91bc4abf5d3e578ae9dffe2dd2adfd9c4305e31e
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38  * set-context and then emitting the batch.
39  */
40 #define LEGACY_REQUEST_SIZE 200
41
42 int __intel_ring_space(int head, int tail, int size)
43 {
44         int space = head - tail;
45         if (space <= 0)
46                 space += size;
47         return space - I915_RING_FREE_SPACE;
48 }
49
50 void intel_ring_update_space(struct intel_ring *ring)
51 {
52         if (ring->last_retired_head != -1) {
53                 ring->head = ring->last_retired_head;
54                 ring->last_retired_head = -1;
55         }
56
57         ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
58                                          ring->tail, ring->size);
59 }
60
61 static int
62 gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63 {
64         struct intel_ring *ring = req->ring;
65         u32 cmd;
66         int ret;
67
68         cmd = MI_FLUSH;
69
70         if (mode & EMIT_INVALIDATE)
71                 cmd |= MI_READ_FLUSH;
72
73         ret = intel_ring_begin(req, 2);
74         if (ret)
75                 return ret;
76
77         intel_ring_emit(ring, cmd);
78         intel_ring_emit(ring, MI_NOOP);
79         intel_ring_advance(ring);
80
81         return 0;
82 }
83
84 static int
85 gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86 {
87         struct intel_ring *ring = req->ring;
88         u32 cmd;
89         int ret;
90
91         /*
92          * read/write caches:
93          *
94          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
95          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
96          * also flushed at 2d versus 3d pipeline switches.
97          *
98          * read-only caches:
99          *
100          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
101          * MI_READ_FLUSH is set, and is always flushed on 965.
102          *
103          * I915_GEM_DOMAIN_COMMAND may not exist?
104          *
105          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
106          * invalidated when MI_EXE_FLUSH is set.
107          *
108          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
109          * invalidated with every MI_FLUSH.
110          *
111          * TLBs:
112          *
113          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
114          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
115          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
116          * are flushed at any MI_FLUSH.
117          */
118
119         cmd = MI_FLUSH;
120         if (mode & EMIT_INVALIDATE) {
121                 cmd |= MI_EXE_FLUSH;
122                 if (IS_G4X(req->i915) || IS_GEN5(req->i915))
123                         cmd |= MI_INVALIDATE_ISP;
124         }
125
126         ret = intel_ring_begin(req, 2);
127         if (ret)
128                 return ret;
129
130         intel_ring_emit(ring, cmd);
131         intel_ring_emit(ring, MI_NOOP);
132         intel_ring_advance(ring);
133
134         return 0;
135 }
136
137 /**
138  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
139  * implementing two workarounds on gen6.  From section 1.4.7.1
140  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
141  *
142  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
143  * produced by non-pipelined state commands), software needs to first
144  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
145  * 0.
146  *
147  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
148  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
149  *
150  * And the workaround for these two requires this workaround first:
151  *
152  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
153  * BEFORE the pipe-control with a post-sync op and no write-cache
154  * flushes.
155  *
156  * And this last workaround is tricky because of the requirements on
157  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
158  * volume 2 part 1:
159  *
160  *     "1 of the following must also be set:
161  *      - Render Target Cache Flush Enable ([12] of DW1)
162  *      - Depth Cache Flush Enable ([0] of DW1)
163  *      - Stall at Pixel Scoreboard ([1] of DW1)
164  *      - Depth Stall ([13] of DW1)
165  *      - Post-Sync Operation ([13] of DW1)
166  *      - Notify Enable ([8] of DW1)"
167  *
168  * The cache flushes require the workaround flush that triggered this
169  * one, so we can't use it.  Depth stall would trigger the same.
170  * Post-sync nonzero is what triggered this second workaround, so we
171  * can't use that one either.  Notify enable is IRQs, which aren't
172  * really our business.  That leaves only stall at scoreboard.
173  */
174 static int
175 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176 {
177         struct intel_ring *ring = req->ring;
178         u32 scratch_addr =
179                 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
180         int ret;
181
182         ret = intel_ring_begin(req, 6);
183         if (ret)
184                 return ret;
185
186         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
189         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
190         intel_ring_emit(ring, 0); /* low dword */
191         intel_ring_emit(ring, 0); /* high dword */
192         intel_ring_emit(ring, MI_NOOP);
193         intel_ring_advance(ring);
194
195         ret = intel_ring_begin(req, 6);
196         if (ret)
197                 return ret;
198
199         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
202         intel_ring_emit(ring, 0);
203         intel_ring_emit(ring, 0);
204         intel_ring_emit(ring, MI_NOOP);
205         intel_ring_advance(ring);
206
207         return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212 {
213         struct intel_ring *ring = req->ring;
214         u32 scratch_addr =
215                 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
216         u32 flags = 0;
217         int ret;
218
219         /* Force SNB workarounds for PIPE_CONTROL flushes */
220         ret = intel_emit_post_sync_nonzero_flush(req);
221         if (ret)
222                 return ret;
223
224         /* Just flush everything.  Experiments have shown that reducing the
225          * number of bits based on the write domains has little performance
226          * impact.
227          */
228         if (mode & EMIT_FLUSH) {
229                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
230                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
231                 /*
232                  * Ensure that any following seqno writes only happen
233                  * when the render cache is indeed flushed.
234                  */
235                 flags |= PIPE_CONTROL_CS_STALL;
236         }
237         if (mode & EMIT_INVALIDATE) {
238                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
239                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
240                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
243                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
244                 /*
245                  * TLB invalidate requires a post-sync write.
246                  */
247                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248         }
249
250         ret = intel_ring_begin(req, 4);
251         if (ret)
252                 return ret;
253
254         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
255         intel_ring_emit(ring, flags);
256         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
257         intel_ring_emit(ring, 0);
258         intel_ring_advance(ring);
259
260         return 0;
261 }
262
263 static int
264 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265 {
266         struct intel_ring *ring = req->ring;
267         int ret;
268
269         ret = intel_ring_begin(req, 4);
270         if (ret)
271                 return ret;
272
273         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274         intel_ring_emit(ring,
275                         PIPE_CONTROL_CS_STALL |
276                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
277         intel_ring_emit(ring, 0);
278         intel_ring_emit(ring, 0);
279         intel_ring_advance(ring);
280
281         return 0;
282 }
283
284 static int
285 gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286 {
287         struct intel_ring *ring = req->ring;
288         u32 scratch_addr =
289                 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
290         u32 flags = 0;
291         int ret;
292
293         /*
294          * Ensure that any following seqno writes only happen when the render
295          * cache is indeed flushed.
296          *
297          * Workaround: 4th PIPE_CONTROL command (except the ones with only
298          * read-cache invalidate bits set) must have the CS_STALL bit set. We
299          * don't try to be clever and just set it unconditionally.
300          */
301         flags |= PIPE_CONTROL_CS_STALL;
302
303         /* Just flush everything.  Experiments have shown that reducing the
304          * number of bits based on the write domains has little performance
305          * impact.
306          */
307         if (mode & EMIT_FLUSH) {
308                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
309                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
312         }
313         if (mode & EMIT_INVALIDATE) {
314                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
315                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
316                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
317                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
318                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
319                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321                 /*
322                  * TLB invalidate requires a post-sync write.
323                  */
324                 flags |= PIPE_CONTROL_QW_WRITE;
325                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326
327                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
328
329                 /* Workaround: we must issue a pipe_control with CS-stall bit
330                  * set before a pipe_control command that has the state cache
331                  * invalidate bit set. */
332                 gen7_render_ring_cs_stall_wa(req);
333         }
334
335         ret = intel_ring_begin(req, 4);
336         if (ret)
337                 return ret;
338
339         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
340         intel_ring_emit(ring, flags);
341         intel_ring_emit(ring, scratch_addr);
342         intel_ring_emit(ring, 0);
343         intel_ring_advance(ring);
344
345         return 0;
346 }
347
348 static int
349 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350                        u32 flags, u32 scratch_addr)
351 {
352         struct intel_ring *ring = req->ring;
353         int ret;
354
355         ret = intel_ring_begin(req, 6);
356         if (ret)
357                 return ret;
358
359         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
360         intel_ring_emit(ring, flags);
361         intel_ring_emit(ring, scratch_addr);
362         intel_ring_emit(ring, 0);
363         intel_ring_emit(ring, 0);
364         intel_ring_emit(ring, 0);
365         intel_ring_advance(ring);
366
367         return 0;
368 }
369
370 static int
371 gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
372 {
373         u32 scratch_addr =
374                 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
375         u32 flags = 0;
376         int ret;
377
378         flags |= PIPE_CONTROL_CS_STALL;
379
380         if (mode & EMIT_FLUSH) {
381                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
382                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
385         }
386         if (mode & EMIT_INVALIDATE) {
387                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
388                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
389                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
390                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
391                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
392                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
393                 flags |= PIPE_CONTROL_QW_WRITE;
394                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395
396                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397                 ret = gen8_emit_pipe_control(req,
398                                              PIPE_CONTROL_CS_STALL |
399                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
400                                              0);
401                 if (ret)
402                         return ret;
403         }
404
405         return gen8_emit_pipe_control(req, flags, scratch_addr);
406 }
407
408 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
409 {
410         struct drm_i915_private *dev_priv = engine->i915;
411         u32 addr;
412
413         addr = dev_priv->status_page_dmah->busaddr;
414         if (INTEL_GEN(dev_priv) >= 4)
415                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
416         I915_WRITE(HWS_PGA, addr);
417 }
418
419 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
420 {
421         struct drm_i915_private *dev_priv = engine->i915;
422         i915_reg_t mmio;
423
424         /* The ring status page addresses are no longer next to the rest of
425          * the ring registers as of gen7.
426          */
427         if (IS_GEN7(dev_priv)) {
428                 switch (engine->id) {
429                 case RCS:
430                         mmio = RENDER_HWS_PGA_GEN7;
431                         break;
432                 case BCS:
433                         mmio = BLT_HWS_PGA_GEN7;
434                         break;
435                 /*
436                  * VCS2 actually doesn't exist on Gen7. Only shut up
437                  * gcc switch check warning
438                  */
439                 case VCS2:
440                 case VCS:
441                         mmio = BSD_HWS_PGA_GEN7;
442                         break;
443                 case VECS:
444                         mmio = VEBOX_HWS_PGA_GEN7;
445                         break;
446                 }
447         } else if (IS_GEN6(dev_priv)) {
448                 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
449         } else {
450                 /* XXX: gen8 returns to sanity */
451                 mmio = RING_HWS_PGA(engine->mmio_base);
452         }
453
454         I915_WRITE(mmio, engine->status_page.ggtt_offset);
455         POSTING_READ(mmio);
456
457         /*
458          * Flush the TLB for this page
459          *
460          * FIXME: These two bits have disappeared on gen8, so a question
461          * arises: do we still need this and if so how should we go about
462          * invalidating the TLB?
463          */
464         if (IS_GEN(dev_priv, 6, 7)) {
465                 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
466
467                 /* ring should be idle before issuing a sync flush*/
468                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
469
470                 I915_WRITE(reg,
471                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
472                                               INSTPM_SYNC_FLUSH));
473                 if (intel_wait_for_register(dev_priv,
474                                             reg, INSTPM_SYNC_FLUSH, 0,
475                                             1000))
476                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
477                                   engine->name);
478         }
479 }
480
481 static bool stop_ring(struct intel_engine_cs *engine)
482 {
483         struct drm_i915_private *dev_priv = engine->i915;
484
485         if (INTEL_GEN(dev_priv) > 2) {
486                 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
487                 if (intel_wait_for_register(dev_priv,
488                                             RING_MI_MODE(engine->mmio_base),
489                                             MODE_IDLE,
490                                             MODE_IDLE,
491                                             1000)) {
492                         DRM_ERROR("%s : timed out trying to stop ring\n",
493                                   engine->name);
494                         /* Sometimes we observe that the idle flag is not
495                          * set even though the ring is empty. So double
496                          * check before giving up.
497                          */
498                         if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
499                                 return false;
500                 }
501         }
502
503         I915_WRITE_CTL(engine, 0);
504         I915_WRITE_HEAD(engine, 0);
505         I915_WRITE_TAIL(engine, 0);
506
507         if (INTEL_GEN(dev_priv) > 2) {
508                 (void)I915_READ_CTL(engine);
509                 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
510         }
511
512         return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
513 }
514
515 static int init_ring_common(struct intel_engine_cs *engine)
516 {
517         struct drm_i915_private *dev_priv = engine->i915;
518         struct intel_ring *ring = engine->buffer;
519         int ret = 0;
520
521         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
522
523         if (!stop_ring(engine)) {
524                 /* G45 ring initialization often fails to reset head to zero */
525                 DRM_DEBUG_KMS("%s head not reset to zero "
526                               "ctl %08x head %08x tail %08x start %08x\n",
527                               engine->name,
528                               I915_READ_CTL(engine),
529                               I915_READ_HEAD(engine),
530                               I915_READ_TAIL(engine),
531                               I915_READ_START(engine));
532
533                 if (!stop_ring(engine)) {
534                         DRM_ERROR("failed to set %s head to zero "
535                                   "ctl %08x head %08x tail %08x start %08x\n",
536                                   engine->name,
537                                   I915_READ_CTL(engine),
538                                   I915_READ_HEAD(engine),
539                                   I915_READ_TAIL(engine),
540                                   I915_READ_START(engine));
541                         ret = -EIO;
542                         goto out;
543                 }
544         }
545
546         if (HWS_NEEDS_PHYSICAL(dev_priv))
547                 ring_setup_phys_status_page(engine);
548         else
549                 intel_ring_setup_status_page(engine);
550
551         intel_engine_reset_breadcrumbs(engine);
552
553         /* Enforce ordering by reading HEAD register back */
554         I915_READ_HEAD(engine);
555
556         /* Initialize the ring. This must happen _after_ we've cleared the ring
557          * registers with the above sequence (the readback of the HEAD registers
558          * also enforces ordering), otherwise the hw might lose the new ring
559          * register values. */
560         I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
561
562         /* WaClearRingBufHeadRegAtInit:ctg,elk */
563         if (I915_READ_HEAD(engine))
564                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
565                           engine->name, I915_READ_HEAD(engine));
566
567         intel_ring_update_space(ring);
568         I915_WRITE_HEAD(engine, ring->head);
569         I915_WRITE_TAIL(engine, ring->tail);
570         (void)I915_READ_TAIL(engine);
571
572         I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
573
574         /* If the head is still not zero, the ring is dead */
575         if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
576                                        RING_VALID, RING_VALID,
577                                        50)) {
578                 DRM_ERROR("%s initialization failed "
579                           "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
580                           engine->name,
581                           I915_READ_CTL(engine),
582                           I915_READ_CTL(engine) & RING_VALID,
583                           I915_READ_HEAD(engine), ring->head,
584                           I915_READ_TAIL(engine), ring->tail,
585                           I915_READ_START(engine),
586                           i915_ggtt_offset(ring->vma));
587                 ret = -EIO;
588                 goto out;
589         }
590
591         intel_engine_init_hangcheck(engine);
592
593 out:
594         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
595
596         return ret;
597 }
598
599 static void reset_ring_common(struct intel_engine_cs *engine,
600                               struct drm_i915_gem_request *request)
601 {
602         /* Try to restore the logical GPU state to match the continuation
603          * of the request queue. If we skip the context/PD restore, then
604          * the next request may try to execute assuming that its context
605          * is valid and loaded on the GPU and so may try to access invalid
606          * memory, prompting repeated GPU hangs.
607          *
608          * If the request was guilty, we still restore the logical state
609          * in case the next request requires it (e.g. the aliasing ppgtt),
610          * but skip over the hung batch.
611          *
612          * If the request was innocent, we try to replay the request with
613          * the restored context.
614          */
615         if (request) {
616                 struct drm_i915_private *dev_priv = request->i915;
617                 struct intel_context *ce = &request->ctx->engine[engine->id];
618                 struct i915_hw_ppgtt *ppgtt;
619
620                 /* FIXME consider gen8 reset */
621
622                 if (ce->state) {
623                         I915_WRITE(CCID,
624                                    i915_ggtt_offset(ce->state) |
625                                    BIT(8) /* must be set! */ |
626                                    CCID_EXTENDED_STATE_SAVE |
627                                    CCID_EXTENDED_STATE_RESTORE |
628                                    CCID_EN);
629                 }
630
631                 ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
632                 if (ppgtt) {
633                         u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
634
635                         I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
636                         I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
637
638                         /* Wait for the PD reload to complete */
639                         if (intel_wait_for_register(dev_priv,
640                                                     RING_PP_DIR_BASE(engine),
641                                                     BIT(0), 0,
642                                                     10))
643                                 DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
644
645                         ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
646                 }
647
648                 /* If the rq hung, jump to its breadcrumb and skip the batch */
649                 if (request->fence.error == -EIO) {
650                         struct intel_ring *ring = request->ring;
651
652                         ring->head = request->postfix;
653                         ring->last_retired_head = -1;
654                 }
655         } else {
656                 engine->legacy_active_context = NULL;
657         }
658 }
659
660 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
661 {
662         struct intel_ring *ring = req->ring;
663         struct i915_workarounds *w = &req->i915->workarounds;
664         int ret, i;
665
666         if (w->count == 0)
667                 return 0;
668
669         ret = req->engine->emit_flush(req, EMIT_BARRIER);
670         if (ret)
671                 return ret;
672
673         ret = intel_ring_begin(req, (w->count * 2 + 2));
674         if (ret)
675                 return ret;
676
677         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
678         for (i = 0; i < w->count; i++) {
679                 intel_ring_emit_reg(ring, w->reg[i].addr);
680                 intel_ring_emit(ring, w->reg[i].value);
681         }
682         intel_ring_emit(ring, MI_NOOP);
683
684         intel_ring_advance(ring);
685
686         ret = req->engine->emit_flush(req, EMIT_BARRIER);
687         if (ret)
688                 return ret;
689
690         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
691
692         return 0;
693 }
694
695 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
696 {
697         int ret;
698
699         ret = intel_ring_workarounds_emit(req);
700         if (ret != 0)
701                 return ret;
702
703         ret = i915_gem_render_state_emit(req);
704         if (ret)
705                 return ret;
706
707         return 0;
708 }
709
710 static int wa_add(struct drm_i915_private *dev_priv,
711                   i915_reg_t addr,
712                   const u32 mask, const u32 val)
713 {
714         const u32 idx = dev_priv->workarounds.count;
715
716         if (WARN_ON(idx >= I915_MAX_WA_REGS))
717                 return -ENOSPC;
718
719         dev_priv->workarounds.reg[idx].addr = addr;
720         dev_priv->workarounds.reg[idx].value = val;
721         dev_priv->workarounds.reg[idx].mask = mask;
722
723         dev_priv->workarounds.count++;
724
725         return 0;
726 }
727
728 #define WA_REG(addr, mask, val) do { \
729                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
730                 if (r) \
731                         return r; \
732         } while (0)
733
734 #define WA_SET_BIT_MASKED(addr, mask) \
735         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
736
737 #define WA_CLR_BIT_MASKED(addr, mask) \
738         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
739
740 #define WA_SET_FIELD_MASKED(addr, mask, value) \
741         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
742
743 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
744 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
745
746 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
747
748 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
749                                  i915_reg_t reg)
750 {
751         struct drm_i915_private *dev_priv = engine->i915;
752         struct i915_workarounds *wa = &dev_priv->workarounds;
753         const uint32_t index = wa->hw_whitelist_count[engine->id];
754
755         if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
756                 return -EINVAL;
757
758         WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
759                  i915_mmio_reg_offset(reg));
760         wa->hw_whitelist_count[engine->id]++;
761
762         return 0;
763 }
764
765 static int gen8_init_workarounds(struct intel_engine_cs *engine)
766 {
767         struct drm_i915_private *dev_priv = engine->i915;
768
769         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
770
771         /* WaDisableAsyncFlipPerfMode:bdw,chv */
772         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
773
774         /* WaDisablePartialInstShootdown:bdw,chv */
775         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
776                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
777
778         /* Use Force Non-Coherent whenever executing a 3D context. This is a
779          * workaround for for a possible hang in the unlikely event a TLB
780          * invalidation occurs during a PSD flush.
781          */
782         /* WaForceEnableNonCoherent:bdw,chv */
783         /* WaHdcDisableFetchWhenMasked:bdw,chv */
784         WA_SET_BIT_MASKED(HDC_CHICKEN0,
785                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
786                           HDC_FORCE_NON_COHERENT);
787
788         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
789          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
790          *  polygons in the same 8x4 pixel/sample area to be processed without
791          *  stalling waiting for the earlier ones to write to Hierarchical Z
792          *  buffer."
793          *
794          * This optimization is off by default for BDW and CHV; turn it on.
795          */
796         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
797
798         /* Wa4x4STCOptimizationDisable:bdw,chv */
799         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
800
801         /*
802          * BSpec recommends 8x4 when MSAA is used,
803          * however in practice 16x4 seems fastest.
804          *
805          * Note that PS/WM thread counts depend on the WIZ hashing
806          * disable bit, which we don't touch here, but it's good
807          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
808          */
809         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
810                             GEN6_WIZ_HASHING_MASK,
811                             GEN6_WIZ_HASHING_16x4);
812
813         return 0;
814 }
815
816 static int bdw_init_workarounds(struct intel_engine_cs *engine)
817 {
818         struct drm_i915_private *dev_priv = engine->i915;
819         int ret;
820
821         ret = gen8_init_workarounds(engine);
822         if (ret)
823                 return ret;
824
825         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
826         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
827
828         /* WaDisableDopClockGating:bdw */
829         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
830                           DOP_CLOCK_GATING_DISABLE);
831
832         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
833                           GEN8_SAMPLER_POWER_BYPASS_DIS);
834
835         WA_SET_BIT_MASKED(HDC_CHICKEN0,
836                           /* WaForceContextSaveRestoreNonCoherent:bdw */
837                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
838                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
839                           (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
840
841         return 0;
842 }
843
844 static int chv_init_workarounds(struct intel_engine_cs *engine)
845 {
846         struct drm_i915_private *dev_priv = engine->i915;
847         int ret;
848
849         ret = gen8_init_workarounds(engine);
850         if (ret)
851                 return ret;
852
853         /* WaDisableThreadStallDopClockGating:chv */
854         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
855
856         /* Improve HiZ throughput on CHV. */
857         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
858
859         return 0;
860 }
861
862 static int gen9_init_workarounds(struct intel_engine_cs *engine)
863 {
864         struct drm_i915_private *dev_priv = engine->i915;
865         int ret;
866
867         /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
868         I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
869
870         /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
871         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
872                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
873
874         /* WaDisableKillLogic:bxt,skl,kbl */
875         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
876                    ECOCHK_DIS_TLB);
877
878         /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
879         /* WaDisablePartialInstShootdown:skl,bxt,kbl */
880         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
881                           FLOW_CONTROL_ENABLE |
882                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
883
884         /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
885         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
886                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
887
888         /* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
889         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
890                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
891                                   GEN9_DG_MIRROR_FIX_ENABLE);
892
893         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
894         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
895                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
896                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
897                 /*
898                  * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
899                  * but we do that in per ctx batchbuffer as there is an issue
900                  * with this register not getting restored on ctx restore
901                  */
902         }
903
904         /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
905         WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
906                           GEN9_ENABLE_GPGPU_PREEMPTION);
907
908         /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
909         /* WaDisablePartialResolveInVc:skl,bxt,kbl */
910         WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
911                                          GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
912
913         /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
914         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
915                           GEN9_CCS_TLB_PREFETCH_ENABLE);
916
917         /* WaDisableMaskBasedCammingInRCC:bxt */
918         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
919                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
920                                   PIXEL_MASK_CAMMING_DISABLE);
921
922         /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
923         WA_SET_BIT_MASKED(HDC_CHICKEN0,
924                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
925                           HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
926
927         /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
928          * both tied to WaForceContextSaveRestoreNonCoherent
929          * in some hsds for skl. We keep the tie for all gen9. The
930          * documentation is a bit hazy and so we want to get common behaviour,
931          * even though there is no clear evidence we would need both on kbl/bxt.
932          * This area has been source of system hangs so we play it safe
933          * and mimic the skl regardless of what bspec says.
934          *
935          * Use Force Non-Coherent whenever executing a 3D context. This
936          * is a workaround for a possible hang in the unlikely event
937          * a TLB invalidation occurs during a PSD flush.
938          */
939
940         /* WaForceEnableNonCoherent:skl,bxt,kbl */
941         WA_SET_BIT_MASKED(HDC_CHICKEN0,
942                           HDC_FORCE_NON_COHERENT);
943
944         /* WaDisableHDCInvalidation:skl,bxt,kbl */
945         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
946                    BDW_DISABLE_HDC_INVALIDATION);
947
948         /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
949         if (IS_SKYLAKE(dev_priv) ||
950             IS_KABYLAKE(dev_priv) ||
951             IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
952                 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
953                                   GEN8_SAMPLER_POWER_BYPASS_DIS);
954
955         /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
956         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
957
958         /* WaOCLCoherentLineFlush:skl,bxt,kbl */
959         I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
960                                     GEN8_LQSC_FLUSH_COHERENT_LINES));
961
962         /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
963         ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
964         if (ret)
965                 return ret;
966
967         /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
968         ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
969         if (ret)
970                 return ret;
971
972         /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
973         ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
974         if (ret)
975                 return ret;
976
977         return 0;
978 }
979
980 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
981 {
982         struct drm_i915_private *dev_priv = engine->i915;
983         u8 vals[3] = { 0, 0, 0 };
984         unsigned int i;
985
986         for (i = 0; i < 3; i++) {
987                 u8 ss;
988
989                 /*
990                  * Only consider slices where one, and only one, subslice has 7
991                  * EUs
992                  */
993                 if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
994                         continue;
995
996                 /*
997                  * subslice_7eu[i] != 0 (because of the check above) and
998                  * ss_max == 4 (maximum number of subslices possible per slice)
999                  *
1000                  * ->    0 <= ss <= 3;
1001                  */
1002                 ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
1003                 vals[i] = 3 - ss;
1004         }
1005
1006         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1007                 return 0;
1008
1009         /* Tune IZ hashing. See intel_device_info_runtime_init() */
1010         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1011                             GEN9_IZ_HASHING_MASK(2) |
1012                             GEN9_IZ_HASHING_MASK(1) |
1013                             GEN9_IZ_HASHING_MASK(0),
1014                             GEN9_IZ_HASHING(2, vals[2]) |
1015                             GEN9_IZ_HASHING(1, vals[1]) |
1016                             GEN9_IZ_HASHING(0, vals[0]));
1017
1018         return 0;
1019 }
1020
1021 static int skl_init_workarounds(struct intel_engine_cs *engine)
1022 {
1023         struct drm_i915_private *dev_priv = engine->i915;
1024         int ret;
1025
1026         ret = gen9_init_workarounds(engine);
1027         if (ret)
1028                 return ret;
1029
1030         /*
1031          * Actual WA is to disable percontext preemption granularity control
1032          * until D0 which is the default case so this is equivalent to
1033          * !WaDisablePerCtxtPreemptionGranularityControl:skl
1034          */
1035         I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1036                    _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1037
1038         /* WaEnableGapsTsvCreditFix:skl */
1039         I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1040                                    GEN9_GAPS_TSV_CREDIT_DISABLE));
1041
1042         /* WaDisableGafsUnitClkGating:skl */
1043         WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1044
1045         /* WaInPlaceDecompressionHang:skl */
1046         if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
1047                 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1048                            GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1049
1050         /* WaDisableLSQCROPERFforOCL:skl */
1051         ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1052         if (ret)
1053                 return ret;
1054
1055         return skl_tune_iz_hashing(engine);
1056 }
1057
1058 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1059 {
1060         struct drm_i915_private *dev_priv = engine->i915;
1061         int ret;
1062
1063         ret = gen9_init_workarounds(engine);
1064         if (ret)
1065                 return ret;
1066
1067         /* WaStoreMultiplePTEenable:bxt */
1068         /* This is a requirement according to Hardware specification */
1069         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1070                 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1071
1072         /* WaSetClckGatingDisableMedia:bxt */
1073         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1074                 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1075                                             ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1076         }
1077
1078         /* WaDisableThreadStallDopClockGating:bxt */
1079         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1080                           STALL_DOP_GATING_DISABLE);
1081
1082         /* WaDisablePooledEuLoadBalancingFix:bxt */
1083         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1084                 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1085                                   GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1086         }
1087
1088         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1089         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1090                 WA_SET_BIT_MASKED(
1091                         GEN7_HALF_SLICE_CHICKEN1,
1092                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1093         }
1094
1095         /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1096         /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1097         /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1098         /* WaDisableLSQCROPERFforOCL:bxt */
1099         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1100                 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1101                 if (ret)
1102                         return ret;
1103
1104                 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1105                 if (ret)
1106                         return ret;
1107         }
1108
1109         /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1110         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1111                 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1112                                            L3_HIGH_PRIO_CREDITS(2));
1113
1114         /* WaToEnableHwFixForPushConstHWBug:bxt */
1115         if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1116                 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1117                                   GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1118
1119         /* WaInPlaceDecompressionHang:bxt */
1120         if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1121                 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1122                            GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1123
1124         return 0;
1125 }
1126
1127 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1128 {
1129         struct drm_i915_private *dev_priv = engine->i915;
1130         int ret;
1131
1132         ret = gen9_init_workarounds(engine);
1133         if (ret)
1134                 return ret;
1135
1136         /* WaEnableGapsTsvCreditFix:kbl */
1137         I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1138                                    GEN9_GAPS_TSV_CREDIT_DISABLE));
1139
1140         /* WaDisableDynamicCreditSharing:kbl */
1141         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1142                 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1143                            GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1144
1145         /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1146         if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1147                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1148                                   HDC_FENCE_DEST_SLM_DISABLE);
1149
1150         /* WaToEnableHwFixForPushConstHWBug:kbl */
1151         if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1152                 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1153                                   GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1154
1155         /* WaDisableGafsUnitClkGating:kbl */
1156         WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1157
1158         /* WaDisableSbeCacheDispatchPortSharing:kbl */
1159         WA_SET_BIT_MASKED(
1160                 GEN7_HALF_SLICE_CHICKEN1,
1161                 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1162
1163         /* WaInPlaceDecompressionHang:kbl */
1164         WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1165                    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1166
1167         /* WaDisableLSQCROPERFforOCL:kbl */
1168         ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1169         if (ret)
1170                 return ret;
1171
1172         return 0;
1173 }
1174
1175 int init_workarounds_ring(struct intel_engine_cs *engine)
1176 {
1177         struct drm_i915_private *dev_priv = engine->i915;
1178
1179         WARN_ON(engine->id != RCS);
1180
1181         dev_priv->workarounds.count = 0;
1182         dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1183
1184         if (IS_BROADWELL(dev_priv))
1185                 return bdw_init_workarounds(engine);
1186
1187         if (IS_CHERRYVIEW(dev_priv))
1188                 return chv_init_workarounds(engine);
1189
1190         if (IS_SKYLAKE(dev_priv))
1191                 return skl_init_workarounds(engine);
1192
1193         if (IS_BROXTON(dev_priv))
1194                 return bxt_init_workarounds(engine);
1195
1196         if (IS_KABYLAKE(dev_priv))
1197                 return kbl_init_workarounds(engine);
1198
1199         return 0;
1200 }
1201
1202 static int init_render_ring(struct intel_engine_cs *engine)
1203 {
1204         struct drm_i915_private *dev_priv = engine->i915;
1205         int ret = init_ring_common(engine);
1206         if (ret)
1207                 return ret;
1208
1209         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1210         if (IS_GEN(dev_priv, 4, 6))
1211                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1212
1213         /* We need to disable the AsyncFlip performance optimisations in order
1214          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1215          * programmed to '1' on all products.
1216          *
1217          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1218          */
1219         if (IS_GEN(dev_priv, 6, 7))
1220                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1221
1222         /* Required for the hardware to program scanline values for waiting */
1223         /* WaEnableFlushTlbInvalidationMode:snb */
1224         if (IS_GEN6(dev_priv))
1225                 I915_WRITE(GFX_MODE,
1226                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1227
1228         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1229         if (IS_GEN7(dev_priv))
1230                 I915_WRITE(GFX_MODE_GEN7,
1231                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1232                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1233
1234         if (IS_GEN6(dev_priv)) {
1235                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1236                  * "If this bit is set, STCunit will have LRA as replacement
1237                  *  policy. [...] This bit must be reset.  LRA replacement
1238                  *  policy is not supported."
1239                  */
1240                 I915_WRITE(CACHE_MODE_0,
1241                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1242         }
1243
1244         if (IS_GEN(dev_priv, 6, 7))
1245                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1246
1247         if (INTEL_INFO(dev_priv)->gen >= 6)
1248                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1249
1250         return init_workarounds_ring(engine);
1251 }
1252
1253 static void render_ring_cleanup(struct intel_engine_cs *engine)
1254 {
1255         struct drm_i915_private *dev_priv = engine->i915;
1256
1257         i915_vma_unpin_and_release(&dev_priv->semaphore);
1258 }
1259
1260 static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *out)
1261 {
1262         struct drm_i915_private *dev_priv = req->i915;
1263         struct intel_engine_cs *waiter;
1264         enum intel_engine_id id;
1265
1266         for_each_engine(waiter, dev_priv, id) {
1267                 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1268                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1269                         continue;
1270
1271                 *out++ = GFX_OP_PIPE_CONTROL(6);
1272                 *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1273                           PIPE_CONTROL_QW_WRITE |
1274                           PIPE_CONTROL_CS_STALL);
1275                 *out++ = lower_32_bits(gtt_offset);
1276                 *out++ = upper_32_bits(gtt_offset);
1277                 *out++ = req->global_seqno;
1278                 *out++ = 0;
1279                 *out++ = (MI_SEMAPHORE_SIGNAL |
1280                           MI_SEMAPHORE_TARGET(waiter->hw_id));
1281                 *out++ = 0;
1282         }
1283
1284         return out;
1285 }
1286
1287 static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *out)
1288 {
1289         struct drm_i915_private *dev_priv = req->i915;
1290         struct intel_engine_cs *waiter;
1291         enum intel_engine_id id;
1292
1293         for_each_engine(waiter, dev_priv, id) {
1294                 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1295                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1296                         continue;
1297
1298                 *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1299                 *out++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
1300                 *out++ = upper_32_bits(gtt_offset);
1301                 *out++ = req->global_seqno;
1302                 *out++ = (MI_SEMAPHORE_SIGNAL |
1303                           MI_SEMAPHORE_TARGET(waiter->hw_id));
1304                 *out++ = 0;
1305         }
1306
1307         return out;
1308 }
1309
1310 static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *out)
1311 {
1312         struct drm_i915_private *dev_priv = req->i915;
1313         struct intel_engine_cs *engine;
1314         enum intel_engine_id id;
1315         int num_rings = 0;
1316
1317         for_each_engine(engine, dev_priv, id) {
1318                 i915_reg_t mbox_reg;
1319
1320                 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
1321                         continue;
1322
1323                 mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1324                 if (i915_mmio_reg_valid(mbox_reg)) {
1325                         *out++ = MI_LOAD_REGISTER_IMM(1);
1326                         *out++ = i915_mmio_reg_offset(mbox_reg);
1327                         *out++ = req->global_seqno;
1328                         num_rings++;
1329                 }
1330         }
1331         if (num_rings & 1)
1332                 *out++ = MI_NOOP;
1333
1334         return out;
1335 }
1336
1337 static void i9xx_submit_request(struct drm_i915_gem_request *request)
1338 {
1339         struct drm_i915_private *dev_priv = request->i915;
1340
1341         i915_gem_request_submit(request);
1342
1343         I915_WRITE_TAIL(request->engine, request->tail);
1344 }
1345
1346 static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req,
1347                                  u32 *out)
1348 {
1349         *out++ = MI_STORE_DWORD_INDEX;
1350         *out++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
1351         *out++ = req->global_seqno;
1352         *out++ = MI_USER_INTERRUPT;
1353
1354         req->tail = intel_ring_offset(req->ring, out);
1355 }
1356
1357 static const int i9xx_emit_breadcrumb_sz = 4;
1358
1359 /**
1360  * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
1361  *
1362  * @request - request to write to the ring
1363  *
1364  * Update the mailbox registers in the *other* rings with the current seqno.
1365  * This acts like a signal in the canonical semaphore.
1366  */
1367 static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req,
1368                                       u32 *out)
1369 {
1370         return i9xx_emit_breadcrumb(req,
1371                                     req->engine->semaphore.signal(req, out));
1372 }
1373
1374 static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
1375                                         u32 *out)
1376 {
1377         struct intel_engine_cs *engine = req->engine;
1378
1379         if (engine->semaphore.signal)
1380                 out = engine->semaphore.signal(req, out);
1381
1382         *out++ = GFX_OP_PIPE_CONTROL(6);
1383         *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1384                                PIPE_CONTROL_CS_STALL |
1385                                PIPE_CONTROL_QW_WRITE);
1386         *out++ = intel_hws_seqno_address(engine);
1387         *out++ = 0;
1388         *out++ = req->global_seqno;
1389         /* We're thrashing one dword of HWS. */
1390         *out++ = 0;
1391         *out++ = MI_USER_INTERRUPT;
1392         *out++ = MI_NOOP;
1393
1394         req->tail = intel_ring_offset(req->ring, out);
1395 }
1396
1397 static const int gen8_render_emit_breadcrumb_sz = 8;
1398
1399 /**
1400  * intel_ring_sync - sync the waiter to the signaller on seqno
1401  *
1402  * @waiter - ring that is waiting
1403  * @signaller - ring which has, or will signal
1404  * @seqno - seqno which the waiter will block on
1405  */
1406
1407 static int
1408 gen8_ring_sync_to(struct drm_i915_gem_request *req,
1409                   struct drm_i915_gem_request *signal)
1410 {
1411         struct intel_ring *ring = req->ring;
1412         struct drm_i915_private *dev_priv = req->i915;
1413         u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1414         struct i915_hw_ppgtt *ppgtt;
1415         int ret;
1416
1417         ret = intel_ring_begin(req, 4);
1418         if (ret)
1419                 return ret;
1420
1421         intel_ring_emit(ring,
1422                         MI_SEMAPHORE_WAIT |
1423                         MI_SEMAPHORE_GLOBAL_GTT |
1424                         MI_SEMAPHORE_SAD_GTE_SDD);
1425         intel_ring_emit(ring, signal->global_seqno);
1426         intel_ring_emit(ring, lower_32_bits(offset));
1427         intel_ring_emit(ring, upper_32_bits(offset));
1428         intel_ring_advance(ring);
1429
1430         /* When the !RCS engines idle waiting upon a semaphore, they lose their
1431          * pagetables and we must reload them before executing the batch.
1432          * We do this on the i915_switch_context() following the wait and
1433          * before the dispatch.
1434          */
1435         ppgtt = req->ctx->ppgtt;
1436         if (ppgtt && req->engine->id != RCS)
1437                 ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1438         return 0;
1439 }
1440
1441 static int
1442 gen6_ring_sync_to(struct drm_i915_gem_request *req,
1443                   struct drm_i915_gem_request *signal)
1444 {
1445         struct intel_ring *ring = req->ring;
1446         u32 dw1 = MI_SEMAPHORE_MBOX |
1447                   MI_SEMAPHORE_COMPARE |
1448                   MI_SEMAPHORE_REGISTER;
1449         u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1450         int ret;
1451
1452         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1453
1454         ret = intel_ring_begin(req, 4);
1455         if (ret)
1456                 return ret;
1457
1458         intel_ring_emit(ring, dw1 | wait_mbox);
1459         /* Throughout all of the GEM code, seqno passed implies our current
1460          * seqno is >= the last seqno executed. However for hardware the
1461          * comparison is strictly greater than.
1462          */
1463         intel_ring_emit(ring, signal->global_seqno - 1);
1464         intel_ring_emit(ring, 0);
1465         intel_ring_emit(ring, MI_NOOP);
1466         intel_ring_advance(ring);
1467
1468         return 0;
1469 }
1470
1471 static void
1472 gen5_seqno_barrier(struct intel_engine_cs *engine)
1473 {
1474         /* MI_STORE are internally buffered by the GPU and not flushed
1475          * either by MI_FLUSH or SyncFlush or any other combination of
1476          * MI commands.
1477          *
1478          * "Only the submission of the store operation is guaranteed.
1479          * The write result will be complete (coherent) some time later
1480          * (this is practically a finite period but there is no guaranteed
1481          * latency)."
1482          *
1483          * Empirically, we observe that we need a delay of at least 75us to
1484          * be sure that the seqno write is visible by the CPU.
1485          */
1486         usleep_range(125, 250);
1487 }
1488
1489 static void
1490 gen6_seqno_barrier(struct intel_engine_cs *engine)
1491 {
1492         struct drm_i915_private *dev_priv = engine->i915;
1493
1494         /* Workaround to force correct ordering between irq and seqno writes on
1495          * ivb (and maybe also on snb) by reading from a CS register (like
1496          * ACTHD) before reading the status page.
1497          *
1498          * Note that this effectively stalls the read by the time it takes to
1499          * do a memory transaction, which more or less ensures that the write
1500          * from the GPU has sufficient time to invalidate the CPU cacheline.
1501          * Alternatively we could delay the interrupt from the CS ring to give
1502          * the write time to land, but that would incur a delay after every
1503          * batch i.e. much more frequent than a delay when waiting for the
1504          * interrupt (with the same net latency).
1505          *
1506          * Also note that to prevent whole machine hangs on gen7, we have to
1507          * take the spinlock to guard against concurrent cacheline access.
1508          */
1509         spin_lock_irq(&dev_priv->uncore.lock);
1510         POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1511         spin_unlock_irq(&dev_priv->uncore.lock);
1512 }
1513
1514 static void
1515 gen5_irq_enable(struct intel_engine_cs *engine)
1516 {
1517         gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1518 }
1519
1520 static void
1521 gen5_irq_disable(struct intel_engine_cs *engine)
1522 {
1523         gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1524 }
1525
1526 static void
1527 i9xx_irq_enable(struct intel_engine_cs *engine)
1528 {
1529         struct drm_i915_private *dev_priv = engine->i915;
1530
1531         dev_priv->irq_mask &= ~engine->irq_enable_mask;
1532         I915_WRITE(IMR, dev_priv->irq_mask);
1533         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1534 }
1535
1536 static void
1537 i9xx_irq_disable(struct intel_engine_cs *engine)
1538 {
1539         struct drm_i915_private *dev_priv = engine->i915;
1540
1541         dev_priv->irq_mask |= engine->irq_enable_mask;
1542         I915_WRITE(IMR, dev_priv->irq_mask);
1543 }
1544
1545 static void
1546 i8xx_irq_enable(struct intel_engine_cs *engine)
1547 {
1548         struct drm_i915_private *dev_priv = engine->i915;
1549
1550         dev_priv->irq_mask &= ~engine->irq_enable_mask;
1551         I915_WRITE16(IMR, dev_priv->irq_mask);
1552         POSTING_READ16(RING_IMR(engine->mmio_base));
1553 }
1554
1555 static void
1556 i8xx_irq_disable(struct intel_engine_cs *engine)
1557 {
1558         struct drm_i915_private *dev_priv = engine->i915;
1559
1560         dev_priv->irq_mask |= engine->irq_enable_mask;
1561         I915_WRITE16(IMR, dev_priv->irq_mask);
1562 }
1563
1564 static int
1565 bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1566 {
1567         struct intel_ring *ring = req->ring;
1568         int ret;
1569
1570         ret = intel_ring_begin(req, 2);
1571         if (ret)
1572                 return ret;
1573
1574         intel_ring_emit(ring, MI_FLUSH);
1575         intel_ring_emit(ring, MI_NOOP);
1576         intel_ring_advance(ring);
1577         return 0;
1578 }
1579
1580 static void
1581 gen6_irq_enable(struct intel_engine_cs *engine)
1582 {
1583         struct drm_i915_private *dev_priv = engine->i915;
1584
1585         I915_WRITE_IMR(engine,
1586                        ~(engine->irq_enable_mask |
1587                          engine->irq_keep_mask));
1588         gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1589 }
1590
1591 static void
1592 gen6_irq_disable(struct intel_engine_cs *engine)
1593 {
1594         struct drm_i915_private *dev_priv = engine->i915;
1595
1596         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1597         gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1598 }
1599
1600 static void
1601 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1602 {
1603         struct drm_i915_private *dev_priv = engine->i915;
1604
1605         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1606         gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
1607 }
1608
1609 static void
1610 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1611 {
1612         struct drm_i915_private *dev_priv = engine->i915;
1613
1614         I915_WRITE_IMR(engine, ~0);
1615         gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
1616 }
1617
1618 static void
1619 gen8_irq_enable(struct intel_engine_cs *engine)
1620 {
1621         struct drm_i915_private *dev_priv = engine->i915;
1622
1623         I915_WRITE_IMR(engine,
1624                        ~(engine->irq_enable_mask |
1625                          engine->irq_keep_mask));
1626         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1627 }
1628
1629 static void
1630 gen8_irq_disable(struct intel_engine_cs *engine)
1631 {
1632         struct drm_i915_private *dev_priv = engine->i915;
1633
1634         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1635 }
1636
1637 static int
1638 i965_emit_bb_start(struct drm_i915_gem_request *req,
1639                    u64 offset, u32 length,
1640                    unsigned int dispatch_flags)
1641 {
1642         struct intel_ring *ring = req->ring;
1643         int ret;
1644
1645         ret = intel_ring_begin(req, 2);
1646         if (ret)
1647                 return ret;
1648
1649         intel_ring_emit(ring,
1650                         MI_BATCH_BUFFER_START |
1651                         MI_BATCH_GTT |
1652                         (dispatch_flags & I915_DISPATCH_SECURE ?
1653                          0 : MI_BATCH_NON_SECURE_I965));
1654         intel_ring_emit(ring, offset);
1655         intel_ring_advance(ring);
1656
1657         return 0;
1658 }
1659
1660 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1661 #define I830_BATCH_LIMIT (256*1024)
1662 #define I830_TLB_ENTRIES (2)
1663 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1664 static int
1665 i830_emit_bb_start(struct drm_i915_gem_request *req,
1666                    u64 offset, u32 len,
1667                    unsigned int dispatch_flags)
1668 {
1669         struct intel_ring *ring = req->ring;
1670         u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1671         int ret;
1672
1673         ret = intel_ring_begin(req, 6);
1674         if (ret)
1675                 return ret;
1676
1677         /* Evict the invalid PTE TLBs */
1678         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1679         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1680         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1681         intel_ring_emit(ring, cs_offset);
1682         intel_ring_emit(ring, 0xdeadbeef);
1683         intel_ring_emit(ring, MI_NOOP);
1684         intel_ring_advance(ring);
1685
1686         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1687                 if (len > I830_BATCH_LIMIT)
1688                         return -ENOSPC;
1689
1690                 ret = intel_ring_begin(req, 6 + 2);
1691                 if (ret)
1692                         return ret;
1693
1694                 /* Blit the batch (which has now all relocs applied) to the
1695                  * stable batch scratch bo area (so that the CS never
1696                  * stumbles over its tlb invalidation bug) ...
1697                  */
1698                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1699                 intel_ring_emit(ring,
1700                                 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1701                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1702                 intel_ring_emit(ring, cs_offset);
1703                 intel_ring_emit(ring, 4096);
1704                 intel_ring_emit(ring, offset);
1705
1706                 intel_ring_emit(ring, MI_FLUSH);
1707                 intel_ring_emit(ring, MI_NOOP);
1708                 intel_ring_advance(ring);
1709
1710                 /* ... and execute it. */
1711                 offset = cs_offset;
1712         }
1713
1714         ret = intel_ring_begin(req, 2);
1715         if (ret)
1716                 return ret;
1717
1718         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1719         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1720                                         0 : MI_BATCH_NON_SECURE));
1721         intel_ring_advance(ring);
1722
1723         return 0;
1724 }
1725
1726 static int
1727 i915_emit_bb_start(struct drm_i915_gem_request *req,
1728                    u64 offset, u32 len,
1729                    unsigned int dispatch_flags)
1730 {
1731         struct intel_ring *ring = req->ring;
1732         int ret;
1733
1734         ret = intel_ring_begin(req, 2);
1735         if (ret)
1736                 return ret;
1737
1738         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1739         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1740                                         0 : MI_BATCH_NON_SECURE));
1741         intel_ring_advance(ring);
1742
1743         return 0;
1744 }
1745
1746 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1747 {
1748         struct drm_i915_private *dev_priv = engine->i915;
1749
1750         if (!dev_priv->status_page_dmah)
1751                 return;
1752
1753         drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1754         engine->status_page.page_addr = NULL;
1755 }
1756
1757 static void cleanup_status_page(struct intel_engine_cs *engine)
1758 {
1759         struct i915_vma *vma;
1760         struct drm_i915_gem_object *obj;
1761
1762         vma = fetch_and_zero(&engine->status_page.vma);
1763         if (!vma)
1764                 return;
1765
1766         obj = vma->obj;
1767
1768         i915_vma_unpin(vma);
1769         i915_vma_close(vma);
1770
1771         i915_gem_object_unpin_map(obj);
1772         __i915_gem_object_release_unless_active(obj);
1773 }
1774
1775 static int init_status_page(struct intel_engine_cs *engine)
1776 {
1777         struct drm_i915_gem_object *obj;
1778         struct i915_vma *vma;
1779         unsigned int flags;
1780         void *vaddr;
1781         int ret;
1782
1783         obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1784         if (IS_ERR(obj)) {
1785                 DRM_ERROR("Failed to allocate status page\n");
1786                 return PTR_ERR(obj);
1787         }
1788
1789         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1790         if (ret)
1791                 goto err;
1792
1793         vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1794         if (IS_ERR(vma)) {
1795                 ret = PTR_ERR(vma);
1796                 goto err;
1797         }
1798
1799         flags = PIN_GLOBAL;
1800         if (!HAS_LLC(engine->i915))
1801                 /* On g33, we cannot place HWS above 256MiB, so
1802                  * restrict its pinning to the low mappable arena.
1803                  * Though this restriction is not documented for
1804                  * gen4, gen5, or byt, they also behave similarly
1805                  * and hang if the HWS is placed at the top of the
1806                  * GTT. To generalise, it appears that all !llc
1807                  * platforms have issues with us placing the HWS
1808                  * above the mappable region (even though we never
1809                  * actualy map it).
1810                  */
1811                 flags |= PIN_MAPPABLE;
1812         ret = i915_vma_pin(vma, 0, 4096, flags);
1813         if (ret)
1814                 goto err;
1815
1816         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1817         if (IS_ERR(vaddr)) {
1818                 ret = PTR_ERR(vaddr);
1819                 goto err_unpin;
1820         }
1821
1822         engine->status_page.vma = vma;
1823         engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1824         engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
1825
1826         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1827                          engine->name, i915_ggtt_offset(vma));
1828         return 0;
1829
1830 err_unpin:
1831         i915_vma_unpin(vma);
1832 err:
1833         i915_gem_object_put(obj);
1834         return ret;
1835 }
1836
1837 static int init_phys_status_page(struct intel_engine_cs *engine)
1838 {
1839         struct drm_i915_private *dev_priv = engine->i915;
1840
1841         dev_priv->status_page_dmah =
1842                 drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1843         if (!dev_priv->status_page_dmah)
1844                 return -ENOMEM;
1845
1846         engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1847         memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1848
1849         return 0;
1850 }
1851
1852 int intel_ring_pin(struct intel_ring *ring, unsigned int offset_bias)
1853 {
1854         unsigned int flags;
1855         enum i915_map_type map;
1856         struct i915_vma *vma = ring->vma;
1857         void *addr;
1858         int ret;
1859
1860         GEM_BUG_ON(ring->vaddr);
1861
1862         map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;
1863
1864         flags = PIN_GLOBAL;
1865         if (offset_bias)
1866                 flags |= PIN_OFFSET_BIAS | offset_bias;
1867         if (vma->obj->stolen)
1868                 flags |= PIN_MAPPABLE;
1869
1870         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1871                 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1872                         ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1873                 else
1874                         ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1875                 if (unlikely(ret))
1876                         return ret;
1877         }
1878
1879         ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1880         if (unlikely(ret))
1881                 return ret;
1882
1883         if (i915_vma_is_map_and_fenceable(vma))
1884                 addr = (void __force *)i915_vma_pin_iomap(vma);
1885         else
1886                 addr = i915_gem_object_pin_map(vma->obj, map);
1887         if (IS_ERR(addr))
1888                 goto err;
1889
1890         ring->vaddr = addr;
1891         return 0;
1892
1893 err:
1894         i915_vma_unpin(vma);
1895         return PTR_ERR(addr);
1896 }
1897
1898 void intel_ring_unpin(struct intel_ring *ring)
1899 {
1900         GEM_BUG_ON(!ring->vma);
1901         GEM_BUG_ON(!ring->vaddr);
1902
1903         if (i915_vma_is_map_and_fenceable(ring->vma))
1904                 i915_vma_unpin_iomap(ring->vma);
1905         else
1906                 i915_gem_object_unpin_map(ring->vma->obj);
1907         ring->vaddr = NULL;
1908
1909         i915_vma_unpin(ring->vma);
1910 }
1911
1912 static struct i915_vma *
1913 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1914 {
1915         struct drm_i915_gem_object *obj;
1916         struct i915_vma *vma;
1917
1918         obj = i915_gem_object_create_stolen(dev_priv, size);
1919         if (!obj)
1920                 obj = i915_gem_object_create(dev_priv, size);
1921         if (IS_ERR(obj))
1922                 return ERR_CAST(obj);
1923
1924         /* mark ring buffers as read-only from GPU side by default */
1925         obj->gt_ro = 1;
1926
1927         vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1928         if (IS_ERR(vma))
1929                 goto err;
1930
1931         return vma;
1932
1933 err:
1934         i915_gem_object_put(obj);
1935         return vma;
1936 }
1937
1938 struct intel_ring *
1939 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1940 {
1941         struct intel_ring *ring;
1942         struct i915_vma *vma;
1943
1944         GEM_BUG_ON(!is_power_of_2(size));
1945         GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1946
1947         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1948         if (!ring)
1949                 return ERR_PTR(-ENOMEM);
1950
1951         ring->engine = engine;
1952
1953         INIT_LIST_HEAD(&ring->request_list);
1954
1955         ring->size = size;
1956         /* Workaround an erratum on the i830 which causes a hang if
1957          * the TAIL pointer points to within the last 2 cachelines
1958          * of the buffer.
1959          */
1960         ring->effective_size = size;
1961         if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1962                 ring->effective_size -= 2 * CACHELINE_BYTES;
1963
1964         ring->last_retired_head = -1;
1965         intel_ring_update_space(ring);
1966
1967         vma = intel_ring_create_vma(engine->i915, size);
1968         if (IS_ERR(vma)) {
1969                 kfree(ring);
1970                 return ERR_CAST(vma);
1971         }
1972         ring->vma = vma;
1973
1974         return ring;
1975 }
1976
1977 void
1978 intel_ring_free(struct intel_ring *ring)
1979 {
1980         struct drm_i915_gem_object *obj = ring->vma->obj;
1981
1982         i915_vma_close(ring->vma);
1983         __i915_gem_object_release_unless_active(obj);
1984
1985         kfree(ring);
1986 }
1987
1988 static int context_pin(struct i915_gem_context *ctx, unsigned int flags)
1989 {
1990         struct i915_vma *vma = ctx->engine[RCS].state;
1991         int ret;
1992
1993         /* Clear this page out of any CPU caches for coherent swap-in/out.
1994          * We only want to do this on the first bind so that we do not stall
1995          * on an active context (which by nature is already on the GPU).
1996          */
1997         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1998                 ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
1999                 if (ret)
2000                         return ret;
2001         }
2002
2003         return i915_vma_pin(vma, 0, ctx->ggtt_alignment, PIN_GLOBAL | flags);
2004 }
2005
2006 static int intel_ring_context_pin(struct intel_engine_cs *engine,
2007                                   struct i915_gem_context *ctx)
2008 {
2009         struct intel_context *ce = &ctx->engine[engine->id];
2010         int ret;
2011
2012         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2013
2014         if (ce->pin_count++)
2015                 return 0;
2016
2017         if (ce->state) {
2018                 unsigned int flags;
2019
2020                 flags = 0;
2021                 if (i915_gem_context_is_kernel(ctx))
2022                         flags = PIN_HIGH;
2023
2024                 ret = context_pin(ctx, flags);
2025                 if (ret)
2026                         goto error;
2027         }
2028
2029         /* The kernel context is only used as a placeholder for flushing the
2030          * active context. It is never used for submitting user rendering and
2031          * as such never requires the golden render context, and so we can skip
2032          * emitting it when we switch to the kernel context. This is required
2033          * as during eviction we cannot allocate and pin the renderstate in
2034          * order to initialise the context.
2035          */
2036         if (i915_gem_context_is_kernel(ctx))
2037                 ce->initialised = true;
2038
2039         i915_gem_context_get(ctx);
2040         return 0;
2041
2042 error:
2043         ce->pin_count = 0;
2044         return ret;
2045 }
2046
2047 static void intel_ring_context_unpin(struct intel_engine_cs *engine,
2048                                      struct i915_gem_context *ctx)
2049 {
2050         struct intel_context *ce = &ctx->engine[engine->id];
2051
2052         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2053         GEM_BUG_ON(ce->pin_count == 0);
2054
2055         if (--ce->pin_count)
2056                 return;
2057
2058         if (ce->state)
2059                 i915_vma_unpin(ce->state);
2060
2061         i915_gem_context_put(ctx);
2062 }
2063
2064 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2065 {
2066         struct drm_i915_private *dev_priv = engine->i915;
2067         struct intel_ring *ring;
2068         int ret;
2069
2070         WARN_ON(engine->buffer);
2071
2072         intel_engine_setup_common(engine);
2073
2074         ret = intel_engine_init_common(engine);
2075         if (ret)
2076                 goto error;
2077
2078         ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
2079         if (IS_ERR(ring)) {
2080                 ret = PTR_ERR(ring);
2081                 goto error;
2082         }
2083
2084         if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2085                 WARN_ON(engine->id != RCS);
2086                 ret = init_phys_status_page(engine);
2087                 if (ret)
2088                         goto error;
2089         } else {
2090                 ret = init_status_page(engine);
2091                 if (ret)
2092                         goto error;
2093         }
2094
2095         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2096         ret = intel_ring_pin(ring, I915_GTT_PAGE_SIZE);
2097         if (ret) {
2098                 intel_ring_free(ring);
2099                 goto error;
2100         }
2101         engine->buffer = ring;
2102
2103         return 0;
2104
2105 error:
2106         intel_engine_cleanup(engine);
2107         return ret;
2108 }
2109
2110 void intel_engine_cleanup(struct intel_engine_cs *engine)
2111 {
2112         struct drm_i915_private *dev_priv;
2113
2114         dev_priv = engine->i915;
2115
2116         if (engine->buffer) {
2117                 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
2118                         (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2119
2120                 intel_ring_unpin(engine->buffer);
2121                 intel_ring_free(engine->buffer);
2122                 engine->buffer = NULL;
2123         }
2124
2125         if (engine->cleanup)
2126                 engine->cleanup(engine);
2127
2128         if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2129                 WARN_ON(engine->id != RCS);
2130                 cleanup_phys_status_page(engine);
2131         } else {
2132                 cleanup_status_page(engine);
2133         }
2134
2135         intel_engine_cleanup_common(engine);
2136
2137         engine->i915 = NULL;
2138         dev_priv->engine[engine->id] = NULL;
2139         kfree(engine);
2140 }
2141
2142 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
2143 {
2144         struct intel_engine_cs *engine;
2145         enum intel_engine_id id;
2146
2147         for_each_engine(engine, dev_priv, id) {
2148                 engine->buffer->head = engine->buffer->tail;
2149                 engine->buffer->last_retired_head = -1;
2150         }
2151 }
2152
2153 static int ring_request_alloc(struct drm_i915_gem_request *request)
2154 {
2155         int ret;
2156
2157         GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
2158
2159         /* Flush enough space to reduce the likelihood of waiting after
2160          * we start building the request - in which case we will just
2161          * have to repeat work.
2162          */
2163         request->reserved_space += LEGACY_REQUEST_SIZE;
2164
2165         GEM_BUG_ON(!request->engine->buffer);
2166         request->ring = request->engine->buffer;
2167
2168         ret = intel_ring_begin(request, 0);
2169         if (ret)
2170                 return ret;
2171
2172         request->reserved_space -= LEGACY_REQUEST_SIZE;
2173         return 0;
2174 }
2175
2176 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2177 {
2178         struct intel_ring *ring = req->ring;
2179         struct drm_i915_gem_request *target;
2180         long timeout;
2181
2182         lockdep_assert_held(&req->i915->drm.struct_mutex);
2183
2184         intel_ring_update_space(ring);
2185         if (ring->space >= bytes)
2186                 return 0;
2187
2188         /*
2189          * Space is reserved in the ringbuffer for finalising the request,
2190          * as that cannot be allowed to fail. During request finalisation,
2191          * reserved_space is set to 0 to stop the overallocation and the
2192          * assumption is that then we never need to wait (which has the
2193          * risk of failing with EINTR).
2194          *
2195          * See also i915_gem_request_alloc() and i915_add_request().
2196          */
2197         GEM_BUG_ON(!req->reserved_space);
2198
2199         list_for_each_entry(target, &ring->request_list, ring_link) {
2200                 unsigned space;
2201
2202                 /* Would completion of this request free enough space? */
2203                 space = __intel_ring_space(target->postfix, ring->tail,
2204                                            ring->size);
2205                 if (space >= bytes)
2206                         break;
2207         }
2208
2209         if (WARN_ON(&target->ring_link == &ring->request_list))
2210                 return -ENOSPC;
2211
2212         timeout = i915_wait_request(target,
2213                                     I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
2214                                     MAX_SCHEDULE_TIMEOUT);
2215         if (timeout < 0)
2216                 return timeout;
2217
2218         i915_gem_request_retire_upto(target);
2219
2220         intel_ring_update_space(ring);
2221         GEM_BUG_ON(ring->space < bytes);
2222         return 0;
2223 }
2224
2225 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2226 {
2227         struct intel_ring *ring = req->ring;
2228         int remain_actual = ring->size - ring->tail;
2229         int remain_usable = ring->effective_size - ring->tail;
2230         int bytes = num_dwords * sizeof(u32);
2231         int total_bytes, wait_bytes;
2232         bool need_wrap = false;
2233
2234         total_bytes = bytes + req->reserved_space;
2235
2236         if (unlikely(bytes > remain_usable)) {
2237                 /*
2238                  * Not enough space for the basic request. So need to flush
2239                  * out the remainder and then wait for base + reserved.
2240                  */
2241                 wait_bytes = remain_actual + total_bytes;
2242                 need_wrap = true;
2243         } else if (unlikely(total_bytes > remain_usable)) {
2244                 /*
2245                  * The base request will fit but the reserved space
2246                  * falls off the end. So we don't need an immediate wrap
2247                  * and only need to effectively wait for the reserved
2248                  * size space from the start of ringbuffer.
2249                  */
2250                 wait_bytes = remain_actual + req->reserved_space;
2251         } else {
2252                 /* No wrapping required, just waiting. */
2253                 wait_bytes = total_bytes;
2254         }
2255
2256         if (wait_bytes > ring->space) {
2257                 int ret = wait_for_space(req, wait_bytes);
2258                 if (unlikely(ret))
2259                         return ret;
2260         }
2261
2262         if (unlikely(need_wrap)) {
2263                 GEM_BUG_ON(remain_actual > ring->space);
2264                 GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2265
2266                 /* Fill the tail with MI_NOOP */
2267                 memset(ring->vaddr + ring->tail, 0, remain_actual);
2268                 ring->tail = 0;
2269                 ring->space -= remain_actual;
2270         }
2271
2272         ring->space -= bytes;
2273         GEM_BUG_ON(ring->space < 0);
2274         return 0;
2275 }
2276
2277 /* Align the ring tail to a cacheline boundary */
2278 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2279 {
2280         struct intel_ring *ring = req->ring;
2281         int num_dwords =
2282                 (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2283         int ret;
2284
2285         if (num_dwords == 0)
2286                 return 0;
2287
2288         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2289         ret = intel_ring_begin(req, num_dwords);
2290         if (ret)
2291                 return ret;
2292
2293         while (num_dwords--)
2294                 intel_ring_emit(ring, MI_NOOP);
2295
2296         intel_ring_advance(ring);
2297
2298         return 0;
2299 }
2300
2301 static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2302 {
2303         struct drm_i915_private *dev_priv = request->i915;
2304
2305         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2306
2307        /* Every tail move must follow the sequence below */
2308
2309         /* Disable notification that the ring is IDLE. The GT
2310          * will then assume that it is busy and bring it out of rc6.
2311          */
2312         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2313                       _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2314
2315         /* Clear the context id. Here be magic! */
2316         I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2317
2318         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2319         if (intel_wait_for_register_fw(dev_priv,
2320                                        GEN6_BSD_SLEEP_PSMI_CONTROL,
2321                                        GEN6_BSD_SLEEP_INDICATOR,
2322                                        0,
2323                                        50))
2324                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2325
2326         /* Now that the ring is fully powered up, update the tail */
2327         i9xx_submit_request(request);
2328
2329         /* Let the ring send IDLE messages to the GT again,
2330          * and so let it sleep to conserve power when idle.
2331          */
2332         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2333                       _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2334
2335         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2336 }
2337
2338 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2339 {
2340         struct intel_ring *ring = req->ring;
2341         uint32_t cmd;
2342         int ret;
2343
2344         ret = intel_ring_begin(req, 4);
2345         if (ret)
2346                 return ret;
2347
2348         cmd = MI_FLUSH_DW;
2349         if (INTEL_GEN(req->i915) >= 8)
2350                 cmd += 1;
2351
2352         /* We always require a command barrier so that subsequent
2353          * commands, such as breadcrumb interrupts, are strictly ordered
2354          * wrt the contents of the write cache being flushed to memory
2355          * (and thus being coherent from the CPU).
2356          */
2357         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2358
2359         /*
2360          * Bspec vol 1c.5 - video engine command streamer:
2361          * "If ENABLED, all TLBs will be invalidated once the flush
2362          * operation is complete. This bit is only valid when the
2363          * Post-Sync Operation field is a value of 1h or 3h."
2364          */
2365         if (mode & EMIT_INVALIDATE)
2366                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2367
2368         intel_ring_emit(ring, cmd);
2369         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2370         if (INTEL_GEN(req->i915) >= 8) {
2371                 intel_ring_emit(ring, 0); /* upper addr */
2372                 intel_ring_emit(ring, 0); /* value */
2373         } else  {
2374                 intel_ring_emit(ring, 0);
2375                 intel_ring_emit(ring, MI_NOOP);
2376         }
2377         intel_ring_advance(ring);
2378         return 0;
2379 }
2380
2381 static int
2382 gen8_emit_bb_start(struct drm_i915_gem_request *req,
2383                    u64 offset, u32 len,
2384                    unsigned int dispatch_flags)
2385 {
2386         struct intel_ring *ring = req->ring;
2387         bool ppgtt = USES_PPGTT(req->i915) &&
2388                         !(dispatch_flags & I915_DISPATCH_SECURE);
2389         int ret;
2390
2391         ret = intel_ring_begin(req, 4);
2392         if (ret)
2393                 return ret;
2394
2395         /* FIXME(BDW): Address space and security selectors. */
2396         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2397                         (dispatch_flags & I915_DISPATCH_RS ?
2398                          MI_BATCH_RESOURCE_STREAMER : 0));
2399         intel_ring_emit(ring, lower_32_bits(offset));
2400         intel_ring_emit(ring, upper_32_bits(offset));
2401         intel_ring_emit(ring, MI_NOOP);
2402         intel_ring_advance(ring);
2403
2404         return 0;
2405 }
2406
2407 static int
2408 hsw_emit_bb_start(struct drm_i915_gem_request *req,
2409                   u64 offset, u32 len,
2410                   unsigned int dispatch_flags)
2411 {
2412         struct intel_ring *ring = req->ring;
2413         int ret;
2414
2415         ret = intel_ring_begin(req, 2);
2416         if (ret)
2417                 return ret;
2418
2419         intel_ring_emit(ring,
2420                         MI_BATCH_BUFFER_START |
2421                         (dispatch_flags & I915_DISPATCH_SECURE ?
2422                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2423                         (dispatch_flags & I915_DISPATCH_RS ?
2424                          MI_BATCH_RESOURCE_STREAMER : 0));
2425         /* bit0-7 is the length on GEN6+ */
2426         intel_ring_emit(ring, offset);
2427         intel_ring_advance(ring);
2428
2429         return 0;
2430 }
2431
2432 static int
2433 gen6_emit_bb_start(struct drm_i915_gem_request *req,
2434                    u64 offset, u32 len,
2435                    unsigned int dispatch_flags)
2436 {
2437         struct intel_ring *ring = req->ring;
2438         int ret;
2439
2440         ret = intel_ring_begin(req, 2);
2441         if (ret)
2442                 return ret;
2443
2444         intel_ring_emit(ring,
2445                         MI_BATCH_BUFFER_START |
2446                         (dispatch_flags & I915_DISPATCH_SECURE ?
2447                          0 : MI_BATCH_NON_SECURE_I965));
2448         /* bit0-7 is the length on GEN6+ */
2449         intel_ring_emit(ring, offset);
2450         intel_ring_advance(ring);
2451
2452         return 0;
2453 }
2454
2455 /* Blitter support (SandyBridge+) */
2456
2457 static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2458 {
2459         struct intel_ring *ring = req->ring;
2460         uint32_t cmd;
2461         int ret;
2462
2463         ret = intel_ring_begin(req, 4);
2464         if (ret)
2465                 return ret;
2466
2467         cmd = MI_FLUSH_DW;
2468         if (INTEL_GEN(req->i915) >= 8)
2469                 cmd += 1;
2470
2471         /* We always require a command barrier so that subsequent
2472          * commands, such as breadcrumb interrupts, are strictly ordered
2473          * wrt the contents of the write cache being flushed to memory
2474          * (and thus being coherent from the CPU).
2475          */
2476         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2477
2478         /*
2479          * Bspec vol 1c.3 - blitter engine command streamer:
2480          * "If ENABLED, all TLBs will be invalidated once the flush
2481          * operation is complete. This bit is only valid when the
2482          * Post-Sync Operation field is a value of 1h or 3h."
2483          */
2484         if (mode & EMIT_INVALIDATE)
2485                 cmd |= MI_INVALIDATE_TLB;
2486         intel_ring_emit(ring, cmd);
2487         intel_ring_emit(ring,
2488                         I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2489         if (INTEL_GEN(req->i915) >= 8) {
2490                 intel_ring_emit(ring, 0); /* upper addr */
2491                 intel_ring_emit(ring, 0); /* value */
2492         } else  {
2493                 intel_ring_emit(ring, 0);
2494                 intel_ring_emit(ring, MI_NOOP);
2495         }
2496         intel_ring_advance(ring);
2497
2498         return 0;
2499 }
2500
2501 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2502                                        struct intel_engine_cs *engine)
2503 {
2504         struct drm_i915_gem_object *obj;
2505         int ret, i;
2506
2507         if (!i915.semaphores)
2508                 return;
2509
2510         if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
2511                 struct i915_vma *vma;
2512
2513                 obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
2514                 if (IS_ERR(obj))
2515                         goto err;
2516
2517                 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
2518                 if (IS_ERR(vma))
2519                         goto err_obj;
2520
2521                 ret = i915_gem_object_set_to_gtt_domain(obj, false);
2522                 if (ret)
2523                         goto err_obj;
2524
2525                 ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2526                 if (ret)
2527                         goto err_obj;
2528
2529                 dev_priv->semaphore = vma;
2530         }
2531
2532         if (INTEL_GEN(dev_priv) >= 8) {
2533                 u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2534
2535                 engine->semaphore.sync_to = gen8_ring_sync_to;
2536                 engine->semaphore.signal = gen8_xcs_signal;
2537
2538                 for (i = 0; i < I915_NUM_ENGINES; i++) {
2539                         u32 ring_offset;
2540
2541                         if (i != engine->id)
2542                                 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2543                         else
2544                                 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2545
2546                         engine->semaphore.signal_ggtt[i] = ring_offset;
2547                 }
2548         } else if (INTEL_GEN(dev_priv) >= 6) {
2549                 engine->semaphore.sync_to = gen6_ring_sync_to;
2550                 engine->semaphore.signal = gen6_signal;
2551
2552                 /*
2553                  * The current semaphore is only applied on pre-gen8
2554                  * platform.  And there is no VCS2 ring on the pre-gen8
2555                  * platform. So the semaphore between RCS and VCS2 is
2556                  * initialized as INVALID.  Gen8 will initialize the
2557                  * sema between VCS2 and RCS later.
2558                  */
2559                 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2560                         static const struct {
2561                                 u32 wait_mbox;
2562                                 i915_reg_t mbox_reg;
2563                         } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2564                                 [RCS_HW] = {
2565                                         [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
2566                                         [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
2567                                         [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2568                                 },
2569                                 [VCS_HW] = {
2570                                         [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
2571                                         [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
2572                                         [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2573                                 },
2574                                 [BCS_HW] = {
2575                                         [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
2576                                         [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
2577                                         [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2578                                 },
2579                                 [VECS_HW] = {
2580                                         [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2581                                         [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2582                                         [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2583                                 },
2584                         };
2585                         u32 wait_mbox;
2586                         i915_reg_t mbox_reg;
2587
2588                         if (i == engine->hw_id) {
2589                                 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2590                                 mbox_reg = GEN6_NOSYNC;
2591                         } else {
2592                                 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2593                                 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2594                         }
2595
2596                         engine->semaphore.mbox.wait[i] = wait_mbox;
2597                         engine->semaphore.mbox.signal[i] = mbox_reg;
2598                 }
2599         }
2600
2601         return;
2602
2603 err_obj:
2604         i915_gem_object_put(obj);
2605 err:
2606         DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
2607         i915.semaphores = 0;
2608 }
2609
2610 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2611                                 struct intel_engine_cs *engine)
2612 {
2613         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2614
2615         if (INTEL_GEN(dev_priv) >= 8) {
2616                 engine->irq_enable = gen8_irq_enable;
2617                 engine->irq_disable = gen8_irq_disable;
2618                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2619         } else if (INTEL_GEN(dev_priv) >= 6) {
2620                 engine->irq_enable = gen6_irq_enable;
2621                 engine->irq_disable = gen6_irq_disable;
2622                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2623         } else if (INTEL_GEN(dev_priv) >= 5) {
2624                 engine->irq_enable = gen5_irq_enable;
2625                 engine->irq_disable = gen5_irq_disable;
2626                 engine->irq_seqno_barrier = gen5_seqno_barrier;
2627         } else if (INTEL_GEN(dev_priv) >= 3) {
2628                 engine->irq_enable = i9xx_irq_enable;
2629                 engine->irq_disable = i9xx_irq_disable;
2630         } else {
2631                 engine->irq_enable = i8xx_irq_enable;
2632                 engine->irq_disable = i8xx_irq_disable;
2633         }
2634 }
2635
2636 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2637                                       struct intel_engine_cs *engine)
2638 {
2639         intel_ring_init_irq(dev_priv, engine);
2640         intel_ring_init_semaphores(dev_priv, engine);
2641
2642         engine->init_hw = init_ring_common;
2643         engine->reset_hw = reset_ring_common;
2644
2645         engine->context_pin = intel_ring_context_pin;
2646         engine->context_unpin = intel_ring_context_unpin;
2647
2648         engine->request_alloc = ring_request_alloc;
2649
2650         engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2651         engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2652         if (i915.semaphores) {
2653                 int num_rings;
2654
2655                 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2656
2657                 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2658                 if (INTEL_GEN(dev_priv) >= 8) {
2659                         engine->emit_breadcrumb_sz += num_rings * 6;
2660                 } else {
2661                         engine->emit_breadcrumb_sz += num_rings * 3;
2662                         if (num_rings & 1)
2663                                 engine->emit_breadcrumb_sz++;
2664                 }
2665         }
2666         engine->submit_request = i9xx_submit_request;
2667
2668         if (INTEL_GEN(dev_priv) >= 8)
2669                 engine->emit_bb_start = gen8_emit_bb_start;
2670         else if (INTEL_GEN(dev_priv) >= 6)
2671                 engine->emit_bb_start = gen6_emit_bb_start;
2672         else if (INTEL_GEN(dev_priv) >= 4)
2673                 engine->emit_bb_start = i965_emit_bb_start;
2674         else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2675                 engine->emit_bb_start = i830_emit_bb_start;
2676         else
2677                 engine->emit_bb_start = i915_emit_bb_start;
2678 }
2679
2680 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2681 {
2682         struct drm_i915_private *dev_priv = engine->i915;
2683         int ret;
2684
2685         intel_ring_default_vfuncs(dev_priv, engine);
2686
2687         if (HAS_L3_DPF(dev_priv))
2688                 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2689
2690         if (INTEL_GEN(dev_priv) >= 8) {
2691                 engine->init_context = intel_rcs_ctx_init;
2692                 engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2693                 engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2694                 engine->emit_flush = gen8_render_ring_flush;
2695                 if (i915.semaphores) {
2696                         int num_rings;
2697
2698                         engine->semaphore.signal = gen8_rcs_signal;
2699
2700                         num_rings =
2701                                 hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2702                         engine->emit_breadcrumb_sz += num_rings * 6;
2703                 }
2704         } else if (INTEL_GEN(dev_priv) >= 6) {
2705                 engine->init_context = intel_rcs_ctx_init;
2706                 engine->emit_flush = gen7_render_ring_flush;
2707                 if (IS_GEN6(dev_priv))
2708                         engine->emit_flush = gen6_render_ring_flush;
2709         } else if (IS_GEN5(dev_priv)) {
2710                 engine->emit_flush = gen4_render_ring_flush;
2711         } else {
2712                 if (INTEL_GEN(dev_priv) < 4)
2713                         engine->emit_flush = gen2_render_ring_flush;
2714                 else
2715                         engine->emit_flush = gen4_render_ring_flush;
2716                 engine->irq_enable_mask = I915_USER_INTERRUPT;
2717         }
2718
2719         if (IS_HASWELL(dev_priv))
2720                 engine->emit_bb_start = hsw_emit_bb_start;
2721
2722         engine->init_hw = init_render_ring;
2723         engine->cleanup = render_ring_cleanup;
2724
2725         ret = intel_init_ring_buffer(engine);
2726         if (ret)
2727                 return ret;
2728
2729         if (INTEL_GEN(dev_priv) >= 6) {
2730                 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2731                 if (ret)
2732                         return ret;
2733         } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2734                 ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2735                 if (ret)
2736                         return ret;
2737         }
2738
2739         return 0;
2740 }
2741
2742 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2743 {
2744         struct drm_i915_private *dev_priv = engine->i915;
2745
2746         intel_ring_default_vfuncs(dev_priv, engine);
2747
2748         if (INTEL_GEN(dev_priv) >= 6) {
2749                 /* gen6 bsd needs a special wa for tail updates */
2750                 if (IS_GEN6(dev_priv))
2751                         engine->submit_request = gen6_bsd_submit_request;
2752                 engine->emit_flush = gen6_bsd_ring_flush;
2753                 if (INTEL_GEN(dev_priv) < 8)
2754                         engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2755         } else {
2756                 engine->mmio_base = BSD_RING_BASE;
2757                 engine->emit_flush = bsd_ring_flush;
2758                 if (IS_GEN5(dev_priv))
2759                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2760                 else
2761                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2762         }
2763
2764         return intel_init_ring_buffer(engine);
2765 }
2766
2767 /**
2768  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2769  */
2770 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2771 {
2772         struct drm_i915_private *dev_priv = engine->i915;
2773
2774         intel_ring_default_vfuncs(dev_priv, engine);
2775
2776         engine->emit_flush = gen6_bsd_ring_flush;
2777
2778         return intel_init_ring_buffer(engine);
2779 }
2780
2781 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2782 {
2783         struct drm_i915_private *dev_priv = engine->i915;
2784
2785         intel_ring_default_vfuncs(dev_priv, engine);
2786
2787         engine->emit_flush = gen6_ring_flush;
2788         if (INTEL_GEN(dev_priv) < 8)
2789                 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2790
2791         return intel_init_ring_buffer(engine);
2792 }
2793
2794 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2795 {
2796         struct drm_i915_private *dev_priv = engine->i915;
2797
2798         intel_ring_default_vfuncs(dev_priv, engine);
2799
2800         engine->emit_flush = gen6_ring_flush;
2801
2802         if (INTEL_GEN(dev_priv) < 8) {
2803                 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2804                 engine->irq_enable = hsw_vebox_irq_enable;
2805                 engine->irq_disable = hsw_vebox_irq_disable;
2806         }
2807
2808         return intel_init_ring_buffer(engine);
2809 }