drm/i915: Check 5/6 DDB split only when sprites are enabled
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <drm/i915_powerwell.h>
34
35 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
36  * framebuffer contents in-memory, aiming at reducing the required bandwidth
37  * during in-memory transfers and, therefore, reduce the power packet.
38  *
39  * The benefits of FBC are mostly visible with solid backgrounds and
40  * variation-less patterns.
41  *
42  * FBC-related functionality can be enabled by the means of the
43  * i915.i915_enable_fbc parameter
44  */
45
46 static void i8xx_disable_fbc(struct drm_device *dev)
47 {
48         struct drm_i915_private *dev_priv = dev->dev_private;
49         u32 fbc_ctl;
50
51         /* Disable compression */
52         fbc_ctl = I915_READ(FBC_CONTROL);
53         if ((fbc_ctl & FBC_CTL_EN) == 0)
54                 return;
55
56         fbc_ctl &= ~FBC_CTL_EN;
57         I915_WRITE(FBC_CONTROL, fbc_ctl);
58
59         /* Wait for compressing bit to clear */
60         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
61                 DRM_DEBUG_KMS("FBC idle timed out\n");
62                 return;
63         }
64
65         DRM_DEBUG_KMS("disabled FBC\n");
66 }
67
68 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
69 {
70         struct drm_device *dev = crtc->dev;
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         struct drm_framebuffer *fb = crtc->fb;
73         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
74         struct drm_i915_gem_object *obj = intel_fb->obj;
75         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
76         int cfb_pitch;
77         int plane, i;
78         u32 fbc_ctl, fbc_ctl2;
79
80         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
81         if (fb->pitches[0] < cfb_pitch)
82                 cfb_pitch = fb->pitches[0];
83
84         /* FBC_CTL wants 64B units */
85         cfb_pitch = (cfb_pitch / 64) - 1;
86         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
87
88         /* Clear old tags */
89         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
90                 I915_WRITE(FBC_TAG + (i * 4), 0);
91
92         /* Set it up... */
93         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
94         fbc_ctl2 |= plane;
95         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
96         I915_WRITE(FBC_FENCE_OFF, crtc->y);
97
98         /* enable it... */
99         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
100         if (IS_I945GM(dev))
101                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
102         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
103         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
104         fbc_ctl |= obj->fence_reg;
105         I915_WRITE(FBC_CONTROL, fbc_ctl);
106
107         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
108                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
109 }
110
111 static bool i8xx_fbc_enabled(struct drm_device *dev)
112 {
113         struct drm_i915_private *dev_priv = dev->dev_private;
114
115         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
116 }
117
118 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
119 {
120         struct drm_device *dev = crtc->dev;
121         struct drm_i915_private *dev_priv = dev->dev_private;
122         struct drm_framebuffer *fb = crtc->fb;
123         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
124         struct drm_i915_gem_object *obj = intel_fb->obj;
125         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
126         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
127         unsigned long stall_watermark = 200;
128         u32 dpfc_ctl;
129
130         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
131         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
132         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
133
134         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
135                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
136                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
137         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
138
139         /* enable it... */
140         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
141
142         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
143 }
144
145 static void g4x_disable_fbc(struct drm_device *dev)
146 {
147         struct drm_i915_private *dev_priv = dev->dev_private;
148         u32 dpfc_ctl;
149
150         /* Disable compression */
151         dpfc_ctl = I915_READ(DPFC_CONTROL);
152         if (dpfc_ctl & DPFC_CTL_EN) {
153                 dpfc_ctl &= ~DPFC_CTL_EN;
154                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
155
156                 DRM_DEBUG_KMS("disabled FBC\n");
157         }
158 }
159
160 static bool g4x_fbc_enabled(struct drm_device *dev)
161 {
162         struct drm_i915_private *dev_priv = dev->dev_private;
163
164         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
165 }
166
167 static void sandybridge_blit_fbc_update(struct drm_device *dev)
168 {
169         struct drm_i915_private *dev_priv = dev->dev_private;
170         u32 blt_ecoskpd;
171
172         /* Make sure blitter notifies FBC of writes */
173         gen6_gt_force_wake_get(dev_priv);
174         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
175         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
176                 GEN6_BLITTER_LOCK_SHIFT;
177         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
178         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
179         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
180         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
181                          GEN6_BLITTER_LOCK_SHIFT);
182         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
183         POSTING_READ(GEN6_BLITTER_ECOSKPD);
184         gen6_gt_force_wake_put(dev_priv);
185 }
186
187 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
188 {
189         struct drm_device *dev = crtc->dev;
190         struct drm_i915_private *dev_priv = dev->dev_private;
191         struct drm_framebuffer *fb = crtc->fb;
192         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
193         struct drm_i915_gem_object *obj = intel_fb->obj;
194         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
195         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
196         unsigned long stall_watermark = 200;
197         u32 dpfc_ctl;
198
199         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
200         dpfc_ctl &= DPFC_RESERVED;
201         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
202         /* Set persistent mode for front-buffer rendering, ala X. */
203         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
204         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
205         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
206
207         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
208                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
209                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
210         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
211         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
212         /* enable it... */
213         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
214
215         if (IS_GEN6(dev)) {
216                 I915_WRITE(SNB_DPFC_CTL_SA,
217                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
218                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
219                 sandybridge_blit_fbc_update(dev);
220         }
221
222         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
223 }
224
225 static void ironlake_disable_fbc(struct drm_device *dev)
226 {
227         struct drm_i915_private *dev_priv = dev->dev_private;
228         u32 dpfc_ctl;
229
230         /* Disable compression */
231         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
232         if (dpfc_ctl & DPFC_CTL_EN) {
233                 dpfc_ctl &= ~DPFC_CTL_EN;
234                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
235
236                 if (IS_IVYBRIDGE(dev))
237                         /* WaFbcDisableDpfcClockGating:ivb */
238                         I915_WRITE(ILK_DSPCLK_GATE_D,
239                                    I915_READ(ILK_DSPCLK_GATE_D) &
240                                    ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
241
242                 if (IS_HASWELL(dev))
243                         /* WaFbcDisableDpfcClockGating:hsw */
244                         I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
245                                    I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
246                                    ~HSW_DPFC_GATING_DISABLE);
247
248                 DRM_DEBUG_KMS("disabled FBC\n");
249         }
250 }
251
252 static bool ironlake_fbc_enabled(struct drm_device *dev)
253 {
254         struct drm_i915_private *dev_priv = dev->dev_private;
255
256         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
257 }
258
259 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
260 {
261         struct drm_device *dev = crtc->dev;
262         struct drm_i915_private *dev_priv = dev->dev_private;
263         struct drm_framebuffer *fb = crtc->fb;
264         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
265         struct drm_i915_gem_object *obj = intel_fb->obj;
266         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
267
268         I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
269
270         I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
271                    IVB_DPFC_CTL_FENCE_EN |
272                    intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
273
274         if (IS_IVYBRIDGE(dev)) {
275                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
276                 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
277                 /* WaFbcDisableDpfcClockGating:ivb */
278                 I915_WRITE(ILK_DSPCLK_GATE_D,
279                            I915_READ(ILK_DSPCLK_GATE_D) |
280                            ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
281         } else {
282                 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
283                 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
284                            HSW_BYPASS_FBC_QUEUE);
285                 /* WaFbcDisableDpfcClockGating:hsw */
286                 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
287                            I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
288                            HSW_DPFC_GATING_DISABLE);
289         }
290
291         I915_WRITE(SNB_DPFC_CTL_SA,
292                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
293         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
294
295         sandybridge_blit_fbc_update(dev);
296
297         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
298 }
299
300 bool intel_fbc_enabled(struct drm_device *dev)
301 {
302         struct drm_i915_private *dev_priv = dev->dev_private;
303
304         if (!dev_priv->display.fbc_enabled)
305                 return false;
306
307         return dev_priv->display.fbc_enabled(dev);
308 }
309
310 static void intel_fbc_work_fn(struct work_struct *__work)
311 {
312         struct intel_fbc_work *work =
313                 container_of(to_delayed_work(__work),
314                              struct intel_fbc_work, work);
315         struct drm_device *dev = work->crtc->dev;
316         struct drm_i915_private *dev_priv = dev->dev_private;
317
318         mutex_lock(&dev->struct_mutex);
319         if (work == dev_priv->fbc.fbc_work) {
320                 /* Double check that we haven't switched fb without cancelling
321                  * the prior work.
322                  */
323                 if (work->crtc->fb == work->fb) {
324                         dev_priv->display.enable_fbc(work->crtc,
325                                                      work->interval);
326
327                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
328                         dev_priv->fbc.fb_id = work->crtc->fb->base.id;
329                         dev_priv->fbc.y = work->crtc->y;
330                 }
331
332                 dev_priv->fbc.fbc_work = NULL;
333         }
334         mutex_unlock(&dev->struct_mutex);
335
336         kfree(work);
337 }
338
339 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
340 {
341         if (dev_priv->fbc.fbc_work == NULL)
342                 return;
343
344         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
345
346         /* Synchronisation is provided by struct_mutex and checking of
347          * dev_priv->fbc.fbc_work, so we can perform the cancellation
348          * entirely asynchronously.
349          */
350         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
351                 /* tasklet was killed before being run, clean up */
352                 kfree(dev_priv->fbc.fbc_work);
353
354         /* Mark the work as no longer wanted so that if it does
355          * wake-up (because the work was already running and waiting
356          * for our mutex), it will discover that is no longer
357          * necessary to run.
358          */
359         dev_priv->fbc.fbc_work = NULL;
360 }
361
362 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
363 {
364         struct intel_fbc_work *work;
365         struct drm_device *dev = crtc->dev;
366         struct drm_i915_private *dev_priv = dev->dev_private;
367
368         if (!dev_priv->display.enable_fbc)
369                 return;
370
371         intel_cancel_fbc_work(dev_priv);
372
373         work = kzalloc(sizeof(*work), GFP_KERNEL);
374         if (work == NULL) {
375                 DRM_ERROR("Failed to allocate FBC work structure\n");
376                 dev_priv->display.enable_fbc(crtc, interval);
377                 return;
378         }
379
380         work->crtc = crtc;
381         work->fb = crtc->fb;
382         work->interval = interval;
383         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
384
385         dev_priv->fbc.fbc_work = work;
386
387         /* Delay the actual enabling to let pageflipping cease and the
388          * display to settle before starting the compression. Note that
389          * this delay also serves a second purpose: it allows for a
390          * vblank to pass after disabling the FBC before we attempt
391          * to modify the control registers.
392          *
393          * A more complicated solution would involve tracking vblanks
394          * following the termination of the page-flipping sequence
395          * and indeed performing the enable as a co-routine and not
396          * waiting synchronously upon the vblank.
397          *
398          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
399          */
400         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
401 }
402
403 void intel_disable_fbc(struct drm_device *dev)
404 {
405         struct drm_i915_private *dev_priv = dev->dev_private;
406
407         intel_cancel_fbc_work(dev_priv);
408
409         if (!dev_priv->display.disable_fbc)
410                 return;
411
412         dev_priv->display.disable_fbc(dev);
413         dev_priv->fbc.plane = -1;
414 }
415
416 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
417                               enum no_fbc_reason reason)
418 {
419         if (dev_priv->fbc.no_fbc_reason == reason)
420                 return false;
421
422         dev_priv->fbc.no_fbc_reason = reason;
423         return true;
424 }
425
426 /**
427  * intel_update_fbc - enable/disable FBC as needed
428  * @dev: the drm_device
429  *
430  * Set up the framebuffer compression hardware at mode set time.  We
431  * enable it if possible:
432  *   - plane A only (on pre-965)
433  *   - no pixel mulitply/line duplication
434  *   - no alpha buffer discard
435  *   - no dual wide
436  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
437  *
438  * We can't assume that any compression will take place (worst case),
439  * so the compressed buffer has to be the same size as the uncompressed
440  * one.  It also must reside (along with the line length buffer) in
441  * stolen memory.
442  *
443  * We need to enable/disable FBC on a global basis.
444  */
445 void intel_update_fbc(struct drm_device *dev)
446 {
447         struct drm_i915_private *dev_priv = dev->dev_private;
448         struct drm_crtc *crtc = NULL, *tmp_crtc;
449         struct intel_crtc *intel_crtc;
450         struct drm_framebuffer *fb;
451         struct intel_framebuffer *intel_fb;
452         struct drm_i915_gem_object *obj;
453         const struct drm_display_mode *adjusted_mode;
454         unsigned int max_width, max_height;
455
456         if (!I915_HAS_FBC(dev)) {
457                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
458                 return;
459         }
460
461         if (!i915_powersave) {
462                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
463                         DRM_DEBUG_KMS("fbc disabled per module param\n");
464                 return;
465         }
466
467         /*
468          * If FBC is already on, we just have to verify that we can
469          * keep it that way...
470          * Need to disable if:
471          *   - more than one pipe is active
472          *   - changing FBC params (stride, fence, mode)
473          *   - new fb is too large to fit in compressed buffer
474          *   - going to an unsupported config (interlace, pixel multiply, etc.)
475          */
476         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
477                 if (intel_crtc_active(tmp_crtc) &&
478                     to_intel_crtc(tmp_crtc)->primary_enabled) {
479                         if (crtc) {
480                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
481                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
482                                 goto out_disable;
483                         }
484                         crtc = tmp_crtc;
485                 }
486         }
487
488         if (!crtc || crtc->fb == NULL) {
489                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
490                         DRM_DEBUG_KMS("no output, disabling\n");
491                 goto out_disable;
492         }
493
494         intel_crtc = to_intel_crtc(crtc);
495         fb = crtc->fb;
496         intel_fb = to_intel_framebuffer(fb);
497         obj = intel_fb->obj;
498         adjusted_mode = &intel_crtc->config.adjusted_mode;
499
500         if (i915_enable_fbc < 0 &&
501             INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
502                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
503                         DRM_DEBUG_KMS("disabled per chip default\n");
504                 goto out_disable;
505         }
506         if (!i915_enable_fbc) {
507                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
508                         DRM_DEBUG_KMS("fbc disabled per module param\n");
509                 goto out_disable;
510         }
511         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
512             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
513                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
514                         DRM_DEBUG_KMS("mode incompatible with compression, "
515                                       "disabling\n");
516                 goto out_disable;
517         }
518
519         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
520                 max_width = 4096;
521                 max_height = 2048;
522         } else {
523                 max_width = 2048;
524                 max_height = 1536;
525         }
526         if (intel_crtc->config.pipe_src_w > max_width ||
527             intel_crtc->config.pipe_src_h > max_height) {
528                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
529                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
530                 goto out_disable;
531         }
532         if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
533             intel_crtc->plane != 0) {
534                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
535                         DRM_DEBUG_KMS("plane not 0, disabling compression\n");
536                 goto out_disable;
537         }
538
539         /* The use of a CPU fence is mandatory in order to detect writes
540          * by the CPU to the scanout and trigger updates to the FBC.
541          */
542         if (obj->tiling_mode != I915_TILING_X ||
543             obj->fence_reg == I915_FENCE_REG_NONE) {
544                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
545                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
546                 goto out_disable;
547         }
548
549         /* If the kernel debugger is active, always disable compression */
550         if (in_dbg_master())
551                 goto out_disable;
552
553         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
554                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
555                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
556                 goto out_disable;
557         }
558
559         /* If the scanout has not changed, don't modify the FBC settings.
560          * Note that we make the fundamental assumption that the fb->obj
561          * cannot be unpinned (and have its GTT offset and fence revoked)
562          * without first being decoupled from the scanout and FBC disabled.
563          */
564         if (dev_priv->fbc.plane == intel_crtc->plane &&
565             dev_priv->fbc.fb_id == fb->base.id &&
566             dev_priv->fbc.y == crtc->y)
567                 return;
568
569         if (intel_fbc_enabled(dev)) {
570                 /* We update FBC along two paths, after changing fb/crtc
571                  * configuration (modeswitching) and after page-flipping
572                  * finishes. For the latter, we know that not only did
573                  * we disable the FBC at the start of the page-flip
574                  * sequence, but also more than one vblank has passed.
575                  *
576                  * For the former case of modeswitching, it is possible
577                  * to switch between two FBC valid configurations
578                  * instantaneously so we do need to disable the FBC
579                  * before we can modify its control registers. We also
580                  * have to wait for the next vblank for that to take
581                  * effect. However, since we delay enabling FBC we can
582                  * assume that a vblank has passed since disabling and
583                  * that we can safely alter the registers in the deferred
584                  * callback.
585                  *
586                  * In the scenario that we go from a valid to invalid
587                  * and then back to valid FBC configuration we have
588                  * no strict enforcement that a vblank occurred since
589                  * disabling the FBC. However, along all current pipe
590                  * disabling paths we do need to wait for a vblank at
591                  * some point. And we wait before enabling FBC anyway.
592                  */
593                 DRM_DEBUG_KMS("disabling active FBC for update\n");
594                 intel_disable_fbc(dev);
595         }
596
597         intel_enable_fbc(crtc, 500);
598         dev_priv->fbc.no_fbc_reason = FBC_OK;
599         return;
600
601 out_disable:
602         /* Multiple disables should be harmless */
603         if (intel_fbc_enabled(dev)) {
604                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
605                 intel_disable_fbc(dev);
606         }
607         i915_gem_stolen_cleanup_compression(dev);
608 }
609
610 static void i915_pineview_get_mem_freq(struct drm_device *dev)
611 {
612         drm_i915_private_t *dev_priv = dev->dev_private;
613         u32 tmp;
614
615         tmp = I915_READ(CLKCFG);
616
617         switch (tmp & CLKCFG_FSB_MASK) {
618         case CLKCFG_FSB_533:
619                 dev_priv->fsb_freq = 533; /* 133*4 */
620                 break;
621         case CLKCFG_FSB_800:
622                 dev_priv->fsb_freq = 800; /* 200*4 */
623                 break;
624         case CLKCFG_FSB_667:
625                 dev_priv->fsb_freq =  667; /* 167*4 */
626                 break;
627         case CLKCFG_FSB_400:
628                 dev_priv->fsb_freq = 400; /* 100*4 */
629                 break;
630         }
631
632         switch (tmp & CLKCFG_MEM_MASK) {
633         case CLKCFG_MEM_533:
634                 dev_priv->mem_freq = 533;
635                 break;
636         case CLKCFG_MEM_667:
637                 dev_priv->mem_freq = 667;
638                 break;
639         case CLKCFG_MEM_800:
640                 dev_priv->mem_freq = 800;
641                 break;
642         }
643
644         /* detect pineview DDR3 setting */
645         tmp = I915_READ(CSHRDDR3CTL);
646         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
647 }
648
649 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
650 {
651         drm_i915_private_t *dev_priv = dev->dev_private;
652         u16 ddrpll, csipll;
653
654         ddrpll = I915_READ16(DDRMPLL1);
655         csipll = I915_READ16(CSIPLL0);
656
657         switch (ddrpll & 0xff) {
658         case 0xc:
659                 dev_priv->mem_freq = 800;
660                 break;
661         case 0x10:
662                 dev_priv->mem_freq = 1066;
663                 break;
664         case 0x14:
665                 dev_priv->mem_freq = 1333;
666                 break;
667         case 0x18:
668                 dev_priv->mem_freq = 1600;
669                 break;
670         default:
671                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
672                                  ddrpll & 0xff);
673                 dev_priv->mem_freq = 0;
674                 break;
675         }
676
677         dev_priv->ips.r_t = dev_priv->mem_freq;
678
679         switch (csipll & 0x3ff) {
680         case 0x00c:
681                 dev_priv->fsb_freq = 3200;
682                 break;
683         case 0x00e:
684                 dev_priv->fsb_freq = 3733;
685                 break;
686         case 0x010:
687                 dev_priv->fsb_freq = 4266;
688                 break;
689         case 0x012:
690                 dev_priv->fsb_freq = 4800;
691                 break;
692         case 0x014:
693                 dev_priv->fsb_freq = 5333;
694                 break;
695         case 0x016:
696                 dev_priv->fsb_freq = 5866;
697                 break;
698         case 0x018:
699                 dev_priv->fsb_freq = 6400;
700                 break;
701         default:
702                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
703                                  csipll & 0x3ff);
704                 dev_priv->fsb_freq = 0;
705                 break;
706         }
707
708         if (dev_priv->fsb_freq == 3200) {
709                 dev_priv->ips.c_m = 0;
710         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
711                 dev_priv->ips.c_m = 1;
712         } else {
713                 dev_priv->ips.c_m = 2;
714         }
715 }
716
717 static const struct cxsr_latency cxsr_latency_table[] = {
718         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
719         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
720         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
721         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
722         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
723
724         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
725         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
726         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
727         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
728         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
729
730         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
731         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
732         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
733         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
734         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
735
736         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
737         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
738         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
739         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
740         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
741
742         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
743         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
744         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
745         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
746         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
747
748         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
749         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
750         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
751         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
752         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
753 };
754
755 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
756                                                          int is_ddr3,
757                                                          int fsb,
758                                                          int mem)
759 {
760         const struct cxsr_latency *latency;
761         int i;
762
763         if (fsb == 0 || mem == 0)
764                 return NULL;
765
766         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
767                 latency = &cxsr_latency_table[i];
768                 if (is_desktop == latency->is_desktop &&
769                     is_ddr3 == latency->is_ddr3 &&
770                     fsb == latency->fsb_freq && mem == latency->mem_freq)
771                         return latency;
772         }
773
774         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
775
776         return NULL;
777 }
778
779 static void pineview_disable_cxsr(struct drm_device *dev)
780 {
781         struct drm_i915_private *dev_priv = dev->dev_private;
782
783         /* deactivate cxsr */
784         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
785 }
786
787 /*
788  * Latency for FIFO fetches is dependent on several factors:
789  *   - memory configuration (speed, channels)
790  *   - chipset
791  *   - current MCH state
792  * It can be fairly high in some situations, so here we assume a fairly
793  * pessimal value.  It's a tradeoff between extra memory fetches (if we
794  * set this value too high, the FIFO will fetch frequently to stay full)
795  * and power consumption (set it too low to save power and we might see
796  * FIFO underruns and display "flicker").
797  *
798  * A value of 5us seems to be a good balance; safe for very low end
799  * platforms but not overly aggressive on lower latency configs.
800  */
801 static const int latency_ns = 5000;
802
803 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
804 {
805         struct drm_i915_private *dev_priv = dev->dev_private;
806         uint32_t dsparb = I915_READ(DSPARB);
807         int size;
808
809         size = dsparb & 0x7f;
810         if (plane)
811                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
812
813         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
814                       plane ? "B" : "A", size);
815
816         return size;
817 }
818
819 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
820 {
821         struct drm_i915_private *dev_priv = dev->dev_private;
822         uint32_t dsparb = I915_READ(DSPARB);
823         int size;
824
825         size = dsparb & 0x1ff;
826         if (plane)
827                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
828         size >>= 1; /* Convert to cachelines */
829
830         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
831                       plane ? "B" : "A", size);
832
833         return size;
834 }
835
836 static int i845_get_fifo_size(struct drm_device *dev, int plane)
837 {
838         struct drm_i915_private *dev_priv = dev->dev_private;
839         uint32_t dsparb = I915_READ(DSPARB);
840         int size;
841
842         size = dsparb & 0x7f;
843         size >>= 2; /* Convert to cachelines */
844
845         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
846                       plane ? "B" : "A",
847                       size);
848
849         return size;
850 }
851
852 static int i830_get_fifo_size(struct drm_device *dev, int plane)
853 {
854         struct drm_i915_private *dev_priv = dev->dev_private;
855         uint32_t dsparb = I915_READ(DSPARB);
856         int size;
857
858         size = dsparb & 0x7f;
859         size >>= 1; /* Convert to cachelines */
860
861         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
862                       plane ? "B" : "A", size);
863
864         return size;
865 }
866
867 /* Pineview has different values for various configs */
868 static const struct intel_watermark_params pineview_display_wm = {
869         PINEVIEW_DISPLAY_FIFO,
870         PINEVIEW_MAX_WM,
871         PINEVIEW_DFT_WM,
872         PINEVIEW_GUARD_WM,
873         PINEVIEW_FIFO_LINE_SIZE
874 };
875 static const struct intel_watermark_params pineview_display_hplloff_wm = {
876         PINEVIEW_DISPLAY_FIFO,
877         PINEVIEW_MAX_WM,
878         PINEVIEW_DFT_HPLLOFF_WM,
879         PINEVIEW_GUARD_WM,
880         PINEVIEW_FIFO_LINE_SIZE
881 };
882 static const struct intel_watermark_params pineview_cursor_wm = {
883         PINEVIEW_CURSOR_FIFO,
884         PINEVIEW_CURSOR_MAX_WM,
885         PINEVIEW_CURSOR_DFT_WM,
886         PINEVIEW_CURSOR_GUARD_WM,
887         PINEVIEW_FIFO_LINE_SIZE,
888 };
889 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
890         PINEVIEW_CURSOR_FIFO,
891         PINEVIEW_CURSOR_MAX_WM,
892         PINEVIEW_CURSOR_DFT_WM,
893         PINEVIEW_CURSOR_GUARD_WM,
894         PINEVIEW_FIFO_LINE_SIZE
895 };
896 static const struct intel_watermark_params g4x_wm_info = {
897         G4X_FIFO_SIZE,
898         G4X_MAX_WM,
899         G4X_MAX_WM,
900         2,
901         G4X_FIFO_LINE_SIZE,
902 };
903 static const struct intel_watermark_params g4x_cursor_wm_info = {
904         I965_CURSOR_FIFO,
905         I965_CURSOR_MAX_WM,
906         I965_CURSOR_DFT_WM,
907         2,
908         G4X_FIFO_LINE_SIZE,
909 };
910 static const struct intel_watermark_params valleyview_wm_info = {
911         VALLEYVIEW_FIFO_SIZE,
912         VALLEYVIEW_MAX_WM,
913         VALLEYVIEW_MAX_WM,
914         2,
915         G4X_FIFO_LINE_SIZE,
916 };
917 static const struct intel_watermark_params valleyview_cursor_wm_info = {
918         I965_CURSOR_FIFO,
919         VALLEYVIEW_CURSOR_MAX_WM,
920         I965_CURSOR_DFT_WM,
921         2,
922         G4X_FIFO_LINE_SIZE,
923 };
924 static const struct intel_watermark_params i965_cursor_wm_info = {
925         I965_CURSOR_FIFO,
926         I965_CURSOR_MAX_WM,
927         I965_CURSOR_DFT_WM,
928         2,
929         I915_FIFO_LINE_SIZE,
930 };
931 static const struct intel_watermark_params i945_wm_info = {
932         I945_FIFO_SIZE,
933         I915_MAX_WM,
934         1,
935         2,
936         I915_FIFO_LINE_SIZE
937 };
938 static const struct intel_watermark_params i915_wm_info = {
939         I915_FIFO_SIZE,
940         I915_MAX_WM,
941         1,
942         2,
943         I915_FIFO_LINE_SIZE
944 };
945 static const struct intel_watermark_params i855_wm_info = {
946         I855GM_FIFO_SIZE,
947         I915_MAX_WM,
948         1,
949         2,
950         I830_FIFO_LINE_SIZE
951 };
952 static const struct intel_watermark_params i830_wm_info = {
953         I830_FIFO_SIZE,
954         I915_MAX_WM,
955         1,
956         2,
957         I830_FIFO_LINE_SIZE
958 };
959
960 static const struct intel_watermark_params ironlake_display_wm_info = {
961         ILK_DISPLAY_FIFO,
962         ILK_DISPLAY_MAXWM,
963         ILK_DISPLAY_DFTWM,
964         2,
965         ILK_FIFO_LINE_SIZE
966 };
967 static const struct intel_watermark_params ironlake_cursor_wm_info = {
968         ILK_CURSOR_FIFO,
969         ILK_CURSOR_MAXWM,
970         ILK_CURSOR_DFTWM,
971         2,
972         ILK_FIFO_LINE_SIZE
973 };
974 static const struct intel_watermark_params ironlake_display_srwm_info = {
975         ILK_DISPLAY_SR_FIFO,
976         ILK_DISPLAY_MAX_SRWM,
977         ILK_DISPLAY_DFT_SRWM,
978         2,
979         ILK_FIFO_LINE_SIZE
980 };
981 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
982         ILK_CURSOR_SR_FIFO,
983         ILK_CURSOR_MAX_SRWM,
984         ILK_CURSOR_DFT_SRWM,
985         2,
986         ILK_FIFO_LINE_SIZE
987 };
988
989 static const struct intel_watermark_params sandybridge_display_wm_info = {
990         SNB_DISPLAY_FIFO,
991         SNB_DISPLAY_MAXWM,
992         SNB_DISPLAY_DFTWM,
993         2,
994         SNB_FIFO_LINE_SIZE
995 };
996 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
997         SNB_CURSOR_FIFO,
998         SNB_CURSOR_MAXWM,
999         SNB_CURSOR_DFTWM,
1000         2,
1001         SNB_FIFO_LINE_SIZE
1002 };
1003 static const struct intel_watermark_params sandybridge_display_srwm_info = {
1004         SNB_DISPLAY_SR_FIFO,
1005         SNB_DISPLAY_MAX_SRWM,
1006         SNB_DISPLAY_DFT_SRWM,
1007         2,
1008         SNB_FIFO_LINE_SIZE
1009 };
1010 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1011         SNB_CURSOR_SR_FIFO,
1012         SNB_CURSOR_MAX_SRWM,
1013         SNB_CURSOR_DFT_SRWM,
1014         2,
1015         SNB_FIFO_LINE_SIZE
1016 };
1017
1018
1019 /**
1020  * intel_calculate_wm - calculate watermark level
1021  * @clock_in_khz: pixel clock
1022  * @wm: chip FIFO params
1023  * @pixel_size: display pixel size
1024  * @latency_ns: memory latency for the platform
1025  *
1026  * Calculate the watermark level (the level at which the display plane will
1027  * start fetching from memory again).  Each chip has a different display
1028  * FIFO size and allocation, so the caller needs to figure that out and pass
1029  * in the correct intel_watermark_params structure.
1030  *
1031  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1032  * on the pixel size.  When it reaches the watermark level, it'll start
1033  * fetching FIFO line sized based chunks from memory until the FIFO fills
1034  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1035  * will occur, and a display engine hang could result.
1036  */
1037 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1038                                         const struct intel_watermark_params *wm,
1039                                         int fifo_size,
1040                                         int pixel_size,
1041                                         unsigned long latency_ns)
1042 {
1043         long entries_required, wm_size;
1044
1045         /*
1046          * Note: we need to make sure we don't overflow for various clock &
1047          * latency values.
1048          * clocks go from a few thousand to several hundred thousand.
1049          * latency is usually a few thousand
1050          */
1051         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1052                 1000;
1053         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1054
1055         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1056
1057         wm_size = fifo_size - (entries_required + wm->guard_size);
1058
1059         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1060
1061         /* Don't promote wm_size to unsigned... */
1062         if (wm_size > (long)wm->max_wm)
1063                 wm_size = wm->max_wm;
1064         if (wm_size <= 0)
1065                 wm_size = wm->default_wm;
1066         return wm_size;
1067 }
1068
1069 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1070 {
1071         struct drm_crtc *crtc, *enabled = NULL;
1072
1073         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1074                 if (intel_crtc_active(crtc)) {
1075                         if (enabled)
1076                                 return NULL;
1077                         enabled = crtc;
1078                 }
1079         }
1080
1081         return enabled;
1082 }
1083
1084 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1085 {
1086         struct drm_device *dev = unused_crtc->dev;
1087         struct drm_i915_private *dev_priv = dev->dev_private;
1088         struct drm_crtc *crtc;
1089         const struct cxsr_latency *latency;
1090         u32 reg;
1091         unsigned long wm;
1092
1093         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1094                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1095         if (!latency) {
1096                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1097                 pineview_disable_cxsr(dev);
1098                 return;
1099         }
1100
1101         crtc = single_enabled_crtc(dev);
1102         if (crtc) {
1103                 const struct drm_display_mode *adjusted_mode;
1104                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1105                 int clock;
1106
1107                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1108                 clock = adjusted_mode->crtc_clock;
1109
1110                 /* Display SR */
1111                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1112                                         pineview_display_wm.fifo_size,
1113                                         pixel_size, latency->display_sr);
1114                 reg = I915_READ(DSPFW1);
1115                 reg &= ~DSPFW_SR_MASK;
1116                 reg |= wm << DSPFW_SR_SHIFT;
1117                 I915_WRITE(DSPFW1, reg);
1118                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1119
1120                 /* cursor SR */
1121                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1122                                         pineview_display_wm.fifo_size,
1123                                         pixel_size, latency->cursor_sr);
1124                 reg = I915_READ(DSPFW3);
1125                 reg &= ~DSPFW_CURSOR_SR_MASK;
1126                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1127                 I915_WRITE(DSPFW3, reg);
1128
1129                 /* Display HPLL off SR */
1130                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1131                                         pineview_display_hplloff_wm.fifo_size,
1132                                         pixel_size, latency->display_hpll_disable);
1133                 reg = I915_READ(DSPFW3);
1134                 reg &= ~DSPFW_HPLL_SR_MASK;
1135                 reg |= wm & DSPFW_HPLL_SR_MASK;
1136                 I915_WRITE(DSPFW3, reg);
1137
1138                 /* cursor HPLL off SR */
1139                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1140                                         pineview_display_hplloff_wm.fifo_size,
1141                                         pixel_size, latency->cursor_hpll_disable);
1142                 reg = I915_READ(DSPFW3);
1143                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1144                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1145                 I915_WRITE(DSPFW3, reg);
1146                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1147
1148                 /* activate cxsr */
1149                 I915_WRITE(DSPFW3,
1150                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1151                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1152         } else {
1153                 pineview_disable_cxsr(dev);
1154                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1155         }
1156 }
1157
1158 static bool g4x_compute_wm0(struct drm_device *dev,
1159                             int plane,
1160                             const struct intel_watermark_params *display,
1161                             int display_latency_ns,
1162                             const struct intel_watermark_params *cursor,
1163                             int cursor_latency_ns,
1164                             int *plane_wm,
1165                             int *cursor_wm)
1166 {
1167         struct drm_crtc *crtc;
1168         const struct drm_display_mode *adjusted_mode;
1169         int htotal, hdisplay, clock, pixel_size;
1170         int line_time_us, line_count;
1171         int entries, tlb_miss;
1172
1173         crtc = intel_get_crtc_for_plane(dev, plane);
1174         if (!intel_crtc_active(crtc)) {
1175                 *cursor_wm = cursor->guard_size;
1176                 *plane_wm = display->guard_size;
1177                 return false;
1178         }
1179
1180         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1181         clock = adjusted_mode->crtc_clock;
1182         htotal = adjusted_mode->htotal;
1183         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1184         pixel_size = crtc->fb->bits_per_pixel / 8;
1185
1186         /* Use the small buffer method to calculate plane watermark */
1187         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1188         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1189         if (tlb_miss > 0)
1190                 entries += tlb_miss;
1191         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1192         *plane_wm = entries + display->guard_size;
1193         if (*plane_wm > (int)display->max_wm)
1194                 *plane_wm = display->max_wm;
1195
1196         /* Use the large buffer method to calculate cursor watermark */
1197         line_time_us = ((htotal * 1000) / clock);
1198         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1199         entries = line_count * 64 * pixel_size;
1200         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1201         if (tlb_miss > 0)
1202                 entries += tlb_miss;
1203         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1204         *cursor_wm = entries + cursor->guard_size;
1205         if (*cursor_wm > (int)cursor->max_wm)
1206                 *cursor_wm = (int)cursor->max_wm;
1207
1208         return true;
1209 }
1210
1211 /*
1212  * Check the wm result.
1213  *
1214  * If any calculated watermark values is larger than the maximum value that
1215  * can be programmed into the associated watermark register, that watermark
1216  * must be disabled.
1217  */
1218 static bool g4x_check_srwm(struct drm_device *dev,
1219                            int display_wm, int cursor_wm,
1220                            const struct intel_watermark_params *display,
1221                            const struct intel_watermark_params *cursor)
1222 {
1223         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1224                       display_wm, cursor_wm);
1225
1226         if (display_wm > display->max_wm) {
1227                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1228                               display_wm, display->max_wm);
1229                 return false;
1230         }
1231
1232         if (cursor_wm > cursor->max_wm) {
1233                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1234                               cursor_wm, cursor->max_wm);
1235                 return false;
1236         }
1237
1238         if (!(display_wm || cursor_wm)) {
1239                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1240                 return false;
1241         }
1242
1243         return true;
1244 }
1245
1246 static bool g4x_compute_srwm(struct drm_device *dev,
1247                              int plane,
1248                              int latency_ns,
1249                              const struct intel_watermark_params *display,
1250                              const struct intel_watermark_params *cursor,
1251                              int *display_wm, int *cursor_wm)
1252 {
1253         struct drm_crtc *crtc;
1254         const struct drm_display_mode *adjusted_mode;
1255         int hdisplay, htotal, pixel_size, clock;
1256         unsigned long line_time_us;
1257         int line_count, line_size;
1258         int small, large;
1259         int entries;
1260
1261         if (!latency_ns) {
1262                 *display_wm = *cursor_wm = 0;
1263                 return false;
1264         }
1265
1266         crtc = intel_get_crtc_for_plane(dev, plane);
1267         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1268         clock = adjusted_mode->crtc_clock;
1269         htotal = adjusted_mode->htotal;
1270         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1271         pixel_size = crtc->fb->bits_per_pixel / 8;
1272
1273         line_time_us = (htotal * 1000) / clock;
1274         line_count = (latency_ns / line_time_us + 1000) / 1000;
1275         line_size = hdisplay * pixel_size;
1276
1277         /* Use the minimum of the small and large buffer method for primary */
1278         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1279         large = line_count * line_size;
1280
1281         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1282         *display_wm = entries + display->guard_size;
1283
1284         /* calculate the self-refresh watermark for display cursor */
1285         entries = line_count * pixel_size * 64;
1286         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1287         *cursor_wm = entries + cursor->guard_size;
1288
1289         return g4x_check_srwm(dev,
1290                               *display_wm, *cursor_wm,
1291                               display, cursor);
1292 }
1293
1294 static bool vlv_compute_drain_latency(struct drm_device *dev,
1295                                      int plane,
1296                                      int *plane_prec_mult,
1297                                      int *plane_dl,
1298                                      int *cursor_prec_mult,
1299                                      int *cursor_dl)
1300 {
1301         struct drm_crtc *crtc;
1302         int clock, pixel_size;
1303         int entries;
1304
1305         crtc = intel_get_crtc_for_plane(dev, plane);
1306         if (!intel_crtc_active(crtc))
1307                 return false;
1308
1309         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1310         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1311
1312         entries = (clock / 1000) * pixel_size;
1313         *plane_prec_mult = (entries > 256) ?
1314                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1315         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1316                                                      pixel_size);
1317
1318         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1319         *cursor_prec_mult = (entries > 256) ?
1320                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1321         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1322
1323         return true;
1324 }
1325
1326 /*
1327  * Update drain latency registers of memory arbiter
1328  *
1329  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1330  * to be programmed. Each plane has a drain latency multiplier and a drain
1331  * latency value.
1332  */
1333
1334 static void vlv_update_drain_latency(struct drm_device *dev)
1335 {
1336         struct drm_i915_private *dev_priv = dev->dev_private;
1337         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1338         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1339         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1340                                                         either 16 or 32 */
1341
1342         /* For plane A, Cursor A */
1343         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1344                                       &cursor_prec_mult, &cursora_dl)) {
1345                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1346                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1347                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1348                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1349
1350                 I915_WRITE(VLV_DDL1, cursora_prec |
1351                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1352                                 planea_prec | planea_dl);
1353         }
1354
1355         /* For plane B, Cursor B */
1356         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1357                                       &cursor_prec_mult, &cursorb_dl)) {
1358                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1359                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1360                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1361                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1362
1363                 I915_WRITE(VLV_DDL2, cursorb_prec |
1364                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1365                                 planeb_prec | planeb_dl);
1366         }
1367 }
1368
1369 #define single_plane_enabled(mask) is_power_of_2(mask)
1370
1371 static void valleyview_update_wm(struct drm_crtc *crtc)
1372 {
1373         struct drm_device *dev = crtc->dev;
1374         static const int sr_latency_ns = 12000;
1375         struct drm_i915_private *dev_priv = dev->dev_private;
1376         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1377         int plane_sr, cursor_sr;
1378         int ignore_plane_sr, ignore_cursor_sr;
1379         unsigned int enabled = 0;
1380
1381         vlv_update_drain_latency(dev);
1382
1383         if (g4x_compute_wm0(dev, PIPE_A,
1384                             &valleyview_wm_info, latency_ns,
1385                             &valleyview_cursor_wm_info, latency_ns,
1386                             &planea_wm, &cursora_wm))
1387                 enabled |= 1 << PIPE_A;
1388
1389         if (g4x_compute_wm0(dev, PIPE_B,
1390                             &valleyview_wm_info, latency_ns,
1391                             &valleyview_cursor_wm_info, latency_ns,
1392                             &planeb_wm, &cursorb_wm))
1393                 enabled |= 1 << PIPE_B;
1394
1395         if (single_plane_enabled(enabled) &&
1396             g4x_compute_srwm(dev, ffs(enabled) - 1,
1397                              sr_latency_ns,
1398                              &valleyview_wm_info,
1399                              &valleyview_cursor_wm_info,
1400                              &plane_sr, &ignore_cursor_sr) &&
1401             g4x_compute_srwm(dev, ffs(enabled) - 1,
1402                              2*sr_latency_ns,
1403                              &valleyview_wm_info,
1404                              &valleyview_cursor_wm_info,
1405                              &ignore_plane_sr, &cursor_sr)) {
1406                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1407         } else {
1408                 I915_WRITE(FW_BLC_SELF_VLV,
1409                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1410                 plane_sr = cursor_sr = 0;
1411         }
1412
1413         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1414                       planea_wm, cursora_wm,
1415                       planeb_wm, cursorb_wm,
1416                       plane_sr, cursor_sr);
1417
1418         I915_WRITE(DSPFW1,
1419                    (plane_sr << DSPFW_SR_SHIFT) |
1420                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1421                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1422                    planea_wm);
1423         I915_WRITE(DSPFW2,
1424                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1425                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1426         I915_WRITE(DSPFW3,
1427                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1428                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1429 }
1430
1431 static void g4x_update_wm(struct drm_crtc *crtc)
1432 {
1433         struct drm_device *dev = crtc->dev;
1434         static const int sr_latency_ns = 12000;
1435         struct drm_i915_private *dev_priv = dev->dev_private;
1436         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1437         int plane_sr, cursor_sr;
1438         unsigned int enabled = 0;
1439
1440         if (g4x_compute_wm0(dev, PIPE_A,
1441                             &g4x_wm_info, latency_ns,
1442                             &g4x_cursor_wm_info, latency_ns,
1443                             &planea_wm, &cursora_wm))
1444                 enabled |= 1 << PIPE_A;
1445
1446         if (g4x_compute_wm0(dev, PIPE_B,
1447                             &g4x_wm_info, latency_ns,
1448                             &g4x_cursor_wm_info, latency_ns,
1449                             &planeb_wm, &cursorb_wm))
1450                 enabled |= 1 << PIPE_B;
1451
1452         if (single_plane_enabled(enabled) &&
1453             g4x_compute_srwm(dev, ffs(enabled) - 1,
1454                              sr_latency_ns,
1455                              &g4x_wm_info,
1456                              &g4x_cursor_wm_info,
1457                              &plane_sr, &cursor_sr)) {
1458                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1459         } else {
1460                 I915_WRITE(FW_BLC_SELF,
1461                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1462                 plane_sr = cursor_sr = 0;
1463         }
1464
1465         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1466                       planea_wm, cursora_wm,
1467                       planeb_wm, cursorb_wm,
1468                       plane_sr, cursor_sr);
1469
1470         I915_WRITE(DSPFW1,
1471                    (plane_sr << DSPFW_SR_SHIFT) |
1472                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1473                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1474                    planea_wm);
1475         I915_WRITE(DSPFW2,
1476                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1477                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1478         /* HPLL off in SR has some issues on G4x... disable it */
1479         I915_WRITE(DSPFW3,
1480                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1481                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1482 }
1483
1484 static void i965_update_wm(struct drm_crtc *unused_crtc)
1485 {
1486         struct drm_device *dev = unused_crtc->dev;
1487         struct drm_i915_private *dev_priv = dev->dev_private;
1488         struct drm_crtc *crtc;
1489         int srwm = 1;
1490         int cursor_sr = 16;
1491
1492         /* Calc sr entries for one plane configs */
1493         crtc = single_enabled_crtc(dev);
1494         if (crtc) {
1495                 /* self-refresh has much higher latency */
1496                 static const int sr_latency_ns = 12000;
1497                 const struct drm_display_mode *adjusted_mode =
1498                         &to_intel_crtc(crtc)->config.adjusted_mode;
1499                 int clock = adjusted_mode->crtc_clock;
1500                 int htotal = adjusted_mode->htotal;
1501                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1502                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1503                 unsigned long line_time_us;
1504                 int entries;
1505
1506                 line_time_us = ((htotal * 1000) / clock);
1507
1508                 /* Use ns/us then divide to preserve precision */
1509                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1510                         pixel_size * hdisplay;
1511                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1512                 srwm = I965_FIFO_SIZE - entries;
1513                 if (srwm < 0)
1514                         srwm = 1;
1515                 srwm &= 0x1ff;
1516                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1517                               entries, srwm);
1518
1519                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1520                         pixel_size * 64;
1521                 entries = DIV_ROUND_UP(entries,
1522                                           i965_cursor_wm_info.cacheline_size);
1523                 cursor_sr = i965_cursor_wm_info.fifo_size -
1524                         (entries + i965_cursor_wm_info.guard_size);
1525
1526                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1527                         cursor_sr = i965_cursor_wm_info.max_wm;
1528
1529                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1530                               "cursor %d\n", srwm, cursor_sr);
1531
1532                 if (IS_CRESTLINE(dev))
1533                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1534         } else {
1535                 /* Turn off self refresh if both pipes are enabled */
1536                 if (IS_CRESTLINE(dev))
1537                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1538                                    & ~FW_BLC_SELF_EN);
1539         }
1540
1541         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1542                       srwm);
1543
1544         /* 965 has limitations... */
1545         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1546                    (8 << 16) | (8 << 8) | (8 << 0));
1547         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1548         /* update cursor SR watermark */
1549         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1550 }
1551
1552 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1553 {
1554         struct drm_device *dev = unused_crtc->dev;
1555         struct drm_i915_private *dev_priv = dev->dev_private;
1556         const struct intel_watermark_params *wm_info;
1557         uint32_t fwater_lo;
1558         uint32_t fwater_hi;
1559         int cwm, srwm = 1;
1560         int fifo_size;
1561         int planea_wm, planeb_wm;
1562         struct drm_crtc *crtc, *enabled = NULL;
1563
1564         if (IS_I945GM(dev))
1565                 wm_info = &i945_wm_info;
1566         else if (!IS_GEN2(dev))
1567                 wm_info = &i915_wm_info;
1568         else
1569                 wm_info = &i855_wm_info;
1570
1571         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1572         crtc = intel_get_crtc_for_plane(dev, 0);
1573         if (intel_crtc_active(crtc)) {
1574                 const struct drm_display_mode *adjusted_mode;
1575                 int cpp = crtc->fb->bits_per_pixel / 8;
1576                 if (IS_GEN2(dev))
1577                         cpp = 4;
1578
1579                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1580                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1581                                                wm_info, fifo_size, cpp,
1582                                                latency_ns);
1583                 enabled = crtc;
1584         } else
1585                 planea_wm = fifo_size - wm_info->guard_size;
1586
1587         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1588         crtc = intel_get_crtc_for_plane(dev, 1);
1589         if (intel_crtc_active(crtc)) {
1590                 const struct drm_display_mode *adjusted_mode;
1591                 int cpp = crtc->fb->bits_per_pixel / 8;
1592                 if (IS_GEN2(dev))
1593                         cpp = 4;
1594
1595                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1596                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1597                                                wm_info, fifo_size, cpp,
1598                                                latency_ns);
1599                 if (enabled == NULL)
1600                         enabled = crtc;
1601                 else
1602                         enabled = NULL;
1603         } else
1604                 planeb_wm = fifo_size - wm_info->guard_size;
1605
1606         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1607
1608         /*
1609          * Overlay gets an aggressive default since video jitter is bad.
1610          */
1611         cwm = 2;
1612
1613         /* Play safe and disable self-refresh before adjusting watermarks. */
1614         if (IS_I945G(dev) || IS_I945GM(dev))
1615                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1616         else if (IS_I915GM(dev))
1617                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1618
1619         /* Calc sr entries for one plane configs */
1620         if (HAS_FW_BLC(dev) && enabled) {
1621                 /* self-refresh has much higher latency */
1622                 static const int sr_latency_ns = 6000;
1623                 const struct drm_display_mode *adjusted_mode =
1624                         &to_intel_crtc(enabled)->config.adjusted_mode;
1625                 int clock = adjusted_mode->crtc_clock;
1626                 int htotal = adjusted_mode->htotal;
1627                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1628                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1629                 unsigned long line_time_us;
1630                 int entries;
1631
1632                 line_time_us = (htotal * 1000) / clock;
1633
1634                 /* Use ns/us then divide to preserve precision */
1635                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1636                         pixel_size * hdisplay;
1637                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1638                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1639                 srwm = wm_info->fifo_size - entries;
1640                 if (srwm < 0)
1641                         srwm = 1;
1642
1643                 if (IS_I945G(dev) || IS_I945GM(dev))
1644                         I915_WRITE(FW_BLC_SELF,
1645                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1646                 else if (IS_I915GM(dev))
1647                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1648         }
1649
1650         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1651                       planea_wm, planeb_wm, cwm, srwm);
1652
1653         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1654         fwater_hi = (cwm & 0x1f);
1655
1656         /* Set request length to 8 cachelines per fetch */
1657         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1658         fwater_hi = fwater_hi | (1 << 8);
1659
1660         I915_WRITE(FW_BLC, fwater_lo);
1661         I915_WRITE(FW_BLC2, fwater_hi);
1662
1663         if (HAS_FW_BLC(dev)) {
1664                 if (enabled) {
1665                         if (IS_I945G(dev) || IS_I945GM(dev))
1666                                 I915_WRITE(FW_BLC_SELF,
1667                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1668                         else if (IS_I915GM(dev))
1669                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1670                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1671                 } else
1672                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1673         }
1674 }
1675
1676 static void i830_update_wm(struct drm_crtc *unused_crtc)
1677 {
1678         struct drm_device *dev = unused_crtc->dev;
1679         struct drm_i915_private *dev_priv = dev->dev_private;
1680         struct drm_crtc *crtc;
1681         const struct drm_display_mode *adjusted_mode;
1682         uint32_t fwater_lo;
1683         int planea_wm;
1684
1685         crtc = single_enabled_crtc(dev);
1686         if (crtc == NULL)
1687                 return;
1688
1689         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1690         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1691                                        &i830_wm_info,
1692                                        dev_priv->display.get_fifo_size(dev, 0),
1693                                        4, latency_ns);
1694         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1695         fwater_lo |= (3<<8) | planea_wm;
1696
1697         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1698
1699         I915_WRITE(FW_BLC, fwater_lo);
1700 }
1701
1702 /*
1703  * Check the wm result.
1704  *
1705  * If any calculated watermark values is larger than the maximum value that
1706  * can be programmed into the associated watermark register, that watermark
1707  * must be disabled.
1708  */
1709 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1710                                 int fbc_wm, int display_wm, int cursor_wm,
1711                                 const struct intel_watermark_params *display,
1712                                 const struct intel_watermark_params *cursor)
1713 {
1714         struct drm_i915_private *dev_priv = dev->dev_private;
1715
1716         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1717                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1718
1719         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1720                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1721                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1722
1723                 /* fbc has it's own way to disable FBC WM */
1724                 I915_WRITE(DISP_ARB_CTL,
1725                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1726                 return false;
1727         } else if (INTEL_INFO(dev)->gen >= 6) {
1728                 /* enable FBC WM (except on ILK, where it must remain off) */
1729                 I915_WRITE(DISP_ARB_CTL,
1730                            I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1731         }
1732
1733         if (display_wm > display->max_wm) {
1734                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1735                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1736                 return false;
1737         }
1738
1739         if (cursor_wm > cursor->max_wm) {
1740                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1741                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1742                 return false;
1743         }
1744
1745         if (!(fbc_wm || display_wm || cursor_wm)) {
1746                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1747                 return false;
1748         }
1749
1750         return true;
1751 }
1752
1753 /*
1754  * Compute watermark values of WM[1-3],
1755  */
1756 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1757                                   int latency_ns,
1758                                   const struct intel_watermark_params *display,
1759                                   const struct intel_watermark_params *cursor,
1760                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1761 {
1762         struct drm_crtc *crtc;
1763         const struct drm_display_mode *adjusted_mode;
1764         unsigned long line_time_us;
1765         int hdisplay, htotal, pixel_size, clock;
1766         int line_count, line_size;
1767         int small, large;
1768         int entries;
1769
1770         if (!latency_ns) {
1771                 *fbc_wm = *display_wm = *cursor_wm = 0;
1772                 return false;
1773         }
1774
1775         crtc = intel_get_crtc_for_plane(dev, plane);
1776         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1777         clock = adjusted_mode->crtc_clock;
1778         htotal = adjusted_mode->htotal;
1779         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1780         pixel_size = crtc->fb->bits_per_pixel / 8;
1781
1782         line_time_us = (htotal * 1000) / clock;
1783         line_count = (latency_ns / line_time_us + 1000) / 1000;
1784         line_size = hdisplay * pixel_size;
1785
1786         /* Use the minimum of the small and large buffer method for primary */
1787         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1788         large = line_count * line_size;
1789
1790         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1791         *display_wm = entries + display->guard_size;
1792
1793         /*
1794          * Spec says:
1795          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1796          */
1797         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1798
1799         /* calculate the self-refresh watermark for display cursor */
1800         entries = line_count * pixel_size * 64;
1801         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1802         *cursor_wm = entries + cursor->guard_size;
1803
1804         return ironlake_check_srwm(dev, level,
1805                                    *fbc_wm, *display_wm, *cursor_wm,
1806                                    display, cursor);
1807 }
1808
1809 static void ironlake_update_wm(struct drm_crtc *crtc)
1810 {
1811         struct drm_device *dev = crtc->dev;
1812         struct drm_i915_private *dev_priv = dev->dev_private;
1813         int fbc_wm, plane_wm, cursor_wm;
1814         unsigned int enabled;
1815
1816         enabled = 0;
1817         if (g4x_compute_wm0(dev, PIPE_A,
1818                             &ironlake_display_wm_info,
1819                             dev_priv->wm.pri_latency[0] * 100,
1820                             &ironlake_cursor_wm_info,
1821                             dev_priv->wm.cur_latency[0] * 100,
1822                             &plane_wm, &cursor_wm)) {
1823                 I915_WRITE(WM0_PIPEA_ILK,
1824                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1825                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1826                               " plane %d, " "cursor: %d\n",
1827                               plane_wm, cursor_wm);
1828                 enabled |= 1 << PIPE_A;
1829         }
1830
1831         if (g4x_compute_wm0(dev, PIPE_B,
1832                             &ironlake_display_wm_info,
1833                             dev_priv->wm.pri_latency[0] * 100,
1834                             &ironlake_cursor_wm_info,
1835                             dev_priv->wm.cur_latency[0] * 100,
1836                             &plane_wm, &cursor_wm)) {
1837                 I915_WRITE(WM0_PIPEB_ILK,
1838                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1839                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1840                               " plane %d, cursor: %d\n",
1841                               plane_wm, cursor_wm);
1842                 enabled |= 1 << PIPE_B;
1843         }
1844
1845         /*
1846          * Calculate and update the self-refresh watermark only when one
1847          * display plane is used.
1848          */
1849         I915_WRITE(WM3_LP_ILK, 0);
1850         I915_WRITE(WM2_LP_ILK, 0);
1851         I915_WRITE(WM1_LP_ILK, 0);
1852
1853         if (!single_plane_enabled(enabled))
1854                 return;
1855         enabled = ffs(enabled) - 1;
1856
1857         /* WM1 */
1858         if (!ironlake_compute_srwm(dev, 1, enabled,
1859                                    dev_priv->wm.pri_latency[1] * 500,
1860                                    &ironlake_display_srwm_info,
1861                                    &ironlake_cursor_srwm_info,
1862                                    &fbc_wm, &plane_wm, &cursor_wm))
1863                 return;
1864
1865         I915_WRITE(WM1_LP_ILK,
1866                    WM1_LP_SR_EN |
1867                    (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1868                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1869                    (plane_wm << WM1_LP_SR_SHIFT) |
1870                    cursor_wm);
1871
1872         /* WM2 */
1873         if (!ironlake_compute_srwm(dev, 2, enabled,
1874                                    dev_priv->wm.pri_latency[2] * 500,
1875                                    &ironlake_display_srwm_info,
1876                                    &ironlake_cursor_srwm_info,
1877                                    &fbc_wm, &plane_wm, &cursor_wm))
1878                 return;
1879
1880         I915_WRITE(WM2_LP_ILK,
1881                    WM2_LP_EN |
1882                    (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1883                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1884                    (plane_wm << WM1_LP_SR_SHIFT) |
1885                    cursor_wm);
1886
1887         /*
1888          * WM3 is unsupported on ILK, probably because we don't have latency
1889          * data for that power state
1890          */
1891 }
1892
1893 static void sandybridge_update_wm(struct drm_crtc *crtc)
1894 {
1895         struct drm_device *dev = crtc->dev;
1896         struct drm_i915_private *dev_priv = dev->dev_private;
1897         int latency = dev_priv->wm.pri_latency[0] * 100;        /* In unit 0.1us */
1898         u32 val;
1899         int fbc_wm, plane_wm, cursor_wm;
1900         unsigned int enabled;
1901
1902         enabled = 0;
1903         if (g4x_compute_wm0(dev, PIPE_A,
1904                             &sandybridge_display_wm_info, latency,
1905                             &sandybridge_cursor_wm_info, latency,
1906                             &plane_wm, &cursor_wm)) {
1907                 val = I915_READ(WM0_PIPEA_ILK);
1908                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1909                 I915_WRITE(WM0_PIPEA_ILK, val |
1910                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1911                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1912                               " plane %d, " "cursor: %d\n",
1913                               plane_wm, cursor_wm);
1914                 enabled |= 1 << PIPE_A;
1915         }
1916
1917         if (g4x_compute_wm0(dev, PIPE_B,
1918                             &sandybridge_display_wm_info, latency,
1919                             &sandybridge_cursor_wm_info, latency,
1920                             &plane_wm, &cursor_wm)) {
1921                 val = I915_READ(WM0_PIPEB_ILK);
1922                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1923                 I915_WRITE(WM0_PIPEB_ILK, val |
1924                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1925                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1926                               " plane %d, cursor: %d\n",
1927                               plane_wm, cursor_wm);
1928                 enabled |= 1 << PIPE_B;
1929         }
1930
1931         /*
1932          * Calculate and update the self-refresh watermark only when one
1933          * display plane is used.
1934          *
1935          * SNB support 3 levels of watermark.
1936          *
1937          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1938          * and disabled in the descending order
1939          *
1940          */
1941         I915_WRITE(WM3_LP_ILK, 0);
1942         I915_WRITE(WM2_LP_ILK, 0);
1943         I915_WRITE(WM1_LP_ILK, 0);
1944
1945         if (!single_plane_enabled(enabled) ||
1946             dev_priv->sprite_scaling_enabled)
1947                 return;
1948         enabled = ffs(enabled) - 1;
1949
1950         /* WM1 */
1951         if (!ironlake_compute_srwm(dev, 1, enabled,
1952                                    dev_priv->wm.pri_latency[1] * 500,
1953                                    &sandybridge_display_srwm_info,
1954                                    &sandybridge_cursor_srwm_info,
1955                                    &fbc_wm, &plane_wm, &cursor_wm))
1956                 return;
1957
1958         I915_WRITE(WM1_LP_ILK,
1959                    WM1_LP_SR_EN |
1960                    (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1961                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1962                    (plane_wm << WM1_LP_SR_SHIFT) |
1963                    cursor_wm);
1964
1965         /* WM2 */
1966         if (!ironlake_compute_srwm(dev, 2, enabled,
1967                                    dev_priv->wm.pri_latency[2] * 500,
1968                                    &sandybridge_display_srwm_info,
1969                                    &sandybridge_cursor_srwm_info,
1970                                    &fbc_wm, &plane_wm, &cursor_wm))
1971                 return;
1972
1973         I915_WRITE(WM2_LP_ILK,
1974                    WM2_LP_EN |
1975                    (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1976                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1977                    (plane_wm << WM1_LP_SR_SHIFT) |
1978                    cursor_wm);
1979
1980         /* WM3 */
1981         if (!ironlake_compute_srwm(dev, 3, enabled,
1982                                    dev_priv->wm.pri_latency[3] * 500,
1983                                    &sandybridge_display_srwm_info,
1984                                    &sandybridge_cursor_srwm_info,
1985                                    &fbc_wm, &plane_wm, &cursor_wm))
1986                 return;
1987
1988         I915_WRITE(WM3_LP_ILK,
1989                    WM3_LP_EN |
1990                    (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
1991                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1992                    (plane_wm << WM1_LP_SR_SHIFT) |
1993                    cursor_wm);
1994 }
1995
1996 static void ivybridge_update_wm(struct drm_crtc *crtc)
1997 {
1998         struct drm_device *dev = crtc->dev;
1999         struct drm_i915_private *dev_priv = dev->dev_private;
2000         int latency = dev_priv->wm.pri_latency[0] * 100;        /* In unit 0.1us */
2001         u32 val;
2002         int fbc_wm, plane_wm, cursor_wm;
2003         int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
2004         unsigned int enabled;
2005
2006         enabled = 0;
2007         if (g4x_compute_wm0(dev, PIPE_A,
2008                             &sandybridge_display_wm_info, latency,
2009                             &sandybridge_cursor_wm_info, latency,
2010                             &plane_wm, &cursor_wm)) {
2011                 val = I915_READ(WM0_PIPEA_ILK);
2012                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2013                 I915_WRITE(WM0_PIPEA_ILK, val |
2014                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2015                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
2016                               " plane %d, " "cursor: %d\n",
2017                               plane_wm, cursor_wm);
2018                 enabled |= 1 << PIPE_A;
2019         }
2020
2021         if (g4x_compute_wm0(dev, PIPE_B,
2022                             &sandybridge_display_wm_info, latency,
2023                             &sandybridge_cursor_wm_info, latency,
2024                             &plane_wm, &cursor_wm)) {
2025                 val = I915_READ(WM0_PIPEB_ILK);
2026                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2027                 I915_WRITE(WM0_PIPEB_ILK, val |
2028                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2029                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
2030                               " plane %d, cursor: %d\n",
2031                               plane_wm, cursor_wm);
2032                 enabled |= 1 << PIPE_B;
2033         }
2034
2035         if (g4x_compute_wm0(dev, PIPE_C,
2036                             &sandybridge_display_wm_info, latency,
2037                             &sandybridge_cursor_wm_info, latency,
2038                             &plane_wm, &cursor_wm)) {
2039                 val = I915_READ(WM0_PIPEC_IVB);
2040                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2041                 I915_WRITE(WM0_PIPEC_IVB, val |
2042                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2043                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2044                               " plane %d, cursor: %d\n",
2045                               plane_wm, cursor_wm);
2046                 enabled |= 1 << PIPE_C;
2047         }
2048
2049         /*
2050          * Calculate and update the self-refresh watermark only when one
2051          * display plane is used.
2052          *
2053          * SNB support 3 levels of watermark.
2054          *
2055          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2056          * and disabled in the descending order
2057          *
2058          */
2059         I915_WRITE(WM3_LP_ILK, 0);
2060         I915_WRITE(WM2_LP_ILK, 0);
2061         I915_WRITE(WM1_LP_ILK, 0);
2062
2063         if (!single_plane_enabled(enabled) ||
2064             dev_priv->sprite_scaling_enabled)
2065                 return;
2066         enabled = ffs(enabled) - 1;
2067
2068         /* WM1 */
2069         if (!ironlake_compute_srwm(dev, 1, enabled,
2070                                    dev_priv->wm.pri_latency[1] * 500,
2071                                    &sandybridge_display_srwm_info,
2072                                    &sandybridge_cursor_srwm_info,
2073                                    &fbc_wm, &plane_wm, &cursor_wm))
2074                 return;
2075
2076         I915_WRITE(WM1_LP_ILK,
2077                    WM1_LP_SR_EN |
2078                    (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
2079                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2080                    (plane_wm << WM1_LP_SR_SHIFT) |
2081                    cursor_wm);
2082
2083         /* WM2 */
2084         if (!ironlake_compute_srwm(dev, 2, enabled,
2085                                    dev_priv->wm.pri_latency[2] * 500,
2086                                    &sandybridge_display_srwm_info,
2087                                    &sandybridge_cursor_srwm_info,
2088                                    &fbc_wm, &plane_wm, &cursor_wm))
2089                 return;
2090
2091         I915_WRITE(WM2_LP_ILK,
2092                    WM2_LP_EN |
2093                    (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
2094                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2095                    (plane_wm << WM1_LP_SR_SHIFT) |
2096                    cursor_wm);
2097
2098         /* WM3, note we have to correct the cursor latency */
2099         if (!ironlake_compute_srwm(dev, 3, enabled,
2100                                    dev_priv->wm.pri_latency[3] * 500,
2101                                    &sandybridge_display_srwm_info,
2102                                    &sandybridge_cursor_srwm_info,
2103                                    &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2104             !ironlake_compute_srwm(dev, 3, enabled,
2105                                    dev_priv->wm.cur_latency[3] * 500,
2106                                    &sandybridge_display_srwm_info,
2107                                    &sandybridge_cursor_srwm_info,
2108                                    &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2109                 return;
2110
2111         I915_WRITE(WM3_LP_ILK,
2112                    WM3_LP_EN |
2113                    (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2114                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2115                    (plane_wm << WM1_LP_SR_SHIFT) |
2116                    cursor_wm);
2117 }
2118
2119 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
2120                                     struct drm_crtc *crtc)
2121 {
2122         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2123         uint32_t pixel_rate;
2124
2125         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
2126
2127         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2128          * adjust the pixel_rate here. */
2129
2130         if (intel_crtc->config.pch_pfit.enabled) {
2131                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2132                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
2133
2134                 pipe_w = intel_crtc->config.pipe_src_w;
2135                 pipe_h = intel_crtc->config.pipe_src_h;
2136                 pfit_w = (pfit_size >> 16) & 0xFFFF;
2137                 pfit_h = pfit_size & 0xFFFF;
2138                 if (pipe_w < pfit_w)
2139                         pipe_w = pfit_w;
2140                 if (pipe_h < pfit_h)
2141                         pipe_h = pfit_h;
2142
2143                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2144                                      pfit_w * pfit_h);
2145         }
2146
2147         return pixel_rate;
2148 }
2149
2150 /* latency must be in 0.1us units. */
2151 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2152                                uint32_t latency)
2153 {
2154         uint64_t ret;
2155
2156         if (WARN(latency == 0, "Latency value missing\n"))
2157                 return UINT_MAX;
2158
2159         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2160         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2161
2162         return ret;
2163 }
2164
2165 /* latency must be in 0.1us units. */
2166 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2167                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2168                                uint32_t latency)
2169 {
2170         uint32_t ret;
2171
2172         if (WARN(latency == 0, "Latency value missing\n"))
2173                 return UINT_MAX;
2174
2175         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2176         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2177         ret = DIV_ROUND_UP(ret, 64) + 2;
2178         return ret;
2179 }
2180
2181 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2182                            uint8_t bytes_per_pixel)
2183 {
2184         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2185 }
2186
2187 struct hsw_pipe_wm_parameters {
2188         bool active;
2189         uint32_t pipe_htotal;
2190         uint32_t pixel_rate;
2191         struct intel_plane_wm_parameters pri;
2192         struct intel_plane_wm_parameters spr;
2193         struct intel_plane_wm_parameters cur;
2194 };
2195
2196 struct hsw_wm_maximums {
2197         uint16_t pri;
2198         uint16_t spr;
2199         uint16_t cur;
2200         uint16_t fbc;
2201 };
2202
2203 /* used in computing the new watermarks state */
2204 struct intel_wm_config {
2205         unsigned int num_pipes_active;
2206         bool sprites_enabled;
2207         bool sprites_scaled;
2208 };
2209
2210 /*
2211  * For both WM_PIPE and WM_LP.
2212  * mem_value must be in 0.1us units.
2213  */
2214 static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
2215                                    uint32_t mem_value,
2216                                    bool is_lp)
2217 {
2218         uint32_t method1, method2;
2219
2220         if (!params->active || !params->pri.enabled)
2221                 return 0;
2222
2223         method1 = ilk_wm_method1(params->pixel_rate,
2224                                  params->pri.bytes_per_pixel,
2225                                  mem_value);
2226
2227         if (!is_lp)
2228                 return method1;
2229
2230         method2 = ilk_wm_method2(params->pixel_rate,
2231                                  params->pipe_htotal,
2232                                  params->pri.horiz_pixels,
2233                                  params->pri.bytes_per_pixel,
2234                                  mem_value);
2235
2236         return min(method1, method2);
2237 }
2238
2239 /*
2240  * For both WM_PIPE and WM_LP.
2241  * mem_value must be in 0.1us units.
2242  */
2243 static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
2244                                    uint32_t mem_value)
2245 {
2246         uint32_t method1, method2;
2247
2248         if (!params->active || !params->spr.enabled)
2249                 return 0;
2250
2251         method1 = ilk_wm_method1(params->pixel_rate,
2252                                  params->spr.bytes_per_pixel,
2253                                  mem_value);
2254         method2 = ilk_wm_method2(params->pixel_rate,
2255                                  params->pipe_htotal,
2256                                  params->spr.horiz_pixels,
2257                                  params->spr.bytes_per_pixel,
2258                                  mem_value);
2259         return min(method1, method2);
2260 }
2261
2262 /*
2263  * For both WM_PIPE and WM_LP.
2264  * mem_value must be in 0.1us units.
2265  */
2266 static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
2267                                    uint32_t mem_value)
2268 {
2269         if (!params->active || !params->cur.enabled)
2270                 return 0;
2271
2272         return ilk_wm_method2(params->pixel_rate,
2273                               params->pipe_htotal,
2274                               params->cur.horiz_pixels,
2275                               params->cur.bytes_per_pixel,
2276                               mem_value);
2277 }
2278
2279 /* Only for WM_LP. */
2280 static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
2281                                    uint32_t pri_val)
2282 {
2283         if (!params->active || !params->pri.enabled)
2284                 return 0;
2285
2286         return ilk_wm_fbc(pri_val,
2287                           params->pri.horiz_pixels,
2288                           params->pri.bytes_per_pixel);
2289 }
2290
2291 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2292 {
2293         if (INTEL_INFO(dev)->gen >= 7)
2294                 return 768;
2295         else
2296                 return 512;
2297 }
2298
2299 /* Calculate the maximum primary/sprite plane watermark */
2300 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2301                                      int level,
2302                                      const struct intel_wm_config *config,
2303                                      enum intel_ddb_partitioning ddb_partitioning,
2304                                      bool is_sprite)
2305 {
2306         unsigned int fifo_size = ilk_display_fifo_size(dev);
2307         unsigned int max;
2308
2309         /* if sprites aren't enabled, sprites get nothing */
2310         if (is_sprite && !config->sprites_enabled)
2311                 return 0;
2312
2313         /* HSW allows LP1+ watermarks even with multiple pipes */
2314         if (level == 0 || config->num_pipes_active > 1) {
2315                 fifo_size /= INTEL_INFO(dev)->num_pipes;
2316
2317                 /*
2318                  * For some reason the non self refresh
2319                  * FIFO size is only half of the self
2320                  * refresh FIFO size on ILK/SNB.
2321                  */
2322                 if (INTEL_INFO(dev)->gen <= 6)
2323                         fifo_size /= 2;
2324         }
2325
2326         if (config->sprites_enabled) {
2327                 /* level 0 is always calculated with 1:1 split */
2328                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2329                         if (is_sprite)
2330                                 fifo_size *= 5;
2331                         fifo_size /= 6;
2332                 } else {
2333                         fifo_size /= 2;
2334                 }
2335         }
2336
2337         /* clamp to max that the registers can hold */
2338         if (INTEL_INFO(dev)->gen >= 7)
2339                 /* IVB/HSW primary/sprite plane watermarks */
2340                 max = level == 0 ? 127 : 1023;
2341         else if (!is_sprite)
2342                 /* ILK/SNB primary plane watermarks */
2343                 max = level == 0 ? 127 : 511;
2344         else
2345                 /* ILK/SNB sprite plane watermarks */
2346                 max = level == 0 ? 63 : 255;
2347
2348         return min(fifo_size, max);
2349 }
2350
2351 /* Calculate the maximum cursor plane watermark */
2352 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2353                                       int level,
2354                                       const struct intel_wm_config *config)
2355 {
2356         /* HSW LP1+ watermarks w/ multiple pipes */
2357         if (level > 0 && config->num_pipes_active > 1)
2358                 return 64;
2359
2360         /* otherwise just report max that registers can hold */
2361         if (INTEL_INFO(dev)->gen >= 7)
2362                 return level == 0 ? 63 : 255;
2363         else
2364                 return level == 0 ? 31 : 63;
2365 }
2366
2367 /* Calculate the maximum FBC watermark */
2368 static unsigned int ilk_fbc_wm_max(void)
2369 {
2370         /* max that registers can hold */
2371         return 15;
2372 }
2373
2374 static void ilk_compute_wm_maximums(struct drm_device *dev,
2375                                     int level,
2376                                     const struct intel_wm_config *config,
2377                                     enum intel_ddb_partitioning ddb_partitioning,
2378                                     struct hsw_wm_maximums *max)
2379 {
2380         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2381         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2382         max->cur = ilk_cursor_wm_max(dev, level, config);
2383         max->fbc = ilk_fbc_wm_max();
2384 }
2385
2386 static bool ilk_validate_wm_level(int level,
2387                                   const struct hsw_wm_maximums *max,
2388                                   struct intel_wm_level *result)
2389 {
2390         bool ret;
2391
2392         /* already determined to be invalid? */
2393         if (!result->enable)
2394                 return false;
2395
2396         result->enable = result->pri_val <= max->pri &&
2397                          result->spr_val <= max->spr &&
2398                          result->cur_val <= max->cur;
2399
2400         ret = result->enable;
2401
2402         /*
2403          * HACK until we can pre-compute everything,
2404          * and thus fail gracefully if LP0 watermarks
2405          * are exceeded...
2406          */
2407         if (level == 0 && !result->enable) {
2408                 if (result->pri_val > max->pri)
2409                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2410                                       level, result->pri_val, max->pri);
2411                 if (result->spr_val > max->spr)
2412                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2413                                       level, result->spr_val, max->spr);
2414                 if (result->cur_val > max->cur)
2415                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2416                                       level, result->cur_val, max->cur);
2417
2418                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2419                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2420                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2421                 result->enable = true;
2422         }
2423
2424         return ret;
2425 }
2426
2427 static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
2428                                  int level,
2429                                  const struct hsw_pipe_wm_parameters *p,
2430                                  struct intel_wm_level *result)
2431 {
2432         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2433         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2434         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2435
2436         /* WM1+ latency values stored in 0.5us units */
2437         if (level > 0) {
2438                 pri_latency *= 5;
2439                 spr_latency *= 5;
2440                 cur_latency *= 5;
2441         }
2442
2443         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2444         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2445         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2446         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2447         result->enable = true;
2448 }
2449
2450 static uint32_t
2451 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2452 {
2453         struct drm_i915_private *dev_priv = dev->dev_private;
2454         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2455         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2456         u32 linetime, ips_linetime;
2457
2458         if (!intel_crtc_active(crtc))
2459                 return 0;
2460
2461         /* The WM are computed with base on how long it takes to fill a single
2462          * row at the given clock rate, multiplied by 8.
2463          * */
2464         linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2465         ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2466                                          intel_ddi_get_cdclk_freq(dev_priv));
2467
2468         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2469                PIPE_WM_LINETIME_TIME(linetime);
2470 }
2471
2472 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2473 {
2474         struct drm_i915_private *dev_priv = dev->dev_private;
2475
2476         if (IS_HASWELL(dev)) {
2477                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2478
2479                 wm[0] = (sskpd >> 56) & 0xFF;
2480                 if (wm[0] == 0)
2481                         wm[0] = sskpd & 0xF;
2482                 wm[1] = (sskpd >> 4) & 0xFF;
2483                 wm[2] = (sskpd >> 12) & 0xFF;
2484                 wm[3] = (sskpd >> 20) & 0x1FF;
2485                 wm[4] = (sskpd >> 32) & 0x1FF;
2486         } else if (INTEL_INFO(dev)->gen >= 6) {
2487                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2488
2489                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2490                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2491                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2492                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2493         } else if (INTEL_INFO(dev)->gen >= 5) {
2494                 uint32_t mltr = I915_READ(MLTR_ILK);
2495
2496                 /* ILK primary LP0 latency is 700 ns */
2497                 wm[0] = 7;
2498                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2499                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2500         }
2501 }
2502
2503 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2504 {
2505         /* ILK sprite LP0 latency is 1300 ns */
2506         if (INTEL_INFO(dev)->gen == 5)
2507                 wm[0] = 13;
2508 }
2509
2510 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2511 {
2512         /* ILK cursor LP0 latency is 1300 ns */
2513         if (INTEL_INFO(dev)->gen == 5)
2514                 wm[0] = 13;
2515
2516         /* WaDoubleCursorLP3Latency:ivb */
2517         if (IS_IVYBRIDGE(dev))
2518                 wm[3] *= 2;
2519 }
2520
2521 static int ilk_wm_max_level(const struct drm_device *dev)
2522 {
2523         /* how many WM levels are we expecting */
2524         if (IS_HASWELL(dev))
2525                 return 4;
2526         else if (INTEL_INFO(dev)->gen >= 6)
2527                 return 3;
2528         else
2529                 return 2;
2530 }
2531
2532 static void intel_print_wm_latency(struct drm_device *dev,
2533                                    const char *name,
2534                                    const uint16_t wm[5])
2535 {
2536         int level, max_level = ilk_wm_max_level(dev);
2537
2538         for (level = 0; level <= max_level; level++) {
2539                 unsigned int latency = wm[level];
2540
2541                 if (latency == 0) {
2542                         DRM_ERROR("%s WM%d latency not provided\n",
2543                                   name, level);
2544                         continue;
2545                 }
2546
2547                 /* WM1+ latency values in 0.5us units */
2548                 if (level > 0)
2549                         latency *= 5;
2550
2551                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2552                               name, level, wm[level],
2553                               latency / 10, latency % 10);
2554         }
2555 }
2556
2557 static void intel_setup_wm_latency(struct drm_device *dev)
2558 {
2559         struct drm_i915_private *dev_priv = dev->dev_private;
2560
2561         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2562
2563         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2564                sizeof(dev_priv->wm.pri_latency));
2565         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2566                sizeof(dev_priv->wm.pri_latency));
2567
2568         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2569         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2570
2571         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2572         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2573         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2574 }
2575
2576 static void hsw_compute_wm_parameters(struct drm_crtc *crtc,
2577                                       struct hsw_pipe_wm_parameters *p,
2578                                       struct intel_wm_config *config)
2579 {
2580         struct drm_device *dev = crtc->dev;
2581         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2582         enum pipe pipe = intel_crtc->pipe;
2583         struct drm_plane *plane;
2584
2585         p->active = intel_crtc_active(crtc);
2586         if (p->active) {
2587                 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2588                 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2589                 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2590                 p->cur.bytes_per_pixel = 4;
2591                 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2592                 p->cur.horiz_pixels = 64;
2593                 /* TODO: for now, assume primary and cursor planes are always enabled. */
2594                 p->pri.enabled = true;
2595                 p->cur.enabled = true;
2596         }
2597
2598         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2599                 config->num_pipes_active += intel_crtc_active(crtc);
2600
2601         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2602                 struct intel_plane *intel_plane = to_intel_plane(plane);
2603
2604                 if (intel_plane->pipe == pipe)
2605                         p->spr = intel_plane->wm;
2606
2607                 config->sprites_enabled |= intel_plane->wm.enabled;
2608                 config->sprites_scaled |= intel_plane->wm.scaled;
2609         }
2610 }
2611
2612 /* Compute new watermarks for the pipe */
2613 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2614                                   const struct hsw_pipe_wm_parameters *params,
2615                                   struct intel_pipe_wm *pipe_wm)
2616 {
2617         struct drm_device *dev = crtc->dev;
2618         struct drm_i915_private *dev_priv = dev->dev_private;
2619         int level, max_level = ilk_wm_max_level(dev);
2620         /* LP0 watermark maximums depend on this pipe alone */
2621         struct intel_wm_config config = {
2622                 .num_pipes_active = 1,
2623                 .sprites_enabled = params->spr.enabled,
2624                 .sprites_scaled = params->spr.scaled,
2625         };
2626         struct hsw_wm_maximums max;
2627
2628         /* LP0 watermarks always use 1/2 DDB partitioning */
2629         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2630
2631         for (level = 0; level <= max_level; level++)
2632                 ilk_compute_wm_level(dev_priv, level, params,
2633                                      &pipe_wm->wm[level]);
2634
2635         pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2636
2637         /* At least LP0 must be valid */
2638         return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
2639 }
2640
2641 /*
2642  * Merge the watermarks from all active pipes for a specific level.
2643  */
2644 static void ilk_merge_wm_level(struct drm_device *dev,
2645                                int level,
2646                                struct intel_wm_level *ret_wm)
2647 {
2648         const struct intel_crtc *intel_crtc;
2649
2650         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2651                 const struct intel_wm_level *wm =
2652                         &intel_crtc->wm.active.wm[level];
2653
2654                 if (!wm->enable)
2655                         return;
2656
2657                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2658                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2659                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2660                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2661         }
2662
2663         ret_wm->enable = true;
2664 }
2665
2666 /*
2667  * Merge all low power watermarks for all active pipes.
2668  */
2669 static void ilk_wm_merge(struct drm_device *dev,
2670                          const struct hsw_wm_maximums *max,
2671                          struct intel_pipe_wm *merged)
2672 {
2673         int level, max_level = ilk_wm_max_level(dev);
2674
2675         merged->fbc_wm_enabled = true;
2676
2677         /* merge each WM1+ level */
2678         for (level = 1; level <= max_level; level++) {
2679                 struct intel_wm_level *wm = &merged->wm[level];
2680
2681                 ilk_merge_wm_level(dev, level, wm);
2682
2683                 if (!ilk_validate_wm_level(level, max, wm))
2684                         break;
2685
2686                 /*
2687                  * The spec says it is preferred to disable
2688                  * FBC WMs instead of disabling a WM level.
2689                  */
2690                 if (wm->fbc_val > max->fbc) {
2691                         merged->fbc_wm_enabled = false;
2692                         wm->fbc_val = 0;
2693                 }
2694         }
2695 }
2696
2697 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2698 {
2699         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2700         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2701 }
2702
2703 static void hsw_compute_wm_results(struct drm_device *dev,
2704                                    const struct intel_pipe_wm *merged,
2705                                    enum intel_ddb_partitioning partitioning,
2706                                    struct hsw_wm_values *results)
2707 {
2708         struct intel_crtc *intel_crtc;
2709         int level, wm_lp;
2710
2711         results->enable_fbc_wm = merged->fbc_wm_enabled;
2712         results->partitioning = partitioning;
2713
2714         /* LP1+ register values */
2715         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2716                 const struct intel_wm_level *r;
2717
2718                 level = ilk_wm_lp_to_level(wm_lp, merged);
2719
2720                 r = &merged->wm[level];
2721                 if (!r->enable)
2722                         break;
2723
2724                 results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
2725                                                           r->fbc_val,
2726                                                           r->pri_val,
2727                                                           r->cur_val);
2728                 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2729         }
2730
2731         /* LP0 register values */
2732         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2733                 enum pipe pipe = intel_crtc->pipe;
2734                 const struct intel_wm_level *r =
2735                         &intel_crtc->wm.active.wm[0];
2736
2737                 if (WARN_ON(!r->enable))
2738                         continue;
2739
2740                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2741
2742                 results->wm_pipe[pipe] =
2743                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2744                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2745                         r->cur_val;
2746         }
2747 }
2748
2749 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2750  * case both are at the same level. Prefer r1 in case they're the same. */
2751 static struct intel_pipe_wm *hsw_find_best_result(struct drm_device *dev,
2752                                                   struct intel_pipe_wm *r1,
2753                                                   struct intel_pipe_wm *r2)
2754 {
2755         int level, max_level = ilk_wm_max_level(dev);
2756         int level1 = 0, level2 = 0;
2757
2758         for (level = 1; level <= max_level; level++) {
2759                 if (r1->wm[level].enable)
2760                         level1 = level;
2761                 if (r2->wm[level].enable)
2762                         level2 = level;
2763         }
2764
2765         if (level1 == level2) {
2766                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2767                         return r2;
2768                 else
2769                         return r1;
2770         } else if (level1 > level2) {
2771                 return r1;
2772         } else {
2773                 return r2;
2774         }
2775 }
2776
2777 /* dirty bits used to track which watermarks need changes */
2778 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2779 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2780 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2781 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2782 #define WM_DIRTY_FBC (1 << 24)
2783 #define WM_DIRTY_DDB (1 << 25)
2784
2785 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2786                                          const struct hsw_wm_values *old,
2787                                          const struct hsw_wm_values *new)
2788 {
2789         unsigned int dirty = 0;
2790         enum pipe pipe;
2791         int wm_lp;
2792
2793         for_each_pipe(pipe) {
2794                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2795                         dirty |= WM_DIRTY_LINETIME(pipe);
2796                         /* Must disable LP1+ watermarks too */
2797                         dirty |= WM_DIRTY_LP_ALL;
2798                 }
2799
2800                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2801                         dirty |= WM_DIRTY_PIPE(pipe);
2802                         /* Must disable LP1+ watermarks too */
2803                         dirty |= WM_DIRTY_LP_ALL;
2804                 }
2805         }
2806
2807         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2808                 dirty |= WM_DIRTY_FBC;
2809                 /* Must disable LP1+ watermarks too */
2810                 dirty |= WM_DIRTY_LP_ALL;
2811         }
2812
2813         if (old->partitioning != new->partitioning) {
2814                 dirty |= WM_DIRTY_DDB;
2815                 /* Must disable LP1+ watermarks too */
2816                 dirty |= WM_DIRTY_LP_ALL;
2817         }
2818
2819         /* LP1+ watermarks already deemed dirty, no need to continue */
2820         if (dirty & WM_DIRTY_LP_ALL)
2821                 return dirty;
2822
2823         /* Find the lowest numbered LP1+ watermark in need of an update... */
2824         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2825                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2826                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2827                         break;
2828         }
2829
2830         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2831         for (; wm_lp <= 3; wm_lp++)
2832                 dirty |= WM_DIRTY_LP(wm_lp);
2833
2834         return dirty;
2835 }
2836
2837 /*
2838  * The spec says we shouldn't write when we don't need, because every write
2839  * causes WMs to be re-evaluated, expending some power.
2840  */
2841 static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2842                                 struct hsw_wm_values *results)
2843 {
2844         struct hsw_wm_values *previous = &dev_priv->wm.hw;
2845         unsigned int dirty;
2846         uint32_t val;
2847
2848         dirty = ilk_compute_wm_dirty(dev_priv->dev, previous, results);
2849         if (!dirty)
2850                 return;
2851
2852         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != 0)
2853                 I915_WRITE(WM3_LP_ILK, 0);
2854         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != 0)
2855                 I915_WRITE(WM2_LP_ILK, 0);
2856         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != 0)
2857                 I915_WRITE(WM1_LP_ILK, 0);
2858
2859         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2860                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2861         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2862                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2863         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2864                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2865
2866         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2867                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2868         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2869                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2870         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2871                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2872
2873         if (dirty & WM_DIRTY_DDB) {
2874                 val = I915_READ(WM_MISC);
2875                 if (results->partitioning == INTEL_DDB_PART_1_2)
2876                         val &= ~WM_MISC_DATA_PARTITION_5_6;
2877                 else
2878                         val |= WM_MISC_DATA_PARTITION_5_6;
2879                 I915_WRITE(WM_MISC, val);
2880         }
2881
2882         if (dirty & WM_DIRTY_FBC) {
2883                 val = I915_READ(DISP_ARB_CTL);
2884                 if (results->enable_fbc_wm)
2885                         val &= ~DISP_FBC_WM_DIS;
2886                 else
2887                         val |= DISP_FBC_WM_DIS;
2888                 I915_WRITE(DISP_ARB_CTL, val);
2889         }
2890
2891         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2892                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2893         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2894                 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2895         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2896                 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2897
2898         if (dirty & WM_DIRTY_LP(1) && results->wm_lp[0] != 0)
2899                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2900         if (dirty & WM_DIRTY_LP(2) && results->wm_lp[1] != 0)
2901                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2902         if (dirty & WM_DIRTY_LP(3) && results->wm_lp[2] != 0)
2903                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2904
2905         dev_priv->wm.hw = *results;
2906 }
2907
2908 static void haswell_update_wm(struct drm_crtc *crtc)
2909 {
2910         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2911         struct drm_device *dev = crtc->dev;
2912         struct drm_i915_private *dev_priv = dev->dev_private;
2913         struct hsw_wm_maximums max;
2914         struct hsw_pipe_wm_parameters params = {};
2915         struct hsw_wm_values results = {};
2916         enum intel_ddb_partitioning partitioning;
2917         struct intel_pipe_wm pipe_wm = {};
2918         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2919         struct intel_wm_config config = {};
2920
2921         hsw_compute_wm_parameters(crtc, &params, &config);
2922
2923         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2924
2925         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2926                 return;
2927
2928         intel_crtc->wm.active = pipe_wm;
2929
2930         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2931         ilk_wm_merge(dev, &max, &lp_wm_1_2);
2932
2933         /* 5/6 split only in single pipe config on IVB+ */
2934         if (INTEL_INFO(dev)->gen >= 7 &&
2935             config.num_pipes_active == 1 && config.sprites_enabled) {
2936                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2937                 ilk_wm_merge(dev, &max, &lp_wm_5_6);
2938
2939                 best_lp_wm = hsw_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2940         } else {
2941                 best_lp_wm = &lp_wm_1_2;
2942         }
2943
2944         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2945                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2946
2947         hsw_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2948
2949         hsw_write_wm_values(dev_priv, &results);
2950 }
2951
2952 static void haswell_update_sprite_wm(struct drm_plane *plane,
2953                                      struct drm_crtc *crtc,
2954                                      uint32_t sprite_width, int pixel_size,
2955                                      bool enabled, bool scaled)
2956 {
2957         struct intel_plane *intel_plane = to_intel_plane(plane);
2958
2959         intel_plane->wm.enabled = enabled;
2960         intel_plane->wm.scaled = scaled;
2961         intel_plane->wm.horiz_pixels = sprite_width;
2962         intel_plane->wm.bytes_per_pixel = pixel_size;
2963
2964         haswell_update_wm(crtc);
2965 }
2966
2967 static bool
2968 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2969                               uint32_t sprite_width, int pixel_size,
2970                               const struct intel_watermark_params *display,
2971                               int display_latency_ns, int *sprite_wm)
2972 {
2973         struct drm_crtc *crtc;
2974         int clock;
2975         int entries, tlb_miss;
2976
2977         crtc = intel_get_crtc_for_plane(dev, plane);
2978         if (!intel_crtc_active(crtc)) {
2979                 *sprite_wm = display->guard_size;
2980                 return false;
2981         }
2982
2983         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
2984
2985         /* Use the small buffer method to calculate the sprite watermark */
2986         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2987         tlb_miss = display->fifo_size*display->cacheline_size -
2988                 sprite_width * 8;
2989         if (tlb_miss > 0)
2990                 entries += tlb_miss;
2991         entries = DIV_ROUND_UP(entries, display->cacheline_size);
2992         *sprite_wm = entries + display->guard_size;
2993         if (*sprite_wm > (int)display->max_wm)
2994                 *sprite_wm = display->max_wm;
2995
2996         return true;
2997 }
2998
2999 static bool
3000 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
3001                                 uint32_t sprite_width, int pixel_size,
3002                                 const struct intel_watermark_params *display,
3003                                 int latency_ns, int *sprite_wm)
3004 {
3005         struct drm_crtc *crtc;
3006         unsigned long line_time_us;
3007         int clock;
3008         int line_count, line_size;
3009         int small, large;
3010         int entries;
3011
3012         if (!latency_ns) {
3013                 *sprite_wm = 0;
3014                 return false;
3015         }
3016
3017         crtc = intel_get_crtc_for_plane(dev, plane);
3018         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3019         if (!clock) {
3020                 *sprite_wm = 0;
3021                 return false;
3022         }
3023
3024         line_time_us = (sprite_width * 1000) / clock;
3025         if (!line_time_us) {
3026                 *sprite_wm = 0;
3027                 return false;
3028         }
3029
3030         line_count = (latency_ns / line_time_us + 1000) / 1000;
3031         line_size = sprite_width * pixel_size;
3032
3033         /* Use the minimum of the small and large buffer method for primary */
3034         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3035         large = line_count * line_size;
3036
3037         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3038         *sprite_wm = entries + display->guard_size;
3039
3040         return *sprite_wm > 0x3ff ? false : true;
3041 }
3042
3043 static void sandybridge_update_sprite_wm(struct drm_plane *plane,
3044                                          struct drm_crtc *crtc,
3045                                          uint32_t sprite_width, int pixel_size,
3046                                          bool enabled, bool scaled)
3047 {
3048         struct drm_device *dev = plane->dev;
3049         struct drm_i915_private *dev_priv = dev->dev_private;
3050         int pipe = to_intel_plane(plane)->pipe;
3051         int latency = dev_priv->wm.spr_latency[0] * 100;        /* In unit 0.1us */
3052         u32 val;
3053         int sprite_wm, reg;
3054         int ret;
3055
3056         if (!enabled)
3057                 return;
3058
3059         switch (pipe) {
3060         case 0:
3061                 reg = WM0_PIPEA_ILK;
3062                 break;
3063         case 1:
3064                 reg = WM0_PIPEB_ILK;
3065                 break;
3066         case 2:
3067                 reg = WM0_PIPEC_IVB;
3068                 break;
3069         default:
3070                 return; /* bad pipe */
3071         }
3072
3073         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
3074                                             &sandybridge_display_wm_info,
3075                                             latency, &sprite_wm);
3076         if (!ret) {
3077                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
3078                               pipe_name(pipe));
3079                 return;
3080         }
3081
3082         val = I915_READ(reg);
3083         val &= ~WM0_PIPE_SPRITE_MASK;
3084         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
3085         DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
3086
3087
3088         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3089                                               pixel_size,
3090                                               &sandybridge_display_srwm_info,
3091                                               dev_priv->wm.spr_latency[1] * 500,
3092                                               &sprite_wm);
3093         if (!ret) {
3094                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
3095                               pipe_name(pipe));
3096                 return;
3097         }
3098         I915_WRITE(WM1S_LP_ILK, sprite_wm);
3099
3100         /* Only IVB has two more LP watermarks for sprite */
3101         if (!IS_IVYBRIDGE(dev))
3102                 return;
3103
3104         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3105                                               pixel_size,
3106                                               &sandybridge_display_srwm_info,
3107                                               dev_priv->wm.spr_latency[2] * 500,
3108                                               &sprite_wm);
3109         if (!ret) {
3110                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
3111                               pipe_name(pipe));
3112                 return;
3113         }
3114         I915_WRITE(WM2S_LP_IVB, sprite_wm);
3115
3116         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3117                                               pixel_size,
3118                                               &sandybridge_display_srwm_info,
3119                                               dev_priv->wm.spr_latency[3] * 500,
3120                                               &sprite_wm);
3121         if (!ret) {
3122                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
3123                               pipe_name(pipe));
3124                 return;
3125         }
3126         I915_WRITE(WM3S_LP_IVB, sprite_wm);
3127 }
3128
3129 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3130 {
3131         struct drm_device *dev = crtc->dev;
3132         struct drm_i915_private *dev_priv = dev->dev_private;
3133         struct hsw_wm_values *hw = &dev_priv->wm.hw;
3134         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3135         struct intel_pipe_wm *active = &intel_crtc->wm.active;
3136         enum pipe pipe = intel_crtc->pipe;
3137         static const unsigned int wm0_pipe_reg[] = {
3138                 [PIPE_A] = WM0_PIPEA_ILK,
3139                 [PIPE_B] = WM0_PIPEB_ILK,
3140                 [PIPE_C] = WM0_PIPEC_IVB,
3141         };
3142
3143         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3144         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3145
3146         if (intel_crtc_active(crtc)) {
3147                 u32 tmp = hw->wm_pipe[pipe];
3148
3149                 /*
3150                  * For active pipes LP0 watermark is marked as
3151                  * enabled, and LP1+ watermaks as disabled since
3152                  * we can't really reverse compute them in case
3153                  * multiple pipes are active.
3154                  */
3155                 active->wm[0].enable = true;
3156                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3157                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3158                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3159                 active->linetime = hw->wm_linetime[pipe];
3160         } else {
3161                 int level, max_level = ilk_wm_max_level(dev);
3162
3163                 /*
3164                  * For inactive pipes, all watermark levels
3165                  * should be marked as enabled but zeroed,
3166                  * which is what we'd compute them to.
3167                  */
3168                 for (level = 0; level <= max_level; level++)
3169                         active->wm[level].enable = true;
3170         }
3171 }
3172
3173 void ilk_wm_get_hw_state(struct drm_device *dev)
3174 {
3175         struct drm_i915_private *dev_priv = dev->dev_private;
3176         struct hsw_wm_values *hw = &dev_priv->wm.hw;
3177         struct drm_crtc *crtc;
3178
3179         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3180                 ilk_pipe_wm_get_hw_state(crtc);
3181
3182         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3183         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3184         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3185
3186         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3187         hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3188         hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3189
3190         hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3191                 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3192
3193         hw->enable_fbc_wm =
3194                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3195 }
3196
3197 /**
3198  * intel_update_watermarks - update FIFO watermark values based on current modes
3199  *
3200  * Calculate watermark values for the various WM regs based on current mode
3201  * and plane configuration.
3202  *
3203  * There are several cases to deal with here:
3204  *   - normal (i.e. non-self-refresh)
3205  *   - self-refresh (SR) mode
3206  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3207  *   - lines are small relative to FIFO size (buffer can hold more than 2
3208  *     lines), so need to account for TLB latency
3209  *
3210  *   The normal calculation is:
3211  *     watermark = dotclock * bytes per pixel * latency
3212  *   where latency is platform & configuration dependent (we assume pessimal
3213  *   values here).
3214  *
3215  *   The SR calculation is:
3216  *     watermark = (trunc(latency/line time)+1) * surface width *
3217  *       bytes per pixel
3218  *   where
3219  *     line time = htotal / dotclock
3220  *     surface width = hdisplay for normal plane and 64 for cursor
3221  *   and latency is assumed to be high, as above.
3222  *
3223  * The final value programmed to the register should always be rounded up,
3224  * and include an extra 2 entries to account for clock crossings.
3225  *
3226  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3227  * to set the non-SR watermarks to 8.
3228  */
3229 void intel_update_watermarks(struct drm_crtc *crtc)
3230 {
3231         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3232
3233         if (dev_priv->display.update_wm)
3234                 dev_priv->display.update_wm(crtc);
3235 }
3236
3237 void intel_update_sprite_watermarks(struct drm_plane *plane,
3238                                     struct drm_crtc *crtc,
3239                                     uint32_t sprite_width, int pixel_size,
3240                                     bool enabled, bool scaled)
3241 {
3242         struct drm_i915_private *dev_priv = plane->dev->dev_private;
3243
3244         if (dev_priv->display.update_sprite_wm)
3245                 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
3246                                                    pixel_size, enabled, scaled);
3247 }
3248
3249 static struct drm_i915_gem_object *
3250 intel_alloc_context_page(struct drm_device *dev)
3251 {
3252         struct drm_i915_gem_object *ctx;
3253         int ret;
3254
3255         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3256
3257         ctx = i915_gem_alloc_object(dev, 4096);
3258         if (!ctx) {
3259                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3260                 return NULL;
3261         }
3262
3263         ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
3264         if (ret) {
3265                 DRM_ERROR("failed to pin power context: %d\n", ret);
3266                 goto err_unref;
3267         }
3268
3269         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3270         if (ret) {
3271                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3272                 goto err_unpin;
3273         }
3274
3275         return ctx;
3276
3277 err_unpin:
3278         i915_gem_object_unpin(ctx);
3279 err_unref:
3280         drm_gem_object_unreference(&ctx->base);
3281         return NULL;
3282 }
3283
3284 /**
3285  * Lock protecting IPS related data structures
3286  */
3287 DEFINE_SPINLOCK(mchdev_lock);
3288
3289 /* Global for IPS driver to get at the current i915 device. Protected by
3290  * mchdev_lock. */
3291 static struct drm_i915_private *i915_mch_dev;
3292
3293 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3294 {
3295         struct drm_i915_private *dev_priv = dev->dev_private;
3296         u16 rgvswctl;
3297
3298         assert_spin_locked(&mchdev_lock);
3299
3300         rgvswctl = I915_READ16(MEMSWCTL);
3301         if (rgvswctl & MEMCTL_CMD_STS) {
3302                 DRM_DEBUG("gpu busy, RCS change rejected\n");
3303                 return false; /* still busy with another command */
3304         }
3305
3306         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3307                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3308         I915_WRITE16(MEMSWCTL, rgvswctl);
3309         POSTING_READ16(MEMSWCTL);
3310
3311         rgvswctl |= MEMCTL_CMD_STS;
3312         I915_WRITE16(MEMSWCTL, rgvswctl);
3313
3314         return true;
3315 }
3316
3317 static void ironlake_enable_drps(struct drm_device *dev)
3318 {
3319         struct drm_i915_private *dev_priv = dev->dev_private;
3320         u32 rgvmodectl = I915_READ(MEMMODECTL);
3321         u8 fmax, fmin, fstart, vstart;
3322
3323         spin_lock_irq(&mchdev_lock);
3324
3325         /* Enable temp reporting */
3326         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3327         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3328
3329         /* 100ms RC evaluation intervals */
3330         I915_WRITE(RCUPEI, 100000);
3331         I915_WRITE(RCDNEI, 100000);
3332
3333         /* Set max/min thresholds to 90ms and 80ms respectively */
3334         I915_WRITE(RCBMAXAVG, 90000);
3335         I915_WRITE(RCBMINAVG, 80000);
3336
3337         I915_WRITE(MEMIHYST, 1);
3338
3339         /* Set up min, max, and cur for interrupt handling */
3340         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3341         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3342         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3343                 MEMMODE_FSTART_SHIFT;
3344
3345         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3346                 PXVFREQ_PX_SHIFT;
3347
3348         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3349         dev_priv->ips.fstart = fstart;
3350
3351         dev_priv->ips.max_delay = fstart;
3352         dev_priv->ips.min_delay = fmin;
3353         dev_priv->ips.cur_delay = fstart;
3354
3355         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3356                          fmax, fmin, fstart);
3357
3358         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3359
3360         /*
3361          * Interrupts will be enabled in ironlake_irq_postinstall
3362          */
3363
3364         I915_WRITE(VIDSTART, vstart);
3365         POSTING_READ(VIDSTART);
3366
3367         rgvmodectl |= MEMMODE_SWMODE_EN;
3368         I915_WRITE(MEMMODECTL, rgvmodectl);
3369
3370         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3371                 DRM_ERROR("stuck trying to change perf mode\n");
3372         mdelay(1);
3373
3374         ironlake_set_drps(dev, fstart);
3375
3376         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3377                 I915_READ(0x112e0);
3378         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3379         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3380         getrawmonotonic(&dev_priv->ips.last_time2);
3381
3382         spin_unlock_irq(&mchdev_lock);
3383 }
3384
3385 static void ironlake_disable_drps(struct drm_device *dev)
3386 {
3387         struct drm_i915_private *dev_priv = dev->dev_private;
3388         u16 rgvswctl;
3389
3390         spin_lock_irq(&mchdev_lock);
3391
3392         rgvswctl = I915_READ16(MEMSWCTL);
3393
3394         /* Ack interrupts, disable EFC interrupt */
3395         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3396         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3397         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3398         I915_WRITE(DEIIR, DE_PCU_EVENT);
3399         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3400
3401         /* Go back to the starting frequency */
3402         ironlake_set_drps(dev, dev_priv->ips.fstart);
3403         mdelay(1);
3404         rgvswctl |= MEMCTL_CMD_STS;
3405         I915_WRITE(MEMSWCTL, rgvswctl);
3406         mdelay(1);
3407
3408         spin_unlock_irq(&mchdev_lock);
3409 }
3410
3411 /* There's a funny hw issue where the hw returns all 0 when reading from
3412  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3413  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3414  * all limits and the gpu stuck at whatever frequency it is at atm).
3415  */
3416 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3417 {
3418         u32 limits;
3419
3420         limits = 0;
3421
3422         if (*val >= dev_priv->rps.max_delay)
3423                 *val = dev_priv->rps.max_delay;
3424         limits |= dev_priv->rps.max_delay << 24;
3425
3426         /* Only set the down limit when we've reached the lowest level to avoid
3427          * getting more interrupts, otherwise leave this clear. This prevents a
3428          * race in the hw when coming out of rc6: There's a tiny window where
3429          * the hw runs at the minimal clock before selecting the desired
3430          * frequency, if the down threshold expires in that window we will not
3431          * receive a down interrupt. */
3432         if (*val <= dev_priv->rps.min_delay) {
3433                 *val = dev_priv->rps.min_delay;
3434                 limits |= dev_priv->rps.min_delay << 16;
3435         }
3436
3437         return limits;
3438 }
3439
3440 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3441 {
3442         int new_power;
3443
3444         new_power = dev_priv->rps.power;
3445         switch (dev_priv->rps.power) {
3446         case LOW_POWER:
3447                 if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
3448                         new_power = BETWEEN;
3449                 break;
3450
3451         case BETWEEN:
3452                 if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
3453                         new_power = LOW_POWER;
3454                 else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
3455                         new_power = HIGH_POWER;
3456                 break;
3457
3458         case HIGH_POWER:
3459                 if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
3460                         new_power = BETWEEN;
3461                 break;
3462         }
3463         /* Max/min bins are special */
3464         if (val == dev_priv->rps.min_delay)
3465                 new_power = LOW_POWER;
3466         if (val == dev_priv->rps.max_delay)
3467                 new_power = HIGH_POWER;
3468         if (new_power == dev_priv->rps.power)
3469                 return;
3470
3471         /* Note the units here are not exactly 1us, but 1280ns. */
3472         switch (new_power) {
3473         case LOW_POWER:
3474                 /* Upclock if more than 95% busy over 16ms */
3475                 I915_WRITE(GEN6_RP_UP_EI, 12500);
3476                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3477
3478                 /* Downclock if less than 85% busy over 32ms */
3479                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3480                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3481
3482                 I915_WRITE(GEN6_RP_CONTROL,
3483                            GEN6_RP_MEDIA_TURBO |
3484                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3485                            GEN6_RP_MEDIA_IS_GFX |
3486                            GEN6_RP_ENABLE |
3487                            GEN6_RP_UP_BUSY_AVG |
3488                            GEN6_RP_DOWN_IDLE_AVG);
3489                 break;
3490
3491         case BETWEEN:
3492                 /* Upclock if more than 90% busy over 13ms */
3493                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3494                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3495
3496                 /* Downclock if less than 75% busy over 32ms */
3497                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3498                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3499
3500                 I915_WRITE(GEN6_RP_CONTROL,
3501                            GEN6_RP_MEDIA_TURBO |
3502                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3503                            GEN6_RP_MEDIA_IS_GFX |
3504                            GEN6_RP_ENABLE |
3505                            GEN6_RP_UP_BUSY_AVG |
3506                            GEN6_RP_DOWN_IDLE_AVG);
3507                 break;
3508
3509         case HIGH_POWER:
3510                 /* Upclock if more than 85% busy over 10ms */
3511                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3512                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3513
3514                 /* Downclock if less than 60% busy over 32ms */
3515                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3516                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3517
3518                 I915_WRITE(GEN6_RP_CONTROL,
3519                            GEN6_RP_MEDIA_TURBO |
3520                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3521                            GEN6_RP_MEDIA_IS_GFX |
3522                            GEN6_RP_ENABLE |
3523                            GEN6_RP_UP_BUSY_AVG |
3524                            GEN6_RP_DOWN_IDLE_AVG);
3525                 break;
3526         }
3527
3528         dev_priv->rps.power = new_power;
3529         dev_priv->rps.last_adj = 0;
3530 }
3531
3532 void gen6_set_rps(struct drm_device *dev, u8 val)
3533 {
3534         struct drm_i915_private *dev_priv = dev->dev_private;
3535         u32 limits = gen6_rps_limits(dev_priv, &val);
3536
3537         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3538         WARN_ON(val > dev_priv->rps.max_delay);
3539         WARN_ON(val < dev_priv->rps.min_delay);
3540
3541         if (val == dev_priv->rps.cur_delay)
3542                 return;
3543
3544         gen6_set_rps_thresholds(dev_priv, val);
3545
3546         if (IS_HASWELL(dev))
3547                 I915_WRITE(GEN6_RPNSWREQ,
3548                            HSW_FREQUENCY(val));
3549         else
3550                 I915_WRITE(GEN6_RPNSWREQ,
3551                            GEN6_FREQUENCY(val) |
3552                            GEN6_OFFSET(0) |
3553                            GEN6_AGGRESSIVE_TURBO);
3554
3555         /* Make sure we continue to get interrupts
3556          * until we hit the minimum or maximum frequencies.
3557          */
3558         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3559
3560         POSTING_READ(GEN6_RPNSWREQ);
3561
3562         dev_priv->rps.cur_delay = val;
3563
3564         trace_intel_gpu_freq_change(val * 50);
3565 }
3566
3567 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3568 {
3569         mutex_lock(&dev_priv->rps.hw_lock);
3570         if (dev_priv->rps.enabled) {
3571                 if (dev_priv->info->is_valleyview)
3572                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3573                 else
3574                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3575                 dev_priv->rps.last_adj = 0;
3576         }
3577         mutex_unlock(&dev_priv->rps.hw_lock);
3578 }
3579
3580 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3581 {
3582         mutex_lock(&dev_priv->rps.hw_lock);
3583         if (dev_priv->rps.enabled) {
3584                 if (dev_priv->info->is_valleyview)
3585                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3586                 else
3587                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3588                 dev_priv->rps.last_adj = 0;
3589         }
3590         mutex_unlock(&dev_priv->rps.hw_lock);
3591 }
3592
3593 /*
3594  * Wait until the previous freq change has completed,
3595  * or the timeout elapsed, and then update our notion
3596  * of the current GPU frequency.
3597  */
3598 static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
3599 {
3600         u32 pval;
3601
3602         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3603
3604         if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
3605                 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3606
3607         pval >>= 8;
3608
3609         if (pval != dev_priv->rps.cur_delay)
3610                 DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
3611                                  vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
3612                                  dev_priv->rps.cur_delay,
3613                                  vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
3614
3615         dev_priv->rps.cur_delay = pval;
3616 }
3617
3618 void valleyview_set_rps(struct drm_device *dev, u8 val)
3619 {
3620         struct drm_i915_private *dev_priv = dev->dev_private;
3621
3622         gen6_rps_limits(dev_priv, &val);
3623
3624         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3625         WARN_ON(val > dev_priv->rps.max_delay);
3626         WARN_ON(val < dev_priv->rps.min_delay);
3627
3628         vlv_update_rps_cur_delay(dev_priv);
3629
3630         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3631                          vlv_gpu_freq(dev_priv->mem_freq,
3632                                       dev_priv->rps.cur_delay),
3633                          dev_priv->rps.cur_delay,
3634                          vlv_gpu_freq(dev_priv->mem_freq, val), val);
3635
3636         if (val == dev_priv->rps.cur_delay)
3637                 return;
3638
3639         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3640
3641         dev_priv->rps.cur_delay = val;
3642
3643         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3644 }
3645
3646 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3647 {
3648         struct drm_i915_private *dev_priv = dev->dev_private;
3649
3650         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3651         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3652         /* Complete PM interrupt masking here doesn't race with the rps work
3653          * item again unmasking PM interrupts because that is using a different
3654          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3655          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3656
3657         spin_lock_irq(&dev_priv->irq_lock);
3658         dev_priv->rps.pm_iir = 0;
3659         spin_unlock_irq(&dev_priv->irq_lock);
3660
3661         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3662 }
3663
3664 static void gen6_disable_rps(struct drm_device *dev)
3665 {
3666         struct drm_i915_private *dev_priv = dev->dev_private;
3667
3668         I915_WRITE(GEN6_RC_CONTROL, 0);
3669         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3670
3671         gen6_disable_rps_interrupts(dev);
3672 }
3673
3674 static void valleyview_disable_rps(struct drm_device *dev)
3675 {
3676         struct drm_i915_private *dev_priv = dev->dev_private;
3677
3678         I915_WRITE(GEN6_RC_CONTROL, 0);
3679
3680         gen6_disable_rps_interrupts(dev);
3681
3682         if (dev_priv->vlv_pctx) {
3683                 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3684                 dev_priv->vlv_pctx = NULL;
3685         }
3686 }
3687
3688 int intel_enable_rc6(const struct drm_device *dev)
3689 {
3690         /* No RC6 before Ironlake */
3691         if (INTEL_INFO(dev)->gen < 5)
3692                 return 0;
3693
3694         /* Respect the kernel parameter if it is set */
3695         if (i915_enable_rc6 >= 0)
3696                 return i915_enable_rc6;
3697
3698         /* Disable RC6 on Ironlake */
3699         if (INTEL_INFO(dev)->gen == 5)
3700                 return 0;
3701
3702         if (IS_HASWELL(dev)) {
3703                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3704                 return INTEL_RC6_ENABLE;
3705         }
3706
3707         /* snb/ivb have more than one rc6 state. */
3708         if (INTEL_INFO(dev)->gen == 6) {
3709                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3710                 return INTEL_RC6_ENABLE;
3711         }
3712
3713         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
3714         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3715 }
3716
3717 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3718 {
3719         struct drm_i915_private *dev_priv = dev->dev_private;
3720         u32 enabled_intrs;
3721
3722         spin_lock_irq(&dev_priv->irq_lock);
3723         WARN_ON(dev_priv->rps.pm_iir);
3724         snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3725         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3726         spin_unlock_irq(&dev_priv->irq_lock);
3727
3728         /* only unmask PM interrupts we need. Mask all others. */
3729         enabled_intrs = GEN6_PM_RPS_EVENTS;
3730
3731         /* IVB and SNB hard hangs on looping batchbuffer
3732          * if GEN6_PM_UP_EI_EXPIRED is masked.
3733          */
3734         if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3735                 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3736
3737         I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3738 }
3739
3740 static void gen6_enable_rps(struct drm_device *dev)
3741 {
3742         struct drm_i915_private *dev_priv = dev->dev_private;
3743         struct intel_ring_buffer *ring;
3744         u32 rp_state_cap;
3745         u32 gt_perf_status;
3746         u32 rc6vids, pcu_mbox, rc6_mask = 0;
3747         u32 gtfifodbg;
3748         int rc6_mode;
3749         int i, ret;
3750
3751         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3752
3753         /* Here begins a magic sequence of register writes to enable
3754          * auto-downclocking.
3755          *
3756          * Perhaps there might be some value in exposing these to
3757          * userspace...
3758          */
3759         I915_WRITE(GEN6_RC_STATE, 0);
3760
3761         /* Clear the DBG now so we don't confuse earlier errors */
3762         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3763                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3764                 I915_WRITE(GTFIFODBG, gtfifodbg);
3765         }
3766
3767         gen6_gt_force_wake_get(dev_priv);
3768
3769         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3770         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3771
3772         /* In units of 50MHz */
3773         dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3774         dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
3775         dev_priv->rps.rp1_delay = (rp_state_cap >>  8) & 0xff;
3776         dev_priv->rps.rp0_delay = (rp_state_cap >>  0) & 0xff;
3777         dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
3778         dev_priv->rps.cur_delay = 0;
3779
3780         /* disable the counters and set deterministic thresholds */
3781         I915_WRITE(GEN6_RC_CONTROL, 0);
3782
3783         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3784         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3785         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3786         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3787         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3788
3789         for_each_ring(ring, dev_priv, i)
3790                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3791
3792         I915_WRITE(GEN6_RC_SLEEP, 0);
3793         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3794         if (INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev))
3795                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3796         else
3797                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3798         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3799         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3800
3801         /* Check if we are enabling RC6 */
3802         rc6_mode = intel_enable_rc6(dev_priv->dev);
3803         if (rc6_mode & INTEL_RC6_ENABLE)
3804                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3805
3806         /* We don't use those on Haswell */
3807         if (!IS_HASWELL(dev)) {
3808                 if (rc6_mode & INTEL_RC6p_ENABLE)
3809                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3810
3811                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3812                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3813         }
3814
3815         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3816                         (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3817                         (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3818                         (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3819
3820         I915_WRITE(GEN6_RC_CONTROL,
3821                    rc6_mask |
3822                    GEN6_RC_CTL_EI_MODE(1) |
3823                    GEN6_RC_CTL_HW_ENABLE);
3824
3825         /* Power down if completely idle for over 50ms */
3826         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3827         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3828
3829         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3830         if (!ret) {
3831                 pcu_mbox = 0;
3832                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3833                 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3834                         DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3835                                          (dev_priv->rps.max_delay & 0xff) * 50,
3836                                          (pcu_mbox & 0xff) * 50);
3837                         dev_priv->rps.hw_max = pcu_mbox & 0xff;
3838                 }
3839         } else {
3840                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3841         }
3842
3843         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3844         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3845
3846         gen6_enable_rps_interrupts(dev);
3847
3848         rc6vids = 0;
3849         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3850         if (IS_GEN6(dev) && ret) {
3851                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3852         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3853                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3854                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3855                 rc6vids &= 0xffff00;
3856                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3857                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3858                 if (ret)
3859                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3860         }
3861
3862         gen6_gt_force_wake_put(dev_priv);
3863 }
3864
3865 void gen6_update_ring_freq(struct drm_device *dev)
3866 {
3867         struct drm_i915_private *dev_priv = dev->dev_private;
3868         int min_freq = 15;
3869         unsigned int gpu_freq;
3870         unsigned int max_ia_freq, min_ring_freq;
3871         int scaling_factor = 180;
3872         struct cpufreq_policy *policy;
3873
3874         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3875
3876         policy = cpufreq_cpu_get(0);
3877         if (policy) {
3878                 max_ia_freq = policy->cpuinfo.max_freq;
3879                 cpufreq_cpu_put(policy);
3880         } else {
3881                 /*
3882                  * Default to measured freq if none found, PCU will ensure we
3883                  * don't go over
3884                  */
3885                 max_ia_freq = tsc_khz;
3886         }
3887
3888         /* Convert from kHz to MHz */
3889         max_ia_freq /= 1000;
3890
3891         min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK) & 0xf;
3892         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3893         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3894
3895         /*
3896          * For each potential GPU frequency, load a ring frequency we'd like
3897          * to use for memory access.  We do this by specifying the IA frequency
3898          * the PCU should use as a reference to determine the ring frequency.
3899          */
3900         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3901              gpu_freq--) {
3902                 int diff = dev_priv->rps.max_delay - gpu_freq;
3903                 unsigned int ia_freq = 0, ring_freq = 0;
3904
3905                 if (IS_HASWELL(dev)) {
3906                         ring_freq = mult_frac(gpu_freq, 5, 4);
3907                         ring_freq = max(min_ring_freq, ring_freq);
3908                         /* leave ia_freq as the default, chosen by cpufreq */
3909                 } else {
3910                         /* On older processors, there is no separate ring
3911                          * clock domain, so in order to boost the bandwidth
3912                          * of the ring, we need to upclock the CPU (ia_freq).
3913                          *
3914                          * For GPU frequencies less than 750MHz,
3915                          * just use the lowest ring freq.
3916                          */
3917                         if (gpu_freq < min_freq)
3918                                 ia_freq = 800;
3919                         else
3920                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3921                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3922                 }
3923
3924                 sandybridge_pcode_write(dev_priv,
3925                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3926                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3927                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3928                                         gpu_freq);
3929         }
3930 }
3931
3932 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3933 {
3934         u32 val, rp0;
3935
3936         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3937
3938         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3939         /* Clamp to max */
3940         rp0 = min_t(u32, rp0, 0xea);
3941
3942         return rp0;
3943 }
3944
3945 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3946 {
3947         u32 val, rpe;
3948
3949         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3950         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3951         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3952         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3953
3954         return rpe;
3955 }
3956
3957 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3958 {
3959         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3960 }
3961
3962 static void valleyview_setup_pctx(struct drm_device *dev)
3963 {
3964         struct drm_i915_private *dev_priv = dev->dev_private;
3965         struct drm_i915_gem_object *pctx;
3966         unsigned long pctx_paddr;
3967         u32 pcbr;
3968         int pctx_size = 24*1024;
3969
3970         pcbr = I915_READ(VLV_PCBR);
3971         if (pcbr) {
3972                 /* BIOS set it up already, grab the pre-alloc'd space */
3973                 int pcbr_offset;
3974
3975                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3976                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3977                                                                       pcbr_offset,
3978                                                                       I915_GTT_OFFSET_NONE,
3979                                                                       pctx_size);
3980                 goto out;
3981         }
3982
3983         /*
3984          * From the Gunit register HAS:
3985          * The Gfx driver is expected to program this register and ensure
3986          * proper allocation within Gfx stolen memory.  For example, this
3987          * register should be programmed such than the PCBR range does not
3988          * overlap with other ranges, such as the frame buffer, protected
3989          * memory, or any other relevant ranges.
3990          */
3991         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3992         if (!pctx) {
3993                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3994                 return;
3995         }
3996
3997         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3998         I915_WRITE(VLV_PCBR, pctx_paddr);
3999
4000 out:
4001         dev_priv->vlv_pctx = pctx;
4002 }
4003
4004 static void valleyview_enable_rps(struct drm_device *dev)
4005 {
4006         struct drm_i915_private *dev_priv = dev->dev_private;
4007         struct intel_ring_buffer *ring;
4008         u32 gtfifodbg, val, rc6_mode = 0;
4009         int i;
4010
4011         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4012
4013         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4014                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4015                                  gtfifodbg);
4016                 I915_WRITE(GTFIFODBG, gtfifodbg);
4017         }
4018
4019         valleyview_setup_pctx(dev);
4020
4021         gen6_gt_force_wake_get(dev_priv);
4022
4023         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4024         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4025         I915_WRITE(GEN6_RP_UP_EI, 66000);
4026         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4027
4028         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4029
4030         I915_WRITE(GEN6_RP_CONTROL,
4031                    GEN6_RP_MEDIA_TURBO |
4032                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4033                    GEN6_RP_MEDIA_IS_GFX |
4034                    GEN6_RP_ENABLE |
4035                    GEN6_RP_UP_BUSY_AVG |
4036                    GEN6_RP_DOWN_IDLE_CONT);
4037
4038         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4039         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4040         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4041
4042         for_each_ring(ring, dev_priv, i)
4043                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4044
4045         I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
4046
4047         /* allows RC6 residency counter to work */
4048         I915_WRITE(VLV_COUNTER_CONTROL,
4049                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4050                                       VLV_MEDIA_RC6_COUNT_EN |
4051                                       VLV_RENDER_RC6_COUNT_EN));
4052         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4053                 rc6_mode = GEN7_RC_CTL_TO_MODE;
4054         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4055
4056         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4057         switch ((val >> 6) & 3) {
4058         case 0:
4059         case 1:
4060                 dev_priv->mem_freq = 800;
4061                 break;
4062         case 2:
4063                 dev_priv->mem_freq = 1066;
4064                 break;
4065         case 3:
4066                 dev_priv->mem_freq = 1333;
4067                 break;
4068         }
4069         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4070
4071         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4072         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4073
4074         dev_priv->rps.cur_delay = (val >> 8) & 0xff;
4075         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4076                          vlv_gpu_freq(dev_priv->mem_freq,
4077                                       dev_priv->rps.cur_delay),
4078                          dev_priv->rps.cur_delay);
4079
4080         dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
4081         dev_priv->rps.hw_max = dev_priv->rps.max_delay;
4082         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4083                          vlv_gpu_freq(dev_priv->mem_freq,
4084                                       dev_priv->rps.max_delay),
4085                          dev_priv->rps.max_delay);
4086
4087         dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
4088         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4089                          vlv_gpu_freq(dev_priv->mem_freq,
4090                                       dev_priv->rps.rpe_delay),
4091                          dev_priv->rps.rpe_delay);
4092
4093         dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
4094         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4095                          vlv_gpu_freq(dev_priv->mem_freq,
4096                                       dev_priv->rps.min_delay),
4097                          dev_priv->rps.min_delay);
4098
4099         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4100                          vlv_gpu_freq(dev_priv->mem_freq,
4101                                       dev_priv->rps.rpe_delay),
4102                          dev_priv->rps.rpe_delay);
4103
4104         valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
4105
4106         gen6_enable_rps_interrupts(dev);
4107
4108         gen6_gt_force_wake_put(dev_priv);
4109 }
4110
4111 void ironlake_teardown_rc6(struct drm_device *dev)
4112 {
4113         struct drm_i915_private *dev_priv = dev->dev_private;
4114
4115         if (dev_priv->ips.renderctx) {
4116                 i915_gem_object_unpin(dev_priv->ips.renderctx);
4117                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4118                 dev_priv->ips.renderctx = NULL;
4119         }
4120
4121         if (dev_priv->ips.pwrctx) {
4122                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
4123                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4124                 dev_priv->ips.pwrctx = NULL;
4125         }
4126 }
4127
4128 static void ironlake_disable_rc6(struct drm_device *dev)
4129 {
4130         struct drm_i915_private *dev_priv = dev->dev_private;
4131
4132         if (I915_READ(PWRCTXA)) {
4133                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4134                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4135                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4136                          50);
4137
4138                 I915_WRITE(PWRCTXA, 0);
4139                 POSTING_READ(PWRCTXA);
4140
4141                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4142                 POSTING_READ(RSTDBYCTL);
4143         }
4144 }
4145
4146 static int ironlake_setup_rc6(struct drm_device *dev)
4147 {
4148         struct drm_i915_private *dev_priv = dev->dev_private;
4149
4150         if (dev_priv->ips.renderctx == NULL)
4151                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4152         if (!dev_priv->ips.renderctx)
4153                 return -ENOMEM;
4154
4155         if (dev_priv->ips.pwrctx == NULL)
4156                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4157         if (!dev_priv->ips.pwrctx) {
4158                 ironlake_teardown_rc6(dev);
4159                 return -ENOMEM;
4160         }
4161
4162         return 0;
4163 }
4164
4165 static void ironlake_enable_rc6(struct drm_device *dev)
4166 {
4167         struct drm_i915_private *dev_priv = dev->dev_private;
4168         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
4169         bool was_interruptible;
4170         int ret;
4171
4172         /* rc6 disabled by default due to repeated reports of hanging during
4173          * boot and resume.
4174          */
4175         if (!intel_enable_rc6(dev))
4176                 return;
4177
4178         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4179
4180         ret = ironlake_setup_rc6(dev);
4181         if (ret)
4182                 return;
4183
4184         was_interruptible = dev_priv->mm.interruptible;
4185         dev_priv->mm.interruptible = false;
4186
4187         /*
4188          * GPU can automatically power down the render unit if given a page
4189          * to save state.
4190          */
4191         ret = intel_ring_begin(ring, 6);
4192         if (ret) {
4193                 ironlake_teardown_rc6(dev);
4194                 dev_priv->mm.interruptible = was_interruptible;
4195                 return;
4196         }
4197
4198         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4199         intel_ring_emit(ring, MI_SET_CONTEXT);
4200         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4201                         MI_MM_SPACE_GTT |
4202                         MI_SAVE_EXT_STATE_EN |
4203                         MI_RESTORE_EXT_STATE_EN |
4204                         MI_RESTORE_INHIBIT);
4205         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4206         intel_ring_emit(ring, MI_NOOP);
4207         intel_ring_emit(ring, MI_FLUSH);
4208         intel_ring_advance(ring);
4209
4210         /*
4211          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4212          * does an implicit flush, combined with MI_FLUSH above, it should be
4213          * safe to assume that renderctx is valid
4214          */
4215         ret = intel_ring_idle(ring);
4216         dev_priv->mm.interruptible = was_interruptible;
4217         if (ret) {
4218                 DRM_ERROR("failed to enable ironlake power savings\n");
4219                 ironlake_teardown_rc6(dev);
4220                 return;
4221         }
4222
4223         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4224         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4225 }
4226
4227 static unsigned long intel_pxfreq(u32 vidfreq)
4228 {
4229         unsigned long freq;
4230         int div = (vidfreq & 0x3f0000) >> 16;
4231         int post = (vidfreq & 0x3000) >> 12;
4232         int pre = (vidfreq & 0x7);
4233
4234         if (!pre)
4235                 return 0;
4236
4237         freq = ((div * 133333) / ((1<<post) * pre));
4238
4239         return freq;
4240 }
4241
4242 static const struct cparams {
4243         u16 i;
4244         u16 t;
4245         u16 m;
4246         u16 c;
4247 } cparams[] = {
4248         { 1, 1333, 301, 28664 },
4249         { 1, 1066, 294, 24460 },
4250         { 1, 800, 294, 25192 },
4251         { 0, 1333, 276, 27605 },
4252         { 0, 1066, 276, 27605 },
4253         { 0, 800, 231, 23784 },
4254 };
4255
4256 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4257 {
4258         u64 total_count, diff, ret;
4259         u32 count1, count2, count3, m = 0, c = 0;
4260         unsigned long now = jiffies_to_msecs(jiffies), diff1;
4261         int i;
4262
4263         assert_spin_locked(&mchdev_lock);
4264
4265         diff1 = now - dev_priv->ips.last_time1;
4266
4267         /* Prevent division-by-zero if we are asking too fast.
4268          * Also, we don't get interesting results if we are polling
4269          * faster than once in 10ms, so just return the saved value
4270          * in such cases.
4271          */
4272         if (diff1 <= 10)
4273                 return dev_priv->ips.chipset_power;
4274
4275         count1 = I915_READ(DMIEC);
4276         count2 = I915_READ(DDREC);
4277         count3 = I915_READ(CSIEC);
4278
4279         total_count = count1 + count2 + count3;
4280
4281         /* FIXME: handle per-counter overflow */
4282         if (total_count < dev_priv->ips.last_count1) {
4283                 diff = ~0UL - dev_priv->ips.last_count1;
4284                 diff += total_count;
4285         } else {
4286                 diff = total_count - dev_priv->ips.last_count1;
4287         }
4288
4289         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4290                 if (cparams[i].i == dev_priv->ips.c_m &&
4291                     cparams[i].t == dev_priv->ips.r_t) {
4292                         m = cparams[i].m;
4293                         c = cparams[i].c;
4294                         break;
4295                 }
4296         }
4297
4298         diff = div_u64(diff, diff1);
4299         ret = ((m * diff) + c);
4300         ret = div_u64(ret, 10);
4301
4302         dev_priv->ips.last_count1 = total_count;
4303         dev_priv->ips.last_time1 = now;
4304
4305         dev_priv->ips.chipset_power = ret;
4306
4307         return ret;
4308 }
4309
4310 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4311 {
4312         unsigned long val;
4313
4314         if (dev_priv->info->gen != 5)
4315                 return 0;
4316
4317         spin_lock_irq(&mchdev_lock);
4318
4319         val = __i915_chipset_val(dev_priv);
4320
4321         spin_unlock_irq(&mchdev_lock);
4322
4323         return val;
4324 }
4325
4326 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4327 {
4328         unsigned long m, x, b;
4329         u32 tsfs;
4330
4331         tsfs = I915_READ(TSFS);
4332
4333         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4334         x = I915_READ8(TR1);
4335
4336         b = tsfs & TSFS_INTR_MASK;
4337
4338         return ((m * x) / 127) - b;
4339 }
4340
4341 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4342 {
4343         static const struct v_table {
4344                 u16 vd; /* in .1 mil */
4345                 u16 vm; /* in .1 mil */
4346         } v_table[] = {
4347                 { 0, 0, },
4348                 { 375, 0, },
4349                 { 500, 0, },
4350                 { 625, 0, },
4351                 { 750, 0, },
4352                 { 875, 0, },
4353                 { 1000, 0, },
4354                 { 1125, 0, },
4355                 { 4125, 3000, },
4356                 { 4125, 3000, },
4357                 { 4125, 3000, },
4358                 { 4125, 3000, },
4359                 { 4125, 3000, },
4360                 { 4125, 3000, },
4361                 { 4125, 3000, },
4362                 { 4125, 3000, },
4363                 { 4125, 3000, },
4364                 { 4125, 3000, },
4365                 { 4125, 3000, },
4366                 { 4125, 3000, },
4367                 { 4125, 3000, },
4368                 { 4125, 3000, },
4369                 { 4125, 3000, },
4370                 { 4125, 3000, },
4371                 { 4125, 3000, },
4372                 { 4125, 3000, },
4373                 { 4125, 3000, },
4374                 { 4125, 3000, },
4375                 { 4125, 3000, },
4376                 { 4125, 3000, },
4377                 { 4125, 3000, },
4378                 { 4125, 3000, },
4379                 { 4250, 3125, },
4380                 { 4375, 3250, },
4381                 { 4500, 3375, },
4382                 { 4625, 3500, },
4383                 { 4750, 3625, },
4384                 { 4875, 3750, },
4385                 { 5000, 3875, },
4386                 { 5125, 4000, },
4387                 { 5250, 4125, },
4388                 { 5375, 4250, },
4389                 { 5500, 4375, },
4390                 { 5625, 4500, },
4391                 { 5750, 4625, },
4392                 { 5875, 4750, },
4393                 { 6000, 4875, },
4394                 { 6125, 5000, },
4395                 { 6250, 5125, },
4396                 { 6375, 5250, },
4397                 { 6500, 5375, },
4398                 { 6625, 5500, },
4399                 { 6750, 5625, },
4400                 { 6875, 5750, },
4401                 { 7000, 5875, },
4402                 { 7125, 6000, },
4403                 { 7250, 6125, },
4404                 { 7375, 6250, },
4405                 { 7500, 6375, },
4406                 { 7625, 6500, },
4407                 { 7750, 6625, },
4408                 { 7875, 6750, },
4409                 { 8000, 6875, },
4410                 { 8125, 7000, },
4411                 { 8250, 7125, },
4412                 { 8375, 7250, },
4413                 { 8500, 7375, },
4414                 { 8625, 7500, },
4415                 { 8750, 7625, },
4416                 { 8875, 7750, },
4417                 { 9000, 7875, },
4418                 { 9125, 8000, },
4419                 { 9250, 8125, },
4420                 { 9375, 8250, },
4421                 { 9500, 8375, },
4422                 { 9625, 8500, },
4423                 { 9750, 8625, },
4424                 { 9875, 8750, },
4425                 { 10000, 8875, },
4426                 { 10125, 9000, },
4427                 { 10250, 9125, },
4428                 { 10375, 9250, },
4429                 { 10500, 9375, },
4430                 { 10625, 9500, },
4431                 { 10750, 9625, },
4432                 { 10875, 9750, },
4433                 { 11000, 9875, },
4434                 { 11125, 10000, },
4435                 { 11250, 10125, },
4436                 { 11375, 10250, },
4437                 { 11500, 10375, },
4438                 { 11625, 10500, },
4439                 { 11750, 10625, },
4440                 { 11875, 10750, },
4441                 { 12000, 10875, },
4442                 { 12125, 11000, },
4443                 { 12250, 11125, },
4444                 { 12375, 11250, },
4445                 { 12500, 11375, },
4446                 { 12625, 11500, },
4447                 { 12750, 11625, },
4448                 { 12875, 11750, },
4449                 { 13000, 11875, },
4450                 { 13125, 12000, },
4451                 { 13250, 12125, },
4452                 { 13375, 12250, },
4453                 { 13500, 12375, },
4454                 { 13625, 12500, },
4455                 { 13750, 12625, },
4456                 { 13875, 12750, },
4457                 { 14000, 12875, },
4458                 { 14125, 13000, },
4459                 { 14250, 13125, },
4460                 { 14375, 13250, },
4461                 { 14500, 13375, },
4462                 { 14625, 13500, },
4463                 { 14750, 13625, },
4464                 { 14875, 13750, },
4465                 { 15000, 13875, },
4466                 { 15125, 14000, },
4467                 { 15250, 14125, },
4468                 { 15375, 14250, },
4469                 { 15500, 14375, },
4470                 { 15625, 14500, },
4471                 { 15750, 14625, },
4472                 { 15875, 14750, },
4473                 { 16000, 14875, },
4474                 { 16125, 15000, },
4475         };
4476         if (dev_priv->info->is_mobile)
4477                 return v_table[pxvid].vm;
4478         else
4479                 return v_table[pxvid].vd;
4480 }
4481
4482 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4483 {
4484         struct timespec now, diff1;
4485         u64 diff;
4486         unsigned long diffms;
4487         u32 count;
4488
4489         assert_spin_locked(&mchdev_lock);
4490
4491         getrawmonotonic(&now);
4492         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4493
4494         /* Don't divide by 0 */
4495         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4496         if (!diffms)
4497                 return;
4498
4499         count = I915_READ(GFXEC);
4500
4501         if (count < dev_priv->ips.last_count2) {
4502                 diff = ~0UL - dev_priv->ips.last_count2;
4503                 diff += count;
4504         } else {
4505                 diff = count - dev_priv->ips.last_count2;
4506         }
4507
4508         dev_priv->ips.last_count2 = count;
4509         dev_priv->ips.last_time2 = now;
4510
4511         /* More magic constants... */
4512         diff = diff * 1181;
4513         diff = div_u64(diff, diffms * 10);
4514         dev_priv->ips.gfx_power = diff;
4515 }
4516
4517 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4518 {
4519         if (dev_priv->info->gen != 5)
4520                 return;
4521
4522         spin_lock_irq(&mchdev_lock);
4523
4524         __i915_update_gfx_val(dev_priv);
4525
4526         spin_unlock_irq(&mchdev_lock);
4527 }
4528
4529 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4530 {
4531         unsigned long t, corr, state1, corr2, state2;
4532         u32 pxvid, ext_v;
4533
4534         assert_spin_locked(&mchdev_lock);
4535
4536         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4537         pxvid = (pxvid >> 24) & 0x7f;
4538         ext_v = pvid_to_extvid(dev_priv, pxvid);
4539
4540         state1 = ext_v;
4541
4542         t = i915_mch_val(dev_priv);
4543
4544         /* Revel in the empirically derived constants */
4545
4546         /* Correction factor in 1/100000 units */
4547         if (t > 80)
4548                 corr = ((t * 2349) + 135940);
4549         else if (t >= 50)
4550                 corr = ((t * 964) + 29317);
4551         else /* < 50 */
4552                 corr = ((t * 301) + 1004);
4553
4554         corr = corr * ((150142 * state1) / 10000 - 78642);
4555         corr /= 100000;
4556         corr2 = (corr * dev_priv->ips.corr);
4557
4558         state2 = (corr2 * state1) / 10000;
4559         state2 /= 100; /* convert to mW */
4560
4561         __i915_update_gfx_val(dev_priv);
4562
4563         return dev_priv->ips.gfx_power + state2;
4564 }
4565
4566 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4567 {
4568         unsigned long val;
4569
4570         if (dev_priv->info->gen != 5)
4571                 return 0;
4572
4573         spin_lock_irq(&mchdev_lock);
4574
4575         val = __i915_gfx_val(dev_priv);
4576
4577         spin_unlock_irq(&mchdev_lock);
4578
4579         return val;
4580 }
4581
4582 /**
4583  * i915_read_mch_val - return value for IPS use
4584  *
4585  * Calculate and return a value for the IPS driver to use when deciding whether
4586  * we have thermal and power headroom to increase CPU or GPU power budget.
4587  */
4588 unsigned long i915_read_mch_val(void)
4589 {
4590         struct drm_i915_private *dev_priv;
4591         unsigned long chipset_val, graphics_val, ret = 0;
4592
4593         spin_lock_irq(&mchdev_lock);
4594         if (!i915_mch_dev)
4595                 goto out_unlock;
4596         dev_priv = i915_mch_dev;
4597
4598         chipset_val = __i915_chipset_val(dev_priv);
4599         graphics_val = __i915_gfx_val(dev_priv);
4600
4601         ret = chipset_val + graphics_val;
4602
4603 out_unlock:
4604         spin_unlock_irq(&mchdev_lock);
4605
4606         return ret;
4607 }
4608 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4609
4610 /**
4611  * i915_gpu_raise - raise GPU frequency limit
4612  *
4613  * Raise the limit; IPS indicates we have thermal headroom.
4614  */
4615 bool i915_gpu_raise(void)
4616 {
4617         struct drm_i915_private *dev_priv;
4618         bool ret = true;
4619
4620         spin_lock_irq(&mchdev_lock);
4621         if (!i915_mch_dev) {
4622                 ret = false;
4623                 goto out_unlock;
4624         }
4625         dev_priv = i915_mch_dev;
4626
4627         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4628                 dev_priv->ips.max_delay--;
4629
4630 out_unlock:
4631         spin_unlock_irq(&mchdev_lock);
4632
4633         return ret;
4634 }
4635 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4636
4637 /**
4638  * i915_gpu_lower - lower GPU frequency limit
4639  *
4640  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4641  * frequency maximum.
4642  */
4643 bool i915_gpu_lower(void)
4644 {
4645         struct drm_i915_private *dev_priv;
4646         bool ret = true;
4647
4648         spin_lock_irq(&mchdev_lock);
4649         if (!i915_mch_dev) {
4650                 ret = false;
4651                 goto out_unlock;
4652         }
4653         dev_priv = i915_mch_dev;
4654
4655         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4656                 dev_priv->ips.max_delay++;
4657
4658 out_unlock:
4659         spin_unlock_irq(&mchdev_lock);
4660
4661         return ret;
4662 }
4663 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4664
4665 /**
4666  * i915_gpu_busy - indicate GPU business to IPS
4667  *
4668  * Tell the IPS driver whether or not the GPU is busy.
4669  */
4670 bool i915_gpu_busy(void)
4671 {
4672         struct drm_i915_private *dev_priv;
4673         struct intel_ring_buffer *ring;
4674         bool ret = false;
4675         int i;
4676
4677         spin_lock_irq(&mchdev_lock);
4678         if (!i915_mch_dev)
4679                 goto out_unlock;
4680         dev_priv = i915_mch_dev;
4681
4682         for_each_ring(ring, dev_priv, i)
4683                 ret |= !list_empty(&ring->request_list);
4684
4685 out_unlock:
4686         spin_unlock_irq(&mchdev_lock);
4687
4688         return ret;
4689 }
4690 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4691
4692 /**
4693  * i915_gpu_turbo_disable - disable graphics turbo
4694  *
4695  * Disable graphics turbo by resetting the max frequency and setting the
4696  * current frequency to the default.
4697  */
4698 bool i915_gpu_turbo_disable(void)
4699 {
4700         struct drm_i915_private *dev_priv;
4701         bool ret = true;
4702
4703         spin_lock_irq(&mchdev_lock);
4704         if (!i915_mch_dev) {
4705                 ret = false;
4706                 goto out_unlock;
4707         }
4708         dev_priv = i915_mch_dev;
4709
4710         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4711
4712         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4713                 ret = false;
4714
4715 out_unlock:
4716         spin_unlock_irq(&mchdev_lock);
4717
4718         return ret;
4719 }
4720 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4721
4722 /**
4723  * Tells the intel_ips driver that the i915 driver is now loaded, if
4724  * IPS got loaded first.
4725  *
4726  * This awkward dance is so that neither module has to depend on the
4727  * other in order for IPS to do the appropriate communication of
4728  * GPU turbo limits to i915.
4729  */
4730 static void
4731 ips_ping_for_i915_load(void)
4732 {
4733         void (*link)(void);
4734
4735         link = symbol_get(ips_link_to_i915_driver);
4736         if (link) {
4737                 link();
4738                 symbol_put(ips_link_to_i915_driver);
4739         }
4740 }
4741
4742 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4743 {
4744         /* We only register the i915 ips part with intel-ips once everything is
4745          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4746         spin_lock_irq(&mchdev_lock);
4747         i915_mch_dev = dev_priv;
4748         spin_unlock_irq(&mchdev_lock);
4749
4750         ips_ping_for_i915_load();
4751 }
4752
4753 void intel_gpu_ips_teardown(void)
4754 {
4755         spin_lock_irq(&mchdev_lock);
4756         i915_mch_dev = NULL;
4757         spin_unlock_irq(&mchdev_lock);
4758 }
4759 static void intel_init_emon(struct drm_device *dev)
4760 {
4761         struct drm_i915_private *dev_priv = dev->dev_private;
4762         u32 lcfuse;
4763         u8 pxw[16];
4764         int i;
4765
4766         /* Disable to program */
4767         I915_WRITE(ECR, 0);
4768         POSTING_READ(ECR);
4769
4770         /* Program energy weights for various events */
4771         I915_WRITE(SDEW, 0x15040d00);
4772         I915_WRITE(CSIEW0, 0x007f0000);
4773         I915_WRITE(CSIEW1, 0x1e220004);
4774         I915_WRITE(CSIEW2, 0x04000004);
4775
4776         for (i = 0; i < 5; i++)
4777                 I915_WRITE(PEW + (i * 4), 0);
4778         for (i = 0; i < 3; i++)
4779                 I915_WRITE(DEW + (i * 4), 0);
4780
4781         /* Program P-state weights to account for frequency power adjustment */
4782         for (i = 0; i < 16; i++) {
4783                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4784                 unsigned long freq = intel_pxfreq(pxvidfreq);
4785                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4786                         PXVFREQ_PX_SHIFT;
4787                 unsigned long val;
4788
4789                 val = vid * vid;
4790                 val *= (freq / 1000);
4791                 val *= 255;
4792                 val /= (127*127*900);
4793                 if (val > 0xff)
4794                         DRM_ERROR("bad pxval: %ld\n", val);
4795                 pxw[i] = val;
4796         }
4797         /* Render standby states get 0 weight */
4798         pxw[14] = 0;
4799         pxw[15] = 0;
4800
4801         for (i = 0; i < 4; i++) {
4802                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4803                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4804                 I915_WRITE(PXW + (i * 4), val);
4805         }
4806
4807         /* Adjust magic regs to magic values (more experimental results) */
4808         I915_WRITE(OGW0, 0);
4809         I915_WRITE(OGW1, 0);
4810         I915_WRITE(EG0, 0x00007f00);
4811         I915_WRITE(EG1, 0x0000000e);
4812         I915_WRITE(EG2, 0x000e0000);
4813         I915_WRITE(EG3, 0x68000300);
4814         I915_WRITE(EG4, 0x42000000);
4815         I915_WRITE(EG5, 0x00140031);
4816         I915_WRITE(EG6, 0);
4817         I915_WRITE(EG7, 0);
4818
4819         for (i = 0; i < 8; i++)
4820                 I915_WRITE(PXWL + (i * 4), 0);
4821
4822         /* Enable PMON + select events */
4823         I915_WRITE(ECR, 0x80000019);
4824
4825         lcfuse = I915_READ(LCFUSE02);
4826
4827         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4828 }
4829
4830 void intel_disable_gt_powersave(struct drm_device *dev)
4831 {
4832         struct drm_i915_private *dev_priv = dev->dev_private;
4833
4834         /* Interrupts should be disabled already to avoid re-arming. */
4835         WARN_ON(dev->irq_enabled);
4836
4837         if (IS_IRONLAKE_M(dev)) {
4838                 ironlake_disable_drps(dev);
4839                 ironlake_disable_rc6(dev);
4840         } else if (INTEL_INFO(dev)->gen >= 6) {
4841                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4842                 cancel_work_sync(&dev_priv->rps.work);
4843                 mutex_lock(&dev_priv->rps.hw_lock);
4844                 if (IS_VALLEYVIEW(dev))
4845                         valleyview_disable_rps(dev);
4846                 else
4847                         gen6_disable_rps(dev);
4848                 dev_priv->rps.enabled = false;
4849                 mutex_unlock(&dev_priv->rps.hw_lock);
4850         }
4851 }
4852
4853 static void intel_gen6_powersave_work(struct work_struct *work)
4854 {
4855         struct drm_i915_private *dev_priv =
4856                 container_of(work, struct drm_i915_private,
4857                              rps.delayed_resume_work.work);
4858         struct drm_device *dev = dev_priv->dev;
4859
4860         mutex_lock(&dev_priv->rps.hw_lock);
4861
4862         if (IS_VALLEYVIEW(dev)) {
4863                 valleyview_enable_rps(dev);
4864         } else {
4865                 gen6_enable_rps(dev);
4866                 gen6_update_ring_freq(dev);
4867         }
4868         dev_priv->rps.enabled = true;
4869         mutex_unlock(&dev_priv->rps.hw_lock);
4870 }
4871
4872 void intel_enable_gt_powersave(struct drm_device *dev)
4873 {
4874         struct drm_i915_private *dev_priv = dev->dev_private;
4875
4876         if (IS_IRONLAKE_M(dev)) {
4877                 ironlake_enable_drps(dev);
4878                 ironlake_enable_rc6(dev);
4879                 intel_init_emon(dev);
4880         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4881                 /*
4882                  * PCU communication is slow and this doesn't need to be
4883                  * done at any specific time, so do this out of our fast path
4884                  * to make resume and init faster.
4885                  */
4886                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4887                                       round_jiffies_up_relative(HZ));
4888         }
4889 }
4890
4891 static void ibx_init_clock_gating(struct drm_device *dev)
4892 {
4893         struct drm_i915_private *dev_priv = dev->dev_private;
4894
4895         /*
4896          * On Ibex Peak and Cougar Point, we need to disable clock
4897          * gating for the panel power sequencer or it will fail to
4898          * start up when no ports are active.
4899          */
4900         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4901 }
4902
4903 static void g4x_disable_trickle_feed(struct drm_device *dev)
4904 {
4905         struct drm_i915_private *dev_priv = dev->dev_private;
4906         int pipe;
4907
4908         for_each_pipe(pipe) {
4909                 I915_WRITE(DSPCNTR(pipe),
4910                            I915_READ(DSPCNTR(pipe)) |
4911                            DISPPLANE_TRICKLE_FEED_DISABLE);
4912                 intel_flush_primary_plane(dev_priv, pipe);
4913         }
4914 }
4915
4916 static void ironlake_init_clock_gating(struct drm_device *dev)
4917 {
4918         struct drm_i915_private *dev_priv = dev->dev_private;
4919         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4920
4921         /*
4922          * Required for FBC
4923          * WaFbcDisableDpfcClockGating:ilk
4924          */
4925         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4926                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4927                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4928
4929         I915_WRITE(PCH_3DCGDIS0,
4930                    MARIUNIT_CLOCK_GATE_DISABLE |
4931                    SVSMUNIT_CLOCK_GATE_DISABLE);
4932         I915_WRITE(PCH_3DCGDIS1,
4933                    VFMUNIT_CLOCK_GATE_DISABLE);
4934
4935         /*
4936          * According to the spec the following bits should be set in
4937          * order to enable memory self-refresh
4938          * The bit 22/21 of 0x42004
4939          * The bit 5 of 0x42020
4940          * The bit 15 of 0x45000
4941          */
4942         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4943                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
4944                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4945         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4946         I915_WRITE(DISP_ARB_CTL,
4947                    (I915_READ(DISP_ARB_CTL) |
4948                     DISP_FBC_WM_DIS));
4949         I915_WRITE(WM3_LP_ILK, 0);
4950         I915_WRITE(WM2_LP_ILK, 0);
4951         I915_WRITE(WM1_LP_ILK, 0);
4952
4953         /*
4954          * Based on the document from hardware guys the following bits
4955          * should be set unconditionally in order to enable FBC.
4956          * The bit 22 of 0x42000
4957          * The bit 22 of 0x42004
4958          * The bit 7,8,9 of 0x42020.
4959          */
4960         if (IS_IRONLAKE_M(dev)) {
4961                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4962                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4963                            I915_READ(ILK_DISPLAY_CHICKEN1) |
4964                            ILK_FBCQ_DIS);
4965                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4966                            I915_READ(ILK_DISPLAY_CHICKEN2) |
4967                            ILK_DPARB_GATE);
4968         }
4969
4970         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4971
4972         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4973                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4974                    ILK_ELPIN_409_SELECT);
4975         I915_WRITE(_3D_CHICKEN2,
4976                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4977                    _3D_CHICKEN2_WM_READ_PIPELINED);
4978
4979         /* WaDisableRenderCachePipelinedFlush:ilk */
4980         I915_WRITE(CACHE_MODE_0,
4981                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4982
4983         g4x_disable_trickle_feed(dev);
4984
4985         ibx_init_clock_gating(dev);
4986 }
4987
4988 static void cpt_init_clock_gating(struct drm_device *dev)
4989 {
4990         struct drm_i915_private *dev_priv = dev->dev_private;
4991         int pipe;
4992         uint32_t val;
4993
4994         /*
4995          * On Ibex Peak and Cougar Point, we need to disable clock
4996          * gating for the panel power sequencer or it will fail to
4997          * start up when no ports are active.
4998          */
4999         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5000         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5001                    DPLS_EDP_PPS_FIX_DIS);
5002         /* The below fixes the weird display corruption, a few pixels shifted
5003          * downward, on (only) LVDS of some HP laptops with IVY.
5004          */
5005         for_each_pipe(pipe) {
5006                 val = I915_READ(TRANS_CHICKEN2(pipe));
5007                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5008                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5009                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5010                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5011                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5012                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5013                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5014                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5015         }
5016         /* WADP0ClockGatingDisable */
5017         for_each_pipe(pipe) {
5018                 I915_WRITE(TRANS_CHICKEN1(pipe),
5019                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5020         }
5021 }
5022
5023 static void gen6_check_mch_setup(struct drm_device *dev)
5024 {
5025         struct drm_i915_private *dev_priv = dev->dev_private;
5026         uint32_t tmp;
5027
5028         tmp = I915_READ(MCH_SSKPD);
5029         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
5030                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
5031                 DRM_INFO("This can cause pipe underruns and display issues.\n");
5032                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
5033         }
5034 }
5035
5036 static void gen6_init_clock_gating(struct drm_device *dev)
5037 {
5038         struct drm_i915_private *dev_priv = dev->dev_private;
5039         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5040
5041         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5042
5043         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5044                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5045                    ILK_ELPIN_409_SELECT);
5046
5047         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5048         I915_WRITE(_3D_CHICKEN,
5049                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5050
5051         /* WaSetupGtModeTdRowDispatch:snb */
5052         if (IS_SNB_GT1(dev))
5053                 I915_WRITE(GEN6_GT_MODE,
5054                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5055
5056         I915_WRITE(WM3_LP_ILK, 0);
5057         I915_WRITE(WM2_LP_ILK, 0);
5058         I915_WRITE(WM1_LP_ILK, 0);
5059
5060         I915_WRITE(CACHE_MODE_0,
5061                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5062
5063         I915_WRITE(GEN6_UCGCTL1,
5064                    I915_READ(GEN6_UCGCTL1) |
5065                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5066                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5067
5068         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5069          * gating disable must be set.  Failure to set it results in
5070          * flickering pixels due to Z write ordering failures after
5071          * some amount of runtime in the Mesa "fire" demo, and Unigine
5072          * Sanctuary and Tropics, and apparently anything else with
5073          * alpha test or pixel discard.
5074          *
5075          * According to the spec, bit 11 (RCCUNIT) must also be set,
5076          * but we didn't debug actual testcases to find it out.
5077          *
5078          * Also apply WaDisableVDSUnitClockGating:snb and
5079          * WaDisableRCPBUnitClockGating:snb.
5080          */
5081         I915_WRITE(GEN6_UCGCTL2,
5082                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5083                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5084                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5085
5086         /* Bspec says we need to always set all mask bits. */
5087         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
5088                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
5089
5090         /*
5091          * According to the spec the following bits should be
5092          * set in order to enable memory self-refresh and fbc:
5093          * The bit21 and bit22 of 0x42000
5094          * The bit21 and bit22 of 0x42004
5095          * The bit5 and bit7 of 0x42020
5096          * The bit14 of 0x70180
5097          * The bit14 of 0x71180
5098          *
5099          * WaFbcAsynchFlipDisableFbcQueue:snb
5100          */
5101         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5102                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5103                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5104         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5105                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5106                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5107         I915_WRITE(ILK_DSPCLK_GATE_D,
5108                    I915_READ(ILK_DSPCLK_GATE_D) |
5109                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
5110                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5111
5112         g4x_disable_trickle_feed(dev);
5113
5114         /* The default value should be 0x200 according to docs, but the two
5115          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
5116         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
5117         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
5118
5119         cpt_init_clock_gating(dev);
5120
5121         gen6_check_mch_setup(dev);
5122 }
5123
5124 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5125 {
5126         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5127
5128         reg &= ~GEN7_FF_SCHED_MASK;
5129         reg |= GEN7_FF_TS_SCHED_HW;
5130         reg |= GEN7_FF_VS_SCHED_HW;
5131         reg |= GEN7_FF_DS_SCHED_HW;
5132
5133         if (IS_HASWELL(dev_priv->dev))
5134                 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
5135
5136         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5137 }
5138
5139 static void lpt_init_clock_gating(struct drm_device *dev)
5140 {
5141         struct drm_i915_private *dev_priv = dev->dev_private;
5142
5143         /*
5144          * TODO: this bit should only be enabled when really needed, then
5145          * disabled when not needed anymore in order to save power.
5146          */
5147         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5148                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5149                            I915_READ(SOUTH_DSPCLK_GATE_D) |
5150                            PCH_LP_PARTITION_LEVEL_DISABLE);
5151
5152         /* WADPOClockGatingDisable:hsw */
5153         I915_WRITE(_TRANSA_CHICKEN1,
5154                    I915_READ(_TRANSA_CHICKEN1) |
5155                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5156 }
5157
5158 static void lpt_suspend_hw(struct drm_device *dev)
5159 {
5160         struct drm_i915_private *dev_priv = dev->dev_private;
5161
5162         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5163                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5164
5165                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5166                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5167         }
5168 }
5169
5170 static void haswell_init_clock_gating(struct drm_device *dev)
5171 {
5172         struct drm_i915_private *dev_priv = dev->dev_private;
5173
5174         I915_WRITE(WM3_LP_ILK, 0);
5175         I915_WRITE(WM2_LP_ILK, 0);
5176         I915_WRITE(WM1_LP_ILK, 0);
5177
5178         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5179          * This implements the WaDisableRCZUnitClockGating:hsw workaround.
5180          */
5181         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5182
5183         /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
5184         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5185                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5186
5187         /* WaApplyL3ControlAndL3ChickenMode:hsw */
5188         I915_WRITE(GEN7_L3CNTLREG1,
5189                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5190         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5191                         GEN7_WA_L3_CHICKEN_MODE);
5192
5193         /* This is required by WaCatErrorRejectionIssue:hsw */
5194         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5195                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5196                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5197
5198         /* WaVSRefCountFullforceMissDisable:hsw */
5199         gen7_setup_fixed_func_scheduler(dev_priv);
5200
5201         /* WaDisable4x2SubspanOptimization:hsw */
5202         I915_WRITE(CACHE_MODE_1,
5203                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5204
5205         /* WaSwitchSolVfFArbitrationPriority:hsw */
5206         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5207
5208         /* WaRsPkgCStateDisplayPMReq:hsw */
5209         I915_WRITE(CHICKEN_PAR1_1,
5210                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5211
5212         lpt_init_clock_gating(dev);
5213 }
5214
5215 static void ivybridge_init_clock_gating(struct drm_device *dev)
5216 {
5217         struct drm_i915_private *dev_priv = dev->dev_private;
5218         uint32_t snpcr;
5219
5220         I915_WRITE(WM3_LP_ILK, 0);
5221         I915_WRITE(WM2_LP_ILK, 0);
5222         I915_WRITE(WM1_LP_ILK, 0);
5223
5224         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5225
5226         /* WaDisableEarlyCull:ivb */
5227         I915_WRITE(_3D_CHICKEN3,
5228                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5229
5230         /* WaDisableBackToBackFlipFix:ivb */
5231         I915_WRITE(IVB_CHICKEN3,
5232                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5233                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5234
5235         /* WaDisablePSDDualDispatchEnable:ivb */
5236         if (IS_IVB_GT1(dev))
5237                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5238                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5239         else
5240                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
5241                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5242
5243         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5244         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5245                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5246
5247         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5248         I915_WRITE(GEN7_L3CNTLREG1,
5249                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5250         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5251                    GEN7_WA_L3_CHICKEN_MODE);
5252         if (IS_IVB_GT1(dev))
5253                 I915_WRITE(GEN7_ROW_CHICKEN2,
5254                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5255         else
5256                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5257                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5258
5259
5260         /* WaForceL3Serialization:ivb */
5261         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5262                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5263
5264         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5265          * gating disable must be set.  Failure to set it results in
5266          * flickering pixels due to Z write ordering failures after
5267          * some amount of runtime in the Mesa "fire" demo, and Unigine
5268          * Sanctuary and Tropics, and apparently anything else with
5269          * alpha test or pixel discard.
5270          *
5271          * According to the spec, bit 11 (RCCUNIT) must also be set,
5272          * but we didn't debug actual testcases to find it out.
5273          *
5274          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5275          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5276          */
5277         I915_WRITE(GEN6_UCGCTL2,
5278                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5279                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5280
5281         /* This is required by WaCatErrorRejectionIssue:ivb */
5282         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5283                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5284                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5285
5286         g4x_disable_trickle_feed(dev);
5287
5288         /* WaVSRefCountFullforceMissDisable:ivb */
5289         gen7_setup_fixed_func_scheduler(dev_priv);
5290
5291         /* WaDisable4x2SubspanOptimization:ivb */
5292         I915_WRITE(CACHE_MODE_1,
5293                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5294
5295         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5296         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5297         snpcr |= GEN6_MBC_SNPCR_MED;
5298         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5299
5300         if (!HAS_PCH_NOP(dev))
5301                 cpt_init_clock_gating(dev);
5302
5303         gen6_check_mch_setup(dev);
5304 }
5305
5306 static void valleyview_init_clock_gating(struct drm_device *dev)
5307 {
5308         struct drm_i915_private *dev_priv = dev->dev_private;
5309
5310         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5311
5312         /* WaDisableEarlyCull:vlv */
5313         I915_WRITE(_3D_CHICKEN3,
5314                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5315
5316         /* WaDisableBackToBackFlipFix:vlv */
5317         I915_WRITE(IVB_CHICKEN3,
5318                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5319                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5320
5321         /* WaDisablePSDDualDispatchEnable:vlv */
5322         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5323                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5324                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5325
5326         /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
5327         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5328                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5329
5330         /* WaApplyL3ControlAndL3ChickenMode:vlv */
5331         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
5332         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
5333
5334         /* WaForceL3Serialization:vlv */
5335         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5336                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5337
5338         /* WaDisableDopClockGating:vlv */
5339         I915_WRITE(GEN7_ROW_CHICKEN2,
5340                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5341
5342         /* This is required by WaCatErrorRejectionIssue:vlv */
5343         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5344                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5345                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5346
5347         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5348          * gating disable must be set.  Failure to set it results in
5349          * flickering pixels due to Z write ordering failures after
5350          * some amount of runtime in the Mesa "fire" demo, and Unigine
5351          * Sanctuary and Tropics, and apparently anything else with
5352          * alpha test or pixel discard.
5353          *
5354          * According to the spec, bit 11 (RCCUNIT) must also be set,
5355          * but we didn't debug actual testcases to find it out.
5356          *
5357          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5358          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5359          *
5360          * Also apply WaDisableVDSUnitClockGating:vlv and
5361          * WaDisableRCPBUnitClockGating:vlv.
5362          */
5363         I915_WRITE(GEN6_UCGCTL2,
5364                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5365                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
5366                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5367                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5368                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5369
5370         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5371
5372         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5373
5374         I915_WRITE(CACHE_MODE_1,
5375                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5376
5377         /*
5378          * WaDisableVLVClockGating_VBIIssue:vlv
5379          * Disable clock gating on th GCFG unit to prevent a delay
5380          * in the reporting of vblank events.
5381          */
5382         I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
5383
5384         /* Conservative clock gating settings for now */
5385         I915_WRITE(0x9400, 0xffffffff);
5386         I915_WRITE(0x9404, 0xffffffff);
5387         I915_WRITE(0x9408, 0xffffffff);
5388         I915_WRITE(0x940c, 0xffffffff);
5389         I915_WRITE(0x9410, 0xffffffff);
5390         I915_WRITE(0x9414, 0xffffffff);
5391         I915_WRITE(0x9418, 0xffffffff);
5392 }
5393
5394 static void g4x_init_clock_gating(struct drm_device *dev)
5395 {
5396         struct drm_i915_private *dev_priv = dev->dev_private;
5397         uint32_t dspclk_gate;
5398
5399         I915_WRITE(RENCLK_GATE_D1, 0);
5400         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5401                    GS_UNIT_CLOCK_GATE_DISABLE |
5402                    CL_UNIT_CLOCK_GATE_DISABLE);
5403         I915_WRITE(RAMCLK_GATE_D, 0);
5404         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5405                 OVRUNIT_CLOCK_GATE_DISABLE |
5406                 OVCUNIT_CLOCK_GATE_DISABLE;
5407         if (IS_GM45(dev))
5408                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5409         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5410
5411         /* WaDisableRenderCachePipelinedFlush */
5412         I915_WRITE(CACHE_MODE_0,
5413                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5414
5415         g4x_disable_trickle_feed(dev);
5416 }
5417
5418 static void crestline_init_clock_gating(struct drm_device *dev)
5419 {
5420         struct drm_i915_private *dev_priv = dev->dev_private;
5421
5422         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5423         I915_WRITE(RENCLK_GATE_D2, 0);
5424         I915_WRITE(DSPCLK_GATE_D, 0);
5425         I915_WRITE(RAMCLK_GATE_D, 0);
5426         I915_WRITE16(DEUC, 0);
5427         I915_WRITE(MI_ARB_STATE,
5428                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5429 }
5430
5431 static void broadwater_init_clock_gating(struct drm_device *dev)
5432 {
5433         struct drm_i915_private *dev_priv = dev->dev_private;
5434
5435         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5436                    I965_RCC_CLOCK_GATE_DISABLE |
5437                    I965_RCPB_CLOCK_GATE_DISABLE |
5438                    I965_ISC_CLOCK_GATE_DISABLE |
5439                    I965_FBC_CLOCK_GATE_DISABLE);
5440         I915_WRITE(RENCLK_GATE_D2, 0);
5441         I915_WRITE(MI_ARB_STATE,
5442                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5443 }
5444
5445 static void gen3_init_clock_gating(struct drm_device *dev)
5446 {
5447         struct drm_i915_private *dev_priv = dev->dev_private;
5448         u32 dstate = I915_READ(D_STATE);
5449
5450         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5451                 DSTATE_DOT_CLOCK_GATING;
5452         I915_WRITE(D_STATE, dstate);
5453
5454         if (IS_PINEVIEW(dev))
5455                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5456
5457         /* IIR "flip pending" means done if this bit is set */
5458         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5459 }
5460
5461 static void i85x_init_clock_gating(struct drm_device *dev)
5462 {
5463         struct drm_i915_private *dev_priv = dev->dev_private;
5464
5465         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5466 }
5467
5468 static void i830_init_clock_gating(struct drm_device *dev)
5469 {
5470         struct drm_i915_private *dev_priv = dev->dev_private;
5471
5472         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5473 }
5474
5475 void intel_init_clock_gating(struct drm_device *dev)
5476 {
5477         struct drm_i915_private *dev_priv = dev->dev_private;
5478
5479         dev_priv->display.init_clock_gating(dev);
5480 }
5481
5482 void intel_suspend_hw(struct drm_device *dev)
5483 {
5484         if (HAS_PCH_LPT(dev))
5485                 lpt_suspend_hw(dev);
5486 }
5487
5488 /**
5489  * We should only use the power well if we explicitly asked the hardware to
5490  * enable it, so check if it's enabled and also check if we've requested it to
5491  * be enabled.
5492  */
5493 bool intel_display_power_enabled(struct drm_device *dev,
5494                                  enum intel_display_power_domain domain)
5495 {
5496         struct drm_i915_private *dev_priv = dev->dev_private;
5497
5498         if (!HAS_POWER_WELL(dev))
5499                 return true;
5500
5501         switch (domain) {
5502         case POWER_DOMAIN_PIPE_A:
5503         case POWER_DOMAIN_TRANSCODER_EDP:
5504                 return true;
5505         case POWER_DOMAIN_VGA:
5506         case POWER_DOMAIN_PIPE_B:
5507         case POWER_DOMAIN_PIPE_C:
5508         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5509         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5510         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5511         case POWER_DOMAIN_TRANSCODER_A:
5512         case POWER_DOMAIN_TRANSCODER_B:
5513         case POWER_DOMAIN_TRANSCODER_C:
5514                 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5515                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5516         default:
5517                 BUG();
5518         }
5519 }
5520
5521 static void __intel_set_power_well(struct drm_device *dev, bool enable)
5522 {
5523         struct drm_i915_private *dev_priv = dev->dev_private;
5524         bool is_enabled, enable_requested;
5525         uint32_t tmp;
5526
5527         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5528         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5529         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5530
5531         if (enable) {
5532                 if (!enable_requested)
5533                         I915_WRITE(HSW_PWR_WELL_DRIVER,
5534                                    HSW_PWR_WELL_ENABLE_REQUEST);
5535
5536                 if (!is_enabled) {
5537                         DRM_DEBUG_KMS("Enabling power well\n");
5538                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5539                                       HSW_PWR_WELL_STATE_ENABLED), 20))
5540                                 DRM_ERROR("Timeout enabling power well\n");
5541                 }
5542         } else {
5543                 if (enable_requested) {
5544                         unsigned long irqflags;
5545                         enum pipe p;
5546
5547                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5548                         POSTING_READ(HSW_PWR_WELL_DRIVER);
5549                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5550
5551                         /*
5552                          * After this, the registers on the pipes that are part
5553                          * of the power well will become zero, so we have to
5554                          * adjust our counters according to that.
5555                          *
5556                          * FIXME: Should we do this in general in
5557                          * drm_vblank_post_modeset?
5558                          */
5559                         spin_lock_irqsave(&dev->vbl_lock, irqflags);
5560                         for_each_pipe(p)
5561                                 if (p != PIPE_A)
5562                                         dev->vblank[p].last = 0;
5563                         spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5564                 }
5565         }
5566 }
5567
5568 static void __intel_power_well_get(struct i915_power_well *power_well)
5569 {
5570         if (!power_well->count++)
5571                 __intel_set_power_well(power_well->device, true);
5572 }
5573
5574 static void __intel_power_well_put(struct i915_power_well *power_well)
5575 {
5576         WARN_ON(!power_well->count);
5577         if (!--power_well->count)
5578                 __intel_set_power_well(power_well->device, false);
5579 }
5580
5581 void intel_display_power_get(struct drm_device *dev,
5582                              enum intel_display_power_domain domain)
5583 {
5584         struct drm_i915_private *dev_priv = dev->dev_private;
5585         struct i915_power_well *power_well = &dev_priv->power_well;
5586
5587         if (!HAS_POWER_WELL(dev))
5588                 return;
5589
5590         switch (domain) {
5591         case POWER_DOMAIN_PIPE_A:
5592         case POWER_DOMAIN_TRANSCODER_EDP:
5593                 return;
5594         case POWER_DOMAIN_VGA:
5595         case POWER_DOMAIN_PIPE_B:
5596         case POWER_DOMAIN_PIPE_C:
5597         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5598         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5599         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5600         case POWER_DOMAIN_TRANSCODER_A:
5601         case POWER_DOMAIN_TRANSCODER_B:
5602         case POWER_DOMAIN_TRANSCODER_C:
5603                 spin_lock_irq(&power_well->lock);
5604                 __intel_power_well_get(power_well);
5605                 spin_unlock_irq(&power_well->lock);
5606                 return;
5607         default:
5608                 BUG();
5609         }
5610 }
5611
5612 void intel_display_power_put(struct drm_device *dev,
5613                              enum intel_display_power_domain domain)
5614 {
5615         struct drm_i915_private *dev_priv = dev->dev_private;
5616         struct i915_power_well *power_well = &dev_priv->power_well;
5617
5618         if (!HAS_POWER_WELL(dev))
5619                 return;
5620
5621         switch (domain) {
5622         case POWER_DOMAIN_PIPE_A:
5623         case POWER_DOMAIN_TRANSCODER_EDP:
5624                 return;
5625         case POWER_DOMAIN_VGA:
5626         case POWER_DOMAIN_PIPE_B:
5627         case POWER_DOMAIN_PIPE_C:
5628         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5629         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5630         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5631         case POWER_DOMAIN_TRANSCODER_A:
5632         case POWER_DOMAIN_TRANSCODER_B:
5633         case POWER_DOMAIN_TRANSCODER_C:
5634                 spin_lock_irq(&power_well->lock);
5635                 __intel_power_well_put(power_well);
5636                 spin_unlock_irq(&power_well->lock);
5637                 return;
5638         default:
5639                 BUG();
5640         }
5641 }
5642
5643 static struct i915_power_well *hsw_pwr;
5644
5645 /* Display audio driver power well request */
5646 void i915_request_power_well(void)
5647 {
5648         if (WARN_ON(!hsw_pwr))
5649                 return;
5650
5651         spin_lock_irq(&hsw_pwr->lock);
5652         __intel_power_well_get(hsw_pwr);
5653         spin_unlock_irq(&hsw_pwr->lock);
5654 }
5655 EXPORT_SYMBOL_GPL(i915_request_power_well);
5656
5657 /* Display audio driver power well release */
5658 void i915_release_power_well(void)
5659 {
5660         if (WARN_ON(!hsw_pwr))
5661                 return;
5662
5663         spin_lock_irq(&hsw_pwr->lock);
5664         __intel_power_well_put(hsw_pwr);
5665         spin_unlock_irq(&hsw_pwr->lock);
5666 }
5667 EXPORT_SYMBOL_GPL(i915_release_power_well);
5668
5669 int i915_init_power_well(struct drm_device *dev)
5670 {
5671         struct drm_i915_private *dev_priv = dev->dev_private;
5672
5673         hsw_pwr = &dev_priv->power_well;
5674
5675         hsw_pwr->device = dev;
5676         spin_lock_init(&hsw_pwr->lock);
5677         hsw_pwr->count = 0;
5678
5679         return 0;
5680 }
5681
5682 void i915_remove_power_well(struct drm_device *dev)
5683 {
5684         hsw_pwr = NULL;
5685 }
5686
5687 void intel_set_power_well(struct drm_device *dev, bool enable)
5688 {
5689         struct drm_i915_private *dev_priv = dev->dev_private;
5690         struct i915_power_well *power_well = &dev_priv->power_well;
5691
5692         if (!HAS_POWER_WELL(dev))
5693                 return;
5694
5695         if (!i915_disable_power_well && !enable)
5696                 return;
5697
5698         spin_lock_irq(&power_well->lock);
5699
5700         /*
5701          * This function will only ever contribute one
5702          * to the power well reference count. i915_request
5703          * is what tracks whether we have or have not
5704          * added the one to the reference count.
5705          */
5706         if (power_well->i915_request == enable)
5707                 goto out;
5708
5709         power_well->i915_request = enable;
5710
5711         if (enable)
5712                 __intel_power_well_get(power_well);
5713         else
5714                 __intel_power_well_put(power_well);
5715
5716  out:
5717         spin_unlock_irq(&power_well->lock);
5718 }
5719
5720 static void intel_resume_power_well(struct drm_device *dev)
5721 {
5722         struct drm_i915_private *dev_priv = dev->dev_private;
5723         struct i915_power_well *power_well = &dev_priv->power_well;
5724
5725         if (!HAS_POWER_WELL(dev))
5726                 return;
5727
5728         spin_lock_irq(&power_well->lock);
5729         __intel_set_power_well(dev, power_well->count > 0);
5730         spin_unlock_irq(&power_well->lock);
5731 }
5732
5733 /*
5734  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5735  * when not needed anymore. We have 4 registers that can request the power well
5736  * to be enabled, and it will only be disabled if none of the registers is
5737  * requesting it to be enabled.
5738  */
5739 void intel_init_power_well(struct drm_device *dev)
5740 {
5741         struct drm_i915_private *dev_priv = dev->dev_private;
5742
5743         if (!HAS_POWER_WELL(dev))
5744                 return;
5745
5746         /* For now, we need the power well to be always enabled. */
5747         intel_set_power_well(dev, true);
5748         intel_resume_power_well(dev);
5749
5750         /* We're taking over the BIOS, so clear any requests made by it since
5751          * the driver is in charge now. */
5752         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5753                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5754 }
5755
5756 /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5757 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5758 {
5759         hsw_disable_package_c8(dev_priv);
5760 }
5761
5762 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5763 {
5764         hsw_enable_package_c8(dev_priv);
5765 }
5766
5767 /* Set up chip specific power management-related functions */
5768 void intel_init_pm(struct drm_device *dev)
5769 {
5770         struct drm_i915_private *dev_priv = dev->dev_private;
5771
5772         if (I915_HAS_FBC(dev)) {
5773                 if (HAS_PCH_SPLIT(dev)) {
5774                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5775                         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5776                                 dev_priv->display.enable_fbc =
5777                                         gen7_enable_fbc;
5778                         else
5779                                 dev_priv->display.enable_fbc =
5780                                         ironlake_enable_fbc;
5781                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5782                 } else if (IS_GM45(dev)) {
5783                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5784                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5785                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5786                 } else if (IS_CRESTLINE(dev)) {
5787                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5788                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5789                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5790                 }
5791                 /* 855GM needs testing */
5792         }
5793
5794         /* For cxsr */
5795         if (IS_PINEVIEW(dev))
5796                 i915_pineview_get_mem_freq(dev);
5797         else if (IS_GEN5(dev))
5798                 i915_ironlake_get_mem_freq(dev);
5799
5800         /* For FIFO watermark updates */
5801         if (HAS_PCH_SPLIT(dev)) {
5802                 intel_setup_wm_latency(dev);
5803
5804                 if (IS_GEN5(dev)) {
5805                         if (dev_priv->wm.pri_latency[1] &&
5806                             dev_priv->wm.spr_latency[1] &&
5807                             dev_priv->wm.cur_latency[1])
5808                                 dev_priv->display.update_wm = ironlake_update_wm;
5809                         else {
5810                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5811                                               "Disable CxSR\n");
5812                                 dev_priv->display.update_wm = NULL;
5813                         }
5814                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5815                 } else if (IS_GEN6(dev)) {
5816                         if (dev_priv->wm.pri_latency[0] &&
5817                             dev_priv->wm.spr_latency[0] &&
5818                             dev_priv->wm.cur_latency[0]) {
5819                                 dev_priv->display.update_wm = sandybridge_update_wm;
5820                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5821                         } else {
5822                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5823                                               "Disable CxSR\n");
5824                                 dev_priv->display.update_wm = NULL;
5825                         }
5826                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5827                 } else if (IS_IVYBRIDGE(dev)) {
5828                         if (dev_priv->wm.pri_latency[0] &&
5829                             dev_priv->wm.spr_latency[0] &&
5830                             dev_priv->wm.cur_latency[0]) {
5831                                 dev_priv->display.update_wm = ivybridge_update_wm;
5832                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5833                         } else {
5834                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5835                                               "Disable CxSR\n");
5836                                 dev_priv->display.update_wm = NULL;
5837                         }
5838                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5839                 } else if (IS_HASWELL(dev)) {
5840                         if (dev_priv->wm.pri_latency[0] &&
5841                             dev_priv->wm.spr_latency[0] &&
5842                             dev_priv->wm.cur_latency[0]) {
5843                                 dev_priv->display.update_wm = haswell_update_wm;
5844                                 dev_priv->display.update_sprite_wm =
5845                                         haswell_update_sprite_wm;
5846                         } else {
5847                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5848                                               "Disable CxSR\n");
5849                                 dev_priv->display.update_wm = NULL;
5850                         }
5851                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5852                 } else
5853                         dev_priv->display.update_wm = NULL;
5854         } else if (IS_VALLEYVIEW(dev)) {
5855                 dev_priv->display.update_wm = valleyview_update_wm;
5856                 dev_priv->display.init_clock_gating =
5857                         valleyview_init_clock_gating;
5858         } else if (IS_PINEVIEW(dev)) {
5859                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5860                                             dev_priv->is_ddr3,
5861                                             dev_priv->fsb_freq,
5862                                             dev_priv->mem_freq)) {
5863                         DRM_INFO("failed to find known CxSR latency "
5864                                  "(found ddr%s fsb freq %d, mem freq %d), "
5865                                  "disabling CxSR\n",
5866                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
5867                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5868                         /* Disable CxSR and never update its watermark again */
5869                         pineview_disable_cxsr(dev);
5870                         dev_priv->display.update_wm = NULL;
5871                 } else
5872                         dev_priv->display.update_wm = pineview_update_wm;
5873                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5874         } else if (IS_G4X(dev)) {
5875                 dev_priv->display.update_wm = g4x_update_wm;
5876                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5877         } else if (IS_GEN4(dev)) {
5878                 dev_priv->display.update_wm = i965_update_wm;
5879                 if (IS_CRESTLINE(dev))
5880                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5881                 else if (IS_BROADWATER(dev))
5882                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5883         } else if (IS_GEN3(dev)) {
5884                 dev_priv->display.update_wm = i9xx_update_wm;
5885                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5886                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5887         } else if (IS_I865G(dev)) {
5888                 dev_priv->display.update_wm = i830_update_wm;
5889                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5890                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5891         } else if (IS_I85X(dev)) {
5892                 dev_priv->display.update_wm = i9xx_update_wm;
5893                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5894                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5895         } else {
5896                 dev_priv->display.update_wm = i830_update_wm;
5897                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5898                 if (IS_845G(dev))
5899                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5900                 else
5901                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5902         }
5903 }
5904
5905 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5906 {
5907         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5908
5909         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5910                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5911                 return -EAGAIN;
5912         }
5913
5914         I915_WRITE(GEN6_PCODE_DATA, *val);
5915         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5916
5917         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5918                      500)) {
5919                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5920                 return -ETIMEDOUT;
5921         }
5922
5923         *val = I915_READ(GEN6_PCODE_DATA);
5924         I915_WRITE(GEN6_PCODE_DATA, 0);
5925
5926         return 0;
5927 }
5928
5929 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5930 {
5931         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5932
5933         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5934                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5935                 return -EAGAIN;
5936         }
5937
5938         I915_WRITE(GEN6_PCODE_DATA, val);
5939         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5940
5941         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5942                      500)) {
5943                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5944                 return -ETIMEDOUT;
5945         }
5946
5947         I915_WRITE(GEN6_PCODE_DATA, 0);
5948
5949         return 0;
5950 }
5951
5952 int vlv_gpu_freq(int ddr_freq, int val)
5953 {
5954         int mult, base;
5955
5956         switch (ddr_freq) {
5957         case 800:
5958                 mult = 20;
5959                 base = 120;
5960                 break;
5961         case 1066:
5962                 mult = 22;
5963                 base = 133;
5964                 break;
5965         case 1333:
5966                 mult = 21;
5967                 base = 125;
5968                 break;
5969         default:
5970                 return -1;
5971         }
5972
5973         return ((val - 0xbd) * mult) + base;
5974 }
5975
5976 int vlv_freq_opcode(int ddr_freq, int val)
5977 {
5978         int mult, base;
5979
5980         switch (ddr_freq) {
5981         case 800:
5982                 mult = 20;
5983                 base = 120;
5984                 break;
5985         case 1066:
5986                 mult = 22;
5987                 base = 133;
5988                 break;
5989         case 1333:
5990                 mult = 21;
5991                 base = 125;
5992                 break;
5993         default:
5994                 return -1;
5995         }
5996
5997         val /= mult;
5998         val -= base / mult;
5999         val += 0xbd;
6000
6001         if (val > 0xea)
6002                 val = 0xea;
6003
6004         return val;
6005 }
6006
6007 void intel_pm_init(struct drm_device *dev)
6008 {
6009         struct drm_i915_private *dev_priv = dev->dev_private;
6010
6011         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6012                           intel_gen6_powersave_work);
6013 }
6014