Merge tag 'omapdrm-4.20' of git://git.kernel.org/pub/scm/linux/kernel/git/tomba/linux...
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31
32 #include <drm/drmP.h>
33 #include <drm/i915_drm.h>
34
35 #include "i915_drv.h"
36 #include "i915_gem_render_state.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_workarounds.h"
40
41 /* Rough estimate of the typical request size, performing a flush,
42  * set-context and then emitting the batch.
43  */
44 #define LEGACY_REQUEST_SIZE 200
45
46 static unsigned int __intel_ring_space(unsigned int head,
47                                        unsigned int tail,
48                                        unsigned int size)
49 {
50         /*
51          * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
52          * same cacheline, the Head Pointer must not be greater than the Tail
53          * Pointer."
54          */
55         GEM_BUG_ON(!is_power_of_2(size));
56         return (head - tail - CACHELINE_BYTES) & (size - 1);
57 }
58
59 unsigned int intel_ring_update_space(struct intel_ring *ring)
60 {
61         unsigned int space;
62
63         space = __intel_ring_space(ring->head, ring->emit, ring->size);
64
65         ring->space = space;
66         return space;
67 }
68
69 static int
70 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
71 {
72         u32 cmd, *cs;
73
74         cmd = MI_FLUSH;
75
76         if (mode & EMIT_INVALIDATE)
77                 cmd |= MI_READ_FLUSH;
78
79         cs = intel_ring_begin(rq, 2);
80         if (IS_ERR(cs))
81                 return PTR_ERR(cs);
82
83         *cs++ = cmd;
84         *cs++ = MI_NOOP;
85         intel_ring_advance(rq, cs);
86
87         return 0;
88 }
89
90 static int
91 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
92 {
93         u32 cmd, *cs;
94
95         /*
96          * read/write caches:
97          *
98          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
99          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
100          * also flushed at 2d versus 3d pipeline switches.
101          *
102          * read-only caches:
103          *
104          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
105          * MI_READ_FLUSH is set, and is always flushed on 965.
106          *
107          * I915_GEM_DOMAIN_COMMAND may not exist?
108          *
109          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
110          * invalidated when MI_EXE_FLUSH is set.
111          *
112          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
113          * invalidated with every MI_FLUSH.
114          *
115          * TLBs:
116          *
117          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
118          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
119          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
120          * are flushed at any MI_FLUSH.
121          */
122
123         cmd = MI_FLUSH;
124         if (mode & EMIT_INVALIDATE) {
125                 cmd |= MI_EXE_FLUSH;
126                 if (IS_G4X(rq->i915) || IS_GEN5(rq->i915))
127                         cmd |= MI_INVALIDATE_ISP;
128         }
129
130         cs = intel_ring_begin(rq, 2);
131         if (IS_ERR(cs))
132                 return PTR_ERR(cs);
133
134         *cs++ = cmd;
135         *cs++ = MI_NOOP;
136         intel_ring_advance(rq, cs);
137
138         return 0;
139 }
140
141 /*
142  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
143  * implementing two workarounds on gen6.  From section 1.4.7.1
144  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
145  *
146  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
147  * produced by non-pipelined state commands), software needs to first
148  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
149  * 0.
150  *
151  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
152  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
153  *
154  * And the workaround for these two requires this workaround first:
155  *
156  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
157  * BEFORE the pipe-control with a post-sync op and no write-cache
158  * flushes.
159  *
160  * And this last workaround is tricky because of the requirements on
161  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
162  * volume 2 part 1:
163  *
164  *     "1 of the following must also be set:
165  *      - Render Target Cache Flush Enable ([12] of DW1)
166  *      - Depth Cache Flush Enable ([0] of DW1)
167  *      - Stall at Pixel Scoreboard ([1] of DW1)
168  *      - Depth Stall ([13] of DW1)
169  *      - Post-Sync Operation ([13] of DW1)
170  *      - Notify Enable ([8] of DW1)"
171  *
172  * The cache flushes require the workaround flush that triggered this
173  * one, so we can't use it.  Depth stall would trigger the same.
174  * Post-sync nonzero is what triggered this second workaround, so we
175  * can't use that one either.  Notify enable is IRQs, which aren't
176  * really our business.  That leaves only stall at scoreboard.
177  */
178 static int
179 intel_emit_post_sync_nonzero_flush(struct i915_request *rq)
180 {
181         u32 scratch_addr =
182                 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
183         u32 *cs;
184
185         cs = intel_ring_begin(rq, 6);
186         if (IS_ERR(cs))
187                 return PTR_ERR(cs);
188
189         *cs++ = GFX_OP_PIPE_CONTROL(5);
190         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
191         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
192         *cs++ = 0; /* low dword */
193         *cs++ = 0; /* high dword */
194         *cs++ = MI_NOOP;
195         intel_ring_advance(rq, cs);
196
197         cs = intel_ring_begin(rq, 6);
198         if (IS_ERR(cs))
199                 return PTR_ERR(cs);
200
201         *cs++ = GFX_OP_PIPE_CONTROL(5);
202         *cs++ = PIPE_CONTROL_QW_WRITE;
203         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
204         *cs++ = 0;
205         *cs++ = 0;
206         *cs++ = MI_NOOP;
207         intel_ring_advance(rq, cs);
208
209         return 0;
210 }
211
212 static int
213 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
214 {
215         u32 scratch_addr =
216                 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
217         u32 *cs, flags = 0;
218         int ret;
219
220         /* Force SNB workarounds for PIPE_CONTROL flushes */
221         ret = intel_emit_post_sync_nonzero_flush(rq);
222         if (ret)
223                 return ret;
224
225         /* Just flush everything.  Experiments have shown that reducing the
226          * number of bits based on the write domains has little performance
227          * impact.
228          */
229         if (mode & EMIT_FLUSH) {
230                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232                 /*
233                  * Ensure that any following seqno writes only happen
234                  * when the render cache is indeed flushed.
235                  */
236                 flags |= PIPE_CONTROL_CS_STALL;
237         }
238         if (mode & EMIT_INVALIDATE) {
239                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245                 /*
246                  * TLB invalidate requires a post-sync write.
247                  */
248                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
249         }
250
251         cs = intel_ring_begin(rq, 4);
252         if (IS_ERR(cs))
253                 return PTR_ERR(cs);
254
255         *cs++ = GFX_OP_PIPE_CONTROL(4);
256         *cs++ = flags;
257         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
258         *cs++ = 0;
259         intel_ring_advance(rq, cs);
260
261         return 0;
262 }
263
264 static int
265 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
266 {
267         u32 *cs;
268
269         cs = intel_ring_begin(rq, 4);
270         if (IS_ERR(cs))
271                 return PTR_ERR(cs);
272
273         *cs++ = GFX_OP_PIPE_CONTROL(4);
274         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
275         *cs++ = 0;
276         *cs++ = 0;
277         intel_ring_advance(rq, cs);
278
279         return 0;
280 }
281
282 static int
283 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
284 {
285         u32 scratch_addr =
286                 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
287         u32 *cs, flags = 0;
288
289         /*
290          * Ensure that any following seqno writes only happen when the render
291          * cache is indeed flushed.
292          *
293          * Workaround: 4th PIPE_CONTROL command (except the ones with only
294          * read-cache invalidate bits set) must have the CS_STALL bit set. We
295          * don't try to be clever and just set it unconditionally.
296          */
297         flags |= PIPE_CONTROL_CS_STALL;
298
299         /* Just flush everything.  Experiments have shown that reducing the
300          * number of bits based on the write domains has little performance
301          * impact.
302          */
303         if (mode & EMIT_FLUSH) {
304                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
305                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
306                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
307                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
308         }
309         if (mode & EMIT_INVALIDATE) {
310                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
311                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
312                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
313                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
314                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
315                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
316                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
317                 /*
318                  * TLB invalidate requires a post-sync write.
319                  */
320                 flags |= PIPE_CONTROL_QW_WRITE;
321                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
322
323                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
324
325                 /* Workaround: we must issue a pipe_control with CS-stall bit
326                  * set before a pipe_control command that has the state cache
327                  * invalidate bit set. */
328                 gen7_render_ring_cs_stall_wa(rq);
329         }
330
331         cs = intel_ring_begin(rq, 4);
332         if (IS_ERR(cs))
333                 return PTR_ERR(cs);
334
335         *cs++ = GFX_OP_PIPE_CONTROL(4);
336         *cs++ = flags;
337         *cs++ = scratch_addr;
338         *cs++ = 0;
339         intel_ring_advance(rq, cs);
340
341         return 0;
342 }
343
344 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
345 {
346         struct drm_i915_private *dev_priv = engine->i915;
347         u32 addr;
348
349         addr = dev_priv->status_page_dmah->busaddr;
350         if (INTEL_GEN(dev_priv) >= 4)
351                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
352         I915_WRITE(HWS_PGA, addr);
353 }
354
355 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
356 {
357         struct drm_i915_private *dev_priv = engine->i915;
358         i915_reg_t mmio;
359
360         /* The ring status page addresses are no longer next to the rest of
361          * the ring registers as of gen7.
362          */
363         if (IS_GEN7(dev_priv)) {
364                 switch (engine->id) {
365                 /*
366                  * No more rings exist on Gen7. Default case is only to shut up
367                  * gcc switch check warning.
368                  */
369                 default:
370                         GEM_BUG_ON(engine->id);
371                 case RCS:
372                         mmio = RENDER_HWS_PGA_GEN7;
373                         break;
374                 case BCS:
375                         mmio = BLT_HWS_PGA_GEN7;
376                         break;
377                 case VCS:
378                         mmio = BSD_HWS_PGA_GEN7;
379                         break;
380                 case VECS:
381                         mmio = VEBOX_HWS_PGA_GEN7;
382                         break;
383                 }
384         } else if (IS_GEN6(dev_priv)) {
385                 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
386         } else {
387                 mmio = RING_HWS_PGA(engine->mmio_base);
388         }
389
390         if (INTEL_GEN(dev_priv) >= 6) {
391                 u32 mask = ~0u;
392
393                 /*
394                  * Keep the render interrupt unmasked as this papers over
395                  * lost interrupts following a reset.
396                  */
397                 if (engine->id == RCS)
398                         mask &= ~BIT(0);
399
400                 I915_WRITE(RING_HWSTAM(engine->mmio_base), mask);
401         }
402
403         I915_WRITE(mmio, engine->status_page.ggtt_offset);
404         POSTING_READ(mmio);
405
406         /* Flush the TLB for this page */
407         if (IS_GEN(dev_priv, 6, 7)) {
408                 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
409
410                 /* ring should be idle before issuing a sync flush*/
411                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
412
413                 I915_WRITE(reg,
414                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
415                                               INSTPM_SYNC_FLUSH));
416                 if (intel_wait_for_register(dev_priv,
417                                             reg, INSTPM_SYNC_FLUSH, 0,
418                                             1000))
419                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
420                                   engine->name);
421         }
422 }
423
424 static bool stop_ring(struct intel_engine_cs *engine)
425 {
426         struct drm_i915_private *dev_priv = engine->i915;
427
428         if (INTEL_GEN(dev_priv) > 2) {
429                 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
430                 if (intel_wait_for_register(dev_priv,
431                                             RING_MI_MODE(engine->mmio_base),
432                                             MODE_IDLE,
433                                             MODE_IDLE,
434                                             1000)) {
435                         DRM_ERROR("%s : timed out trying to stop ring\n",
436                                   engine->name);
437                         /* Sometimes we observe that the idle flag is not
438                          * set even though the ring is empty. So double
439                          * check before giving up.
440                          */
441                         if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
442                                 return false;
443                 }
444         }
445
446         I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
447
448         I915_WRITE_HEAD(engine, 0);
449         I915_WRITE_TAIL(engine, 0);
450
451         /* The ring must be empty before it is disabled */
452         I915_WRITE_CTL(engine, 0);
453
454         return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
455 }
456
457 static int init_ring_common(struct intel_engine_cs *engine)
458 {
459         struct drm_i915_private *dev_priv = engine->i915;
460         struct intel_ring *ring = engine->buffer;
461         int ret = 0;
462
463         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
464
465         if (!stop_ring(engine)) {
466                 /* G45 ring initialization often fails to reset head to zero */
467                 DRM_DEBUG_DRIVER("%s head not reset to zero "
468                                 "ctl %08x head %08x tail %08x start %08x\n",
469                                 engine->name,
470                                 I915_READ_CTL(engine),
471                                 I915_READ_HEAD(engine),
472                                 I915_READ_TAIL(engine),
473                                 I915_READ_START(engine));
474
475                 if (!stop_ring(engine)) {
476                         DRM_ERROR("failed to set %s head to zero "
477                                   "ctl %08x head %08x tail %08x start %08x\n",
478                                   engine->name,
479                                   I915_READ_CTL(engine),
480                                   I915_READ_HEAD(engine),
481                                   I915_READ_TAIL(engine),
482                                   I915_READ_START(engine));
483                         ret = -EIO;
484                         goto out;
485                 }
486         }
487
488         if (HWS_NEEDS_PHYSICAL(dev_priv))
489                 ring_setup_phys_status_page(engine);
490         else
491                 intel_ring_setup_status_page(engine);
492
493         intel_engine_reset_breadcrumbs(engine);
494
495         /* Enforce ordering by reading HEAD register back */
496         I915_READ_HEAD(engine);
497
498         /* Initialize the ring. This must happen _after_ we've cleared the ring
499          * registers with the above sequence (the readback of the HEAD registers
500          * also enforces ordering), otherwise the hw might lose the new ring
501          * register values. */
502         I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
503
504         /* WaClearRingBufHeadRegAtInit:ctg,elk */
505         if (I915_READ_HEAD(engine))
506                 DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
507                                  engine->name, I915_READ_HEAD(engine));
508
509         /* Check that the ring offsets point within the ring! */
510         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
511         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
512
513         intel_ring_update_space(ring);
514         I915_WRITE_HEAD(engine, ring->head);
515         I915_WRITE_TAIL(engine, ring->tail);
516         (void)I915_READ_TAIL(engine);
517
518         I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
519
520         /* If the head is still not zero, the ring is dead */
521         if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
522                                     RING_VALID, RING_VALID,
523                                     50)) {
524                 DRM_ERROR("%s initialization failed "
525                           "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
526                           engine->name,
527                           I915_READ_CTL(engine),
528                           I915_READ_CTL(engine) & RING_VALID,
529                           I915_READ_HEAD(engine), ring->head,
530                           I915_READ_TAIL(engine), ring->tail,
531                           I915_READ_START(engine),
532                           i915_ggtt_offset(ring->vma));
533                 ret = -EIO;
534                 goto out;
535         }
536
537         if (INTEL_GEN(dev_priv) > 2)
538                 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
539
540 out:
541         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
542
543         return ret;
544 }
545
546 static struct i915_request *reset_prepare(struct intel_engine_cs *engine)
547 {
548         intel_engine_stop_cs(engine);
549
550         if (engine->irq_seqno_barrier)
551                 engine->irq_seqno_barrier(engine);
552
553         return i915_gem_find_active_request(engine);
554 }
555
556 static void skip_request(struct i915_request *rq)
557 {
558         void *vaddr = rq->ring->vaddr;
559         u32 head;
560
561         head = rq->infix;
562         if (rq->postfix < head) {
563                 memset32(vaddr + head, MI_NOOP,
564                          (rq->ring->size - head) / sizeof(u32));
565                 head = 0;
566         }
567         memset32(vaddr + head, MI_NOOP, (rq->postfix - head) / sizeof(u32));
568 }
569
570 static void reset_ring(struct intel_engine_cs *engine, struct i915_request *rq)
571 {
572         GEM_TRACE("%s seqno=%x\n", engine->name, rq ? rq->global_seqno : 0);
573
574         /*
575          * Try to restore the logical GPU state to match the continuation
576          * of the request queue. If we skip the context/PD restore, then
577          * the next request may try to execute assuming that its context
578          * is valid and loaded on the GPU and so may try to access invalid
579          * memory, prompting repeated GPU hangs.
580          *
581          * If the request was guilty, we still restore the logical state
582          * in case the next request requires it (e.g. the aliasing ppgtt),
583          * but skip over the hung batch.
584          *
585          * If the request was innocent, we try to replay the request with
586          * the restored context.
587          */
588         if (rq) {
589                 /* If the rq hung, jump to its breadcrumb and skip the batch */
590                 rq->ring->head = intel_ring_wrap(rq->ring, rq->head);
591                 if (rq->fence.error == -EIO)
592                         skip_request(rq);
593         }
594 }
595
596 static void reset_finish(struct intel_engine_cs *engine)
597 {
598 }
599
600 static int intel_rcs_ctx_init(struct i915_request *rq)
601 {
602         int ret;
603
604         ret = intel_ctx_workarounds_emit(rq);
605         if (ret != 0)
606                 return ret;
607
608         ret = i915_gem_render_state_emit(rq);
609         if (ret)
610                 return ret;
611
612         return 0;
613 }
614
615 static int init_render_ring(struct intel_engine_cs *engine)
616 {
617         struct drm_i915_private *dev_priv = engine->i915;
618         int ret = init_ring_common(engine);
619         if (ret)
620                 return ret;
621
622         intel_whitelist_workarounds_apply(engine);
623
624         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
625         if (IS_GEN(dev_priv, 4, 6))
626                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
627
628         /* We need to disable the AsyncFlip performance optimisations in order
629          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
630          * programmed to '1' on all products.
631          *
632          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
633          */
634         if (IS_GEN(dev_priv, 6, 7))
635                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
636
637         /* Required for the hardware to program scanline values for waiting */
638         /* WaEnableFlushTlbInvalidationMode:snb */
639         if (IS_GEN6(dev_priv))
640                 I915_WRITE(GFX_MODE,
641                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
642
643         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
644         if (IS_GEN7(dev_priv))
645                 I915_WRITE(GFX_MODE_GEN7,
646                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
647                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
648
649         if (IS_GEN6(dev_priv)) {
650                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
651                  * "If this bit is set, STCunit will have LRA as replacement
652                  *  policy. [...] This bit must be reset.  LRA replacement
653                  *  policy is not supported."
654                  */
655                 I915_WRITE(CACHE_MODE_0,
656                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
657         }
658
659         if (IS_GEN(dev_priv, 6, 7))
660                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
661
662         if (INTEL_GEN(dev_priv) >= 6)
663                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
664
665         return 0;
666 }
667
668 static u32 *gen6_signal(struct i915_request *rq, u32 *cs)
669 {
670         struct drm_i915_private *dev_priv = rq->i915;
671         struct intel_engine_cs *engine;
672         enum intel_engine_id id;
673         int num_rings = 0;
674
675         for_each_engine(engine, dev_priv, id) {
676                 i915_reg_t mbox_reg;
677
678                 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
679                         continue;
680
681                 mbox_reg = rq->engine->semaphore.mbox.signal[engine->hw_id];
682                 if (i915_mmio_reg_valid(mbox_reg)) {
683                         *cs++ = MI_LOAD_REGISTER_IMM(1);
684                         *cs++ = i915_mmio_reg_offset(mbox_reg);
685                         *cs++ = rq->global_seqno;
686                         num_rings++;
687                 }
688         }
689         if (num_rings & 1)
690                 *cs++ = MI_NOOP;
691
692         return cs;
693 }
694
695 static void cancel_requests(struct intel_engine_cs *engine)
696 {
697         struct i915_request *request;
698         unsigned long flags;
699
700         spin_lock_irqsave(&engine->timeline.lock, flags);
701
702         /* Mark all submitted requests as skipped. */
703         list_for_each_entry(request, &engine->timeline.requests, link) {
704                 GEM_BUG_ON(!request->global_seqno);
705                 if (!i915_request_completed(request))
706                         dma_fence_set_error(&request->fence, -EIO);
707         }
708         /* Remaining _unready_ requests will be nop'ed when submitted */
709
710         spin_unlock_irqrestore(&engine->timeline.lock, flags);
711 }
712
713 static void i9xx_submit_request(struct i915_request *request)
714 {
715         struct drm_i915_private *dev_priv = request->i915;
716
717         i915_request_submit(request);
718
719         I915_WRITE_TAIL(request->engine,
720                         intel_ring_set_tail(request->ring, request->tail));
721 }
722
723 static void i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
724 {
725         *cs++ = MI_STORE_DWORD_INDEX;
726         *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
727         *cs++ = rq->global_seqno;
728         *cs++ = MI_USER_INTERRUPT;
729
730         rq->tail = intel_ring_offset(rq, cs);
731         assert_ring_tail_valid(rq->ring, rq->tail);
732 }
733
734 static const int i9xx_emit_breadcrumb_sz = 4;
735
736 static void gen6_sema_emit_breadcrumb(struct i915_request *rq, u32 *cs)
737 {
738         return i9xx_emit_breadcrumb(rq, rq->engine->semaphore.signal(rq, cs));
739 }
740
741 static int
742 gen6_ring_sync_to(struct i915_request *rq, struct i915_request *signal)
743 {
744         u32 dw1 = MI_SEMAPHORE_MBOX |
745                   MI_SEMAPHORE_COMPARE |
746                   MI_SEMAPHORE_REGISTER;
747         u32 wait_mbox = signal->engine->semaphore.mbox.wait[rq->engine->hw_id];
748         u32 *cs;
749
750         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
751
752         cs = intel_ring_begin(rq, 4);
753         if (IS_ERR(cs))
754                 return PTR_ERR(cs);
755
756         *cs++ = dw1 | wait_mbox;
757         /* Throughout all of the GEM code, seqno passed implies our current
758          * seqno is >= the last seqno executed. However for hardware the
759          * comparison is strictly greater than.
760          */
761         *cs++ = signal->global_seqno - 1;
762         *cs++ = 0;
763         *cs++ = MI_NOOP;
764         intel_ring_advance(rq, cs);
765
766         return 0;
767 }
768
769 static void
770 gen5_seqno_barrier(struct intel_engine_cs *engine)
771 {
772         /* MI_STORE are internally buffered by the GPU and not flushed
773          * either by MI_FLUSH or SyncFlush or any other combination of
774          * MI commands.
775          *
776          * "Only the submission of the store operation is guaranteed.
777          * The write result will be complete (coherent) some time later
778          * (this is practically a finite period but there is no guaranteed
779          * latency)."
780          *
781          * Empirically, we observe that we need a delay of at least 75us to
782          * be sure that the seqno write is visible by the CPU.
783          */
784         usleep_range(125, 250);
785 }
786
787 static void
788 gen6_seqno_barrier(struct intel_engine_cs *engine)
789 {
790         struct drm_i915_private *dev_priv = engine->i915;
791
792         /* Workaround to force correct ordering between irq and seqno writes on
793          * ivb (and maybe also on snb) by reading from a CS register (like
794          * ACTHD) before reading the status page.
795          *
796          * Note that this effectively stalls the read by the time it takes to
797          * do a memory transaction, which more or less ensures that the write
798          * from the GPU has sufficient time to invalidate the CPU cacheline.
799          * Alternatively we could delay the interrupt from the CS ring to give
800          * the write time to land, but that would incur a delay after every
801          * batch i.e. much more frequent than a delay when waiting for the
802          * interrupt (with the same net latency).
803          *
804          * Also note that to prevent whole machine hangs on gen7, we have to
805          * take the spinlock to guard against concurrent cacheline access.
806          */
807         spin_lock_irq(&dev_priv->uncore.lock);
808         POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
809         spin_unlock_irq(&dev_priv->uncore.lock);
810 }
811
812 static void
813 gen5_irq_enable(struct intel_engine_cs *engine)
814 {
815         gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
816 }
817
818 static void
819 gen5_irq_disable(struct intel_engine_cs *engine)
820 {
821         gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
822 }
823
824 static void
825 i9xx_irq_enable(struct intel_engine_cs *engine)
826 {
827         struct drm_i915_private *dev_priv = engine->i915;
828
829         dev_priv->irq_mask &= ~engine->irq_enable_mask;
830         I915_WRITE(IMR, dev_priv->irq_mask);
831         POSTING_READ_FW(RING_IMR(engine->mmio_base));
832 }
833
834 static void
835 i9xx_irq_disable(struct intel_engine_cs *engine)
836 {
837         struct drm_i915_private *dev_priv = engine->i915;
838
839         dev_priv->irq_mask |= engine->irq_enable_mask;
840         I915_WRITE(IMR, dev_priv->irq_mask);
841 }
842
843 static void
844 i8xx_irq_enable(struct intel_engine_cs *engine)
845 {
846         struct drm_i915_private *dev_priv = engine->i915;
847
848         dev_priv->irq_mask &= ~engine->irq_enable_mask;
849         I915_WRITE16(IMR, dev_priv->irq_mask);
850         POSTING_READ16(RING_IMR(engine->mmio_base));
851 }
852
853 static void
854 i8xx_irq_disable(struct intel_engine_cs *engine)
855 {
856         struct drm_i915_private *dev_priv = engine->i915;
857
858         dev_priv->irq_mask |= engine->irq_enable_mask;
859         I915_WRITE16(IMR, dev_priv->irq_mask);
860 }
861
862 static int
863 bsd_ring_flush(struct i915_request *rq, u32 mode)
864 {
865         u32 *cs;
866
867         cs = intel_ring_begin(rq, 2);
868         if (IS_ERR(cs))
869                 return PTR_ERR(cs);
870
871         *cs++ = MI_FLUSH;
872         *cs++ = MI_NOOP;
873         intel_ring_advance(rq, cs);
874         return 0;
875 }
876
877 static void
878 gen6_irq_enable(struct intel_engine_cs *engine)
879 {
880         struct drm_i915_private *dev_priv = engine->i915;
881
882         I915_WRITE_IMR(engine,
883                        ~(engine->irq_enable_mask |
884                          engine->irq_keep_mask));
885         gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
886 }
887
888 static void
889 gen6_irq_disable(struct intel_engine_cs *engine)
890 {
891         struct drm_i915_private *dev_priv = engine->i915;
892
893         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
894         gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
895 }
896
897 static void
898 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
899 {
900         struct drm_i915_private *dev_priv = engine->i915;
901
902         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
903         gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
904 }
905
906 static void
907 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
908 {
909         struct drm_i915_private *dev_priv = engine->i915;
910
911         I915_WRITE_IMR(engine, ~0);
912         gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
913 }
914
915 static int
916 i965_emit_bb_start(struct i915_request *rq,
917                    u64 offset, u32 length,
918                    unsigned int dispatch_flags)
919 {
920         u32 *cs;
921
922         cs = intel_ring_begin(rq, 2);
923         if (IS_ERR(cs))
924                 return PTR_ERR(cs);
925
926         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
927                 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
928         *cs++ = offset;
929         intel_ring_advance(rq, cs);
930
931         return 0;
932 }
933
934 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
935 #define I830_BATCH_LIMIT (256*1024)
936 #define I830_TLB_ENTRIES (2)
937 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
938 static int
939 i830_emit_bb_start(struct i915_request *rq,
940                    u64 offset, u32 len,
941                    unsigned int dispatch_flags)
942 {
943         u32 *cs, cs_offset = i915_ggtt_offset(rq->engine->scratch);
944
945         cs = intel_ring_begin(rq, 6);
946         if (IS_ERR(cs))
947                 return PTR_ERR(cs);
948
949         /* Evict the invalid PTE TLBs */
950         *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
951         *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
952         *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
953         *cs++ = cs_offset;
954         *cs++ = 0xdeadbeef;
955         *cs++ = MI_NOOP;
956         intel_ring_advance(rq, cs);
957
958         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
959                 if (len > I830_BATCH_LIMIT)
960                         return -ENOSPC;
961
962                 cs = intel_ring_begin(rq, 6 + 2);
963                 if (IS_ERR(cs))
964                         return PTR_ERR(cs);
965
966                 /* Blit the batch (which has now all relocs applied) to the
967                  * stable batch scratch bo area (so that the CS never
968                  * stumbles over its tlb invalidation bug) ...
969                  */
970                 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
971                 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
972                 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
973                 *cs++ = cs_offset;
974                 *cs++ = 4096;
975                 *cs++ = offset;
976
977                 *cs++ = MI_FLUSH;
978                 *cs++ = MI_NOOP;
979                 intel_ring_advance(rq, cs);
980
981                 /* ... and execute it. */
982                 offset = cs_offset;
983         }
984
985         cs = intel_ring_begin(rq, 2);
986         if (IS_ERR(cs))
987                 return PTR_ERR(cs);
988
989         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
990         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
991                 MI_BATCH_NON_SECURE);
992         intel_ring_advance(rq, cs);
993
994         return 0;
995 }
996
997 static int
998 i915_emit_bb_start(struct i915_request *rq,
999                    u64 offset, u32 len,
1000                    unsigned int dispatch_flags)
1001 {
1002         u32 *cs;
1003
1004         cs = intel_ring_begin(rq, 2);
1005         if (IS_ERR(cs))
1006                 return PTR_ERR(cs);
1007
1008         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1009         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1010                 MI_BATCH_NON_SECURE);
1011         intel_ring_advance(rq, cs);
1012
1013         return 0;
1014 }
1015
1016
1017
1018 int intel_ring_pin(struct intel_ring *ring,
1019                    struct drm_i915_private *i915,
1020                    unsigned int offset_bias)
1021 {
1022         enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1023         struct i915_vma *vma = ring->vma;
1024         unsigned int flags;
1025         void *addr;
1026         int ret;
1027
1028         GEM_BUG_ON(ring->vaddr);
1029
1030
1031         flags = PIN_GLOBAL;
1032         if (offset_bias)
1033                 flags |= PIN_OFFSET_BIAS | offset_bias;
1034         if (vma->obj->stolen)
1035                 flags |= PIN_MAPPABLE;
1036         else
1037                 flags |= PIN_HIGH;
1038
1039         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1040                 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1041                         ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1042                 else
1043                         ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1044                 if (unlikely(ret))
1045                         return ret;
1046         }
1047
1048         ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1049         if (unlikely(ret))
1050                 return ret;
1051
1052         if (i915_vma_is_map_and_fenceable(vma))
1053                 addr = (void __force *)i915_vma_pin_iomap(vma);
1054         else
1055                 addr = i915_gem_object_pin_map(vma->obj, map);
1056         if (IS_ERR(addr))
1057                 goto err;
1058
1059         vma->obj->pin_global++;
1060
1061         ring->vaddr = addr;
1062         return 0;
1063
1064 err:
1065         i915_vma_unpin(vma);
1066         return PTR_ERR(addr);
1067 }
1068
1069 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1070 {
1071         GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
1072
1073         ring->tail = tail;
1074         ring->head = tail;
1075         ring->emit = tail;
1076         intel_ring_update_space(ring);
1077 }
1078
1079 void intel_ring_unpin(struct intel_ring *ring)
1080 {
1081         GEM_BUG_ON(!ring->vma);
1082         GEM_BUG_ON(!ring->vaddr);
1083
1084         /* Discard any unused bytes beyond that submitted to hw. */
1085         intel_ring_reset(ring, ring->tail);
1086
1087         if (i915_vma_is_map_and_fenceable(ring->vma))
1088                 i915_vma_unpin_iomap(ring->vma);
1089         else
1090                 i915_gem_object_unpin_map(ring->vma->obj);
1091         ring->vaddr = NULL;
1092
1093         ring->vma->obj->pin_global--;
1094         i915_vma_unpin(ring->vma);
1095 }
1096
1097 static struct i915_vma *
1098 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1099 {
1100         struct i915_address_space *vm = &dev_priv->ggtt.vm;
1101         struct drm_i915_gem_object *obj;
1102         struct i915_vma *vma;
1103
1104         obj = i915_gem_object_create_stolen(dev_priv, size);
1105         if (!obj)
1106                 obj = i915_gem_object_create_internal(dev_priv, size);
1107         if (IS_ERR(obj))
1108                 return ERR_CAST(obj);
1109
1110         /*
1111          * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1112          * if supported by the platform's GGTT.
1113          */
1114         if (vm->has_read_only)
1115                 i915_gem_object_set_readonly(obj);
1116
1117         vma = i915_vma_instance(obj, vm, NULL);
1118         if (IS_ERR(vma))
1119                 goto err;
1120
1121         return vma;
1122
1123 err:
1124         i915_gem_object_put(obj);
1125         return vma;
1126 }
1127
1128 struct intel_ring *
1129 intel_engine_create_ring(struct intel_engine_cs *engine,
1130                          struct i915_timeline *timeline,
1131                          int size)
1132 {
1133         struct intel_ring *ring;
1134         struct i915_vma *vma;
1135
1136         GEM_BUG_ON(!is_power_of_2(size));
1137         GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1138         GEM_BUG_ON(timeline == &engine->timeline);
1139         lockdep_assert_held(&engine->i915->drm.struct_mutex);
1140
1141         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1142         if (!ring)
1143                 return ERR_PTR(-ENOMEM);
1144
1145         INIT_LIST_HEAD(&ring->request_list);
1146         ring->timeline = i915_timeline_get(timeline);
1147
1148         ring->size = size;
1149         /* Workaround an erratum on the i830 which causes a hang if
1150          * the TAIL pointer points to within the last 2 cachelines
1151          * of the buffer.
1152          */
1153         ring->effective_size = size;
1154         if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1155                 ring->effective_size -= 2 * CACHELINE_BYTES;
1156
1157         intel_ring_update_space(ring);
1158
1159         vma = intel_ring_create_vma(engine->i915, size);
1160         if (IS_ERR(vma)) {
1161                 kfree(ring);
1162                 return ERR_CAST(vma);
1163         }
1164         ring->vma = vma;
1165
1166         return ring;
1167 }
1168
1169 void
1170 intel_ring_free(struct intel_ring *ring)
1171 {
1172         struct drm_i915_gem_object *obj = ring->vma->obj;
1173
1174         i915_vma_close(ring->vma);
1175         __i915_gem_object_release_unless_active(obj);
1176
1177         i915_timeline_put(ring->timeline);
1178         kfree(ring);
1179 }
1180
1181 static void intel_ring_context_destroy(struct intel_context *ce)
1182 {
1183         GEM_BUG_ON(ce->pin_count);
1184
1185         if (!ce->state)
1186                 return;
1187
1188         GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1189         i915_gem_object_put(ce->state->obj);
1190 }
1191
1192 static int __context_pin_ppgtt(struct i915_gem_context *ctx)
1193 {
1194         struct i915_hw_ppgtt *ppgtt;
1195         int err = 0;
1196
1197         ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1198         if (ppgtt)
1199                 err = gen6_ppgtt_pin(ppgtt);
1200
1201         return err;
1202 }
1203
1204 static void __context_unpin_ppgtt(struct i915_gem_context *ctx)
1205 {
1206         struct i915_hw_ppgtt *ppgtt;
1207
1208         ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1209         if (ppgtt)
1210                 gen6_ppgtt_unpin(ppgtt);
1211 }
1212
1213 static int __context_pin(struct intel_context *ce)
1214 {
1215         struct i915_vma *vma;
1216         int err;
1217
1218         vma = ce->state;
1219         if (!vma)
1220                 return 0;
1221
1222         /*
1223          * Clear this page out of any CPU caches for coherent swap-in/out.
1224          * We only want to do this on the first bind so that we do not stall
1225          * on an active context (which by nature is already on the GPU).
1226          */
1227         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1228                 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1229                 if (err)
1230                         return err;
1231         }
1232
1233         err = i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
1234                            PIN_GLOBAL | PIN_HIGH);
1235         if (err)
1236                 return err;
1237
1238         /*
1239          * And mark is as a globally pinned object to let the shrinker know
1240          * it cannot reclaim the object until we release it.
1241          */
1242         vma->obj->pin_global++;
1243
1244         return 0;
1245 }
1246
1247 static void __context_unpin(struct intel_context *ce)
1248 {
1249         struct i915_vma *vma;
1250
1251         vma = ce->state;
1252         if (!vma)
1253                 return;
1254
1255         vma->obj->pin_global--;
1256         i915_vma_unpin(vma);
1257 }
1258
1259 static void intel_ring_context_unpin(struct intel_context *ce)
1260 {
1261         __context_unpin_ppgtt(ce->gem_context);
1262         __context_unpin(ce);
1263
1264         i915_gem_context_put(ce->gem_context);
1265 }
1266
1267 static struct i915_vma *
1268 alloc_context_vma(struct intel_engine_cs *engine)
1269 {
1270         struct drm_i915_private *i915 = engine->i915;
1271         struct drm_i915_gem_object *obj;
1272         struct i915_vma *vma;
1273         int err;
1274
1275         obj = i915_gem_object_create(i915, engine->context_size);
1276         if (IS_ERR(obj))
1277                 return ERR_CAST(obj);
1278
1279         if (engine->default_state) {
1280                 void *defaults, *vaddr;
1281
1282                 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1283                 if (IS_ERR(vaddr)) {
1284                         err = PTR_ERR(vaddr);
1285                         goto err_obj;
1286                 }
1287
1288                 defaults = i915_gem_object_pin_map(engine->default_state,
1289                                                    I915_MAP_WB);
1290                 if (IS_ERR(defaults)) {
1291                         err = PTR_ERR(defaults);
1292                         goto err_map;
1293                 }
1294
1295                 memcpy(vaddr, defaults, engine->context_size);
1296
1297                 i915_gem_object_unpin_map(engine->default_state);
1298                 i915_gem_object_unpin_map(obj);
1299         }
1300
1301         /*
1302          * Try to make the context utilize L3 as well as LLC.
1303          *
1304          * On VLV we don't have L3 controls in the PTEs so we
1305          * shouldn't touch the cache level, especially as that
1306          * would make the object snooped which might have a
1307          * negative performance impact.
1308          *
1309          * Snooping is required on non-llc platforms in execlist
1310          * mode, but since all GGTT accesses use PAT entry 0 we
1311          * get snooping anyway regardless of cache_level.
1312          *
1313          * This is only applicable for Ivy Bridge devices since
1314          * later platforms don't have L3 control bits in the PTE.
1315          */
1316         if (IS_IVYBRIDGE(i915)) {
1317                 /* Ignore any error, regard it as a simple optimisation */
1318                 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1319         }
1320
1321         vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
1322         if (IS_ERR(vma)) {
1323                 err = PTR_ERR(vma);
1324                 goto err_obj;
1325         }
1326
1327         return vma;
1328
1329 err_map:
1330         i915_gem_object_unpin_map(obj);
1331 err_obj:
1332         i915_gem_object_put(obj);
1333         return ERR_PTR(err);
1334 }
1335
1336 static struct intel_context *
1337 __ring_context_pin(struct intel_engine_cs *engine,
1338                    struct i915_gem_context *ctx,
1339                    struct intel_context *ce)
1340 {
1341         int err;
1342
1343         if (!ce->state && engine->context_size) {
1344                 struct i915_vma *vma;
1345
1346                 vma = alloc_context_vma(engine);
1347                 if (IS_ERR(vma)) {
1348                         err = PTR_ERR(vma);
1349                         goto err;
1350                 }
1351
1352                 ce->state = vma;
1353         }
1354
1355         err = __context_pin(ce);
1356         if (err)
1357                 goto err;
1358
1359         err = __context_pin_ppgtt(ce->gem_context);
1360         if (err)
1361                 goto err_unpin;
1362
1363         i915_gem_context_get(ctx);
1364
1365         /* One ringbuffer to rule them all */
1366         GEM_BUG_ON(!engine->buffer);
1367         ce->ring = engine->buffer;
1368
1369         return ce;
1370
1371 err_unpin:
1372         __context_unpin(ce);
1373 err:
1374         ce->pin_count = 0;
1375         return ERR_PTR(err);
1376 }
1377
1378 static const struct intel_context_ops ring_context_ops = {
1379         .unpin = intel_ring_context_unpin,
1380         .destroy = intel_ring_context_destroy,
1381 };
1382
1383 static struct intel_context *
1384 intel_ring_context_pin(struct intel_engine_cs *engine,
1385                        struct i915_gem_context *ctx)
1386 {
1387         struct intel_context *ce = to_intel_context(ctx, engine);
1388
1389         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1390
1391         if (likely(ce->pin_count++))
1392                 return ce;
1393         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1394
1395         ce->ops = &ring_context_ops;
1396
1397         return __ring_context_pin(engine, ctx, ce);
1398 }
1399
1400 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1401 {
1402         struct i915_timeline *timeline;
1403         struct intel_ring *ring;
1404         unsigned int size;
1405         int err;
1406
1407         intel_engine_setup_common(engine);
1408
1409         timeline = i915_timeline_create(engine->i915, engine->name);
1410         if (IS_ERR(timeline)) {
1411                 err = PTR_ERR(timeline);
1412                 goto err;
1413         }
1414
1415         ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
1416         i915_timeline_put(timeline);
1417         if (IS_ERR(ring)) {
1418                 err = PTR_ERR(ring);
1419                 goto err;
1420         }
1421
1422         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1423         err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
1424         if (err)
1425                 goto err_ring;
1426
1427         GEM_BUG_ON(engine->buffer);
1428         engine->buffer = ring;
1429
1430         size = PAGE_SIZE;
1431         if (HAS_BROKEN_CS_TLB(engine->i915))
1432                 size = I830_WA_SIZE;
1433         err = intel_engine_create_scratch(engine, size);
1434         if (err)
1435                 goto err_unpin;
1436
1437         err = intel_engine_init_common(engine);
1438         if (err)
1439                 goto err_scratch;
1440
1441         return 0;
1442
1443 err_scratch:
1444         intel_engine_cleanup_scratch(engine);
1445 err_unpin:
1446         intel_ring_unpin(ring);
1447 err_ring:
1448         intel_ring_free(ring);
1449 err:
1450         intel_engine_cleanup_common(engine);
1451         return err;
1452 }
1453
1454 void intel_engine_cleanup(struct intel_engine_cs *engine)
1455 {
1456         struct drm_i915_private *dev_priv = engine->i915;
1457
1458         WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1459                 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1460
1461         intel_ring_unpin(engine->buffer);
1462         intel_ring_free(engine->buffer);
1463
1464         if (engine->cleanup)
1465                 engine->cleanup(engine);
1466
1467         intel_engine_cleanup_common(engine);
1468
1469         dev_priv->engine[engine->id] = NULL;
1470         kfree(engine);
1471 }
1472
1473 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1474 {
1475         struct intel_engine_cs *engine;
1476         enum intel_engine_id id;
1477
1478         /* Restart from the beginning of the rings for convenience */
1479         for_each_engine(engine, dev_priv, id)
1480                 intel_ring_reset(engine->buffer, 0);
1481 }
1482
1483 static int load_pd_dir(struct i915_request *rq,
1484                        const struct i915_hw_ppgtt *ppgtt)
1485 {
1486         const struct intel_engine_cs * const engine = rq->engine;
1487         u32 *cs;
1488
1489         cs = intel_ring_begin(rq, 6);
1490         if (IS_ERR(cs))
1491                 return PTR_ERR(cs);
1492
1493         *cs++ = MI_LOAD_REGISTER_IMM(1);
1494         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1495         *cs++ = PP_DIR_DCLV_2G;
1496
1497         *cs++ = MI_LOAD_REGISTER_IMM(1);
1498         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1499         *cs++ = ppgtt->pd.base.ggtt_offset << 10;
1500
1501         intel_ring_advance(rq, cs);
1502
1503         return 0;
1504 }
1505
1506 static int flush_pd_dir(struct i915_request *rq)
1507 {
1508         const struct intel_engine_cs * const engine = rq->engine;
1509         u32 *cs;
1510
1511         cs = intel_ring_begin(rq, 4);
1512         if (IS_ERR(cs))
1513                 return PTR_ERR(cs);
1514
1515         /* Stall until the page table load is complete */
1516         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1517         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1518         *cs++ = i915_ggtt_offset(engine->scratch);
1519         *cs++ = MI_NOOP;
1520
1521         intel_ring_advance(rq, cs);
1522         return 0;
1523 }
1524
1525 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1526 {
1527         struct drm_i915_private *i915 = rq->i915;
1528         struct intel_engine_cs *engine = rq->engine;
1529         enum intel_engine_id id;
1530         const int num_rings =
1531                 /* Use an extended w/a on gen7 if signalling from other rings */
1532                 (HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
1533                 INTEL_INFO(i915)->num_rings - 1 :
1534                 0;
1535         bool force_restore = false;
1536         int len;
1537         u32 *cs;
1538
1539         flags |= MI_MM_SPACE_GTT;
1540         if (IS_HASWELL(i915))
1541                 /* These flags are for resource streamer on HSW+ */
1542                 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1543         else
1544                 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1545
1546         len = 4;
1547         if (IS_GEN7(i915))
1548                 len += 2 + (num_rings ? 4*num_rings + 6 : 0);
1549         if (flags & MI_FORCE_RESTORE) {
1550                 GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1551                 flags &= ~MI_FORCE_RESTORE;
1552                 force_restore = true;
1553                 len += 2;
1554         }
1555
1556         cs = intel_ring_begin(rq, len);
1557         if (IS_ERR(cs))
1558                 return PTR_ERR(cs);
1559
1560         /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1561         if (IS_GEN7(i915)) {
1562                 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1563                 if (num_rings) {
1564                         struct intel_engine_cs *signaller;
1565
1566                         *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1567                         for_each_engine(signaller, i915, id) {
1568                                 if (signaller == engine)
1569                                         continue;
1570
1571                                 *cs++ = i915_mmio_reg_offset(
1572                                            RING_PSMI_CTL(signaller->mmio_base));
1573                                 *cs++ = _MASKED_BIT_ENABLE(
1574                                                 GEN6_PSMI_SLEEP_MSG_DISABLE);
1575                         }
1576                 }
1577         }
1578
1579         if (force_restore) {
1580                 /*
1581                  * The HW doesn't handle being told to restore the current
1582                  * context very well. Quite often it likes goes to go off and
1583                  * sulk, especially when it is meant to be reloading PP_DIR.
1584                  * A very simple fix to force the reload is to simply switch
1585                  * away from the current context and back again.
1586                  *
1587                  * Note that the kernel_context will contain random state
1588                  * following the INHIBIT_RESTORE. We accept this since we
1589                  * never use the kernel_context state; it is merely a
1590                  * placeholder we use to flush other contexts.
1591                  */
1592                 *cs++ = MI_SET_CONTEXT;
1593                 *cs++ = i915_ggtt_offset(to_intel_context(i915->kernel_context,
1594                                                           engine)->state) |
1595                         MI_MM_SPACE_GTT |
1596                         MI_RESTORE_INHIBIT;
1597         }
1598
1599         *cs++ = MI_NOOP;
1600         *cs++ = MI_SET_CONTEXT;
1601         *cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1602         /*
1603          * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1604          * WaMiSetContext_Hang:snb,ivb,vlv
1605          */
1606         *cs++ = MI_NOOP;
1607
1608         if (IS_GEN7(i915)) {
1609                 if (num_rings) {
1610                         struct intel_engine_cs *signaller;
1611                         i915_reg_t last_reg = {}; /* keep gcc quiet */
1612
1613                         *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1614                         for_each_engine(signaller, i915, id) {
1615                                 if (signaller == engine)
1616                                         continue;
1617
1618                                 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1619                                 *cs++ = i915_mmio_reg_offset(last_reg);
1620                                 *cs++ = _MASKED_BIT_DISABLE(
1621                                                 GEN6_PSMI_SLEEP_MSG_DISABLE);
1622                         }
1623
1624                         /* Insert a delay before the next switch! */
1625                         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1626                         *cs++ = i915_mmio_reg_offset(last_reg);
1627                         *cs++ = i915_ggtt_offset(engine->scratch);
1628                         *cs++ = MI_NOOP;
1629                 }
1630                 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1631         }
1632
1633         intel_ring_advance(rq, cs);
1634
1635         return 0;
1636 }
1637
1638 static int remap_l3(struct i915_request *rq, int slice)
1639 {
1640         u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1641         int i;
1642
1643         if (!remap_info)
1644                 return 0;
1645
1646         cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1647         if (IS_ERR(cs))
1648                 return PTR_ERR(cs);
1649
1650         /*
1651          * Note: We do not worry about the concurrent register cacheline hang
1652          * here because no other code should access these registers other than
1653          * at initialization time.
1654          */
1655         *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1656         for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1657                 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1658                 *cs++ = remap_info[i];
1659         }
1660         *cs++ = MI_NOOP;
1661         intel_ring_advance(rq, cs);
1662
1663         return 0;
1664 }
1665
1666 static int switch_context(struct i915_request *rq)
1667 {
1668         struct intel_engine_cs *engine = rq->engine;
1669         struct i915_gem_context *ctx = rq->gem_context;
1670         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1671         unsigned int unwind_mm = 0;
1672         u32 hw_flags = 0;
1673         int ret, i;
1674
1675         lockdep_assert_held(&rq->i915->drm.struct_mutex);
1676         GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1677
1678         if (ppgtt) {
1679                 ret = load_pd_dir(rq, ppgtt);
1680                 if (ret)
1681                         goto err;
1682
1683                 if (intel_engine_flag(engine) & ppgtt->pd_dirty_rings) {
1684                         unwind_mm = intel_engine_flag(engine);
1685                         ppgtt->pd_dirty_rings &= ~unwind_mm;
1686                         hw_flags = MI_FORCE_RESTORE;
1687                 }
1688         }
1689
1690         if (rq->hw_context->state) {
1691                 GEM_BUG_ON(engine->id != RCS);
1692
1693                 /*
1694                  * The kernel context(s) is treated as pure scratch and is not
1695                  * expected to retain any state (as we sacrifice it during
1696                  * suspend and on resume it may be corrupted). This is ok,
1697                  * as nothing actually executes using the kernel context; it
1698                  * is purely used for flushing user contexts.
1699                  */
1700                 if (i915_gem_context_is_kernel(ctx))
1701                         hw_flags = MI_RESTORE_INHIBIT;
1702
1703                 ret = mi_set_context(rq, hw_flags);
1704                 if (ret)
1705                         goto err_mm;
1706         }
1707
1708         if (ppgtt) {
1709                 ret = flush_pd_dir(rq);
1710                 if (ret)
1711                         goto err_mm;
1712         }
1713
1714         if (ctx->remap_slice) {
1715                 for (i = 0; i < MAX_L3_SLICES; i++) {
1716                         if (!(ctx->remap_slice & BIT(i)))
1717                                 continue;
1718
1719                         ret = remap_l3(rq, i);
1720                         if (ret)
1721                                 goto err_mm;
1722                 }
1723
1724                 ctx->remap_slice = 0;
1725         }
1726
1727         return 0;
1728
1729 err_mm:
1730         if (unwind_mm)
1731                 ppgtt->pd_dirty_rings |= unwind_mm;
1732 err:
1733         return ret;
1734 }
1735
1736 static int ring_request_alloc(struct i915_request *request)
1737 {
1738         int ret;
1739
1740         GEM_BUG_ON(!request->hw_context->pin_count);
1741
1742         /* Flush enough space to reduce the likelihood of waiting after
1743          * we start building the request - in which case we will just
1744          * have to repeat work.
1745          */
1746         request->reserved_space += LEGACY_REQUEST_SIZE;
1747
1748         ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1749         if (ret)
1750                 return ret;
1751
1752         ret = switch_context(request);
1753         if (ret)
1754                 return ret;
1755
1756         request->reserved_space -= LEGACY_REQUEST_SIZE;
1757         return 0;
1758 }
1759
1760 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1761 {
1762         struct i915_request *target;
1763         long timeout;
1764
1765         lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1766
1767         if (intel_ring_update_space(ring) >= bytes)
1768                 return 0;
1769
1770         GEM_BUG_ON(list_empty(&ring->request_list));
1771         list_for_each_entry(target, &ring->request_list, ring_link) {
1772                 /* Would completion of this request free enough space? */
1773                 if (bytes <= __intel_ring_space(target->postfix,
1774                                                 ring->emit, ring->size))
1775                         break;
1776         }
1777
1778         if (WARN_ON(&target->ring_link == &ring->request_list))
1779                 return -ENOSPC;
1780
1781         timeout = i915_request_wait(target,
1782                                     I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1783                                     MAX_SCHEDULE_TIMEOUT);
1784         if (timeout < 0)
1785                 return timeout;
1786
1787         i915_request_retire_upto(target);
1788
1789         intel_ring_update_space(ring);
1790         GEM_BUG_ON(ring->space < bytes);
1791         return 0;
1792 }
1793
1794 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
1795 {
1796         GEM_BUG_ON(bytes > ring->effective_size);
1797         if (unlikely(bytes > ring->effective_size - ring->emit))
1798                 bytes += ring->size - ring->emit;
1799
1800         if (unlikely(bytes > ring->space)) {
1801                 int ret = wait_for_space(ring, bytes);
1802                 if (unlikely(ret))
1803                         return ret;
1804         }
1805
1806         GEM_BUG_ON(ring->space < bytes);
1807         return 0;
1808 }
1809
1810 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1811 {
1812         struct intel_ring *ring = rq->ring;
1813         const unsigned int remain_usable = ring->effective_size - ring->emit;
1814         const unsigned int bytes = num_dwords * sizeof(u32);
1815         unsigned int need_wrap = 0;
1816         unsigned int total_bytes;
1817         u32 *cs;
1818
1819         /* Packets must be qword aligned. */
1820         GEM_BUG_ON(num_dwords & 1);
1821
1822         total_bytes = bytes + rq->reserved_space;
1823         GEM_BUG_ON(total_bytes > ring->effective_size);
1824
1825         if (unlikely(total_bytes > remain_usable)) {
1826                 const int remain_actual = ring->size - ring->emit;
1827
1828                 if (bytes > remain_usable) {
1829                         /*
1830                          * Not enough space for the basic request. So need to
1831                          * flush out the remainder and then wait for
1832                          * base + reserved.
1833                          */
1834                         total_bytes += remain_actual;
1835                         need_wrap = remain_actual | 1;
1836                 } else  {
1837                         /*
1838                          * The base request will fit but the reserved space
1839                          * falls off the end. So we don't need an immediate
1840                          * wrap and only need to effectively wait for the
1841                          * reserved size from the start of ringbuffer.
1842                          */
1843                         total_bytes = rq->reserved_space + remain_actual;
1844                 }
1845         }
1846
1847         if (unlikely(total_bytes > ring->space)) {
1848                 int ret;
1849
1850                 /*
1851                  * Space is reserved in the ringbuffer for finalising the
1852                  * request, as that cannot be allowed to fail. During request
1853                  * finalisation, reserved_space is set to 0 to stop the
1854                  * overallocation and the assumption is that then we never need
1855                  * to wait (which has the risk of failing with EINTR).
1856                  *
1857                  * See also i915_request_alloc() and i915_request_add().
1858                  */
1859                 GEM_BUG_ON(!rq->reserved_space);
1860
1861                 ret = wait_for_space(ring, total_bytes);
1862                 if (unlikely(ret))
1863                         return ERR_PTR(ret);
1864         }
1865
1866         if (unlikely(need_wrap)) {
1867                 need_wrap &= ~1;
1868                 GEM_BUG_ON(need_wrap > ring->space);
1869                 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1870                 GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1871
1872                 /* Fill the tail with MI_NOOP */
1873                 memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1874                 ring->space -= need_wrap;
1875                 ring->emit = 0;
1876         }
1877
1878         GEM_BUG_ON(ring->emit > ring->size - bytes);
1879         GEM_BUG_ON(ring->space < bytes);
1880         cs = ring->vaddr + ring->emit;
1881         GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1882         ring->emit += bytes;
1883         ring->space -= bytes;
1884
1885         return cs;
1886 }
1887
1888 /* Align the ring tail to a cacheline boundary */
1889 int intel_ring_cacheline_align(struct i915_request *rq)
1890 {
1891         int num_dwords;
1892         void *cs;
1893
1894         num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1895         if (num_dwords == 0)
1896                 return 0;
1897
1898         num_dwords = CACHELINE_DWORDS - num_dwords;
1899         GEM_BUG_ON(num_dwords & 1);
1900
1901         cs = intel_ring_begin(rq, num_dwords);
1902         if (IS_ERR(cs))
1903                 return PTR_ERR(cs);
1904
1905         memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
1906         intel_ring_advance(rq, cs);
1907
1908         GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
1909         return 0;
1910 }
1911
1912 static void gen6_bsd_submit_request(struct i915_request *request)
1913 {
1914         struct drm_i915_private *dev_priv = request->i915;
1915
1916         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1917
1918        /* Every tail move must follow the sequence below */
1919
1920         /* Disable notification that the ring is IDLE. The GT
1921          * will then assume that it is busy and bring it out of rc6.
1922          */
1923         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1924                       _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1925
1926         /* Clear the context id. Here be magic! */
1927         I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1928
1929         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1930         if (__intel_wait_for_register_fw(dev_priv,
1931                                          GEN6_BSD_SLEEP_PSMI_CONTROL,
1932                                          GEN6_BSD_SLEEP_INDICATOR,
1933                                          0,
1934                                          1000, 0, NULL))
1935                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1936
1937         /* Now that the ring is fully powered up, update the tail */
1938         i9xx_submit_request(request);
1939
1940         /* Let the ring send IDLE messages to the GT again,
1941          * and so let it sleep to conserve power when idle.
1942          */
1943         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1944                       _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1945
1946         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1947 }
1948
1949 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
1950 {
1951         u32 cmd, *cs;
1952
1953         cs = intel_ring_begin(rq, 4);
1954         if (IS_ERR(cs))
1955                 return PTR_ERR(cs);
1956
1957         cmd = MI_FLUSH_DW;
1958
1959         /* We always require a command barrier so that subsequent
1960          * commands, such as breadcrumb interrupts, are strictly ordered
1961          * wrt the contents of the write cache being flushed to memory
1962          * (and thus being coherent from the CPU).
1963          */
1964         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1965
1966         /*
1967          * Bspec vol 1c.5 - video engine command streamer:
1968          * "If ENABLED, all TLBs will be invalidated once the flush
1969          * operation is complete. This bit is only valid when the
1970          * Post-Sync Operation field is a value of 1h or 3h."
1971          */
1972         if (mode & EMIT_INVALIDATE)
1973                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1974
1975         *cs++ = cmd;
1976         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1977         *cs++ = 0;
1978         *cs++ = MI_NOOP;
1979         intel_ring_advance(rq, cs);
1980         return 0;
1981 }
1982
1983 static int
1984 hsw_emit_bb_start(struct i915_request *rq,
1985                   u64 offset, u32 len,
1986                   unsigned int dispatch_flags)
1987 {
1988         u32 *cs;
1989
1990         cs = intel_ring_begin(rq, 2);
1991         if (IS_ERR(cs))
1992                 return PTR_ERR(cs);
1993
1994         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1995                 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
1996                 (dispatch_flags & I915_DISPATCH_RS ?
1997                 MI_BATCH_RESOURCE_STREAMER : 0);
1998         /* bit0-7 is the length on GEN6+ */
1999         *cs++ = offset;
2000         intel_ring_advance(rq, cs);
2001
2002         return 0;
2003 }
2004
2005 static int
2006 gen6_emit_bb_start(struct i915_request *rq,
2007                    u64 offset, u32 len,
2008                    unsigned int dispatch_flags)
2009 {
2010         u32 *cs;
2011
2012         cs = intel_ring_begin(rq, 2);
2013         if (IS_ERR(cs))
2014                 return PTR_ERR(cs);
2015
2016         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2017                 0 : MI_BATCH_NON_SECURE_I965);
2018         /* bit0-7 is the length on GEN6+ */
2019         *cs++ = offset;
2020         intel_ring_advance(rq, cs);
2021
2022         return 0;
2023 }
2024
2025 /* Blitter support (SandyBridge+) */
2026
2027 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
2028 {
2029         u32 cmd, *cs;
2030
2031         cs = intel_ring_begin(rq, 4);
2032         if (IS_ERR(cs))
2033                 return PTR_ERR(cs);
2034
2035         cmd = MI_FLUSH_DW;
2036
2037         /* We always require a command barrier so that subsequent
2038          * commands, such as breadcrumb interrupts, are strictly ordered
2039          * wrt the contents of the write cache being flushed to memory
2040          * (and thus being coherent from the CPU).
2041          */
2042         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2043
2044         /*
2045          * Bspec vol 1c.3 - blitter engine command streamer:
2046          * "If ENABLED, all TLBs will be invalidated once the flush
2047          * operation is complete. This bit is only valid when the
2048          * Post-Sync Operation field is a value of 1h or 3h."
2049          */
2050         if (mode & EMIT_INVALIDATE)
2051                 cmd |= MI_INVALIDATE_TLB;
2052         *cs++ = cmd;
2053         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2054         *cs++ = 0;
2055         *cs++ = MI_NOOP;
2056         intel_ring_advance(rq, cs);
2057
2058         return 0;
2059 }
2060
2061 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2062                                        struct intel_engine_cs *engine)
2063 {
2064         int i;
2065
2066         if (!HAS_LEGACY_SEMAPHORES(dev_priv))
2067                 return;
2068
2069         GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
2070         engine->semaphore.sync_to = gen6_ring_sync_to;
2071         engine->semaphore.signal = gen6_signal;
2072
2073         /*
2074          * The current semaphore is only applied on pre-gen8
2075          * platform.  And there is no VCS2 ring on the pre-gen8
2076          * platform. So the semaphore between RCS and VCS2 is
2077          * initialized as INVALID.
2078          */
2079         for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2080                 static const struct {
2081                         u32 wait_mbox;
2082                         i915_reg_t mbox_reg;
2083                 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2084                         [RCS_HW] = {
2085                                 [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
2086                                 [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
2087                                 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2088                         },
2089                         [VCS_HW] = {
2090                                 [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
2091                                 [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
2092                                 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2093                         },
2094                         [BCS_HW] = {
2095                                 [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
2096                                 [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
2097                                 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2098                         },
2099                         [VECS_HW] = {
2100                                 [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2101                                 [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2102                                 [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2103                         },
2104                 };
2105                 u32 wait_mbox;
2106                 i915_reg_t mbox_reg;
2107
2108                 if (i == engine->hw_id) {
2109                         wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2110                         mbox_reg = GEN6_NOSYNC;
2111                 } else {
2112                         wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2113                         mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2114                 }
2115
2116                 engine->semaphore.mbox.wait[i] = wait_mbox;
2117                 engine->semaphore.mbox.signal[i] = mbox_reg;
2118         }
2119 }
2120
2121 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2122                                 struct intel_engine_cs *engine)
2123 {
2124         if (INTEL_GEN(dev_priv) >= 6) {
2125                 engine->irq_enable = gen6_irq_enable;
2126                 engine->irq_disable = gen6_irq_disable;
2127                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2128         } else if (INTEL_GEN(dev_priv) >= 5) {
2129                 engine->irq_enable = gen5_irq_enable;
2130                 engine->irq_disable = gen5_irq_disable;
2131                 engine->irq_seqno_barrier = gen5_seqno_barrier;
2132         } else if (INTEL_GEN(dev_priv) >= 3) {
2133                 engine->irq_enable = i9xx_irq_enable;
2134                 engine->irq_disable = i9xx_irq_disable;
2135         } else {
2136                 engine->irq_enable = i8xx_irq_enable;
2137                 engine->irq_disable = i8xx_irq_disable;
2138         }
2139 }
2140
2141 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2142 {
2143         engine->submit_request = i9xx_submit_request;
2144         engine->cancel_requests = cancel_requests;
2145
2146         engine->park = NULL;
2147         engine->unpark = NULL;
2148 }
2149
2150 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2151 {
2152         i9xx_set_default_submission(engine);
2153         engine->submit_request = gen6_bsd_submit_request;
2154 }
2155
2156 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2157                                       struct intel_engine_cs *engine)
2158 {
2159         /* gen8+ are only supported with execlists */
2160         GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
2161
2162         intel_ring_init_irq(dev_priv, engine);
2163         intel_ring_init_semaphores(dev_priv, engine);
2164
2165         engine->init_hw = init_ring_common;
2166         engine->reset.prepare = reset_prepare;
2167         engine->reset.reset = reset_ring;
2168         engine->reset.finish = reset_finish;
2169
2170         engine->context_pin = intel_ring_context_pin;
2171         engine->request_alloc = ring_request_alloc;
2172
2173         engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2174         engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2175         if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2176                 int num_rings;
2177
2178                 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2179
2180                 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2181                 engine->emit_breadcrumb_sz += num_rings * 3;
2182                 if (num_rings & 1)
2183                         engine->emit_breadcrumb_sz++;
2184         }
2185
2186         engine->set_default_submission = i9xx_set_default_submission;
2187
2188         if (INTEL_GEN(dev_priv) >= 6)
2189                 engine->emit_bb_start = gen6_emit_bb_start;
2190         else if (INTEL_GEN(dev_priv) >= 4)
2191                 engine->emit_bb_start = i965_emit_bb_start;
2192         else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2193                 engine->emit_bb_start = i830_emit_bb_start;
2194         else
2195                 engine->emit_bb_start = i915_emit_bb_start;
2196 }
2197
2198 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2199 {
2200         struct drm_i915_private *dev_priv = engine->i915;
2201         int ret;
2202
2203         intel_ring_default_vfuncs(dev_priv, engine);
2204
2205         if (HAS_L3_DPF(dev_priv))
2206                 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2207
2208         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2209
2210         if (INTEL_GEN(dev_priv) >= 6) {
2211                 engine->init_context = intel_rcs_ctx_init;
2212                 engine->emit_flush = gen7_render_ring_flush;
2213                 if (IS_GEN6(dev_priv))
2214                         engine->emit_flush = gen6_render_ring_flush;
2215         } else if (IS_GEN5(dev_priv)) {
2216                 engine->emit_flush = gen4_render_ring_flush;
2217         } else {
2218                 if (INTEL_GEN(dev_priv) < 4)
2219                         engine->emit_flush = gen2_render_ring_flush;
2220                 else
2221                         engine->emit_flush = gen4_render_ring_flush;
2222                 engine->irq_enable_mask = I915_USER_INTERRUPT;
2223         }
2224
2225         if (IS_HASWELL(dev_priv))
2226                 engine->emit_bb_start = hsw_emit_bb_start;
2227
2228         engine->init_hw = init_render_ring;
2229
2230         ret = intel_init_ring_buffer(engine);
2231         if (ret)
2232                 return ret;
2233
2234         return 0;
2235 }
2236
2237 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2238 {
2239         struct drm_i915_private *dev_priv = engine->i915;
2240
2241         intel_ring_default_vfuncs(dev_priv, engine);
2242
2243         if (INTEL_GEN(dev_priv) >= 6) {
2244                 /* gen6 bsd needs a special wa for tail updates */
2245                 if (IS_GEN6(dev_priv))
2246                         engine->set_default_submission = gen6_bsd_set_default_submission;
2247                 engine->emit_flush = gen6_bsd_ring_flush;
2248                 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2249         } else {
2250                 engine->emit_flush = bsd_ring_flush;
2251                 if (IS_GEN5(dev_priv))
2252                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2253                 else
2254                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2255         }
2256
2257         return intel_init_ring_buffer(engine);
2258 }
2259
2260 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2261 {
2262         struct drm_i915_private *dev_priv = engine->i915;
2263
2264         intel_ring_default_vfuncs(dev_priv, engine);
2265
2266         engine->emit_flush = gen6_ring_flush;
2267         engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2268
2269         return intel_init_ring_buffer(engine);
2270 }
2271
2272 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2273 {
2274         struct drm_i915_private *dev_priv = engine->i915;
2275
2276         intel_ring_default_vfuncs(dev_priv, engine);
2277
2278         engine->emit_flush = gen6_ring_flush;
2279         engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2280         engine->irq_enable = hsw_vebox_irq_enable;
2281         engine->irq_disable = hsw_vebox_irq_disable;
2282
2283         return intel_init_ring_buffer(engine);
2284 }