu_set_freq(gpu, opp);
1650 mutex_unlock(&a6xx_gpu->gmu.lock);
1653 static struct msm_gem_address_space *
1654 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev)
1656 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1657 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1658 struct iommu_domain *iommu;
1659 struct msm_mmu *mmu;
1660 struct msm_gem_address_space *aspace;
1663 iommu = iommu_domain_alloc(&platform_bus_type);
1668 * This allows GPU to set the bus attributes required to use system
1669 * cache on behalf of the iommu page table walker.
1671 if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1672 adreno_set_llc_attributes(iommu);
1674 mmu = msm_iommu_new(&pdev->dev, iommu);
1676 iommu_domain_free(iommu);
1677 return ERR_CAST(mmu);
1681 * Use the aperture start or SZ_16M, whichever is greater. This will
1682 * ensure that we align with the allocated pagetable range while still
1683 * allowing room in the lower 32 bits for GMEM and whatnot
1685 start = max_t(u64, SZ_16M, iommu->geometry.aperture_start);
1686 size = iommu->geometry.aperture_end - start + 1;
1688 aspace = msm_gem_address_space_create(mmu, "gpu",
1689 start & GENMASK_ULL(48, 0), size);
1691 if (IS_ERR(aspace) && !IS_ERR(mmu))
1692 mmu->funcs->destroy(mmu);
1697 static struct msm_gem_address_space *
1698 a6xx_create_private_address_space(struct msm_gpu *gpu)
1700 struct msm_mmu *mmu;
1702 mmu = msm_iommu_pagetable_create(gpu->aspace->mmu);
1705 return ERR_CAST(mmu);
1707 return msm_gem_address_space_create(mmu,
1708 "gpu", 0x100000000ULL, 0x1ffffffffULL);
1711 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1713 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1714 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1716 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami)
1717 return a6xx_gpu->shadow[ring->id];
1719 return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR);
1722 static u32 a618_get_speed_bin(u32 fuse)
1726 else if (fuse == 169)
1728 else if (fuse == 174)
1734 static u32 fuse_to_supp_hw(struct device *dev, struct adreno_rev rev, u32 fuse)
1738 if (adreno_cmp_rev(ADRENO_REV(6, 1, 8, ANY_ID), rev))
1739 val = a618_get_speed_bin(fuse);
1741 if (val == UINT_MAX) {
1743 "missing support for speed-bin: %u. Some OPPs may not be supported by hardware",
1751 static int a6xx_set_supported_hw(struct device *dev, struct adreno_rev rev)
1753 u32 supp_hw = UINT_MAX;
1757 ret = nvmem_cell_read_variable_le_u32(dev, "speed_bin", &speedbin);
1759 * -ENOENT means that the platform doesn't support speedbin which is
1762 if (ret == -ENOENT) {
1766 "failed to read speed-bin (%d). Some OPPs may not be supported by hardware",
1771 supp_hw = fuse_to_supp_hw(dev, rev, speedbin);
1774 ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1);
1781 static const struct adreno_gpu_funcs funcs = {
1783 .get_param = adreno_get_param,
1784 .hw_init = a6xx_hw_init,
1785 .pm_suspend = a6xx_pm_suspend,
1786 .pm_resume = a6xx_pm_resume,
1787 .recover = a6xx_recover,
1788 .submit = a6xx_submit,
1789 .active_ring = a6xx_active_ring,
1791 .destroy = a6xx_destroy,
1792 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1795 .gpu_busy = a6xx_gpu_busy,
1796 .gpu_get_freq = a6xx_gmu_get_freq,
1797 .gpu_set_freq = a6xx_gpu_set_freq,
1798 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1799 .gpu_state_get = a6xx_gpu_state_get,
1800 .gpu_state_put = a6xx_gpu_state_put,
1802 .create_address_space = a6xx_create_address_space,
1803 .create_private_address_space = a6xx_create_private_address_space,
1804 .get_rptr = a6xx_get_rptr,
1806 .get_timestamp = a6xx_get_timestamp,
1809 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
1811 struct msm_drm_private *priv = dev->dev_private;
1812 struct platform_device *pdev = priv->gpu_pdev;
1813 struct adreno_platform_config *config = pdev->dev.platform_data;
1814 const struct adreno_info *info;
1815 struct device_node *node;
1816 struct a6xx_gpu *a6xx_gpu;
1817 struct adreno_gpu *adreno_gpu;
1818 struct msm_gpu *gpu;
1821 a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
1823 return ERR_PTR(-ENOMEM);
1825 adreno_gpu = &a6xx_gpu->base;
1826 gpu = &adreno_gpu->base;
1828 adreno_gpu->registers = NULL;
1831 * We need to know the platform type before calling into adreno_gpu_init
1832 * so that the hw_apriv flag can be correctly set. Snoop into the info
1833 * and grab the revision number
1835 info = adreno_info(config->rev);
1837 if (info && (info->revn == 650 || info->revn == 660 ||
1838 adreno_cmp_rev(ADRENO_REV(6, 3, 5, ANY_ID), info->rev)))
1839 adreno_gpu->base.hw_apriv = true;
1842 * For now only clamp to idle freq for devices where this is known not
1843 * to cause power supply issues:
1845 if (info && (info->revn == 618))
1846 gpu->clamp_to_idle = true;
1848 a6xx_llc_slices_init(pdev, a6xx_gpu);
1850 ret = a6xx_set_supported_hw(&pdev->dev, config->rev);
1852 a6xx_destroy(&(a6xx_gpu->base.base));
1853 return ERR_PTR(ret);
1856 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
1858 a6xx_destroy(&(a6xx_gpu->base.base));
1859 return ERR_PTR(ret);
1862 /* Check if there is a GMU phandle and set it up */
1863 node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
1865 /* FIXME: How do we gracefully handle this? */
1868 ret = a6xx_gmu_init(a6xx_gpu, node);
1870 a6xx_destroy(&(a6xx_gpu->base.base));
1871 return ERR_PTR(ret);
1875 msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
1876 a6xx_fault_handler);