2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
30 #include <linux/log2.h>
33 #include <drm/i915_drm.h>
36 #include "i915_gem_render_state.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_workarounds.h"
41 /* Rough estimate of the typical request size, performing a flush,
42 * set-context and then emitting the batch.
44 #define LEGACY_REQUEST_SIZE 200
46 static unsigned int __intel_ring_space(unsigned int head,
51 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
52 * same cacheline, the Head Pointer must not be greater than the Tail
55 GEM_BUG_ON(!is_power_of_2(size));
56 return (head - tail - CACHELINE_BYTES) & (size - 1);
59 unsigned int intel_ring_update_space(struct intel_ring *ring)
63 space = __intel_ring_space(ring->head, ring->emit, ring->size);
70 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
76 if (mode & EMIT_INVALIDATE)
79 cs = intel_ring_begin(rq, 2);
85 intel_ring_advance(rq, cs);
91 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
98 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
99 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
100 * also flushed at 2d versus 3d pipeline switches.
104 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
105 * MI_READ_FLUSH is set, and is always flushed on 965.
107 * I915_GEM_DOMAIN_COMMAND may not exist?
109 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
110 * invalidated when MI_EXE_FLUSH is set.
112 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
113 * invalidated with every MI_FLUSH.
117 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
118 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
119 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
120 * are flushed at any MI_FLUSH.
124 if (mode & EMIT_INVALIDATE) {
126 if (IS_G4X(rq->i915) || IS_GEN5(rq->i915))
127 cmd |= MI_INVALIDATE_ISP;
130 cs = intel_ring_begin(rq, 2);
136 intel_ring_advance(rq, cs);
142 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
143 * implementing two workarounds on gen6. From section 1.4.7.1
144 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
146 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
147 * produced by non-pipelined state commands), software needs to first
148 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
151 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
152 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
154 * And the workaround for these two requires this workaround first:
156 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
157 * BEFORE the pipe-control with a post-sync op and no write-cache
160 * And this last workaround is tricky because of the requirements on
161 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
164 * "1 of the following must also be set:
165 * - Render Target Cache Flush Enable ([12] of DW1)
166 * - Depth Cache Flush Enable ([0] of DW1)
167 * - Stall at Pixel Scoreboard ([1] of DW1)
168 * - Depth Stall ([13] of DW1)
169 * - Post-Sync Operation ([13] of DW1)
170 * - Notify Enable ([8] of DW1)"
172 * The cache flushes require the workaround flush that triggered this
173 * one, so we can't use it. Depth stall would trigger the same.
174 * Post-sync nonzero is what triggered this second workaround, so we
175 * can't use that one either. Notify enable is IRQs, which aren't
176 * really our business. That leaves only stall at scoreboard.
179 intel_emit_post_sync_nonzero_flush(struct i915_request *rq)
182 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
185 cs = intel_ring_begin(rq, 6);
189 *cs++ = GFX_OP_PIPE_CONTROL(5);
190 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
191 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
192 *cs++ = 0; /* low dword */
193 *cs++ = 0; /* high dword */
195 intel_ring_advance(rq, cs);
197 cs = intel_ring_begin(rq, 6);
201 *cs++ = GFX_OP_PIPE_CONTROL(5);
202 *cs++ = PIPE_CONTROL_QW_WRITE;
203 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
207 intel_ring_advance(rq, cs);
213 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
216 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
220 /* Force SNB workarounds for PIPE_CONTROL flushes */
221 ret = intel_emit_post_sync_nonzero_flush(rq);
225 /* Just flush everything. Experiments have shown that reducing the
226 * number of bits based on the write domains has little performance
229 if (mode & EMIT_FLUSH) {
230 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
233 * Ensure that any following seqno writes only happen
234 * when the render cache is indeed flushed.
236 flags |= PIPE_CONTROL_CS_STALL;
238 if (mode & EMIT_INVALIDATE) {
239 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
246 * TLB invalidate requires a post-sync write.
248 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
251 cs = intel_ring_begin(rq, 4);
255 *cs++ = GFX_OP_PIPE_CONTROL(4);
257 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
259 intel_ring_advance(rq, cs);
265 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
269 cs = intel_ring_begin(rq, 4);
273 *cs++ = GFX_OP_PIPE_CONTROL(4);
274 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
277 intel_ring_advance(rq, cs);
283 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
286 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
290 * Ensure that any following seqno writes only happen when the render
291 * cache is indeed flushed.
293 * Workaround: 4th PIPE_CONTROL command (except the ones with only
294 * read-cache invalidate bits set) must have the CS_STALL bit set. We
295 * don't try to be clever and just set it unconditionally.
297 flags |= PIPE_CONTROL_CS_STALL;
299 /* Just flush everything. Experiments have shown that reducing the
300 * number of bits based on the write domains has little performance
303 if (mode & EMIT_FLUSH) {
304 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
305 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
306 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
307 flags |= PIPE_CONTROL_FLUSH_ENABLE;
309 if (mode & EMIT_INVALIDATE) {
310 flags |= PIPE_CONTROL_TLB_INVALIDATE;
311 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
312 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
313 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
314 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
315 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
316 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
318 * TLB invalidate requires a post-sync write.
320 flags |= PIPE_CONTROL_QW_WRITE;
321 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
323 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
325 /* Workaround: we must issue a pipe_control with CS-stall bit
326 * set before a pipe_control command that has the state cache
327 * invalidate bit set. */
328 gen7_render_ring_cs_stall_wa(rq);
331 cs = intel_ring_begin(rq, 4);
335 *cs++ = GFX_OP_PIPE_CONTROL(4);
337 *cs++ = scratch_addr;
339 intel_ring_advance(rq, cs);
344 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
346 struct drm_i915_private *dev_priv = engine->i915;
349 addr = dev_priv->status_page_dmah->busaddr;
350 if (INTEL_GEN(dev_priv) >= 4)
351 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
352 I915_WRITE(HWS_PGA, addr);
355 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
357 struct drm_i915_private *dev_priv = engine->i915;
360 /* The ring status page addresses are no longer next to the rest of
361 * the ring registers as of gen7.
363 if (IS_GEN7(dev_priv)) {
364 switch (engine->id) {
366 * No more rings exist on Gen7. Default case is only to shut up
367 * gcc switch check warning.
370 GEM_BUG_ON(engine->id);
372 mmio = RENDER_HWS_PGA_GEN7;
375 mmio = BLT_HWS_PGA_GEN7;
378 mmio = BSD_HWS_PGA_GEN7;
381 mmio = VEBOX_HWS_PGA_GEN7;
384 } else if (IS_GEN6(dev_priv)) {
385 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
387 mmio = RING_HWS_PGA(engine->mmio_base);
390 if (INTEL_GEN(dev_priv) >= 6)
391 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
393 I915_WRITE(mmio, engine->status_page.ggtt_offset);
396 /* Flush the TLB for this page */
397 if (IS_GEN(dev_priv, 6, 7)) {
398 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
400 /* ring should be idle before issuing a sync flush*/
401 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
404 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
406 if (intel_wait_for_register(dev_priv,
407 reg, INSTPM_SYNC_FLUSH, 0,
409 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
414 static bool stop_ring(struct intel_engine_cs *engine)
416 struct drm_i915_private *dev_priv = engine->i915;
418 if (INTEL_GEN(dev_priv) > 2) {
419 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
420 if (intel_wait_for_register(dev_priv,
421 RING_MI_MODE(engine->mmio_base),
425 DRM_ERROR("%s : timed out trying to stop ring\n",
427 /* Sometimes we observe that the idle flag is not
428 * set even though the ring is empty. So double
429 * check before giving up.
431 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
436 I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
438 I915_WRITE_HEAD(engine, 0);
439 I915_WRITE_TAIL(engine, 0);
441 /* The ring must be empty before it is disabled */
442 I915_WRITE_CTL(engine, 0);
444 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
447 static int init_ring_common(struct intel_engine_cs *engine)
449 struct drm_i915_private *dev_priv = engine->i915;
450 struct intel_ring *ring = engine->buffer;
453 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
455 if (!stop_ring(engine)) {
456 /* G45 ring initialization often fails to reset head to zero */
457 DRM_DEBUG_DRIVER("%s head not reset to zero "
458 "ctl %08x head %08x tail %08x start %08x\n",
460 I915_READ_CTL(engine),
461 I915_READ_HEAD(engine),
462 I915_READ_TAIL(engine),
463 I915_READ_START(engine));
465 if (!stop_ring(engine)) {
466 DRM_ERROR("failed to set %s head to zero "
467 "ctl %08x head %08x tail %08x start %08x\n",
469 I915_READ_CTL(engine),
470 I915_READ_HEAD(engine),
471 I915_READ_TAIL(engine),
472 I915_READ_START(engine));
478 if (HWS_NEEDS_PHYSICAL(dev_priv))
479 ring_setup_phys_status_page(engine);
481 intel_ring_setup_status_page(engine);
483 intel_engine_reset_breadcrumbs(engine);
485 /* Enforce ordering by reading HEAD register back */
486 I915_READ_HEAD(engine);
488 /* Initialize the ring. This must happen _after_ we've cleared the ring
489 * registers with the above sequence (the readback of the HEAD registers
490 * also enforces ordering), otherwise the hw might lose the new ring
491 * register values. */
492 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
494 /* WaClearRingBufHeadRegAtInit:ctg,elk */
495 if (I915_READ_HEAD(engine))
496 DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
497 engine->name, I915_READ_HEAD(engine));
499 /* Check that the ring offsets point within the ring! */
500 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
501 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
503 intel_ring_update_space(ring);
504 I915_WRITE_HEAD(engine, ring->head);
505 I915_WRITE_TAIL(engine, ring->tail);
506 (void)I915_READ_TAIL(engine);
508 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
510 /* If the head is still not zero, the ring is dead */
511 if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
512 RING_VALID, RING_VALID,
514 DRM_ERROR("%s initialization failed "
515 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
517 I915_READ_CTL(engine),
518 I915_READ_CTL(engine) & RING_VALID,
519 I915_READ_HEAD(engine), ring->head,
520 I915_READ_TAIL(engine), ring->tail,
521 I915_READ_START(engine),
522 i915_ggtt_offset(ring->vma));
527 if (INTEL_GEN(dev_priv) > 2)
528 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
531 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
536 static struct i915_request *reset_prepare(struct intel_engine_cs *engine)
538 intel_engine_stop_cs(engine);
540 if (engine->irq_seqno_barrier)
541 engine->irq_seqno_barrier(engine);
543 return i915_gem_find_active_request(engine);
546 static void skip_request(struct i915_request *rq)
548 void *vaddr = rq->ring->vaddr;
552 if (rq->postfix < head) {
553 memset32(vaddr + head, MI_NOOP,
554 (rq->ring->size - head) / sizeof(u32));
557 memset32(vaddr + head, MI_NOOP, (rq->postfix - head) / sizeof(u32));
560 static void reset_ring(struct intel_engine_cs *engine, struct i915_request *rq)
562 GEM_TRACE("%s seqno=%x\n", engine->name, rq ? rq->global_seqno : 0);
565 * Try to restore the logical GPU state to match the continuation
566 * of the request queue. If we skip the context/PD restore, then
567 * the next request may try to execute assuming that its context
568 * is valid and loaded on the GPU and so may try to access invalid
569 * memory, prompting repeated GPU hangs.
571 * If the request was guilty, we still restore the logical state
572 * in case the next request requires it (e.g. the aliasing ppgtt),
573 * but skip over the hung batch.
575 * If the request was innocent, we try to replay the request with
576 * the restored context.
579 /* If the rq hung, jump to its breadcrumb and skip the batch */
580 rq->ring->head = intel_ring_wrap(rq->ring, rq->head);
581 if (rq->fence.error == -EIO)
586 static void reset_finish(struct intel_engine_cs *engine)
590 static int intel_rcs_ctx_init(struct i915_request *rq)
594 ret = intel_ctx_workarounds_emit(rq);
598 ret = i915_gem_render_state_emit(rq);
605 static int init_render_ring(struct intel_engine_cs *engine)
607 struct drm_i915_private *dev_priv = engine->i915;
608 int ret = init_ring_common(engine);
612 intel_whitelist_workarounds_apply(engine);
614 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
615 if (IS_GEN(dev_priv, 4, 6))
616 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
618 /* We need to disable the AsyncFlip performance optimisations in order
619 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
620 * programmed to '1' on all products.
622 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
624 if (IS_GEN(dev_priv, 6, 7))
625 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
627 /* Required for the hardware to program scanline values for waiting */
628 /* WaEnableFlushTlbInvalidationMode:snb */
629 if (IS_GEN6(dev_priv))
631 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
633 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
634 if (IS_GEN7(dev_priv))
635 I915_WRITE(GFX_MODE_GEN7,
636 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
637 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
639 if (IS_GEN6(dev_priv)) {
640 /* From the Sandybridge PRM, volume 1 part 3, page 24:
641 * "If this bit is set, STCunit will have LRA as replacement
642 * policy. [...] This bit must be reset. LRA replacement
643 * policy is not supported."
645 I915_WRITE(CACHE_MODE_0,
646 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
649 if (IS_GEN(dev_priv, 6, 7))
650 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
652 if (INTEL_GEN(dev_priv) >= 6)
653 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
658 static u32 *gen6_signal(struct i915_request *rq, u32 *cs)
660 struct drm_i915_private *dev_priv = rq->i915;
661 struct intel_engine_cs *engine;
662 enum intel_engine_id id;
665 for_each_engine(engine, dev_priv, id) {
668 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
671 mbox_reg = rq->engine->semaphore.mbox.signal[engine->hw_id];
672 if (i915_mmio_reg_valid(mbox_reg)) {
673 *cs++ = MI_LOAD_REGISTER_IMM(1);
674 *cs++ = i915_mmio_reg_offset(mbox_reg);
675 *cs++ = rq->global_seqno;
685 static void cancel_requests(struct intel_engine_cs *engine)
687 struct i915_request *request;
690 spin_lock_irqsave(&engine->timeline.lock, flags);
692 /* Mark all submitted requests as skipped. */
693 list_for_each_entry(request, &engine->timeline.requests, link) {
694 GEM_BUG_ON(!request->global_seqno);
695 if (!i915_request_completed(request))
696 dma_fence_set_error(&request->fence, -EIO);
698 /* Remaining _unready_ requests will be nop'ed when submitted */
700 spin_unlock_irqrestore(&engine->timeline.lock, flags);
703 static void i9xx_submit_request(struct i915_request *request)
705 struct drm_i915_private *dev_priv = request->i915;
707 i915_request_submit(request);
709 I915_WRITE_TAIL(request->engine,
710 intel_ring_set_tail(request->ring, request->tail));
713 static void i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
715 *cs++ = MI_STORE_DWORD_INDEX;
716 *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
717 *cs++ = rq->global_seqno;
718 *cs++ = MI_USER_INTERRUPT;
720 rq->tail = intel_ring_offset(rq, cs);
721 assert_ring_tail_valid(rq->ring, rq->tail);
724 static const int i9xx_emit_breadcrumb_sz = 4;
726 static void gen6_sema_emit_breadcrumb(struct i915_request *rq, u32 *cs)
728 return i9xx_emit_breadcrumb(rq, rq->engine->semaphore.signal(rq, cs));
732 gen6_ring_sync_to(struct i915_request *rq, struct i915_request *signal)
734 u32 dw1 = MI_SEMAPHORE_MBOX |
735 MI_SEMAPHORE_COMPARE |
736 MI_SEMAPHORE_REGISTER;
737 u32 wait_mbox = signal->engine->semaphore.mbox.wait[rq->engine->hw_id];
740 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
742 cs = intel_ring_begin(rq, 4);
746 *cs++ = dw1 | wait_mbox;
747 /* Throughout all of the GEM code, seqno passed implies our current
748 * seqno is >= the last seqno executed. However for hardware the
749 * comparison is strictly greater than.
751 *cs++ = signal->global_seqno - 1;
754 intel_ring_advance(rq, cs);
760 gen5_seqno_barrier(struct intel_engine_cs *engine)
762 /* MI_STORE are internally buffered by the GPU and not flushed
763 * either by MI_FLUSH or SyncFlush or any other combination of
766 * "Only the submission of the store operation is guaranteed.
767 * The write result will be complete (coherent) some time later
768 * (this is practically a finite period but there is no guaranteed
771 * Empirically, we observe that we need a delay of at least 75us to
772 * be sure that the seqno write is visible by the CPU.
774 usleep_range(125, 250);
778 gen6_seqno_barrier(struct intel_engine_cs *engine)
780 struct drm_i915_private *dev_priv = engine->i915;
782 /* Workaround to force correct ordering between irq and seqno writes on
783 * ivb (and maybe also on snb) by reading from a CS register (like
784 * ACTHD) before reading the status page.
786 * Note that this effectively stalls the read by the time it takes to
787 * do a memory transaction, which more or less ensures that the write
788 * from the GPU has sufficient time to invalidate the CPU cacheline.
789 * Alternatively we could delay the interrupt from the CS ring to give
790 * the write time to land, but that would incur a delay after every
791 * batch i.e. much more frequent than a delay when waiting for the
792 * interrupt (with the same net latency).
794 * Also note that to prevent whole machine hangs on gen7, we have to
795 * take the spinlock to guard against concurrent cacheline access.
797 spin_lock_irq(&dev_priv->uncore.lock);
798 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
799 spin_unlock_irq(&dev_priv->uncore.lock);
803 gen5_irq_enable(struct intel_engine_cs *engine)
805 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
809 gen5_irq_disable(struct intel_engine_cs *engine)
811 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
815 i9xx_irq_enable(struct intel_engine_cs *engine)
817 struct drm_i915_private *dev_priv = engine->i915;
819 dev_priv->irq_mask &= ~engine->irq_enable_mask;
820 I915_WRITE(IMR, dev_priv->irq_mask);
821 POSTING_READ_FW(RING_IMR(engine->mmio_base));
825 i9xx_irq_disable(struct intel_engine_cs *engine)
827 struct drm_i915_private *dev_priv = engine->i915;
829 dev_priv->irq_mask |= engine->irq_enable_mask;
830 I915_WRITE(IMR, dev_priv->irq_mask);
834 i8xx_irq_enable(struct intel_engine_cs *engine)
836 struct drm_i915_private *dev_priv = engine->i915;
838 dev_priv->irq_mask &= ~engine->irq_enable_mask;
839 I915_WRITE16(IMR, dev_priv->irq_mask);
840 POSTING_READ16(RING_IMR(engine->mmio_base));
844 i8xx_irq_disable(struct intel_engine_cs *engine)
846 struct drm_i915_private *dev_priv = engine->i915;
848 dev_priv->irq_mask |= engine->irq_enable_mask;
849 I915_WRITE16(IMR, dev_priv->irq_mask);
853 bsd_ring_flush(struct i915_request *rq, u32 mode)
857 cs = intel_ring_begin(rq, 2);
863 intel_ring_advance(rq, cs);
868 gen6_irq_enable(struct intel_engine_cs *engine)
870 struct drm_i915_private *dev_priv = engine->i915;
872 I915_WRITE_IMR(engine,
873 ~(engine->irq_enable_mask |
874 engine->irq_keep_mask));
875 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
879 gen6_irq_disable(struct intel_engine_cs *engine)
881 struct drm_i915_private *dev_priv = engine->i915;
883 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
884 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
888 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
890 struct drm_i915_private *dev_priv = engine->i915;
892 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
893 gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
897 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
899 struct drm_i915_private *dev_priv = engine->i915;
901 I915_WRITE_IMR(engine, ~0);
902 gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
906 i965_emit_bb_start(struct i915_request *rq,
907 u64 offset, u32 length,
908 unsigned int dispatch_flags)
912 cs = intel_ring_begin(rq, 2);
916 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
917 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
919 intel_ring_advance(rq, cs);
924 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
925 #define I830_BATCH_LIMIT (256*1024)
926 #define I830_TLB_ENTRIES (2)
927 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
929 i830_emit_bb_start(struct i915_request *rq,
931 unsigned int dispatch_flags)
933 u32 *cs, cs_offset = i915_ggtt_offset(rq->engine->scratch);
935 cs = intel_ring_begin(rq, 6);
939 /* Evict the invalid PTE TLBs */
940 *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
941 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
942 *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
946 intel_ring_advance(rq, cs);
948 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
949 if (len > I830_BATCH_LIMIT)
952 cs = intel_ring_begin(rq, 6 + 2);
956 /* Blit the batch (which has now all relocs applied) to the
957 * stable batch scratch bo area (so that the CS never
958 * stumbles over its tlb invalidation bug) ...
960 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
961 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
962 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
969 intel_ring_advance(rq, cs);
971 /* ... and execute it. */
975 cs = intel_ring_begin(rq, 2);
979 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
980 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
981 MI_BATCH_NON_SECURE);
982 intel_ring_advance(rq, cs);
988 i915_emit_bb_start(struct i915_request *rq,
990 unsigned int dispatch_flags)
994 cs = intel_ring_begin(rq, 2);
998 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
999 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1000 MI_BATCH_NON_SECURE);
1001 intel_ring_advance(rq, cs);
1008 int intel_ring_pin(struct intel_ring *ring,
1009 struct drm_i915_private *i915,
1010 unsigned int offset_bias)
1012 enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1013 struct i915_vma *vma = ring->vma;
1018 GEM_BUG_ON(ring->vaddr);
1023 flags |= PIN_OFFSET_BIAS | offset_bias;
1024 if (vma->obj->stolen)
1025 flags |= PIN_MAPPABLE;
1029 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1030 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1031 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1033 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1038 ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1042 if (i915_vma_is_map_and_fenceable(vma))
1043 addr = (void __force *)i915_vma_pin_iomap(vma);
1045 addr = i915_gem_object_pin_map(vma->obj, map);
1049 vma->obj->pin_global++;
1055 i915_vma_unpin(vma);
1056 return PTR_ERR(addr);
1059 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1061 GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
1066 intel_ring_update_space(ring);
1069 void intel_ring_unpin(struct intel_ring *ring)
1071 GEM_BUG_ON(!ring->vma);
1072 GEM_BUG_ON(!ring->vaddr);
1074 /* Discard any unused bytes beyond that submitted to hw. */
1075 intel_ring_reset(ring, ring->tail);
1077 if (i915_vma_is_map_and_fenceable(ring->vma))
1078 i915_vma_unpin_iomap(ring->vma);
1080 i915_gem_object_unpin_map(ring->vma->obj);
1083 ring->vma->obj->pin_global--;
1084 i915_vma_unpin(ring->vma);
1087 static struct i915_vma *
1088 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1090 struct i915_address_space *vm = &dev_priv->ggtt.vm;
1091 struct drm_i915_gem_object *obj;
1092 struct i915_vma *vma;
1094 obj = i915_gem_object_create_stolen(dev_priv, size);
1096 obj = i915_gem_object_create_internal(dev_priv, size);
1098 return ERR_CAST(obj);
1101 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1102 * if supported by the platform's GGTT.
1104 if (vm->has_read_only)
1105 i915_gem_object_set_readonly(obj);
1107 vma = i915_vma_instance(obj, vm, NULL);
1114 i915_gem_object_put(obj);
1119 intel_engine_create_ring(struct intel_engine_cs *engine,
1120 struct i915_timeline *timeline,
1123 struct intel_ring *ring;
1124 struct i915_vma *vma;
1126 GEM_BUG_ON(!is_power_of_2(size));
1127 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1128 GEM_BUG_ON(timeline == &engine->timeline);
1129 lockdep_assert_held(&engine->i915->drm.struct_mutex);
1131 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1133 return ERR_PTR(-ENOMEM);
1135 INIT_LIST_HEAD(&ring->request_list);
1136 ring->timeline = i915_timeline_get(timeline);
1139 /* Workaround an erratum on the i830 which causes a hang if
1140 * the TAIL pointer points to within the last 2 cachelines
1143 ring->effective_size = size;
1144 if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1145 ring->effective_size -= 2 * CACHELINE_BYTES;
1147 intel_ring_update_space(ring);
1149 vma = intel_ring_create_vma(engine->i915, size);
1152 return ERR_CAST(vma);
1160 intel_ring_free(struct intel_ring *ring)
1162 struct drm_i915_gem_object *obj = ring->vma->obj;
1164 i915_vma_close(ring->vma);
1165 __i915_gem_object_release_unless_active(obj);
1167 i915_timeline_put(ring->timeline);
1171 static void intel_ring_context_destroy(struct intel_context *ce)
1173 GEM_BUG_ON(ce->pin_count);
1178 GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1179 i915_gem_object_put(ce->state->obj);
1182 static int __context_pin_ppgtt(struct i915_gem_context *ctx)
1184 struct i915_hw_ppgtt *ppgtt;
1187 ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1189 err = gen6_ppgtt_pin(ppgtt);
1194 static void __context_unpin_ppgtt(struct i915_gem_context *ctx)
1196 struct i915_hw_ppgtt *ppgtt;
1198 ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1200 gen6_ppgtt_unpin(ppgtt);
1203 static int __context_pin(struct intel_context *ce)
1205 struct i915_vma *vma;
1213 * Clear this page out of any CPU caches for coherent swap-in/out.
1214 * We only want to do this on the first bind so that we do not stall
1215 * on an active context (which by nature is already on the GPU).
1217 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1218 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1223 err = i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
1224 PIN_GLOBAL | PIN_HIGH);
1229 * And mark is as a globally pinned object to let the shrinker know
1230 * it cannot reclaim the object until we release it.
1232 vma->obj->pin_global++;
1237 static void __context_unpin(struct intel_context *ce)
1239 struct i915_vma *vma;
1245 vma->obj->pin_global--;
1246 i915_vma_unpin(vma);
1249 static void intel_ring_context_unpin(struct intel_context *ce)
1251 __context_unpin_ppgtt(ce->gem_context);
1252 __context_unpin(ce);
1254 i915_gem_context_put(ce->gem_context);
1257 static struct i915_vma *
1258 alloc_context_vma(struct intel_engine_cs *engine)
1260 struct drm_i915_private *i915 = engine->i915;
1261 struct drm_i915_gem_object *obj;
1262 struct i915_vma *vma;
1265 obj = i915_gem_object_create(i915, engine->context_size);
1267 return ERR_CAST(obj);
1269 if (engine->default_state) {
1270 void *defaults, *vaddr;
1272 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1273 if (IS_ERR(vaddr)) {
1274 err = PTR_ERR(vaddr);
1278 defaults = i915_gem_object_pin_map(engine->default_state,
1280 if (IS_ERR(defaults)) {
1281 err = PTR_ERR(defaults);
1285 memcpy(vaddr, defaults, engine->context_size);
1287 i915_gem_object_unpin_map(engine->default_state);
1288 i915_gem_object_unpin_map(obj);
1292 * Try to make the context utilize L3 as well as LLC.
1294 * On VLV we don't have L3 controls in the PTEs so we
1295 * shouldn't touch the cache level, especially as that
1296 * would make the object snooped which might have a
1297 * negative performance impact.
1299 * Snooping is required on non-llc platforms in execlist
1300 * mode, but since all GGTT accesses use PAT entry 0 we
1301 * get snooping anyway regardless of cache_level.
1303 * This is only applicable for Ivy Bridge devices since
1304 * later platforms don't have L3 control bits in the PTE.
1306 if (IS_IVYBRIDGE(i915)) {
1307 /* Ignore any error, regard it as a simple optimisation */
1308 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1311 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
1320 i915_gem_object_unpin_map(obj);
1322 i915_gem_object_put(obj);
1323 return ERR_PTR(err);
1326 static struct intel_context *
1327 __ring_context_pin(struct intel_engine_cs *engine,
1328 struct i915_gem_context *ctx,
1329 struct intel_context *ce)
1333 if (!ce->state && engine->context_size) {
1334 struct i915_vma *vma;
1336 vma = alloc_context_vma(engine);
1345 err = __context_pin(ce);
1349 err = __context_pin_ppgtt(ce->gem_context);
1353 i915_gem_context_get(ctx);
1355 /* One ringbuffer to rule them all */
1356 GEM_BUG_ON(!engine->buffer);
1357 ce->ring = engine->buffer;
1362 __context_unpin(ce);
1365 return ERR_PTR(err);
1368 static const struct intel_context_ops ring_context_ops = {
1369 .unpin = intel_ring_context_unpin,
1370 .destroy = intel_ring_context_destroy,
1373 static struct intel_context *
1374 intel_ring_context_pin(struct intel_engine_cs *engine,
1375 struct i915_gem_context *ctx)
1377 struct intel_context *ce = to_intel_context(ctx, engine);
1379 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1381 if (likely(ce->pin_count++))
1383 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1385 ce->ops = &ring_context_ops;
1387 return __ring_context_pin(engine, ctx, ce);
1390 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1392 struct i915_timeline *timeline;
1393 struct intel_ring *ring;
1397 intel_engine_setup_common(engine);
1399 timeline = i915_timeline_create(engine->i915, engine->name);
1400 if (IS_ERR(timeline)) {
1401 err = PTR_ERR(timeline);
1405 ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
1406 i915_timeline_put(timeline);
1408 err = PTR_ERR(ring);
1412 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1413 err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
1417 GEM_BUG_ON(engine->buffer);
1418 engine->buffer = ring;
1421 if (HAS_BROKEN_CS_TLB(engine->i915))
1422 size = I830_WA_SIZE;
1423 err = intel_engine_create_scratch(engine, size);
1427 err = intel_engine_init_common(engine);
1434 intel_engine_cleanup_scratch(engine);
1436 intel_ring_unpin(ring);
1438 intel_ring_free(ring);
1440 intel_engine_cleanup_common(engine);
1444 void intel_engine_cleanup(struct intel_engine_cs *engine)
1446 struct drm_i915_private *dev_priv = engine->i915;
1448 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1449 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1451 intel_ring_unpin(engine->buffer);
1452 intel_ring_free(engine->buffer);
1454 if (engine->cleanup)
1455 engine->cleanup(engine);
1457 intel_engine_cleanup_common(engine);
1459 dev_priv->engine[engine->id] = NULL;
1463 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1465 struct intel_engine_cs *engine;
1466 enum intel_engine_id id;
1468 /* Restart from the beginning of the rings for convenience */
1469 for_each_engine(engine, dev_priv, id)
1470 intel_ring_reset(engine->buffer, 0);
1473 static int load_pd_dir(struct i915_request *rq,
1474 const struct i915_hw_ppgtt *ppgtt)
1476 const struct intel_engine_cs * const engine = rq->engine;
1479 cs = intel_ring_begin(rq, 6);
1483 *cs++ = MI_LOAD_REGISTER_IMM(1);
1484 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1485 *cs++ = PP_DIR_DCLV_2G;
1487 *cs++ = MI_LOAD_REGISTER_IMM(1);
1488 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1489 *cs++ = ppgtt->pd.base.ggtt_offset << 10;
1491 intel_ring_advance(rq, cs);
1496 static int flush_pd_dir(struct i915_request *rq)
1498 const struct intel_engine_cs * const engine = rq->engine;
1501 cs = intel_ring_begin(rq, 4);
1505 /* Stall until the page table load is complete */
1506 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1507 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1508 *cs++ = i915_ggtt_offset(engine->scratch);
1511 intel_ring_advance(rq, cs);
1515 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1517 struct drm_i915_private *i915 = rq->i915;
1518 struct intel_engine_cs *engine = rq->engine;
1519 enum intel_engine_id id;
1520 const int num_rings =
1521 /* Use an extended w/a on gen7 if signalling from other rings */
1522 (HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
1523 INTEL_INFO(i915)->num_rings - 1 :
1525 bool force_restore = false;
1529 flags |= MI_MM_SPACE_GTT;
1530 if (IS_HASWELL(i915))
1531 /* These flags are for resource streamer on HSW+ */
1532 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1534 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1538 len += 2 + (num_rings ? 4*num_rings + 6 : 0);
1539 if (flags & MI_FORCE_RESTORE) {
1540 GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1541 flags &= ~MI_FORCE_RESTORE;
1542 force_restore = true;
1546 cs = intel_ring_begin(rq, len);
1550 /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1551 if (IS_GEN7(i915)) {
1552 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1554 struct intel_engine_cs *signaller;
1556 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1557 for_each_engine(signaller, i915, id) {
1558 if (signaller == engine)
1561 *cs++ = i915_mmio_reg_offset(
1562 RING_PSMI_CTL(signaller->mmio_base));
1563 *cs++ = _MASKED_BIT_ENABLE(
1564 GEN6_PSMI_SLEEP_MSG_DISABLE);
1569 if (force_restore) {
1571 * The HW doesn't handle being told to restore the current
1572 * context very well. Quite often it likes goes to go off and
1573 * sulk, especially when it is meant to be reloading PP_DIR.
1574 * A very simple fix to force the reload is to simply switch
1575 * away from the current context and back again.
1577 * Note that the kernel_context will contain random state
1578 * following the INHIBIT_RESTORE. We accept this since we
1579 * never use the kernel_context state; it is merely a
1580 * placeholder we use to flush other contexts.
1582 *cs++ = MI_SET_CONTEXT;
1583 *cs++ = i915_ggtt_offset(to_intel_context(i915->kernel_context,
1590 *cs++ = MI_SET_CONTEXT;
1591 *cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1593 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1594 * WaMiSetContext_Hang:snb,ivb,vlv
1598 if (IS_GEN7(i915)) {
1600 struct intel_engine_cs *signaller;
1601 i915_reg_t last_reg = {}; /* keep gcc quiet */
1603 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1604 for_each_engine(signaller, i915, id) {
1605 if (signaller == engine)
1608 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1609 *cs++ = i915_mmio_reg_offset(last_reg);
1610 *cs++ = _MASKED_BIT_DISABLE(
1611 GEN6_PSMI_SLEEP_MSG_DISABLE);
1614 /* Insert a delay before the next switch! */
1615 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1616 *cs++ = i915_mmio_reg_offset(last_reg);
1617 *cs++ = i915_ggtt_offset(engine->scratch);
1620 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1623 intel_ring_advance(rq, cs);
1628 static int remap_l3(struct i915_request *rq, int slice)
1630 u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1636 cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1641 * Note: We do not worry about the concurrent register cacheline hang
1642 * here because no other code should access these registers other than
1643 * at initialization time.
1645 *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1646 for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1647 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1648 *cs++ = remap_info[i];
1651 intel_ring_advance(rq, cs);
1656 static int switch_context(struct i915_request *rq)
1658 struct intel_engine_cs *engine = rq->engine;
1659 struct i915_gem_context *ctx = rq->gem_context;
1660 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1661 unsigned int unwind_mm = 0;
1665 lockdep_assert_held(&rq->i915->drm.struct_mutex);
1666 GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1669 ret = load_pd_dir(rq, ppgtt);
1673 if (intel_engine_flag(engine) & ppgtt->pd_dirty_rings) {
1674 unwind_mm = intel_engine_flag(engine);
1675 ppgtt->pd_dirty_rings &= ~unwind_mm;
1676 hw_flags = MI_FORCE_RESTORE;
1680 if (rq->hw_context->state) {
1681 GEM_BUG_ON(engine->id != RCS);
1684 * The kernel context(s) is treated as pure scratch and is not
1685 * expected to retain any state (as we sacrifice it during
1686 * suspend and on resume it may be corrupted). This is ok,
1687 * as nothing actually executes using the kernel context; it
1688 * is purely used for flushing user contexts.
1690 if (i915_gem_context_is_kernel(ctx))
1691 hw_flags = MI_RESTORE_INHIBIT;
1693 ret = mi_set_context(rq, hw_flags);
1699 ret = flush_pd_dir(rq);
1704 if (ctx->remap_slice) {
1705 for (i = 0; i < MAX_L3_SLICES; i++) {
1706 if (!(ctx->remap_slice & BIT(i)))
1709 ret = remap_l3(rq, i);
1714 ctx->remap_slice = 0;
1721 ppgtt->pd_dirty_rings |= unwind_mm;
1726 static int ring_request_alloc(struct i915_request *request)
1730 GEM_BUG_ON(!request->hw_context->pin_count);
1732 /* Flush enough space to reduce the likelihood of waiting after
1733 * we start building the request - in which case we will just
1734 * have to repeat work.
1736 request->reserved_space += LEGACY_REQUEST_SIZE;
1738 ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1742 ret = switch_context(request);
1746 request->reserved_space -= LEGACY_REQUEST_SIZE;
1750 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1752 struct i915_request *target;
1755 lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1757 if (intel_ring_update_space(ring) >= bytes)
1760 GEM_BUG_ON(list_empty(&ring->request_list));
1761 list_for_each_entry(target, &ring->request_list, ring_link) {
1762 /* Would completion of this request free enough space? */
1763 if (bytes <= __intel_ring_space(target->postfix,
1764 ring->emit, ring->size))
1768 if (WARN_ON(&target->ring_link == &ring->request_list))
1771 timeout = i915_request_wait(target,
1772 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1773 MAX_SCHEDULE_TIMEOUT);
1777 i915_request_retire_upto(target);
1779 intel_ring_update_space(ring);
1780 GEM_BUG_ON(ring->space < bytes);
1784 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
1786 GEM_BUG_ON(bytes > ring->effective_size);
1787 if (unlikely(bytes > ring->effective_size - ring->emit))
1788 bytes += ring->size - ring->emit;
1790 if (unlikely(bytes > ring->space)) {
1791 int ret = wait_for_space(ring, bytes);
1796 GEM_BUG_ON(ring->space < bytes);
1800 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1802 struct intel_ring *ring = rq->ring;
1803 const unsigned int remain_usable = ring->effective_size - ring->emit;
1804 const unsigned int bytes = num_dwords * sizeof(u32);
1805 unsigned int need_wrap = 0;
1806 unsigned int total_bytes;
1809 /* Packets must be qword aligned. */
1810 GEM_BUG_ON(num_dwords & 1);
1812 total_bytes = bytes + rq->reserved_space;
1813 GEM_BUG_ON(total_bytes > ring->effective_size);
1815 if (unlikely(total_bytes > remain_usable)) {
1816 const int remain_actual = ring->size - ring->emit;
1818 if (bytes > remain_usable) {
1820 * Not enough space for the basic request. So need to
1821 * flush out the remainder and then wait for
1824 total_bytes += remain_actual;
1825 need_wrap = remain_actual | 1;
1828 * The base request will fit but the reserved space
1829 * falls off the end. So we don't need an immediate
1830 * wrap and only need to effectively wait for the
1831 * reserved size from the start of ringbuffer.
1833 total_bytes = rq->reserved_space + remain_actual;
1837 if (unlikely(total_bytes > ring->space)) {
1841 * Space is reserved in the ringbuffer for finalising the
1842 * request, as that cannot be allowed to fail. During request
1843 * finalisation, reserved_space is set to 0 to stop the
1844 * overallocation and the assumption is that then we never need
1845 * to wait (which has the risk of failing with EINTR).
1847 * See also i915_request_alloc() and i915_request_add().
1849 GEM_BUG_ON(!rq->reserved_space);
1851 ret = wait_for_space(ring, total_bytes);
1853 return ERR_PTR(ret);
1856 if (unlikely(need_wrap)) {
1858 GEM_BUG_ON(need_wrap > ring->space);
1859 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1860 GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1862 /* Fill the tail with MI_NOOP */
1863 memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1864 ring->space -= need_wrap;
1868 GEM_BUG_ON(ring->emit > ring->size - bytes);
1869 GEM_BUG_ON(ring->space < bytes);
1870 cs = ring->vaddr + ring->emit;
1871 GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1872 ring->emit += bytes;
1873 ring->space -= bytes;
1878 /* Align the ring tail to a cacheline boundary */
1879 int intel_ring_cacheline_align(struct i915_request *rq)
1884 num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1885 if (num_dwords == 0)
1888 num_dwords = CACHELINE_DWORDS - num_dwords;
1889 GEM_BUG_ON(num_dwords & 1);
1891 cs = intel_ring_begin(rq, num_dwords);
1895 memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
1896 intel_ring_advance(rq, cs);
1898 GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
1902 static void gen6_bsd_submit_request(struct i915_request *request)
1904 struct drm_i915_private *dev_priv = request->i915;
1906 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1908 /* Every tail move must follow the sequence below */
1910 /* Disable notification that the ring is IDLE. The GT
1911 * will then assume that it is busy and bring it out of rc6.
1913 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1914 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1916 /* Clear the context id. Here be magic! */
1917 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1919 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1920 if (__intel_wait_for_register_fw(dev_priv,
1921 GEN6_BSD_SLEEP_PSMI_CONTROL,
1922 GEN6_BSD_SLEEP_INDICATOR,
1925 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1927 /* Now that the ring is fully powered up, update the tail */
1928 i9xx_submit_request(request);
1930 /* Let the ring send IDLE messages to the GT again,
1931 * and so let it sleep to conserve power when idle.
1933 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1934 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1936 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1939 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
1943 cs = intel_ring_begin(rq, 4);
1949 /* We always require a command barrier so that subsequent
1950 * commands, such as breadcrumb interrupts, are strictly ordered
1951 * wrt the contents of the write cache being flushed to memory
1952 * (and thus being coherent from the CPU).
1954 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1957 * Bspec vol 1c.5 - video engine command streamer:
1958 * "If ENABLED, all TLBs will be invalidated once the flush
1959 * operation is complete. This bit is only valid when the
1960 * Post-Sync Operation field is a value of 1h or 3h."
1962 if (mode & EMIT_INVALIDATE)
1963 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1966 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1969 intel_ring_advance(rq, cs);
1974 hsw_emit_bb_start(struct i915_request *rq,
1975 u64 offset, u32 len,
1976 unsigned int dispatch_flags)
1980 cs = intel_ring_begin(rq, 2);
1984 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1985 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
1986 (dispatch_flags & I915_DISPATCH_RS ?
1987 MI_BATCH_RESOURCE_STREAMER : 0);
1988 /* bit0-7 is the length on GEN6+ */
1990 intel_ring_advance(rq, cs);
1996 gen6_emit_bb_start(struct i915_request *rq,
1997 u64 offset, u32 len,
1998 unsigned int dispatch_flags)
2002 cs = intel_ring_begin(rq, 2);
2006 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2007 0 : MI_BATCH_NON_SECURE_I965);
2008 /* bit0-7 is the length on GEN6+ */
2010 intel_ring_advance(rq, cs);
2015 /* Blitter support (SandyBridge+) */
2017 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
2021 cs = intel_ring_begin(rq, 4);
2027 /* We always require a command barrier so that subsequent
2028 * commands, such as breadcrumb interrupts, are strictly ordered
2029 * wrt the contents of the write cache being flushed to memory
2030 * (and thus being coherent from the CPU).
2032 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2035 * Bspec vol 1c.3 - blitter engine command streamer:
2036 * "If ENABLED, all TLBs will be invalidated once the flush
2037 * operation is complete. This bit is only valid when the
2038 * Post-Sync Operation field is a value of 1h or 3h."
2040 if (mode & EMIT_INVALIDATE)
2041 cmd |= MI_INVALIDATE_TLB;
2043 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2046 intel_ring_advance(rq, cs);
2051 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2052 struct intel_engine_cs *engine)
2056 if (!HAS_LEGACY_SEMAPHORES(dev_priv))
2059 GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
2060 engine->semaphore.sync_to = gen6_ring_sync_to;
2061 engine->semaphore.signal = gen6_signal;
2064 * The current semaphore is only applied on pre-gen8
2065 * platform. And there is no VCS2 ring on the pre-gen8
2066 * platform. So the semaphore between RCS and VCS2 is
2067 * initialized as INVALID.
2069 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2070 static const struct {
2072 i915_reg_t mbox_reg;
2073 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2075 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
2076 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
2077 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2080 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
2081 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
2082 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2085 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
2086 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
2087 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2090 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2091 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2092 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2096 i915_reg_t mbox_reg;
2098 if (i == engine->hw_id) {
2099 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2100 mbox_reg = GEN6_NOSYNC;
2102 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2103 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2106 engine->semaphore.mbox.wait[i] = wait_mbox;
2107 engine->semaphore.mbox.signal[i] = mbox_reg;
2111 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2112 struct intel_engine_cs *engine)
2114 if (INTEL_GEN(dev_priv) >= 6) {
2115 engine->irq_enable = gen6_irq_enable;
2116 engine->irq_disable = gen6_irq_disable;
2117 engine->irq_seqno_barrier = gen6_seqno_barrier;
2118 } else if (INTEL_GEN(dev_priv) >= 5) {
2119 engine->irq_enable = gen5_irq_enable;
2120 engine->irq_disable = gen5_irq_disable;
2121 engine->irq_seqno_barrier = gen5_seqno_barrier;
2122 } else if (INTEL_GEN(dev_priv) >= 3) {
2123 engine->irq_enable = i9xx_irq_enable;
2124 engine->irq_disable = i9xx_irq_disable;
2126 engine->irq_enable = i8xx_irq_enable;
2127 engine->irq_disable = i8xx_irq_disable;
2131 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2133 engine->submit_request = i9xx_submit_request;
2134 engine->cancel_requests = cancel_requests;
2136 engine->park = NULL;
2137 engine->unpark = NULL;
2140 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2142 i9xx_set_default_submission(engine);
2143 engine->submit_request = gen6_bsd_submit_request;
2146 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2147 struct intel_engine_cs *engine)
2149 /* gen8+ are only supported with execlists */
2150 GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
2152 intel_ring_init_irq(dev_priv, engine);
2153 intel_ring_init_semaphores(dev_priv, engine);
2155 engine->init_hw = init_ring_common;
2156 engine->reset.prepare = reset_prepare;
2157 engine->reset.reset = reset_ring;
2158 engine->reset.finish = reset_finish;
2160 engine->context_pin = intel_ring_context_pin;
2161 engine->request_alloc = ring_request_alloc;
2163 engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2164 engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2165 if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2168 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2170 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2171 engine->emit_breadcrumb_sz += num_rings * 3;
2173 engine->emit_breadcrumb_sz++;
2176 engine->set_default_submission = i9xx_set_default_submission;
2178 if (INTEL_GEN(dev_priv) >= 6)
2179 engine->emit_bb_start = gen6_emit_bb_start;
2180 else if (INTEL_GEN(dev_priv) >= 4)
2181 engine->emit_bb_start = i965_emit_bb_start;
2182 else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2183 engine->emit_bb_start = i830_emit_bb_start;
2185 engine->emit_bb_start = i915_emit_bb_start;
2188 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2190 struct drm_i915_private *dev_priv = engine->i915;
2193 intel_ring_default_vfuncs(dev_priv, engine);
2195 if (HAS_L3_DPF(dev_priv))
2196 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2198 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2200 if (INTEL_GEN(dev_priv) >= 6) {
2201 engine->init_context = intel_rcs_ctx_init;
2202 engine->emit_flush = gen7_render_ring_flush;
2203 if (IS_GEN6(dev_priv))
2204 engine->emit_flush = gen6_render_ring_flush;
2205 } else if (IS_GEN5(dev_priv)) {
2206 engine->emit_flush = gen4_render_ring_flush;
2208 if (INTEL_GEN(dev_priv) < 4)
2209 engine->emit_flush = gen2_render_ring_flush;
2211 engine->emit_flush = gen4_render_ring_flush;
2212 engine->irq_enable_mask = I915_USER_INTERRUPT;
2215 if (IS_HASWELL(dev_priv))
2216 engine->emit_bb_start = hsw_emit_bb_start;
2218 engine->init_hw = init_render_ring;
2220 ret = intel_init_ring_buffer(engine);
2227 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2229 struct drm_i915_private *dev_priv = engine->i915;
2231 intel_ring_default_vfuncs(dev_priv, engine);
2233 if (INTEL_GEN(dev_priv) >= 6) {
2234 /* gen6 bsd needs a special wa for tail updates */
2235 if (IS_GEN6(dev_priv))
2236 engine->set_default_submission = gen6_bsd_set_default_submission;
2237 engine->emit_flush = gen6_bsd_ring_flush;
2238 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2240 engine->emit_flush = bsd_ring_flush;
2241 if (IS_GEN5(dev_priv))
2242 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2244 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2247 return intel_init_ring_buffer(engine);
2250 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2252 struct drm_i915_private *dev_priv = engine->i915;
2254 intel_ring_default_vfuncs(dev_priv, engine);
2256 engine->emit_flush = gen6_ring_flush;
2257 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2259 return intel_init_ring_buffer(engine);
2262 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2264 struct drm_i915_private *dev_priv = engine->i915;
2266 intel_ring_default_vfuncs(dev_priv, engine);
2268 engine->emit_flush = gen6_ring_flush;
2269 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2270 engine->irq_enable = hsw_vebox_irq_enable;
2271 engine->irq_disable = hsw_vebox_irq_disable;
2273 return intel_init_ring_buffer(engine);