drm/i915/bdw: Use HSW formula for ring freq scaling
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <drm/i915_powerwell.h>
34
35 /**
36  * RC6 is a special power stage which allows the GPU to enter an very
37  * low-voltage mode when idle, using down to 0V while at this stage.  This
38  * stage is entered automatically when the GPU is idle when RC6 support is
39  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
40  *
41  * There are different RC6 modes available in Intel GPU, which differentiate
42  * among each other with the latency required to enter and leave RC6 and
43  * voltage consumed by the GPU in different states.
44  *
45  * The combination of the following flags define which states GPU is allowed
46  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
47  * RC6pp is deepest RC6. Their support by hardware varies according to the
48  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
49  * which brings the most power savings; deeper states save more power, but
50  * require higher latency to switch to and wake up.
51  */
52 #define INTEL_RC6_ENABLE                        (1<<0)
53 #define INTEL_RC6p_ENABLE                       (1<<1)
54 #define INTEL_RC6pp_ENABLE                      (1<<2)
55
56 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
57  * framebuffer contents in-memory, aiming at reducing the required bandwidth
58  * during in-memory transfers and, therefore, reduce the power packet.
59  *
60  * The benefits of FBC are mostly visible with solid backgrounds and
61  * variation-less patterns.
62  *
63  * FBC-related functionality can be enabled by the means of the
64  * i915.i915_enable_fbc parameter
65  */
66
67 static void i8xx_disable_fbc(struct drm_device *dev)
68 {
69         struct drm_i915_private *dev_priv = dev->dev_private;
70         u32 fbc_ctl;
71
72         /* Disable compression */
73         fbc_ctl = I915_READ(FBC_CONTROL);
74         if ((fbc_ctl & FBC_CTL_EN) == 0)
75                 return;
76
77         fbc_ctl &= ~FBC_CTL_EN;
78         I915_WRITE(FBC_CONTROL, fbc_ctl);
79
80         /* Wait for compressing bit to clear */
81         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
82                 DRM_DEBUG_KMS("FBC idle timed out\n");
83                 return;
84         }
85
86         DRM_DEBUG_KMS("disabled FBC\n");
87 }
88
89 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
90 {
91         struct drm_device *dev = crtc->dev;
92         struct drm_i915_private *dev_priv = dev->dev_private;
93         struct drm_framebuffer *fb = crtc->fb;
94         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
95         struct drm_i915_gem_object *obj = intel_fb->obj;
96         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
97         int cfb_pitch;
98         int plane, i;
99         u32 fbc_ctl, fbc_ctl2;
100
101         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
102         if (fb->pitches[0] < cfb_pitch)
103                 cfb_pitch = fb->pitches[0];
104
105         /* FBC_CTL wants 64B units */
106         cfb_pitch = (cfb_pitch / 64) - 1;
107         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
108
109         /* Clear old tags */
110         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
111                 I915_WRITE(FBC_TAG + (i * 4), 0);
112
113         /* Set it up... */
114         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
115         fbc_ctl2 |= plane;
116         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
117         I915_WRITE(FBC_FENCE_OFF, crtc->y);
118
119         /* enable it... */
120         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
121         if (IS_I945GM(dev))
122                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
123         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
124         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
125         fbc_ctl |= obj->fence_reg;
126         I915_WRITE(FBC_CONTROL, fbc_ctl);
127
128         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
129                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
130 }
131
132 static bool i8xx_fbc_enabled(struct drm_device *dev)
133 {
134         struct drm_i915_private *dev_priv = dev->dev_private;
135
136         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
137 }
138
139 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
140 {
141         struct drm_device *dev = crtc->dev;
142         struct drm_i915_private *dev_priv = dev->dev_private;
143         struct drm_framebuffer *fb = crtc->fb;
144         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
145         struct drm_i915_gem_object *obj = intel_fb->obj;
146         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
147         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
148         unsigned long stall_watermark = 200;
149         u32 dpfc_ctl;
150
151         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
152         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
153         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
154
155         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
156                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
157                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
158         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
159
160         /* enable it... */
161         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
162
163         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
164 }
165
166 static void g4x_disable_fbc(struct drm_device *dev)
167 {
168         struct drm_i915_private *dev_priv = dev->dev_private;
169         u32 dpfc_ctl;
170
171         /* Disable compression */
172         dpfc_ctl = I915_READ(DPFC_CONTROL);
173         if (dpfc_ctl & DPFC_CTL_EN) {
174                 dpfc_ctl &= ~DPFC_CTL_EN;
175                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
176
177                 DRM_DEBUG_KMS("disabled FBC\n");
178         }
179 }
180
181 static bool g4x_fbc_enabled(struct drm_device *dev)
182 {
183         struct drm_i915_private *dev_priv = dev->dev_private;
184
185         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
186 }
187
188 static void sandybridge_blit_fbc_update(struct drm_device *dev)
189 {
190         struct drm_i915_private *dev_priv = dev->dev_private;
191         u32 blt_ecoskpd;
192
193         /* Make sure blitter notifies FBC of writes */
194         gen6_gt_force_wake_get(dev_priv);
195         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
196         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
197                 GEN6_BLITTER_LOCK_SHIFT;
198         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
199         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
200         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
201         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
202                          GEN6_BLITTER_LOCK_SHIFT);
203         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
204         POSTING_READ(GEN6_BLITTER_ECOSKPD);
205         gen6_gt_force_wake_put(dev_priv);
206 }
207
208 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
209 {
210         struct drm_device *dev = crtc->dev;
211         struct drm_i915_private *dev_priv = dev->dev_private;
212         struct drm_framebuffer *fb = crtc->fb;
213         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
214         struct drm_i915_gem_object *obj = intel_fb->obj;
215         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
216         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
217         unsigned long stall_watermark = 200;
218         u32 dpfc_ctl;
219
220         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
221         dpfc_ctl &= DPFC_RESERVED;
222         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
223         /* Set persistent mode for front-buffer rendering, ala X. */
224         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
225         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
226         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
227
228         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
229                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
230                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
231         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
232         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
233         /* enable it... */
234         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
235
236         if (IS_GEN6(dev)) {
237                 I915_WRITE(SNB_DPFC_CTL_SA,
238                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
239                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
240                 sandybridge_blit_fbc_update(dev);
241         }
242
243         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
244 }
245
246 static void ironlake_disable_fbc(struct drm_device *dev)
247 {
248         struct drm_i915_private *dev_priv = dev->dev_private;
249         u32 dpfc_ctl;
250
251         /* Disable compression */
252         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
253         if (dpfc_ctl & DPFC_CTL_EN) {
254                 dpfc_ctl &= ~DPFC_CTL_EN;
255                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
256
257                 DRM_DEBUG_KMS("disabled FBC\n");
258         }
259 }
260
261 static bool ironlake_fbc_enabled(struct drm_device *dev)
262 {
263         struct drm_i915_private *dev_priv = dev->dev_private;
264
265         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
266 }
267
268 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
269 {
270         struct drm_device *dev = crtc->dev;
271         struct drm_i915_private *dev_priv = dev->dev_private;
272         struct drm_framebuffer *fb = crtc->fb;
273         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
274         struct drm_i915_gem_object *obj = intel_fb->obj;
275         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
276
277         I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
278
279         I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
280                    IVB_DPFC_CTL_FENCE_EN |
281                    intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
282
283         if (IS_IVYBRIDGE(dev)) {
284                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
285                 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
286         } else {
287                 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
288                 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
289                            HSW_BYPASS_FBC_QUEUE);
290         }
291
292         I915_WRITE(SNB_DPFC_CTL_SA,
293                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
294         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
295
296         sandybridge_blit_fbc_update(dev);
297
298         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
299 }
300
301 bool intel_fbc_enabled(struct drm_device *dev)
302 {
303         struct drm_i915_private *dev_priv = dev->dev_private;
304
305         if (!dev_priv->display.fbc_enabled)
306                 return false;
307
308         return dev_priv->display.fbc_enabled(dev);
309 }
310
311 static void intel_fbc_work_fn(struct work_struct *__work)
312 {
313         struct intel_fbc_work *work =
314                 container_of(to_delayed_work(__work),
315                              struct intel_fbc_work, work);
316         struct drm_device *dev = work->crtc->dev;
317         struct drm_i915_private *dev_priv = dev->dev_private;
318
319         mutex_lock(&dev->struct_mutex);
320         if (work == dev_priv->fbc.fbc_work) {
321                 /* Double check that we haven't switched fb without cancelling
322                  * the prior work.
323                  */
324                 if (work->crtc->fb == work->fb) {
325                         dev_priv->display.enable_fbc(work->crtc,
326                                                      work->interval);
327
328                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
329                         dev_priv->fbc.fb_id = work->crtc->fb->base.id;
330                         dev_priv->fbc.y = work->crtc->y;
331                 }
332
333                 dev_priv->fbc.fbc_work = NULL;
334         }
335         mutex_unlock(&dev->struct_mutex);
336
337         kfree(work);
338 }
339
340 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
341 {
342         if (dev_priv->fbc.fbc_work == NULL)
343                 return;
344
345         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
346
347         /* Synchronisation is provided by struct_mutex and checking of
348          * dev_priv->fbc.fbc_work, so we can perform the cancellation
349          * entirely asynchronously.
350          */
351         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
352                 /* tasklet was killed before being run, clean up */
353                 kfree(dev_priv->fbc.fbc_work);
354
355         /* Mark the work as no longer wanted so that if it does
356          * wake-up (because the work was already running and waiting
357          * for our mutex), it will discover that is no longer
358          * necessary to run.
359          */
360         dev_priv->fbc.fbc_work = NULL;
361 }
362
363 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
364 {
365         struct intel_fbc_work *work;
366         struct drm_device *dev = crtc->dev;
367         struct drm_i915_private *dev_priv = dev->dev_private;
368
369         if (!dev_priv->display.enable_fbc)
370                 return;
371
372         intel_cancel_fbc_work(dev_priv);
373
374         work = kzalloc(sizeof(*work), GFP_KERNEL);
375         if (work == NULL) {
376                 DRM_ERROR("Failed to allocate FBC work structure\n");
377                 dev_priv->display.enable_fbc(crtc, interval);
378                 return;
379         }
380
381         work->crtc = crtc;
382         work->fb = crtc->fb;
383         work->interval = interval;
384         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
385
386         dev_priv->fbc.fbc_work = work;
387
388         /* Delay the actual enabling to let pageflipping cease and the
389          * display to settle before starting the compression. Note that
390          * this delay also serves a second purpose: it allows for a
391          * vblank to pass after disabling the FBC before we attempt
392          * to modify the control registers.
393          *
394          * A more complicated solution would involve tracking vblanks
395          * following the termination of the page-flipping sequence
396          * and indeed performing the enable as a co-routine and not
397          * waiting synchronously upon the vblank.
398          *
399          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
400          */
401         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
402 }
403
404 void intel_disable_fbc(struct drm_device *dev)
405 {
406         struct drm_i915_private *dev_priv = dev->dev_private;
407
408         intel_cancel_fbc_work(dev_priv);
409
410         if (!dev_priv->display.disable_fbc)
411                 return;
412
413         dev_priv->display.disable_fbc(dev);
414         dev_priv->fbc.plane = -1;
415 }
416
417 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
418                               enum no_fbc_reason reason)
419 {
420         if (dev_priv->fbc.no_fbc_reason == reason)
421                 return false;
422
423         dev_priv->fbc.no_fbc_reason = reason;
424         return true;
425 }
426
427 /**
428  * intel_update_fbc - enable/disable FBC as needed
429  * @dev: the drm_device
430  *
431  * Set up the framebuffer compression hardware at mode set time.  We
432  * enable it if possible:
433  *   - plane A only (on pre-965)
434  *   - no pixel mulitply/line duplication
435  *   - no alpha buffer discard
436  *   - no dual wide
437  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
438  *
439  * We can't assume that any compression will take place (worst case),
440  * so the compressed buffer has to be the same size as the uncompressed
441  * one.  It also must reside (along with the line length buffer) in
442  * stolen memory.
443  *
444  * We need to enable/disable FBC on a global basis.
445  */
446 void intel_update_fbc(struct drm_device *dev)
447 {
448         struct drm_i915_private *dev_priv = dev->dev_private;
449         struct drm_crtc *crtc = NULL, *tmp_crtc;
450         struct intel_crtc *intel_crtc;
451         struct drm_framebuffer *fb;
452         struct intel_framebuffer *intel_fb;
453         struct drm_i915_gem_object *obj;
454         const struct drm_display_mode *adjusted_mode;
455         unsigned int max_width, max_height;
456
457         if (!I915_HAS_FBC(dev)) {
458                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
459                 return;
460         }
461
462         if (!i915_powersave) {
463                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
464                         DRM_DEBUG_KMS("fbc disabled per module param\n");
465                 return;
466         }
467
468         /*
469          * If FBC is already on, we just have to verify that we can
470          * keep it that way...
471          * Need to disable if:
472          *   - more than one pipe is active
473          *   - changing FBC params (stride, fence, mode)
474          *   - new fb is too large to fit in compressed buffer
475          *   - going to an unsupported config (interlace, pixel multiply, etc.)
476          */
477         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
478                 if (intel_crtc_active(tmp_crtc) &&
479                     to_intel_crtc(tmp_crtc)->primary_enabled) {
480                         if (crtc) {
481                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
482                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
483                                 goto out_disable;
484                         }
485                         crtc = tmp_crtc;
486                 }
487         }
488
489         if (!crtc || crtc->fb == NULL) {
490                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
491                         DRM_DEBUG_KMS("no output, disabling\n");
492                 goto out_disable;
493         }
494
495         intel_crtc = to_intel_crtc(crtc);
496         fb = crtc->fb;
497         intel_fb = to_intel_framebuffer(fb);
498         obj = intel_fb->obj;
499         adjusted_mode = &intel_crtc->config.adjusted_mode;
500
501         if (i915_enable_fbc < 0 &&
502             INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
503                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
504                         DRM_DEBUG_KMS("disabled per chip default\n");
505                 goto out_disable;
506         }
507         if (!i915_enable_fbc) {
508                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
509                         DRM_DEBUG_KMS("fbc disabled per module param\n");
510                 goto out_disable;
511         }
512         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
513             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
514                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
515                         DRM_DEBUG_KMS("mode incompatible with compression, "
516                                       "disabling\n");
517                 goto out_disable;
518         }
519
520         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
521                 max_width = 4096;
522                 max_height = 2048;
523         } else {
524                 max_width = 2048;
525                 max_height = 1536;
526         }
527         if (intel_crtc->config.pipe_src_w > max_width ||
528             intel_crtc->config.pipe_src_h > max_height) {
529                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
530                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
531                 goto out_disable;
532         }
533         if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
534             intel_crtc->plane != 0) {
535                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
536                         DRM_DEBUG_KMS("plane not 0, disabling compression\n");
537                 goto out_disable;
538         }
539
540         /* The use of a CPU fence is mandatory in order to detect writes
541          * by the CPU to the scanout and trigger updates to the FBC.
542          */
543         if (obj->tiling_mode != I915_TILING_X ||
544             obj->fence_reg == I915_FENCE_REG_NONE) {
545                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
546                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
547                 goto out_disable;
548         }
549
550         /* If the kernel debugger is active, always disable compression */
551         if (in_dbg_master())
552                 goto out_disable;
553
554         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
555                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
556                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
557                 goto out_disable;
558         }
559
560         /* If the scanout has not changed, don't modify the FBC settings.
561          * Note that we make the fundamental assumption that the fb->obj
562          * cannot be unpinned (and have its GTT offset and fence revoked)
563          * without first being decoupled from the scanout and FBC disabled.
564          */
565         if (dev_priv->fbc.plane == intel_crtc->plane &&
566             dev_priv->fbc.fb_id == fb->base.id &&
567             dev_priv->fbc.y == crtc->y)
568                 return;
569
570         if (intel_fbc_enabled(dev)) {
571                 /* We update FBC along two paths, after changing fb/crtc
572                  * configuration (modeswitching) and after page-flipping
573                  * finishes. For the latter, we know that not only did
574                  * we disable the FBC at the start of the page-flip
575                  * sequence, but also more than one vblank has passed.
576                  *
577                  * For the former case of modeswitching, it is possible
578                  * to switch between two FBC valid configurations
579                  * instantaneously so we do need to disable the FBC
580                  * before we can modify its control registers. We also
581                  * have to wait for the next vblank for that to take
582                  * effect. However, since we delay enabling FBC we can
583                  * assume that a vblank has passed since disabling and
584                  * that we can safely alter the registers in the deferred
585                  * callback.
586                  *
587                  * In the scenario that we go from a valid to invalid
588                  * and then back to valid FBC configuration we have
589                  * no strict enforcement that a vblank occurred since
590                  * disabling the FBC. However, along all current pipe
591                  * disabling paths we do need to wait for a vblank at
592                  * some point. And we wait before enabling FBC anyway.
593                  */
594                 DRM_DEBUG_KMS("disabling active FBC for update\n");
595                 intel_disable_fbc(dev);
596         }
597
598         intel_enable_fbc(crtc, 500);
599         dev_priv->fbc.no_fbc_reason = FBC_OK;
600         return;
601
602 out_disable:
603         /* Multiple disables should be harmless */
604         if (intel_fbc_enabled(dev)) {
605                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
606                 intel_disable_fbc(dev);
607         }
608         i915_gem_stolen_cleanup_compression(dev);
609 }
610
611 static void i915_pineview_get_mem_freq(struct drm_device *dev)
612 {
613         drm_i915_private_t *dev_priv = dev->dev_private;
614         u32 tmp;
615
616         tmp = I915_READ(CLKCFG);
617
618         switch (tmp & CLKCFG_FSB_MASK) {
619         case CLKCFG_FSB_533:
620                 dev_priv->fsb_freq = 533; /* 133*4 */
621                 break;
622         case CLKCFG_FSB_800:
623                 dev_priv->fsb_freq = 800; /* 200*4 */
624                 break;
625         case CLKCFG_FSB_667:
626                 dev_priv->fsb_freq =  667; /* 167*4 */
627                 break;
628         case CLKCFG_FSB_400:
629                 dev_priv->fsb_freq = 400; /* 100*4 */
630                 break;
631         }
632
633         switch (tmp & CLKCFG_MEM_MASK) {
634         case CLKCFG_MEM_533:
635                 dev_priv->mem_freq = 533;
636                 break;
637         case CLKCFG_MEM_667:
638                 dev_priv->mem_freq = 667;
639                 break;
640         case CLKCFG_MEM_800:
641                 dev_priv->mem_freq = 800;
642                 break;
643         }
644
645         /* detect pineview DDR3 setting */
646         tmp = I915_READ(CSHRDDR3CTL);
647         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
648 }
649
650 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
651 {
652         drm_i915_private_t *dev_priv = dev->dev_private;
653         u16 ddrpll, csipll;
654
655         ddrpll = I915_READ16(DDRMPLL1);
656         csipll = I915_READ16(CSIPLL0);
657
658         switch (ddrpll & 0xff) {
659         case 0xc:
660                 dev_priv->mem_freq = 800;
661                 break;
662         case 0x10:
663                 dev_priv->mem_freq = 1066;
664                 break;
665         case 0x14:
666                 dev_priv->mem_freq = 1333;
667                 break;
668         case 0x18:
669                 dev_priv->mem_freq = 1600;
670                 break;
671         default:
672                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
673                                  ddrpll & 0xff);
674                 dev_priv->mem_freq = 0;
675                 break;
676         }
677
678         dev_priv->ips.r_t = dev_priv->mem_freq;
679
680         switch (csipll & 0x3ff) {
681         case 0x00c:
682                 dev_priv->fsb_freq = 3200;
683                 break;
684         case 0x00e:
685                 dev_priv->fsb_freq = 3733;
686                 break;
687         case 0x010:
688                 dev_priv->fsb_freq = 4266;
689                 break;
690         case 0x012:
691                 dev_priv->fsb_freq = 4800;
692                 break;
693         case 0x014:
694                 dev_priv->fsb_freq = 5333;
695                 break;
696         case 0x016:
697                 dev_priv->fsb_freq = 5866;
698                 break;
699         case 0x018:
700                 dev_priv->fsb_freq = 6400;
701                 break;
702         default:
703                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
704                                  csipll & 0x3ff);
705                 dev_priv->fsb_freq = 0;
706                 break;
707         }
708
709         if (dev_priv->fsb_freq == 3200) {
710                 dev_priv->ips.c_m = 0;
711         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
712                 dev_priv->ips.c_m = 1;
713         } else {
714                 dev_priv->ips.c_m = 2;
715         }
716 }
717
718 static const struct cxsr_latency cxsr_latency_table[] = {
719         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
720         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
721         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
722         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
723         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
724
725         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
726         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
727         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
728         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
729         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
730
731         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
732         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
733         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
734         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
735         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
736
737         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
738         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
739         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
740         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
741         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
742
743         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
744         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
745         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
746         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
747         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
748
749         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
750         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
751         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
752         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
753         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
754 };
755
756 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
757                                                          int is_ddr3,
758                                                          int fsb,
759                                                          int mem)
760 {
761         const struct cxsr_latency *latency;
762         int i;
763
764         if (fsb == 0 || mem == 0)
765                 return NULL;
766
767         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
768                 latency = &cxsr_latency_table[i];
769                 if (is_desktop == latency->is_desktop &&
770                     is_ddr3 == latency->is_ddr3 &&
771                     fsb == latency->fsb_freq && mem == latency->mem_freq)
772                         return latency;
773         }
774
775         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
776
777         return NULL;
778 }
779
780 static void pineview_disable_cxsr(struct drm_device *dev)
781 {
782         struct drm_i915_private *dev_priv = dev->dev_private;
783
784         /* deactivate cxsr */
785         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
786 }
787
788 /*
789  * Latency for FIFO fetches is dependent on several factors:
790  *   - memory configuration (speed, channels)
791  *   - chipset
792  *   - current MCH state
793  * It can be fairly high in some situations, so here we assume a fairly
794  * pessimal value.  It's a tradeoff between extra memory fetches (if we
795  * set this value too high, the FIFO will fetch frequently to stay full)
796  * and power consumption (set it too low to save power and we might see
797  * FIFO underruns and display "flicker").
798  *
799  * A value of 5us seems to be a good balance; safe for very low end
800  * platforms but not overly aggressive on lower latency configs.
801  */
802 static const int latency_ns = 5000;
803
804 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
805 {
806         struct drm_i915_private *dev_priv = dev->dev_private;
807         uint32_t dsparb = I915_READ(DSPARB);
808         int size;
809
810         size = dsparb & 0x7f;
811         if (plane)
812                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
813
814         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
815                       plane ? "B" : "A", size);
816
817         return size;
818 }
819
820 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
821 {
822         struct drm_i915_private *dev_priv = dev->dev_private;
823         uint32_t dsparb = I915_READ(DSPARB);
824         int size;
825
826         size = dsparb & 0x1ff;
827         if (plane)
828                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
829         size >>= 1; /* Convert to cachelines */
830
831         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
832                       plane ? "B" : "A", size);
833
834         return size;
835 }
836
837 static int i845_get_fifo_size(struct drm_device *dev, int plane)
838 {
839         struct drm_i915_private *dev_priv = dev->dev_private;
840         uint32_t dsparb = I915_READ(DSPARB);
841         int size;
842
843         size = dsparb & 0x7f;
844         size >>= 2; /* Convert to cachelines */
845
846         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
847                       plane ? "B" : "A",
848                       size);
849
850         return size;
851 }
852
853 static int i830_get_fifo_size(struct drm_device *dev, int plane)
854 {
855         struct drm_i915_private *dev_priv = dev->dev_private;
856         uint32_t dsparb = I915_READ(DSPARB);
857         int size;
858
859         size = dsparb & 0x7f;
860         size >>= 1; /* Convert to cachelines */
861
862         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
863                       plane ? "B" : "A", size);
864
865         return size;
866 }
867
868 /* Pineview has different values for various configs */
869 static const struct intel_watermark_params pineview_display_wm = {
870         PINEVIEW_DISPLAY_FIFO,
871         PINEVIEW_MAX_WM,
872         PINEVIEW_DFT_WM,
873         PINEVIEW_GUARD_WM,
874         PINEVIEW_FIFO_LINE_SIZE
875 };
876 static const struct intel_watermark_params pineview_display_hplloff_wm = {
877         PINEVIEW_DISPLAY_FIFO,
878         PINEVIEW_MAX_WM,
879         PINEVIEW_DFT_HPLLOFF_WM,
880         PINEVIEW_GUARD_WM,
881         PINEVIEW_FIFO_LINE_SIZE
882 };
883 static const struct intel_watermark_params pineview_cursor_wm = {
884         PINEVIEW_CURSOR_FIFO,
885         PINEVIEW_CURSOR_MAX_WM,
886         PINEVIEW_CURSOR_DFT_WM,
887         PINEVIEW_CURSOR_GUARD_WM,
888         PINEVIEW_FIFO_LINE_SIZE,
889 };
890 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
891         PINEVIEW_CURSOR_FIFO,
892         PINEVIEW_CURSOR_MAX_WM,
893         PINEVIEW_CURSOR_DFT_WM,
894         PINEVIEW_CURSOR_GUARD_WM,
895         PINEVIEW_FIFO_LINE_SIZE
896 };
897 static const struct intel_watermark_params g4x_wm_info = {
898         G4X_FIFO_SIZE,
899         G4X_MAX_WM,
900         G4X_MAX_WM,
901         2,
902         G4X_FIFO_LINE_SIZE,
903 };
904 static const struct intel_watermark_params g4x_cursor_wm_info = {
905         I965_CURSOR_FIFO,
906         I965_CURSOR_MAX_WM,
907         I965_CURSOR_DFT_WM,
908         2,
909         G4X_FIFO_LINE_SIZE,
910 };
911 static const struct intel_watermark_params valleyview_wm_info = {
912         VALLEYVIEW_FIFO_SIZE,
913         VALLEYVIEW_MAX_WM,
914         VALLEYVIEW_MAX_WM,
915         2,
916         G4X_FIFO_LINE_SIZE,
917 };
918 static const struct intel_watermark_params valleyview_cursor_wm_info = {
919         I965_CURSOR_FIFO,
920         VALLEYVIEW_CURSOR_MAX_WM,
921         I965_CURSOR_DFT_WM,
922         2,
923         G4X_FIFO_LINE_SIZE,
924 };
925 static const struct intel_watermark_params i965_cursor_wm_info = {
926         I965_CURSOR_FIFO,
927         I965_CURSOR_MAX_WM,
928         I965_CURSOR_DFT_WM,
929         2,
930         I915_FIFO_LINE_SIZE,
931 };
932 static const struct intel_watermark_params i945_wm_info = {
933         I945_FIFO_SIZE,
934         I915_MAX_WM,
935         1,
936         2,
937         I915_FIFO_LINE_SIZE
938 };
939 static const struct intel_watermark_params i915_wm_info = {
940         I915_FIFO_SIZE,
941         I915_MAX_WM,
942         1,
943         2,
944         I915_FIFO_LINE_SIZE
945 };
946 static const struct intel_watermark_params i855_wm_info = {
947         I855GM_FIFO_SIZE,
948         I915_MAX_WM,
949         1,
950         2,
951         I830_FIFO_LINE_SIZE
952 };
953 static const struct intel_watermark_params i830_wm_info = {
954         I830_FIFO_SIZE,
955         I915_MAX_WM,
956         1,
957         2,
958         I830_FIFO_LINE_SIZE
959 };
960
961 static const struct intel_watermark_params ironlake_display_wm_info = {
962         ILK_DISPLAY_FIFO,
963         ILK_DISPLAY_MAXWM,
964         ILK_DISPLAY_DFTWM,
965         2,
966         ILK_FIFO_LINE_SIZE
967 };
968 static const struct intel_watermark_params ironlake_cursor_wm_info = {
969         ILK_CURSOR_FIFO,
970         ILK_CURSOR_MAXWM,
971         ILK_CURSOR_DFTWM,
972         2,
973         ILK_FIFO_LINE_SIZE
974 };
975 static const struct intel_watermark_params ironlake_display_srwm_info = {
976         ILK_DISPLAY_SR_FIFO,
977         ILK_DISPLAY_MAX_SRWM,
978         ILK_DISPLAY_DFT_SRWM,
979         2,
980         ILK_FIFO_LINE_SIZE
981 };
982 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
983         ILK_CURSOR_SR_FIFO,
984         ILK_CURSOR_MAX_SRWM,
985         ILK_CURSOR_DFT_SRWM,
986         2,
987         ILK_FIFO_LINE_SIZE
988 };
989
990 static const struct intel_watermark_params sandybridge_display_wm_info = {
991         SNB_DISPLAY_FIFO,
992         SNB_DISPLAY_MAXWM,
993         SNB_DISPLAY_DFTWM,
994         2,
995         SNB_FIFO_LINE_SIZE
996 };
997 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
998         SNB_CURSOR_FIFO,
999         SNB_CURSOR_MAXWM,
1000         SNB_CURSOR_DFTWM,
1001         2,
1002         SNB_FIFO_LINE_SIZE
1003 };
1004 static const struct intel_watermark_params sandybridge_display_srwm_info = {
1005         SNB_DISPLAY_SR_FIFO,
1006         SNB_DISPLAY_MAX_SRWM,
1007         SNB_DISPLAY_DFT_SRWM,
1008         2,
1009         SNB_FIFO_LINE_SIZE
1010 };
1011 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1012         SNB_CURSOR_SR_FIFO,
1013         SNB_CURSOR_MAX_SRWM,
1014         SNB_CURSOR_DFT_SRWM,
1015         2,
1016         SNB_FIFO_LINE_SIZE
1017 };
1018
1019
1020 /**
1021  * intel_calculate_wm - calculate watermark level
1022  * @clock_in_khz: pixel clock
1023  * @wm: chip FIFO params
1024  * @pixel_size: display pixel size
1025  * @latency_ns: memory latency for the platform
1026  *
1027  * Calculate the watermark level (the level at which the display plane will
1028  * start fetching from memory again).  Each chip has a different display
1029  * FIFO size and allocation, so the caller needs to figure that out and pass
1030  * in the correct intel_watermark_params structure.
1031  *
1032  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1033  * on the pixel size.  When it reaches the watermark level, it'll start
1034  * fetching FIFO line sized based chunks from memory until the FIFO fills
1035  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1036  * will occur, and a display engine hang could result.
1037  */
1038 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1039                                         const struct intel_watermark_params *wm,
1040                                         int fifo_size,
1041                                         int pixel_size,
1042                                         unsigned long latency_ns)
1043 {
1044         long entries_required, wm_size;
1045
1046         /*
1047          * Note: we need to make sure we don't overflow for various clock &
1048          * latency values.
1049          * clocks go from a few thousand to several hundred thousand.
1050          * latency is usually a few thousand
1051          */
1052         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1053                 1000;
1054         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1055
1056         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1057
1058         wm_size = fifo_size - (entries_required + wm->guard_size);
1059
1060         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1061
1062         /* Don't promote wm_size to unsigned... */
1063         if (wm_size > (long)wm->max_wm)
1064                 wm_size = wm->max_wm;
1065         if (wm_size <= 0)
1066                 wm_size = wm->default_wm;
1067         return wm_size;
1068 }
1069
1070 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1071 {
1072         struct drm_crtc *crtc, *enabled = NULL;
1073
1074         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1075                 if (intel_crtc_active(crtc)) {
1076                         if (enabled)
1077                                 return NULL;
1078                         enabled = crtc;
1079                 }
1080         }
1081
1082         return enabled;
1083 }
1084
1085 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1086 {
1087         struct drm_device *dev = unused_crtc->dev;
1088         struct drm_i915_private *dev_priv = dev->dev_private;
1089         struct drm_crtc *crtc;
1090         const struct cxsr_latency *latency;
1091         u32 reg;
1092         unsigned long wm;
1093
1094         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1095                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1096         if (!latency) {
1097                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1098                 pineview_disable_cxsr(dev);
1099                 return;
1100         }
1101
1102         crtc = single_enabled_crtc(dev);
1103         if (crtc) {
1104                 const struct drm_display_mode *adjusted_mode;
1105                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1106                 int clock;
1107
1108                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1109                 clock = adjusted_mode->crtc_clock;
1110
1111                 /* Display SR */
1112                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1113                                         pineview_display_wm.fifo_size,
1114                                         pixel_size, latency->display_sr);
1115                 reg = I915_READ(DSPFW1);
1116                 reg &= ~DSPFW_SR_MASK;
1117                 reg |= wm << DSPFW_SR_SHIFT;
1118                 I915_WRITE(DSPFW1, reg);
1119                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1120
1121                 /* cursor SR */
1122                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1123                                         pineview_display_wm.fifo_size,
1124                                         pixel_size, latency->cursor_sr);
1125                 reg = I915_READ(DSPFW3);
1126                 reg &= ~DSPFW_CURSOR_SR_MASK;
1127                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1128                 I915_WRITE(DSPFW3, reg);
1129
1130                 /* Display HPLL off SR */
1131                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1132                                         pineview_display_hplloff_wm.fifo_size,
1133                                         pixel_size, latency->display_hpll_disable);
1134                 reg = I915_READ(DSPFW3);
1135                 reg &= ~DSPFW_HPLL_SR_MASK;
1136                 reg |= wm & DSPFW_HPLL_SR_MASK;
1137                 I915_WRITE(DSPFW3, reg);
1138
1139                 /* cursor HPLL off SR */
1140                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1141                                         pineview_display_hplloff_wm.fifo_size,
1142                                         pixel_size, latency->cursor_hpll_disable);
1143                 reg = I915_READ(DSPFW3);
1144                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1145                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1146                 I915_WRITE(DSPFW3, reg);
1147                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1148
1149                 /* activate cxsr */
1150                 I915_WRITE(DSPFW3,
1151                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1152                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1153         } else {
1154                 pineview_disable_cxsr(dev);
1155                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1156         }
1157 }
1158
1159 static bool g4x_compute_wm0(struct drm_device *dev,
1160                             int plane,
1161                             const struct intel_watermark_params *display,
1162                             int display_latency_ns,
1163                             const struct intel_watermark_params *cursor,
1164                             int cursor_latency_ns,
1165                             int *plane_wm,
1166                             int *cursor_wm)
1167 {
1168         struct drm_crtc *crtc;
1169         const struct drm_display_mode *adjusted_mode;
1170         int htotal, hdisplay, clock, pixel_size;
1171         int line_time_us, line_count;
1172         int entries, tlb_miss;
1173
1174         crtc = intel_get_crtc_for_plane(dev, plane);
1175         if (!intel_crtc_active(crtc)) {
1176                 *cursor_wm = cursor->guard_size;
1177                 *plane_wm = display->guard_size;
1178                 return false;
1179         }
1180
1181         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1182         clock = adjusted_mode->crtc_clock;
1183         htotal = adjusted_mode->htotal;
1184         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1185         pixel_size = crtc->fb->bits_per_pixel / 8;
1186
1187         /* Use the small buffer method to calculate plane watermark */
1188         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1189         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1190         if (tlb_miss > 0)
1191                 entries += tlb_miss;
1192         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1193         *plane_wm = entries + display->guard_size;
1194         if (*plane_wm > (int)display->max_wm)
1195                 *plane_wm = display->max_wm;
1196
1197         /* Use the large buffer method to calculate cursor watermark */
1198         line_time_us = ((htotal * 1000) / clock);
1199         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1200         entries = line_count * 64 * pixel_size;
1201         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1202         if (tlb_miss > 0)
1203                 entries += tlb_miss;
1204         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1205         *cursor_wm = entries + cursor->guard_size;
1206         if (*cursor_wm > (int)cursor->max_wm)
1207                 *cursor_wm = (int)cursor->max_wm;
1208
1209         return true;
1210 }
1211
1212 /*
1213  * Check the wm result.
1214  *
1215  * If any calculated watermark values is larger than the maximum value that
1216  * can be programmed into the associated watermark register, that watermark
1217  * must be disabled.
1218  */
1219 static bool g4x_check_srwm(struct drm_device *dev,
1220                            int display_wm, int cursor_wm,
1221                            const struct intel_watermark_params *display,
1222                            const struct intel_watermark_params *cursor)
1223 {
1224         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1225                       display_wm, cursor_wm);
1226
1227         if (display_wm > display->max_wm) {
1228                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1229                               display_wm, display->max_wm);
1230                 return false;
1231         }
1232
1233         if (cursor_wm > cursor->max_wm) {
1234                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1235                               cursor_wm, cursor->max_wm);
1236                 return false;
1237         }
1238
1239         if (!(display_wm || cursor_wm)) {
1240                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1241                 return false;
1242         }
1243
1244         return true;
1245 }
1246
1247 static bool g4x_compute_srwm(struct drm_device *dev,
1248                              int plane,
1249                              int latency_ns,
1250                              const struct intel_watermark_params *display,
1251                              const struct intel_watermark_params *cursor,
1252                              int *display_wm, int *cursor_wm)
1253 {
1254         struct drm_crtc *crtc;
1255         const struct drm_display_mode *adjusted_mode;
1256         int hdisplay, htotal, pixel_size, clock;
1257         unsigned long line_time_us;
1258         int line_count, line_size;
1259         int small, large;
1260         int entries;
1261
1262         if (!latency_ns) {
1263                 *display_wm = *cursor_wm = 0;
1264                 return false;
1265         }
1266
1267         crtc = intel_get_crtc_for_plane(dev, plane);
1268         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1269         clock = adjusted_mode->crtc_clock;
1270         htotal = adjusted_mode->htotal;
1271         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1272         pixel_size = crtc->fb->bits_per_pixel / 8;
1273
1274         line_time_us = (htotal * 1000) / clock;
1275         line_count = (latency_ns / line_time_us + 1000) / 1000;
1276         line_size = hdisplay * pixel_size;
1277
1278         /* Use the minimum of the small and large buffer method for primary */
1279         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1280         large = line_count * line_size;
1281
1282         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1283         *display_wm = entries + display->guard_size;
1284
1285         /* calculate the self-refresh watermark for display cursor */
1286         entries = line_count * pixel_size * 64;
1287         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1288         *cursor_wm = entries + cursor->guard_size;
1289
1290         return g4x_check_srwm(dev,
1291                               *display_wm, *cursor_wm,
1292                               display, cursor);
1293 }
1294
1295 static bool vlv_compute_drain_latency(struct drm_device *dev,
1296                                      int plane,
1297                                      int *plane_prec_mult,
1298                                      int *plane_dl,
1299                                      int *cursor_prec_mult,
1300                                      int *cursor_dl)
1301 {
1302         struct drm_crtc *crtc;
1303         int clock, pixel_size;
1304         int entries;
1305
1306         crtc = intel_get_crtc_for_plane(dev, plane);
1307         if (!intel_crtc_active(crtc))
1308                 return false;
1309
1310         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1311         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1312
1313         entries = (clock / 1000) * pixel_size;
1314         *plane_prec_mult = (entries > 256) ?
1315                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1316         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1317                                                      pixel_size);
1318
1319         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1320         *cursor_prec_mult = (entries > 256) ?
1321                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1322         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1323
1324         return true;
1325 }
1326
1327 /*
1328  * Update drain latency registers of memory arbiter
1329  *
1330  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1331  * to be programmed. Each plane has a drain latency multiplier and a drain
1332  * latency value.
1333  */
1334
1335 static void vlv_update_drain_latency(struct drm_device *dev)
1336 {
1337         struct drm_i915_private *dev_priv = dev->dev_private;
1338         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1339         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1340         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1341                                                         either 16 or 32 */
1342
1343         /* For plane A, Cursor A */
1344         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1345                                       &cursor_prec_mult, &cursora_dl)) {
1346                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1347                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1348                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1349                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1350
1351                 I915_WRITE(VLV_DDL1, cursora_prec |
1352                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1353                                 planea_prec | planea_dl);
1354         }
1355
1356         /* For plane B, Cursor B */
1357         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1358                                       &cursor_prec_mult, &cursorb_dl)) {
1359                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1360                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1361                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1362                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1363
1364                 I915_WRITE(VLV_DDL2, cursorb_prec |
1365                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1366                                 planeb_prec | planeb_dl);
1367         }
1368 }
1369
1370 #define single_plane_enabled(mask) is_power_of_2(mask)
1371
1372 static void valleyview_update_wm(struct drm_crtc *crtc)
1373 {
1374         struct drm_device *dev = crtc->dev;
1375         static const int sr_latency_ns = 12000;
1376         struct drm_i915_private *dev_priv = dev->dev_private;
1377         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1378         int plane_sr, cursor_sr;
1379         int ignore_plane_sr, ignore_cursor_sr;
1380         unsigned int enabled = 0;
1381
1382         vlv_update_drain_latency(dev);
1383
1384         if (g4x_compute_wm0(dev, PIPE_A,
1385                             &valleyview_wm_info, latency_ns,
1386                             &valleyview_cursor_wm_info, latency_ns,
1387                             &planea_wm, &cursora_wm))
1388                 enabled |= 1 << PIPE_A;
1389
1390         if (g4x_compute_wm0(dev, PIPE_B,
1391                             &valleyview_wm_info, latency_ns,
1392                             &valleyview_cursor_wm_info, latency_ns,
1393                             &planeb_wm, &cursorb_wm))
1394                 enabled |= 1 << PIPE_B;
1395
1396         if (single_plane_enabled(enabled) &&
1397             g4x_compute_srwm(dev, ffs(enabled) - 1,
1398                              sr_latency_ns,
1399                              &valleyview_wm_info,
1400                              &valleyview_cursor_wm_info,
1401                              &plane_sr, &ignore_cursor_sr) &&
1402             g4x_compute_srwm(dev, ffs(enabled) - 1,
1403                              2*sr_latency_ns,
1404                              &valleyview_wm_info,
1405                              &valleyview_cursor_wm_info,
1406                              &ignore_plane_sr, &cursor_sr)) {
1407                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1408         } else {
1409                 I915_WRITE(FW_BLC_SELF_VLV,
1410                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1411                 plane_sr = cursor_sr = 0;
1412         }
1413
1414         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1415                       planea_wm, cursora_wm,
1416                       planeb_wm, cursorb_wm,
1417                       plane_sr, cursor_sr);
1418
1419         I915_WRITE(DSPFW1,
1420                    (plane_sr << DSPFW_SR_SHIFT) |
1421                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1422                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1423                    planea_wm);
1424         I915_WRITE(DSPFW2,
1425                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1426                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1427         I915_WRITE(DSPFW3,
1428                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1429                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1430 }
1431
1432 static void g4x_update_wm(struct drm_crtc *crtc)
1433 {
1434         struct drm_device *dev = crtc->dev;
1435         static const int sr_latency_ns = 12000;
1436         struct drm_i915_private *dev_priv = dev->dev_private;
1437         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1438         int plane_sr, cursor_sr;
1439         unsigned int enabled = 0;
1440
1441         if (g4x_compute_wm0(dev, PIPE_A,
1442                             &g4x_wm_info, latency_ns,
1443                             &g4x_cursor_wm_info, latency_ns,
1444                             &planea_wm, &cursora_wm))
1445                 enabled |= 1 << PIPE_A;
1446
1447         if (g4x_compute_wm0(dev, PIPE_B,
1448                             &g4x_wm_info, latency_ns,
1449                             &g4x_cursor_wm_info, latency_ns,
1450                             &planeb_wm, &cursorb_wm))
1451                 enabled |= 1 << PIPE_B;
1452
1453         if (single_plane_enabled(enabled) &&
1454             g4x_compute_srwm(dev, ffs(enabled) - 1,
1455                              sr_latency_ns,
1456                              &g4x_wm_info,
1457                              &g4x_cursor_wm_info,
1458                              &plane_sr, &cursor_sr)) {
1459                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1460         } else {
1461                 I915_WRITE(FW_BLC_SELF,
1462                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1463                 plane_sr = cursor_sr = 0;
1464         }
1465
1466         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1467                       planea_wm, cursora_wm,
1468                       planeb_wm, cursorb_wm,
1469                       plane_sr, cursor_sr);
1470
1471         I915_WRITE(DSPFW1,
1472                    (plane_sr << DSPFW_SR_SHIFT) |
1473                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1474                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1475                    planea_wm);
1476         I915_WRITE(DSPFW2,
1477                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1478                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1479         /* HPLL off in SR has some issues on G4x... disable it */
1480         I915_WRITE(DSPFW3,
1481                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1482                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1483 }
1484
1485 static void i965_update_wm(struct drm_crtc *unused_crtc)
1486 {
1487         struct drm_device *dev = unused_crtc->dev;
1488         struct drm_i915_private *dev_priv = dev->dev_private;
1489         struct drm_crtc *crtc;
1490         int srwm = 1;
1491         int cursor_sr = 16;
1492
1493         /* Calc sr entries for one plane configs */
1494         crtc = single_enabled_crtc(dev);
1495         if (crtc) {
1496                 /* self-refresh has much higher latency */
1497                 static const int sr_latency_ns = 12000;
1498                 const struct drm_display_mode *adjusted_mode =
1499                         &to_intel_crtc(crtc)->config.adjusted_mode;
1500                 int clock = adjusted_mode->crtc_clock;
1501                 int htotal = adjusted_mode->htotal;
1502                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1503                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1504                 unsigned long line_time_us;
1505                 int entries;
1506
1507                 line_time_us = ((htotal * 1000) / clock);
1508
1509                 /* Use ns/us then divide to preserve precision */
1510                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1511                         pixel_size * hdisplay;
1512                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1513                 srwm = I965_FIFO_SIZE - entries;
1514                 if (srwm < 0)
1515                         srwm = 1;
1516                 srwm &= 0x1ff;
1517                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1518                               entries, srwm);
1519
1520                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1521                         pixel_size * 64;
1522                 entries = DIV_ROUND_UP(entries,
1523                                           i965_cursor_wm_info.cacheline_size);
1524                 cursor_sr = i965_cursor_wm_info.fifo_size -
1525                         (entries + i965_cursor_wm_info.guard_size);
1526
1527                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1528                         cursor_sr = i965_cursor_wm_info.max_wm;
1529
1530                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1531                               "cursor %d\n", srwm, cursor_sr);
1532
1533                 if (IS_CRESTLINE(dev))
1534                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1535         } else {
1536                 /* Turn off self refresh if both pipes are enabled */
1537                 if (IS_CRESTLINE(dev))
1538                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1539                                    & ~FW_BLC_SELF_EN);
1540         }
1541
1542         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1543                       srwm);
1544
1545         /* 965 has limitations... */
1546         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1547                    (8 << 16) | (8 << 8) | (8 << 0));
1548         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1549         /* update cursor SR watermark */
1550         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1551 }
1552
1553 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1554 {
1555         struct drm_device *dev = unused_crtc->dev;
1556         struct drm_i915_private *dev_priv = dev->dev_private;
1557         const struct intel_watermark_params *wm_info;
1558         uint32_t fwater_lo;
1559         uint32_t fwater_hi;
1560         int cwm, srwm = 1;
1561         int fifo_size;
1562         int planea_wm, planeb_wm;
1563         struct drm_crtc *crtc, *enabled = NULL;
1564
1565         if (IS_I945GM(dev))
1566                 wm_info = &i945_wm_info;
1567         else if (!IS_GEN2(dev))
1568                 wm_info = &i915_wm_info;
1569         else
1570                 wm_info = &i855_wm_info;
1571
1572         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1573         crtc = intel_get_crtc_for_plane(dev, 0);
1574         if (intel_crtc_active(crtc)) {
1575                 const struct drm_display_mode *adjusted_mode;
1576                 int cpp = crtc->fb->bits_per_pixel / 8;
1577                 if (IS_GEN2(dev))
1578                         cpp = 4;
1579
1580                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1581                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1582                                                wm_info, fifo_size, cpp,
1583                                                latency_ns);
1584                 enabled = crtc;
1585         } else
1586                 planea_wm = fifo_size - wm_info->guard_size;
1587
1588         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1589         crtc = intel_get_crtc_for_plane(dev, 1);
1590         if (intel_crtc_active(crtc)) {
1591                 const struct drm_display_mode *adjusted_mode;
1592                 int cpp = crtc->fb->bits_per_pixel / 8;
1593                 if (IS_GEN2(dev))
1594                         cpp = 4;
1595
1596                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1597                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1598                                                wm_info, fifo_size, cpp,
1599                                                latency_ns);
1600                 if (enabled == NULL)
1601                         enabled = crtc;
1602                 else
1603                         enabled = NULL;
1604         } else
1605                 planeb_wm = fifo_size - wm_info->guard_size;
1606
1607         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1608
1609         /*
1610          * Overlay gets an aggressive default since video jitter is bad.
1611          */
1612         cwm = 2;
1613
1614         /* Play safe and disable self-refresh before adjusting watermarks. */
1615         if (IS_I945G(dev) || IS_I945GM(dev))
1616                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1617         else if (IS_I915GM(dev))
1618                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1619
1620         /* Calc sr entries for one plane configs */
1621         if (HAS_FW_BLC(dev) && enabled) {
1622                 /* self-refresh has much higher latency */
1623                 static const int sr_latency_ns = 6000;
1624                 const struct drm_display_mode *adjusted_mode =
1625                         &to_intel_crtc(enabled)->config.adjusted_mode;
1626                 int clock = adjusted_mode->crtc_clock;
1627                 int htotal = adjusted_mode->htotal;
1628                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1629                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1630                 unsigned long line_time_us;
1631                 int entries;
1632
1633                 line_time_us = (htotal * 1000) / clock;
1634
1635                 /* Use ns/us then divide to preserve precision */
1636                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1637                         pixel_size * hdisplay;
1638                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1639                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1640                 srwm = wm_info->fifo_size - entries;
1641                 if (srwm < 0)
1642                         srwm = 1;
1643
1644                 if (IS_I945G(dev) || IS_I945GM(dev))
1645                         I915_WRITE(FW_BLC_SELF,
1646                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1647                 else if (IS_I915GM(dev))
1648                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1649         }
1650
1651         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1652                       planea_wm, planeb_wm, cwm, srwm);
1653
1654         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1655         fwater_hi = (cwm & 0x1f);
1656
1657         /* Set request length to 8 cachelines per fetch */
1658         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1659         fwater_hi = fwater_hi | (1 << 8);
1660
1661         I915_WRITE(FW_BLC, fwater_lo);
1662         I915_WRITE(FW_BLC2, fwater_hi);
1663
1664         if (HAS_FW_BLC(dev)) {
1665                 if (enabled) {
1666                         if (IS_I945G(dev) || IS_I945GM(dev))
1667                                 I915_WRITE(FW_BLC_SELF,
1668                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1669                         else if (IS_I915GM(dev))
1670                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1671                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1672                 } else
1673                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1674         }
1675 }
1676
1677 static void i830_update_wm(struct drm_crtc *unused_crtc)
1678 {
1679         struct drm_device *dev = unused_crtc->dev;
1680         struct drm_i915_private *dev_priv = dev->dev_private;
1681         struct drm_crtc *crtc;
1682         const struct drm_display_mode *adjusted_mode;
1683         uint32_t fwater_lo;
1684         int planea_wm;
1685
1686         crtc = single_enabled_crtc(dev);
1687         if (crtc == NULL)
1688                 return;
1689
1690         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1691         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1692                                        &i830_wm_info,
1693                                        dev_priv->display.get_fifo_size(dev, 0),
1694                                        4, latency_ns);
1695         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1696         fwater_lo |= (3<<8) | planea_wm;
1697
1698         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1699
1700         I915_WRITE(FW_BLC, fwater_lo);
1701 }
1702
1703 /*
1704  * Check the wm result.
1705  *
1706  * If any calculated watermark values is larger than the maximum value that
1707  * can be programmed into the associated watermark register, that watermark
1708  * must be disabled.
1709  */
1710 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1711                                 int fbc_wm, int display_wm, int cursor_wm,
1712                                 const struct intel_watermark_params *display,
1713                                 const struct intel_watermark_params *cursor)
1714 {
1715         struct drm_i915_private *dev_priv = dev->dev_private;
1716
1717         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1718                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1719
1720         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1721                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1722                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1723
1724                 /* fbc has it's own way to disable FBC WM */
1725                 I915_WRITE(DISP_ARB_CTL,
1726                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1727                 return false;
1728         } else if (INTEL_INFO(dev)->gen >= 6) {
1729                 /* enable FBC WM (except on ILK, where it must remain off) */
1730                 I915_WRITE(DISP_ARB_CTL,
1731                            I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1732         }
1733
1734         if (display_wm > display->max_wm) {
1735                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1736                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1737                 return false;
1738         }
1739
1740         if (cursor_wm > cursor->max_wm) {
1741                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1742                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1743                 return false;
1744         }
1745
1746         if (!(fbc_wm || display_wm || cursor_wm)) {
1747                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1748                 return false;
1749         }
1750
1751         return true;
1752 }
1753
1754 /*
1755  * Compute watermark values of WM[1-3],
1756  */
1757 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1758                                   int latency_ns,
1759                                   const struct intel_watermark_params *display,
1760                                   const struct intel_watermark_params *cursor,
1761                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1762 {
1763         struct drm_crtc *crtc;
1764         const struct drm_display_mode *adjusted_mode;
1765         unsigned long line_time_us;
1766         int hdisplay, htotal, pixel_size, clock;
1767         int line_count, line_size;
1768         int small, large;
1769         int entries;
1770
1771         if (!latency_ns) {
1772                 *fbc_wm = *display_wm = *cursor_wm = 0;
1773                 return false;
1774         }
1775
1776         crtc = intel_get_crtc_for_plane(dev, plane);
1777         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1778         clock = adjusted_mode->crtc_clock;
1779         htotal = adjusted_mode->htotal;
1780         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1781         pixel_size = crtc->fb->bits_per_pixel / 8;
1782
1783         line_time_us = (htotal * 1000) / clock;
1784         line_count = (latency_ns / line_time_us + 1000) / 1000;
1785         line_size = hdisplay * pixel_size;
1786
1787         /* Use the minimum of the small and large buffer method for primary */
1788         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1789         large = line_count * line_size;
1790
1791         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1792         *display_wm = entries + display->guard_size;
1793
1794         /*
1795          * Spec says:
1796          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1797          */
1798         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1799
1800         /* calculate the self-refresh watermark for display cursor */
1801         entries = line_count * pixel_size * 64;
1802         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1803         *cursor_wm = entries + cursor->guard_size;
1804
1805         return ironlake_check_srwm(dev, level,
1806                                    *fbc_wm, *display_wm, *cursor_wm,
1807                                    display, cursor);
1808 }
1809
1810 static void ironlake_update_wm(struct drm_crtc *crtc)
1811 {
1812         struct drm_device *dev = crtc->dev;
1813         struct drm_i915_private *dev_priv = dev->dev_private;
1814         int fbc_wm, plane_wm, cursor_wm;
1815         unsigned int enabled;
1816
1817         enabled = 0;
1818         if (g4x_compute_wm0(dev, PIPE_A,
1819                             &ironlake_display_wm_info,
1820                             dev_priv->wm.pri_latency[0] * 100,
1821                             &ironlake_cursor_wm_info,
1822                             dev_priv->wm.cur_latency[0] * 100,
1823                             &plane_wm, &cursor_wm)) {
1824                 I915_WRITE(WM0_PIPEA_ILK,
1825                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1826                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1827                               " plane %d, " "cursor: %d\n",
1828                               plane_wm, cursor_wm);
1829                 enabled |= 1 << PIPE_A;
1830         }
1831
1832         if (g4x_compute_wm0(dev, PIPE_B,
1833                             &ironlake_display_wm_info,
1834                             dev_priv->wm.pri_latency[0] * 100,
1835                             &ironlake_cursor_wm_info,
1836                             dev_priv->wm.cur_latency[0] * 100,
1837                             &plane_wm, &cursor_wm)) {
1838                 I915_WRITE(WM0_PIPEB_ILK,
1839                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1840                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1841                               " plane %d, cursor: %d\n",
1842                               plane_wm, cursor_wm);
1843                 enabled |= 1 << PIPE_B;
1844         }
1845
1846         /*
1847          * Calculate and update the self-refresh watermark only when one
1848          * display plane is used.
1849          */
1850         I915_WRITE(WM3_LP_ILK, 0);
1851         I915_WRITE(WM2_LP_ILK, 0);
1852         I915_WRITE(WM1_LP_ILK, 0);
1853
1854         if (!single_plane_enabled(enabled))
1855                 return;
1856         enabled = ffs(enabled) - 1;
1857
1858         /* WM1 */
1859         if (!ironlake_compute_srwm(dev, 1, enabled,
1860                                    dev_priv->wm.pri_latency[1] * 500,
1861                                    &ironlake_display_srwm_info,
1862                                    &ironlake_cursor_srwm_info,
1863                                    &fbc_wm, &plane_wm, &cursor_wm))
1864                 return;
1865
1866         I915_WRITE(WM1_LP_ILK,
1867                    WM1_LP_SR_EN |
1868                    (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1869                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1870                    (plane_wm << WM1_LP_SR_SHIFT) |
1871                    cursor_wm);
1872
1873         /* WM2 */
1874         if (!ironlake_compute_srwm(dev, 2, enabled,
1875                                    dev_priv->wm.pri_latency[2] * 500,
1876                                    &ironlake_display_srwm_info,
1877                                    &ironlake_cursor_srwm_info,
1878                                    &fbc_wm, &plane_wm, &cursor_wm))
1879                 return;
1880
1881         I915_WRITE(WM2_LP_ILK,
1882                    WM2_LP_EN |
1883                    (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1884                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1885                    (plane_wm << WM1_LP_SR_SHIFT) |
1886                    cursor_wm);
1887
1888         /*
1889          * WM3 is unsupported on ILK, probably because we don't have latency
1890          * data for that power state
1891          */
1892 }
1893
1894 static void sandybridge_update_wm(struct drm_crtc *crtc)
1895 {
1896         struct drm_device *dev = crtc->dev;
1897         struct drm_i915_private *dev_priv = dev->dev_private;
1898         int latency = dev_priv->wm.pri_latency[0] * 100;        /* In unit 0.1us */
1899         u32 val;
1900         int fbc_wm, plane_wm, cursor_wm;
1901         unsigned int enabled;
1902
1903         enabled = 0;
1904         if (g4x_compute_wm0(dev, PIPE_A,
1905                             &sandybridge_display_wm_info, latency,
1906                             &sandybridge_cursor_wm_info, latency,
1907                             &plane_wm, &cursor_wm)) {
1908                 val = I915_READ(WM0_PIPEA_ILK);
1909                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1910                 I915_WRITE(WM0_PIPEA_ILK, val |
1911                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1912                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1913                               " plane %d, " "cursor: %d\n",
1914                               plane_wm, cursor_wm);
1915                 enabled |= 1 << PIPE_A;
1916         }
1917
1918         if (g4x_compute_wm0(dev, PIPE_B,
1919                             &sandybridge_display_wm_info, latency,
1920                             &sandybridge_cursor_wm_info, latency,
1921                             &plane_wm, &cursor_wm)) {
1922                 val = I915_READ(WM0_PIPEB_ILK);
1923                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1924                 I915_WRITE(WM0_PIPEB_ILK, val |
1925                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1926                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1927                               " plane %d, cursor: %d\n",
1928                               plane_wm, cursor_wm);
1929                 enabled |= 1 << PIPE_B;
1930         }
1931
1932         /*
1933          * Calculate and update the self-refresh watermark only when one
1934          * display plane is used.
1935          *
1936          * SNB support 3 levels of watermark.
1937          *
1938          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1939          * and disabled in the descending order
1940          *
1941          */
1942         I915_WRITE(WM3_LP_ILK, 0);
1943         I915_WRITE(WM2_LP_ILK, 0);
1944         I915_WRITE(WM1_LP_ILK, 0);
1945
1946         if (!single_plane_enabled(enabled) ||
1947             dev_priv->sprite_scaling_enabled)
1948                 return;
1949         enabled = ffs(enabled) - 1;
1950
1951         /* WM1 */
1952         if (!ironlake_compute_srwm(dev, 1, enabled,
1953                                    dev_priv->wm.pri_latency[1] * 500,
1954                                    &sandybridge_display_srwm_info,
1955                                    &sandybridge_cursor_srwm_info,
1956                                    &fbc_wm, &plane_wm, &cursor_wm))
1957                 return;
1958
1959         I915_WRITE(WM1_LP_ILK,
1960                    WM1_LP_SR_EN |
1961                    (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1962                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1963                    (plane_wm << WM1_LP_SR_SHIFT) |
1964                    cursor_wm);
1965
1966         /* WM2 */
1967         if (!ironlake_compute_srwm(dev, 2, enabled,
1968                                    dev_priv->wm.pri_latency[2] * 500,
1969                                    &sandybridge_display_srwm_info,
1970                                    &sandybridge_cursor_srwm_info,
1971                                    &fbc_wm, &plane_wm, &cursor_wm))
1972                 return;
1973
1974         I915_WRITE(WM2_LP_ILK,
1975                    WM2_LP_EN |
1976                    (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1977                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1978                    (plane_wm << WM1_LP_SR_SHIFT) |
1979                    cursor_wm);
1980
1981         /* WM3 */
1982         if (!ironlake_compute_srwm(dev, 3, enabled,
1983                                    dev_priv->wm.pri_latency[3] * 500,
1984                                    &sandybridge_display_srwm_info,
1985                                    &sandybridge_cursor_srwm_info,
1986                                    &fbc_wm, &plane_wm, &cursor_wm))
1987                 return;
1988
1989         I915_WRITE(WM3_LP_ILK,
1990                    WM3_LP_EN |
1991                    (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
1992                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1993                    (plane_wm << WM1_LP_SR_SHIFT) |
1994                    cursor_wm);
1995 }
1996
1997 static void ivybridge_update_wm(struct drm_crtc *crtc)
1998 {
1999         struct drm_device *dev = crtc->dev;
2000         struct drm_i915_private *dev_priv = dev->dev_private;
2001         int latency = dev_priv->wm.pri_latency[0] * 100;        /* In unit 0.1us */
2002         u32 val;
2003         int fbc_wm, plane_wm, cursor_wm;
2004         int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
2005         unsigned int enabled;
2006
2007         enabled = 0;
2008         if (g4x_compute_wm0(dev, PIPE_A,
2009                             &sandybridge_display_wm_info, latency,
2010                             &sandybridge_cursor_wm_info, latency,
2011                             &plane_wm, &cursor_wm)) {
2012                 val = I915_READ(WM0_PIPEA_ILK);
2013                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2014                 I915_WRITE(WM0_PIPEA_ILK, val |
2015                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2016                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
2017                               " plane %d, " "cursor: %d\n",
2018                               plane_wm, cursor_wm);
2019                 enabled |= 1 << PIPE_A;
2020         }
2021
2022         if (g4x_compute_wm0(dev, PIPE_B,
2023                             &sandybridge_display_wm_info, latency,
2024                             &sandybridge_cursor_wm_info, latency,
2025                             &plane_wm, &cursor_wm)) {
2026                 val = I915_READ(WM0_PIPEB_ILK);
2027                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2028                 I915_WRITE(WM0_PIPEB_ILK, val |
2029                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2030                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
2031                               " plane %d, cursor: %d\n",
2032                               plane_wm, cursor_wm);
2033                 enabled |= 1 << PIPE_B;
2034         }
2035
2036         if (g4x_compute_wm0(dev, PIPE_C,
2037                             &sandybridge_display_wm_info, latency,
2038                             &sandybridge_cursor_wm_info, latency,
2039                             &plane_wm, &cursor_wm)) {
2040                 val = I915_READ(WM0_PIPEC_IVB);
2041                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2042                 I915_WRITE(WM0_PIPEC_IVB, val |
2043                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2044                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2045                               " plane %d, cursor: %d\n",
2046                               plane_wm, cursor_wm);
2047                 enabled |= 1 << PIPE_C;
2048         }
2049
2050         /*
2051          * Calculate and update the self-refresh watermark only when one
2052          * display plane is used.
2053          *
2054          * SNB support 3 levels of watermark.
2055          *
2056          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2057          * and disabled in the descending order
2058          *
2059          */
2060         I915_WRITE(WM3_LP_ILK, 0);
2061         I915_WRITE(WM2_LP_ILK, 0);
2062         I915_WRITE(WM1_LP_ILK, 0);
2063
2064         if (!single_plane_enabled(enabled) ||
2065             dev_priv->sprite_scaling_enabled)
2066                 return;
2067         enabled = ffs(enabled) - 1;
2068
2069         /* WM1 */
2070         if (!ironlake_compute_srwm(dev, 1, enabled,
2071                                    dev_priv->wm.pri_latency[1] * 500,
2072                                    &sandybridge_display_srwm_info,
2073                                    &sandybridge_cursor_srwm_info,
2074                                    &fbc_wm, &plane_wm, &cursor_wm))
2075                 return;
2076
2077         I915_WRITE(WM1_LP_ILK,
2078                    WM1_LP_SR_EN |
2079                    (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
2080                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2081                    (plane_wm << WM1_LP_SR_SHIFT) |
2082                    cursor_wm);
2083
2084         /* WM2 */
2085         if (!ironlake_compute_srwm(dev, 2, enabled,
2086                                    dev_priv->wm.pri_latency[2] * 500,
2087                                    &sandybridge_display_srwm_info,
2088                                    &sandybridge_cursor_srwm_info,
2089                                    &fbc_wm, &plane_wm, &cursor_wm))
2090                 return;
2091
2092         I915_WRITE(WM2_LP_ILK,
2093                    WM2_LP_EN |
2094                    (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
2095                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2096                    (plane_wm << WM1_LP_SR_SHIFT) |
2097                    cursor_wm);
2098
2099         /* WM3, note we have to correct the cursor latency */
2100         if (!ironlake_compute_srwm(dev, 3, enabled,
2101                                    dev_priv->wm.pri_latency[3] * 500,
2102                                    &sandybridge_display_srwm_info,
2103                                    &sandybridge_cursor_srwm_info,
2104                                    &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2105             !ironlake_compute_srwm(dev, 3, enabled,
2106                                    dev_priv->wm.cur_latency[3] * 500,
2107                                    &sandybridge_display_srwm_info,
2108                                    &sandybridge_cursor_srwm_info,
2109                                    &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2110                 return;
2111
2112         I915_WRITE(WM3_LP_ILK,
2113                    WM3_LP_EN |
2114                    (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2115                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2116                    (plane_wm << WM1_LP_SR_SHIFT) |
2117                    cursor_wm);
2118 }
2119
2120 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
2121                                     struct drm_crtc *crtc)
2122 {
2123         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2124         uint32_t pixel_rate;
2125
2126         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
2127
2128         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2129          * adjust the pixel_rate here. */
2130
2131         if (intel_crtc->config.pch_pfit.enabled) {
2132                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2133                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
2134
2135                 pipe_w = intel_crtc->config.pipe_src_w;
2136                 pipe_h = intel_crtc->config.pipe_src_h;
2137                 pfit_w = (pfit_size >> 16) & 0xFFFF;
2138                 pfit_h = pfit_size & 0xFFFF;
2139                 if (pipe_w < pfit_w)
2140                         pipe_w = pfit_w;
2141                 if (pipe_h < pfit_h)
2142                         pipe_h = pfit_h;
2143
2144                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2145                                      pfit_w * pfit_h);
2146         }
2147
2148         return pixel_rate;
2149 }
2150
2151 /* latency must be in 0.1us units. */
2152 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2153                                uint32_t latency)
2154 {
2155         uint64_t ret;
2156
2157         if (WARN(latency == 0, "Latency value missing\n"))
2158                 return UINT_MAX;
2159
2160         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2161         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2162
2163         return ret;
2164 }
2165
2166 /* latency must be in 0.1us units. */
2167 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2168                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2169                                uint32_t latency)
2170 {
2171         uint32_t ret;
2172
2173         if (WARN(latency == 0, "Latency value missing\n"))
2174                 return UINT_MAX;
2175
2176         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2177         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2178         ret = DIV_ROUND_UP(ret, 64) + 2;
2179         return ret;
2180 }
2181
2182 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2183                            uint8_t bytes_per_pixel)
2184 {
2185         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2186 }
2187
2188 struct hsw_pipe_wm_parameters {
2189         bool active;
2190         uint32_t pipe_htotal;
2191         uint32_t pixel_rate;
2192         struct intel_plane_wm_parameters pri;
2193         struct intel_plane_wm_parameters spr;
2194         struct intel_plane_wm_parameters cur;
2195 };
2196
2197 struct hsw_wm_maximums {
2198         uint16_t pri;
2199         uint16_t spr;
2200         uint16_t cur;
2201         uint16_t fbc;
2202 };
2203
2204 /* used in computing the new watermarks state */
2205 struct intel_wm_config {
2206         unsigned int num_pipes_active;
2207         bool sprites_enabled;
2208         bool sprites_scaled;
2209 };
2210
2211 /*
2212  * For both WM_PIPE and WM_LP.
2213  * mem_value must be in 0.1us units.
2214  */
2215 static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
2216                                    uint32_t mem_value,
2217                                    bool is_lp)
2218 {
2219         uint32_t method1, method2;
2220
2221         if (!params->active || !params->pri.enabled)
2222                 return 0;
2223
2224         method1 = ilk_wm_method1(params->pixel_rate,
2225                                  params->pri.bytes_per_pixel,
2226                                  mem_value);
2227
2228         if (!is_lp)
2229                 return method1;
2230
2231         method2 = ilk_wm_method2(params->pixel_rate,
2232                                  params->pipe_htotal,
2233                                  params->pri.horiz_pixels,
2234                                  params->pri.bytes_per_pixel,
2235                                  mem_value);
2236
2237         return min(method1, method2);
2238 }
2239
2240 /*
2241  * For both WM_PIPE and WM_LP.
2242  * mem_value must be in 0.1us units.
2243  */
2244 static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
2245                                    uint32_t mem_value)
2246 {
2247         uint32_t method1, method2;
2248
2249         if (!params->active || !params->spr.enabled)
2250                 return 0;
2251
2252         method1 = ilk_wm_method1(params->pixel_rate,
2253                                  params->spr.bytes_per_pixel,
2254                                  mem_value);
2255         method2 = ilk_wm_method2(params->pixel_rate,
2256                                  params->pipe_htotal,
2257                                  params->spr.horiz_pixels,
2258                                  params->spr.bytes_per_pixel,
2259                                  mem_value);
2260         return min(method1, method2);
2261 }
2262
2263 /*
2264  * For both WM_PIPE and WM_LP.
2265  * mem_value must be in 0.1us units.
2266  */
2267 static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
2268                                    uint32_t mem_value)
2269 {
2270         if (!params->active || !params->cur.enabled)
2271                 return 0;
2272
2273         return ilk_wm_method2(params->pixel_rate,
2274                               params->pipe_htotal,
2275                               params->cur.horiz_pixels,
2276                               params->cur.bytes_per_pixel,
2277                               mem_value);
2278 }
2279
2280 /* Only for WM_LP. */
2281 static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
2282                                    uint32_t pri_val)
2283 {
2284         if (!params->active || !params->pri.enabled)
2285                 return 0;
2286
2287         return ilk_wm_fbc(pri_val,
2288                           params->pri.horiz_pixels,
2289                           params->pri.bytes_per_pixel);
2290 }
2291
2292 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2293 {
2294         if (INTEL_INFO(dev)->gen >= 8)
2295                 return 3072;
2296         else if (INTEL_INFO(dev)->gen >= 7)
2297                 return 768;
2298         else
2299                 return 512;
2300 }
2301
2302 /* Calculate the maximum primary/sprite plane watermark */
2303 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2304                                      int level,
2305                                      const struct intel_wm_config *config,
2306                                      enum intel_ddb_partitioning ddb_partitioning,
2307                                      bool is_sprite)
2308 {
2309         unsigned int fifo_size = ilk_display_fifo_size(dev);
2310         unsigned int max;
2311
2312         /* if sprites aren't enabled, sprites get nothing */
2313         if (is_sprite && !config->sprites_enabled)
2314                 return 0;
2315
2316         /* HSW allows LP1+ watermarks even with multiple pipes */
2317         if (level == 0 || config->num_pipes_active > 1) {
2318                 fifo_size /= INTEL_INFO(dev)->num_pipes;
2319
2320                 /*
2321                  * For some reason the non self refresh
2322                  * FIFO size is only half of the self
2323                  * refresh FIFO size on ILK/SNB.
2324                  */
2325                 if (INTEL_INFO(dev)->gen <= 6)
2326                         fifo_size /= 2;
2327         }
2328
2329         if (config->sprites_enabled) {
2330                 /* level 0 is always calculated with 1:1 split */
2331                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2332                         if (is_sprite)
2333                                 fifo_size *= 5;
2334                         fifo_size /= 6;
2335                 } else {
2336                         fifo_size /= 2;
2337                 }
2338         }
2339
2340         /* clamp to max that the registers can hold */
2341         if (INTEL_INFO(dev)->gen >= 8)
2342                 max = level == 0 ? 255 : 2047;
2343         else if (INTEL_INFO(dev)->gen >= 7)
2344                 /* IVB/HSW primary/sprite plane watermarks */
2345                 max = level == 0 ? 127 : 1023;
2346         else if (!is_sprite)
2347                 /* ILK/SNB primary plane watermarks */
2348                 max = level == 0 ? 127 : 511;
2349         else
2350                 /* ILK/SNB sprite plane watermarks */
2351                 max = level == 0 ? 63 : 255;
2352
2353         return min(fifo_size, max);
2354 }
2355
2356 /* Calculate the maximum cursor plane watermark */
2357 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2358                                       int level,
2359                                       const struct intel_wm_config *config)
2360 {
2361         /* HSW LP1+ watermarks w/ multiple pipes */
2362         if (level > 0 && config->num_pipes_active > 1)
2363                 return 64;
2364
2365         /* otherwise just report max that registers can hold */
2366         if (INTEL_INFO(dev)->gen >= 7)
2367                 return level == 0 ? 63 : 255;
2368         else
2369                 return level == 0 ? 31 : 63;
2370 }
2371
2372 /* Calculate the maximum FBC watermark */
2373 static unsigned int ilk_fbc_wm_max(struct drm_device *dev)
2374 {
2375         /* max that registers can hold */
2376         if (INTEL_INFO(dev)->gen >= 8)
2377                 return 31;
2378         else
2379                 return 15;
2380 }
2381
2382 static void ilk_compute_wm_maximums(struct drm_device *dev,
2383                                     int level,
2384                                     const struct intel_wm_config *config,
2385                                     enum intel_ddb_partitioning ddb_partitioning,
2386                                     struct hsw_wm_maximums *max)
2387 {
2388         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2389         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2390         max->cur = ilk_cursor_wm_max(dev, level, config);
2391         max->fbc = ilk_fbc_wm_max(dev);
2392 }
2393
2394 static bool ilk_validate_wm_level(int level,
2395                                   const struct hsw_wm_maximums *max,
2396                                   struct intel_wm_level *result)
2397 {
2398         bool ret;
2399
2400         /* already determined to be invalid? */
2401         if (!result->enable)
2402                 return false;
2403
2404         result->enable = result->pri_val <= max->pri &&
2405                          result->spr_val <= max->spr &&
2406                          result->cur_val <= max->cur;
2407
2408         ret = result->enable;
2409
2410         /*
2411          * HACK until we can pre-compute everything,
2412          * and thus fail gracefully if LP0 watermarks
2413          * are exceeded...
2414          */
2415         if (level == 0 && !result->enable) {
2416                 if (result->pri_val > max->pri)
2417                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2418                                       level, result->pri_val, max->pri);
2419                 if (result->spr_val > max->spr)
2420                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2421                                       level, result->spr_val, max->spr);
2422                 if (result->cur_val > max->cur)
2423                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2424                                       level, result->cur_val, max->cur);
2425
2426                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2427                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2428                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2429                 result->enable = true;
2430         }
2431
2432         return ret;
2433 }
2434
2435 static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
2436                                  int level,
2437                                  const struct hsw_pipe_wm_parameters *p,
2438                                  struct intel_wm_level *result)
2439 {
2440         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2441         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2442         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2443
2444         /* WM1+ latency values stored in 0.5us units */
2445         if (level > 0) {
2446                 pri_latency *= 5;
2447                 spr_latency *= 5;
2448                 cur_latency *= 5;
2449         }
2450
2451         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2452         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2453         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2454         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2455         result->enable = true;
2456 }
2457
2458 static uint32_t
2459 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2460 {
2461         struct drm_i915_private *dev_priv = dev->dev_private;
2462         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2463         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2464         u32 linetime, ips_linetime;
2465
2466         if (!intel_crtc_active(crtc))
2467                 return 0;
2468
2469         /* The WM are computed with base on how long it takes to fill a single
2470          * row at the given clock rate, multiplied by 8.
2471          * */
2472         linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2473         ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2474                                          intel_ddi_get_cdclk_freq(dev_priv));
2475
2476         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2477                PIPE_WM_LINETIME_TIME(linetime);
2478 }
2479
2480 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2481 {
2482         struct drm_i915_private *dev_priv = dev->dev_private;
2483
2484         if (IS_HASWELL(dev)) {
2485                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2486
2487                 wm[0] = (sskpd >> 56) & 0xFF;
2488                 if (wm[0] == 0)
2489                         wm[0] = sskpd & 0xF;
2490                 wm[1] = (sskpd >> 4) & 0xFF;
2491                 wm[2] = (sskpd >> 12) & 0xFF;
2492                 wm[3] = (sskpd >> 20) & 0x1FF;
2493                 wm[4] = (sskpd >> 32) & 0x1FF;
2494         } else if (INTEL_INFO(dev)->gen >= 6) {
2495                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2496
2497                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2498                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2499                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2500                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2501         } else if (INTEL_INFO(dev)->gen >= 5) {
2502                 uint32_t mltr = I915_READ(MLTR_ILK);
2503
2504                 /* ILK primary LP0 latency is 700 ns */
2505                 wm[0] = 7;
2506                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2507                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2508         }
2509 }
2510
2511 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2512 {
2513         /* ILK sprite LP0 latency is 1300 ns */
2514         if (INTEL_INFO(dev)->gen == 5)
2515                 wm[0] = 13;
2516 }
2517
2518 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2519 {
2520         /* ILK cursor LP0 latency is 1300 ns */
2521         if (INTEL_INFO(dev)->gen == 5)
2522                 wm[0] = 13;
2523
2524         /* WaDoubleCursorLP3Latency:ivb */
2525         if (IS_IVYBRIDGE(dev))
2526                 wm[3] *= 2;
2527 }
2528
2529 static int ilk_wm_max_level(const struct drm_device *dev)
2530 {
2531         /* how many WM levels are we expecting */
2532         if (IS_HASWELL(dev))
2533                 return 4;
2534         else if (INTEL_INFO(dev)->gen >= 6)
2535                 return 3;
2536         else
2537                 return 2;
2538 }
2539
2540 static void intel_print_wm_latency(struct drm_device *dev,
2541                                    const char *name,
2542                                    const uint16_t wm[5])
2543 {
2544         int level, max_level = ilk_wm_max_level(dev);
2545
2546         for (level = 0; level <= max_level; level++) {
2547                 unsigned int latency = wm[level];
2548
2549                 if (latency == 0) {
2550                         DRM_ERROR("%s WM%d latency not provided\n",
2551                                   name, level);
2552                         continue;
2553                 }
2554
2555                 /* WM1+ latency values in 0.5us units */
2556                 if (level > 0)
2557                         latency *= 5;
2558
2559                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2560                               name, level, wm[level],
2561                               latency / 10, latency % 10);
2562         }
2563 }
2564
2565 static void intel_setup_wm_latency(struct drm_device *dev)
2566 {
2567         struct drm_i915_private *dev_priv = dev->dev_private;
2568
2569         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2570
2571         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2572                sizeof(dev_priv->wm.pri_latency));
2573         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2574                sizeof(dev_priv->wm.pri_latency));
2575
2576         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2577         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2578
2579         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2580         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2581         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2582 }
2583
2584 static void hsw_compute_wm_parameters(struct drm_crtc *crtc,
2585                                       struct hsw_pipe_wm_parameters *p,
2586                                       struct intel_wm_config *config)
2587 {
2588         struct drm_device *dev = crtc->dev;
2589         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2590         enum pipe pipe = intel_crtc->pipe;
2591         struct drm_plane *plane;
2592
2593         p->active = intel_crtc_active(crtc);
2594         if (p->active) {
2595                 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2596                 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2597                 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2598                 p->cur.bytes_per_pixel = 4;
2599                 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2600                 p->cur.horiz_pixels = 64;
2601                 /* TODO: for now, assume primary and cursor planes are always enabled. */
2602                 p->pri.enabled = true;
2603                 p->cur.enabled = true;
2604         }
2605
2606         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2607                 config->num_pipes_active += intel_crtc_active(crtc);
2608
2609         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2610                 struct intel_plane *intel_plane = to_intel_plane(plane);
2611
2612                 if (intel_plane->pipe == pipe)
2613                         p->spr = intel_plane->wm;
2614
2615                 config->sprites_enabled |= intel_plane->wm.enabled;
2616                 config->sprites_scaled |= intel_plane->wm.scaled;
2617         }
2618 }
2619
2620 /* Compute new watermarks for the pipe */
2621 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2622                                   const struct hsw_pipe_wm_parameters *params,
2623                                   struct intel_pipe_wm *pipe_wm)
2624 {
2625         struct drm_device *dev = crtc->dev;
2626         struct drm_i915_private *dev_priv = dev->dev_private;
2627         int level, max_level = ilk_wm_max_level(dev);
2628         /* LP0 watermark maximums depend on this pipe alone */
2629         struct intel_wm_config config = {
2630                 .num_pipes_active = 1,
2631                 .sprites_enabled = params->spr.enabled,
2632                 .sprites_scaled = params->spr.scaled,
2633         };
2634         struct hsw_wm_maximums max;
2635
2636         /* LP0 watermarks always use 1/2 DDB partitioning */
2637         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2638
2639         for (level = 0; level <= max_level; level++)
2640                 ilk_compute_wm_level(dev_priv, level, params,
2641                                      &pipe_wm->wm[level]);
2642
2643         pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2644
2645         /* At least LP0 must be valid */
2646         return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
2647 }
2648
2649 /*
2650  * Merge the watermarks from all active pipes for a specific level.
2651  */
2652 static void ilk_merge_wm_level(struct drm_device *dev,
2653                                int level,
2654                                struct intel_wm_level *ret_wm)
2655 {
2656         const struct intel_crtc *intel_crtc;
2657
2658         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2659                 const struct intel_wm_level *wm =
2660                         &intel_crtc->wm.active.wm[level];
2661
2662                 if (!wm->enable)
2663                         return;
2664
2665                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2666                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2667                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2668                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2669         }
2670
2671         ret_wm->enable = true;
2672 }
2673
2674 /*
2675  * Merge all low power watermarks for all active pipes.
2676  */
2677 static void ilk_wm_merge(struct drm_device *dev,
2678                          const struct hsw_wm_maximums *max,
2679                          struct intel_pipe_wm *merged)
2680 {
2681         int level, max_level = ilk_wm_max_level(dev);
2682
2683         merged->fbc_wm_enabled = true;
2684
2685         /* merge each WM1+ level */
2686         for (level = 1; level <= max_level; level++) {
2687                 struct intel_wm_level *wm = &merged->wm[level];
2688
2689                 ilk_merge_wm_level(dev, level, wm);
2690
2691                 if (!ilk_validate_wm_level(level, max, wm))
2692                         break;
2693
2694                 /*
2695                  * The spec says it is preferred to disable
2696                  * FBC WMs instead of disabling a WM level.
2697                  */
2698                 if (wm->fbc_val > max->fbc) {
2699                         merged->fbc_wm_enabled = false;
2700                         wm->fbc_val = 0;
2701                 }
2702         }
2703 }
2704
2705 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2706 {
2707         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2708         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2709 }
2710
2711 static void hsw_compute_wm_results(struct drm_device *dev,
2712                                    const struct intel_pipe_wm *merged,
2713                                    enum intel_ddb_partitioning partitioning,
2714                                    struct hsw_wm_values *results)
2715 {
2716         struct intel_crtc *intel_crtc;
2717         int level, wm_lp;
2718
2719         results->enable_fbc_wm = merged->fbc_wm_enabled;
2720         results->partitioning = partitioning;
2721
2722         /* LP1+ register values */
2723         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2724                 const struct intel_wm_level *r;
2725
2726                 level = ilk_wm_lp_to_level(wm_lp, merged);
2727
2728                 r = &merged->wm[level];
2729                 if (!r->enable)
2730                         break;
2731
2732                 results->wm_lp[wm_lp - 1] = WM3_LP_EN |
2733                         ((level * 2) << WM1_LP_LATENCY_SHIFT) |
2734                         (r->pri_val << WM1_LP_SR_SHIFT) |
2735                         r->cur_val;
2736
2737                 if (INTEL_INFO(dev)->gen >= 8)
2738                         results->wm_lp[wm_lp - 1] |=
2739                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2740                 else
2741                         results->wm_lp[wm_lp - 1] |=
2742                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2743
2744                 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2745         }
2746
2747         /* LP0 register values */
2748         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2749                 enum pipe pipe = intel_crtc->pipe;
2750                 const struct intel_wm_level *r =
2751                         &intel_crtc->wm.active.wm[0];
2752
2753                 if (WARN_ON(!r->enable))
2754                         continue;
2755
2756                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2757
2758                 results->wm_pipe[pipe] =
2759                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2760                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2761                         r->cur_val;
2762         }
2763 }
2764
2765 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2766  * case both are at the same level. Prefer r1 in case they're the same. */
2767 static struct intel_pipe_wm *hsw_find_best_result(struct drm_device *dev,
2768                                                   struct intel_pipe_wm *r1,
2769                                                   struct intel_pipe_wm *r2)
2770 {
2771         int level, max_level = ilk_wm_max_level(dev);
2772         int level1 = 0, level2 = 0;
2773
2774         for (level = 1; level <= max_level; level++) {
2775                 if (r1->wm[level].enable)
2776                         level1 = level;
2777                 if (r2->wm[level].enable)
2778                         level2 = level;
2779         }
2780
2781         if (level1 == level2) {
2782                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2783                         return r2;
2784                 else
2785                         return r1;
2786         } else if (level1 > level2) {
2787                 return r1;
2788         } else {
2789                 return r2;
2790         }
2791 }
2792
2793 /* dirty bits used to track which watermarks need changes */
2794 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2795 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2796 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2797 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2798 #define WM_DIRTY_FBC (1 << 24)
2799 #define WM_DIRTY_DDB (1 << 25)
2800
2801 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2802                                          const struct hsw_wm_values *old,
2803                                          const struct hsw_wm_values *new)
2804 {
2805         unsigned int dirty = 0;
2806         enum pipe pipe;
2807         int wm_lp;
2808
2809         for_each_pipe(pipe) {
2810                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2811                         dirty |= WM_DIRTY_LINETIME(pipe);
2812                         /* Must disable LP1+ watermarks too */
2813                         dirty |= WM_DIRTY_LP_ALL;
2814                 }
2815
2816                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2817                         dirty |= WM_DIRTY_PIPE(pipe);
2818                         /* Must disable LP1+ watermarks too */
2819                         dirty |= WM_DIRTY_LP_ALL;
2820                 }
2821         }
2822
2823         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2824                 dirty |= WM_DIRTY_FBC;
2825                 /* Must disable LP1+ watermarks too */
2826                 dirty |= WM_DIRTY_LP_ALL;
2827         }
2828
2829         if (old->partitioning != new->partitioning) {
2830                 dirty |= WM_DIRTY_DDB;
2831                 /* Must disable LP1+ watermarks too */
2832                 dirty |= WM_DIRTY_LP_ALL;
2833         }
2834
2835         /* LP1+ watermarks already deemed dirty, no need to continue */
2836         if (dirty & WM_DIRTY_LP_ALL)
2837                 return dirty;
2838
2839         /* Find the lowest numbered LP1+ watermark in need of an update... */
2840         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2841                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2842                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2843                         break;
2844         }
2845
2846         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2847         for (; wm_lp <= 3; wm_lp++)
2848                 dirty |= WM_DIRTY_LP(wm_lp);
2849
2850         return dirty;
2851 }
2852
2853 /*
2854  * The spec says we shouldn't write when we don't need, because every write
2855  * causes WMs to be re-evaluated, expending some power.
2856  */
2857 static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2858                                 struct hsw_wm_values *results)
2859 {
2860         struct hsw_wm_values *previous = &dev_priv->wm.hw;
2861         unsigned int dirty;
2862         uint32_t val;
2863
2864         dirty = ilk_compute_wm_dirty(dev_priv->dev, previous, results);
2865         if (!dirty)
2866                 return;
2867
2868         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != 0)
2869                 I915_WRITE(WM3_LP_ILK, 0);
2870         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != 0)
2871                 I915_WRITE(WM2_LP_ILK, 0);
2872         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != 0)
2873                 I915_WRITE(WM1_LP_ILK, 0);
2874
2875         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2876                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2877         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2878                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2879         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2880                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2881
2882         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2883                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2884         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2885                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2886         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2887                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2888
2889         if (dirty & WM_DIRTY_DDB) {
2890                 val = I915_READ(WM_MISC);
2891                 if (results->partitioning == INTEL_DDB_PART_1_2)
2892                         val &= ~WM_MISC_DATA_PARTITION_5_6;
2893                 else
2894                         val |= WM_MISC_DATA_PARTITION_5_6;
2895                 I915_WRITE(WM_MISC, val);
2896         }
2897
2898         if (dirty & WM_DIRTY_FBC) {
2899                 val = I915_READ(DISP_ARB_CTL);
2900                 if (results->enable_fbc_wm)
2901                         val &= ~DISP_FBC_WM_DIS;
2902                 else
2903                         val |= DISP_FBC_WM_DIS;
2904                 I915_WRITE(DISP_ARB_CTL, val);
2905         }
2906
2907         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2908                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2909         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2910                 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2911         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2912                 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2913
2914         if (dirty & WM_DIRTY_LP(1) && results->wm_lp[0] != 0)
2915                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2916         if (dirty & WM_DIRTY_LP(2) && results->wm_lp[1] != 0)
2917                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2918         if (dirty & WM_DIRTY_LP(3) && results->wm_lp[2] != 0)
2919                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2920
2921         dev_priv->wm.hw = *results;
2922 }
2923
2924 static void haswell_update_wm(struct drm_crtc *crtc)
2925 {
2926         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2927         struct drm_device *dev = crtc->dev;
2928         struct drm_i915_private *dev_priv = dev->dev_private;
2929         struct hsw_wm_maximums max;
2930         struct hsw_pipe_wm_parameters params = {};
2931         struct hsw_wm_values results = {};
2932         enum intel_ddb_partitioning partitioning;
2933         struct intel_pipe_wm pipe_wm = {};
2934         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2935         struct intel_wm_config config = {};
2936
2937         hsw_compute_wm_parameters(crtc, &params, &config);
2938
2939         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2940
2941         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2942                 return;
2943
2944         intel_crtc->wm.active = pipe_wm;
2945
2946         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2947         ilk_wm_merge(dev, &max, &lp_wm_1_2);
2948
2949         /* 5/6 split only in single pipe config on IVB+ */
2950         if (INTEL_INFO(dev)->gen >= 7 &&
2951             config.num_pipes_active == 1 && config.sprites_enabled) {
2952                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2953                 ilk_wm_merge(dev, &max, &lp_wm_5_6);
2954
2955                 best_lp_wm = hsw_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2956         } else {
2957                 best_lp_wm = &lp_wm_1_2;
2958         }
2959
2960         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2961                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2962
2963         hsw_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2964
2965         hsw_write_wm_values(dev_priv, &results);
2966 }
2967
2968 static void haswell_update_sprite_wm(struct drm_plane *plane,
2969                                      struct drm_crtc *crtc,
2970                                      uint32_t sprite_width, int pixel_size,
2971                                      bool enabled, bool scaled)
2972 {
2973         struct intel_plane *intel_plane = to_intel_plane(plane);
2974
2975         intel_plane->wm.enabled = enabled;
2976         intel_plane->wm.scaled = scaled;
2977         intel_plane->wm.horiz_pixels = sprite_width;
2978         intel_plane->wm.bytes_per_pixel = pixel_size;
2979
2980         haswell_update_wm(crtc);
2981 }
2982
2983 static bool
2984 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2985                               uint32_t sprite_width, int pixel_size,
2986                               const struct intel_watermark_params *display,
2987                               int display_latency_ns, int *sprite_wm)
2988 {
2989         struct drm_crtc *crtc;
2990         int clock;
2991         int entries, tlb_miss;
2992
2993         crtc = intel_get_crtc_for_plane(dev, plane);
2994         if (!intel_crtc_active(crtc)) {
2995                 *sprite_wm = display->guard_size;
2996                 return false;
2997         }
2998
2999         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3000
3001         /* Use the small buffer method to calculate the sprite watermark */
3002         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3003         tlb_miss = display->fifo_size*display->cacheline_size -
3004                 sprite_width * 8;
3005         if (tlb_miss > 0)
3006                 entries += tlb_miss;
3007         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3008         *sprite_wm = entries + display->guard_size;
3009         if (*sprite_wm > (int)display->max_wm)
3010                 *sprite_wm = display->max_wm;
3011
3012         return true;
3013 }
3014
3015 static bool
3016 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
3017                                 uint32_t sprite_width, int pixel_size,
3018                                 const struct intel_watermark_params *display,
3019                                 int latency_ns, int *sprite_wm)
3020 {
3021         struct drm_crtc *crtc;
3022         unsigned long line_time_us;
3023         int clock;
3024         int line_count, line_size;
3025         int small, large;
3026         int entries;
3027
3028         if (!latency_ns) {
3029                 *sprite_wm = 0;
3030                 return false;
3031         }
3032
3033         crtc = intel_get_crtc_for_plane(dev, plane);
3034         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3035         if (!clock) {
3036                 *sprite_wm = 0;
3037                 return false;
3038         }
3039
3040         line_time_us = (sprite_width * 1000) / clock;
3041         if (!line_time_us) {
3042                 *sprite_wm = 0;
3043                 return false;
3044         }
3045
3046         line_count = (latency_ns / line_time_us + 1000) / 1000;
3047         line_size = sprite_width * pixel_size;
3048
3049         /* Use the minimum of the small and large buffer method for primary */
3050         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3051         large = line_count * line_size;
3052
3053         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3054         *sprite_wm = entries + display->guard_size;
3055
3056         return *sprite_wm > 0x3ff ? false : true;
3057 }
3058
3059 static void sandybridge_update_sprite_wm(struct drm_plane *plane,
3060                                          struct drm_crtc *crtc,
3061                                          uint32_t sprite_width, int pixel_size,
3062                                          bool enabled, bool scaled)
3063 {
3064         struct drm_device *dev = plane->dev;
3065         struct drm_i915_private *dev_priv = dev->dev_private;
3066         int pipe = to_intel_plane(plane)->pipe;
3067         int latency = dev_priv->wm.spr_latency[0] * 100;        /* In unit 0.1us */
3068         u32 val;
3069         int sprite_wm, reg;
3070         int ret;
3071
3072         if (!enabled)
3073                 return;
3074
3075         switch (pipe) {
3076         case 0:
3077                 reg = WM0_PIPEA_ILK;
3078                 break;
3079         case 1:
3080                 reg = WM0_PIPEB_ILK;
3081                 break;
3082         case 2:
3083                 reg = WM0_PIPEC_IVB;
3084                 break;
3085         default:
3086                 return; /* bad pipe */
3087         }
3088
3089         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
3090                                             &sandybridge_display_wm_info,
3091                                             latency, &sprite_wm);
3092         if (!ret) {
3093                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
3094                               pipe_name(pipe));
3095                 return;
3096         }
3097
3098         val = I915_READ(reg);
3099         val &= ~WM0_PIPE_SPRITE_MASK;
3100         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
3101         DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
3102
3103
3104         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3105                                               pixel_size,
3106                                               &sandybridge_display_srwm_info,
3107                                               dev_priv->wm.spr_latency[1] * 500,
3108                                               &sprite_wm);
3109         if (!ret) {
3110                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
3111                               pipe_name(pipe));
3112                 return;
3113         }
3114         I915_WRITE(WM1S_LP_ILK, sprite_wm);
3115
3116         /* Only IVB has two more LP watermarks for sprite */
3117         if (!IS_IVYBRIDGE(dev))
3118                 return;
3119
3120         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3121                                               pixel_size,
3122                                               &sandybridge_display_srwm_info,
3123                                               dev_priv->wm.spr_latency[2] * 500,
3124                                               &sprite_wm);
3125         if (!ret) {
3126                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
3127                               pipe_name(pipe));
3128                 return;
3129         }
3130         I915_WRITE(WM2S_LP_IVB, sprite_wm);
3131
3132         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3133                                               pixel_size,
3134                                               &sandybridge_display_srwm_info,
3135                                               dev_priv->wm.spr_latency[3] * 500,
3136                                               &sprite_wm);
3137         if (!ret) {
3138                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
3139                               pipe_name(pipe));
3140                 return;
3141         }
3142         I915_WRITE(WM3S_LP_IVB, sprite_wm);
3143 }
3144
3145 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3146 {
3147         struct drm_device *dev = crtc->dev;
3148         struct drm_i915_private *dev_priv = dev->dev_private;
3149         struct hsw_wm_values *hw = &dev_priv->wm.hw;
3150         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3151         struct intel_pipe_wm *active = &intel_crtc->wm.active;
3152         enum pipe pipe = intel_crtc->pipe;
3153         static const unsigned int wm0_pipe_reg[] = {
3154                 [PIPE_A] = WM0_PIPEA_ILK,
3155                 [PIPE_B] = WM0_PIPEB_ILK,
3156                 [PIPE_C] = WM0_PIPEC_IVB,
3157         };
3158
3159         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3160         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3161
3162         if (intel_crtc_active(crtc)) {
3163                 u32 tmp = hw->wm_pipe[pipe];
3164
3165                 /*
3166                  * For active pipes LP0 watermark is marked as
3167                  * enabled, and LP1+ watermaks as disabled since
3168                  * we can't really reverse compute them in case
3169                  * multiple pipes are active.
3170                  */
3171                 active->wm[0].enable = true;
3172                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3173                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3174                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3175                 active->linetime = hw->wm_linetime[pipe];
3176         } else {
3177                 int level, max_level = ilk_wm_max_level(dev);
3178
3179                 /*
3180                  * For inactive pipes, all watermark levels
3181                  * should be marked as enabled but zeroed,
3182                  * which is what we'd compute them to.
3183                  */
3184                 for (level = 0; level <= max_level; level++)
3185                         active->wm[level].enable = true;
3186         }
3187 }
3188
3189 void ilk_wm_get_hw_state(struct drm_device *dev)
3190 {
3191         struct drm_i915_private *dev_priv = dev->dev_private;
3192         struct hsw_wm_values *hw = &dev_priv->wm.hw;
3193         struct drm_crtc *crtc;
3194
3195         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3196                 ilk_pipe_wm_get_hw_state(crtc);
3197
3198         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3199         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3200         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3201
3202         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3203         hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3204         hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3205
3206         hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3207                 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3208
3209         hw->enable_fbc_wm =
3210                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3211 }
3212
3213 /**
3214  * intel_update_watermarks - update FIFO watermark values based on current modes
3215  *
3216  * Calculate watermark values for the various WM regs based on current mode
3217  * and plane configuration.
3218  *
3219  * There are several cases to deal with here:
3220  *   - normal (i.e. non-self-refresh)
3221  *   - self-refresh (SR) mode
3222  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3223  *   - lines are small relative to FIFO size (buffer can hold more than 2
3224  *     lines), so need to account for TLB latency
3225  *
3226  *   The normal calculation is:
3227  *     watermark = dotclock * bytes per pixel * latency
3228  *   where latency is platform & configuration dependent (we assume pessimal
3229  *   values here).
3230  *
3231  *   The SR calculation is:
3232  *     watermark = (trunc(latency/line time)+1) * surface width *
3233  *       bytes per pixel
3234  *   where
3235  *     line time = htotal / dotclock
3236  *     surface width = hdisplay for normal plane and 64 for cursor
3237  *   and latency is assumed to be high, as above.
3238  *
3239  * The final value programmed to the register should always be rounded up,
3240  * and include an extra 2 entries to account for clock crossings.
3241  *
3242  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3243  * to set the non-SR watermarks to 8.
3244  */
3245 void intel_update_watermarks(struct drm_crtc *crtc)
3246 {
3247         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3248
3249         if (dev_priv->display.update_wm)
3250                 dev_priv->display.update_wm(crtc);
3251 }
3252
3253 void intel_update_sprite_watermarks(struct drm_plane *plane,
3254                                     struct drm_crtc *crtc,
3255                                     uint32_t sprite_width, int pixel_size,
3256                                     bool enabled, bool scaled)
3257 {
3258         struct drm_i915_private *dev_priv = plane->dev->dev_private;
3259
3260         if (dev_priv->display.update_sprite_wm)
3261                 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
3262                                                    pixel_size, enabled, scaled);
3263 }
3264
3265 static struct drm_i915_gem_object *
3266 intel_alloc_context_page(struct drm_device *dev)
3267 {
3268         struct drm_i915_gem_object *ctx;
3269         int ret;
3270
3271         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3272
3273         ctx = i915_gem_alloc_object(dev, 4096);
3274         if (!ctx) {
3275                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3276                 return NULL;
3277         }
3278
3279         ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
3280         if (ret) {
3281                 DRM_ERROR("failed to pin power context: %d\n", ret);
3282                 goto err_unref;
3283         }
3284
3285         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3286         if (ret) {
3287                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3288                 goto err_unpin;
3289         }
3290
3291         return ctx;
3292
3293 err_unpin:
3294         i915_gem_object_unpin(ctx);
3295 err_unref:
3296         drm_gem_object_unreference(&ctx->base);
3297         return NULL;
3298 }
3299
3300 /**
3301  * Lock protecting IPS related data structures
3302  */
3303 DEFINE_SPINLOCK(mchdev_lock);
3304
3305 /* Global for IPS driver to get at the current i915 device. Protected by
3306  * mchdev_lock. */
3307 static struct drm_i915_private *i915_mch_dev;
3308
3309 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3310 {
3311         struct drm_i915_private *dev_priv = dev->dev_private;
3312         u16 rgvswctl;
3313
3314         assert_spin_locked(&mchdev_lock);
3315
3316         rgvswctl = I915_READ16(MEMSWCTL);
3317         if (rgvswctl & MEMCTL_CMD_STS) {
3318                 DRM_DEBUG("gpu busy, RCS change rejected\n");
3319                 return false; /* still busy with another command */
3320         }
3321
3322         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3323                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3324         I915_WRITE16(MEMSWCTL, rgvswctl);
3325         POSTING_READ16(MEMSWCTL);
3326
3327         rgvswctl |= MEMCTL_CMD_STS;
3328         I915_WRITE16(MEMSWCTL, rgvswctl);
3329
3330         return true;
3331 }
3332
3333 static void ironlake_enable_drps(struct drm_device *dev)
3334 {
3335         struct drm_i915_private *dev_priv = dev->dev_private;
3336         u32 rgvmodectl = I915_READ(MEMMODECTL);
3337         u8 fmax, fmin, fstart, vstart;
3338
3339         spin_lock_irq(&mchdev_lock);
3340
3341         /* Enable temp reporting */
3342         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3343         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3344
3345         /* 100ms RC evaluation intervals */
3346         I915_WRITE(RCUPEI, 100000);
3347         I915_WRITE(RCDNEI, 100000);
3348
3349         /* Set max/min thresholds to 90ms and 80ms respectively */
3350         I915_WRITE(RCBMAXAVG, 90000);
3351         I915_WRITE(RCBMINAVG, 80000);
3352
3353         I915_WRITE(MEMIHYST, 1);
3354
3355         /* Set up min, max, and cur for interrupt handling */
3356         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3357         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3358         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3359                 MEMMODE_FSTART_SHIFT;
3360
3361         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3362                 PXVFREQ_PX_SHIFT;
3363
3364         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3365         dev_priv->ips.fstart = fstart;
3366
3367         dev_priv->ips.max_delay = fstart;
3368         dev_priv->ips.min_delay = fmin;
3369         dev_priv->ips.cur_delay = fstart;
3370
3371         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3372                          fmax, fmin, fstart);
3373
3374         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3375
3376         /*
3377          * Interrupts will be enabled in ironlake_irq_postinstall
3378          */
3379
3380         I915_WRITE(VIDSTART, vstart);
3381         POSTING_READ(VIDSTART);
3382
3383         rgvmodectl |= MEMMODE_SWMODE_EN;
3384         I915_WRITE(MEMMODECTL, rgvmodectl);
3385
3386         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3387                 DRM_ERROR("stuck trying to change perf mode\n");
3388         mdelay(1);
3389
3390         ironlake_set_drps(dev, fstart);
3391
3392         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3393                 I915_READ(0x112e0);
3394         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3395         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3396         getrawmonotonic(&dev_priv->ips.last_time2);
3397
3398         spin_unlock_irq(&mchdev_lock);
3399 }
3400
3401 static void ironlake_disable_drps(struct drm_device *dev)
3402 {
3403         struct drm_i915_private *dev_priv = dev->dev_private;
3404         u16 rgvswctl;
3405
3406         spin_lock_irq(&mchdev_lock);
3407
3408         rgvswctl = I915_READ16(MEMSWCTL);
3409
3410         /* Ack interrupts, disable EFC interrupt */
3411         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3412         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3413         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3414         I915_WRITE(DEIIR, DE_PCU_EVENT);
3415         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3416
3417         /* Go back to the starting frequency */
3418         ironlake_set_drps(dev, dev_priv->ips.fstart);
3419         mdelay(1);
3420         rgvswctl |= MEMCTL_CMD_STS;
3421         I915_WRITE(MEMSWCTL, rgvswctl);
3422         mdelay(1);
3423
3424         spin_unlock_irq(&mchdev_lock);
3425 }
3426
3427 /* There's a funny hw issue where the hw returns all 0 when reading from
3428  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3429  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3430  * all limits and the gpu stuck at whatever frequency it is at atm).
3431  */
3432 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3433 {
3434         u32 limits;
3435
3436         limits = 0;
3437
3438         if (*val >= dev_priv->rps.max_delay)
3439                 *val = dev_priv->rps.max_delay;
3440         limits |= dev_priv->rps.max_delay << 24;
3441
3442         /* Only set the down limit when we've reached the lowest level to avoid
3443          * getting more interrupts, otherwise leave this clear. This prevents a
3444          * race in the hw when coming out of rc6: There's a tiny window where
3445          * the hw runs at the minimal clock before selecting the desired
3446          * frequency, if the down threshold expires in that window we will not
3447          * receive a down interrupt. */
3448         if (*val <= dev_priv->rps.min_delay) {
3449                 *val = dev_priv->rps.min_delay;
3450                 limits |= dev_priv->rps.min_delay << 16;
3451         }
3452
3453         return limits;
3454 }
3455
3456 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3457 {
3458         int new_power;
3459
3460         new_power = dev_priv->rps.power;
3461         switch (dev_priv->rps.power) {
3462         case LOW_POWER:
3463                 if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
3464                         new_power = BETWEEN;
3465                 break;
3466
3467         case BETWEEN:
3468                 if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
3469                         new_power = LOW_POWER;
3470                 else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
3471                         new_power = HIGH_POWER;
3472                 break;
3473
3474         case HIGH_POWER:
3475                 if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
3476                         new_power = BETWEEN;
3477                 break;
3478         }
3479         /* Max/min bins are special */
3480         if (val == dev_priv->rps.min_delay)
3481                 new_power = LOW_POWER;
3482         if (val == dev_priv->rps.max_delay)
3483                 new_power = HIGH_POWER;
3484         if (new_power == dev_priv->rps.power)
3485                 return;
3486
3487         /* Note the units here are not exactly 1us, but 1280ns. */
3488         switch (new_power) {
3489         case LOW_POWER:
3490                 /* Upclock if more than 95% busy over 16ms */
3491                 I915_WRITE(GEN6_RP_UP_EI, 12500);
3492                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3493
3494                 /* Downclock if less than 85% busy over 32ms */
3495                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3496                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3497
3498                 I915_WRITE(GEN6_RP_CONTROL,
3499                            GEN6_RP_MEDIA_TURBO |
3500                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3501                            GEN6_RP_MEDIA_IS_GFX |
3502                            GEN6_RP_ENABLE |
3503                            GEN6_RP_UP_BUSY_AVG |
3504                            GEN6_RP_DOWN_IDLE_AVG);
3505                 break;
3506
3507         case BETWEEN:
3508                 /* Upclock if more than 90% busy over 13ms */
3509                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3510                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3511
3512                 /* Downclock if less than 75% busy over 32ms */
3513                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3514                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3515
3516                 I915_WRITE(GEN6_RP_CONTROL,
3517                            GEN6_RP_MEDIA_TURBO |
3518                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3519                            GEN6_RP_MEDIA_IS_GFX |
3520                            GEN6_RP_ENABLE |
3521                            GEN6_RP_UP_BUSY_AVG |
3522                            GEN6_RP_DOWN_IDLE_AVG);
3523                 break;
3524
3525         case HIGH_POWER:
3526                 /* Upclock if more than 85% busy over 10ms */
3527                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3528                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3529
3530                 /* Downclock if less than 60% busy over 32ms */
3531                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3532                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3533
3534                 I915_WRITE(GEN6_RP_CONTROL,
3535                            GEN6_RP_MEDIA_TURBO |
3536                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3537                            GEN6_RP_MEDIA_IS_GFX |
3538                            GEN6_RP_ENABLE |
3539                            GEN6_RP_UP_BUSY_AVG |
3540                            GEN6_RP_DOWN_IDLE_AVG);
3541                 break;
3542         }
3543
3544         dev_priv->rps.power = new_power;
3545         dev_priv->rps.last_adj = 0;
3546 }
3547
3548 void gen6_set_rps(struct drm_device *dev, u8 val)
3549 {
3550         struct drm_i915_private *dev_priv = dev->dev_private;
3551         u32 limits = gen6_rps_limits(dev_priv, &val);
3552
3553         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3554         WARN_ON(val > dev_priv->rps.max_delay);
3555         WARN_ON(val < dev_priv->rps.min_delay);
3556
3557         if (val == dev_priv->rps.cur_delay)
3558                 return;
3559
3560         gen6_set_rps_thresholds(dev_priv, val);
3561
3562         if (IS_HASWELL(dev))
3563                 I915_WRITE(GEN6_RPNSWREQ,
3564                            HSW_FREQUENCY(val));
3565         else
3566                 I915_WRITE(GEN6_RPNSWREQ,
3567                            GEN6_FREQUENCY(val) |
3568                            GEN6_OFFSET(0) |
3569                            GEN6_AGGRESSIVE_TURBO);
3570
3571         /* Make sure we continue to get interrupts
3572          * until we hit the minimum or maximum frequencies.
3573          */
3574         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3575
3576         POSTING_READ(GEN6_RPNSWREQ);
3577
3578         dev_priv->rps.cur_delay = val;
3579
3580         trace_intel_gpu_freq_change(val * 50);
3581 }
3582
3583 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3584 {
3585         mutex_lock(&dev_priv->rps.hw_lock);
3586         if (dev_priv->rps.enabled) {
3587                 if (dev_priv->info->is_valleyview)
3588                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3589                 else
3590                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3591                 dev_priv->rps.last_adj = 0;
3592         }
3593         mutex_unlock(&dev_priv->rps.hw_lock);
3594 }
3595
3596 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3597 {
3598         mutex_lock(&dev_priv->rps.hw_lock);
3599         if (dev_priv->rps.enabled) {
3600                 if (dev_priv->info->is_valleyview)
3601                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3602                 else
3603                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3604                 dev_priv->rps.last_adj = 0;
3605         }
3606         mutex_unlock(&dev_priv->rps.hw_lock);
3607 }
3608
3609 /*
3610  * Wait until the previous freq change has completed,
3611  * or the timeout elapsed, and then update our notion
3612  * of the current GPU frequency.
3613  */
3614 static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
3615 {
3616         u32 pval;
3617
3618         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3619
3620         if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
3621                 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3622
3623         pval >>= 8;
3624
3625         if (pval != dev_priv->rps.cur_delay)
3626                 DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
3627                                  vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
3628                                  dev_priv->rps.cur_delay,
3629                                  vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
3630
3631         dev_priv->rps.cur_delay = pval;
3632 }
3633
3634 void valleyview_set_rps(struct drm_device *dev, u8 val)
3635 {
3636         struct drm_i915_private *dev_priv = dev->dev_private;
3637
3638         gen6_rps_limits(dev_priv, &val);
3639
3640         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3641         WARN_ON(val > dev_priv->rps.max_delay);
3642         WARN_ON(val < dev_priv->rps.min_delay);
3643
3644         vlv_update_rps_cur_delay(dev_priv);
3645
3646         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3647                          vlv_gpu_freq(dev_priv->mem_freq,
3648                                       dev_priv->rps.cur_delay),
3649                          dev_priv->rps.cur_delay,
3650                          vlv_gpu_freq(dev_priv->mem_freq, val), val);
3651
3652         if (val == dev_priv->rps.cur_delay)
3653                 return;
3654
3655         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3656
3657         dev_priv->rps.cur_delay = val;
3658
3659         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3660 }
3661
3662 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3663 {
3664         struct drm_i915_private *dev_priv = dev->dev_private;
3665
3666         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3667         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3668         /* Complete PM interrupt masking here doesn't race with the rps work
3669          * item again unmasking PM interrupts because that is using a different
3670          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3671          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3672
3673         spin_lock_irq(&dev_priv->irq_lock);
3674         dev_priv->rps.pm_iir = 0;
3675         spin_unlock_irq(&dev_priv->irq_lock);
3676
3677         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3678 }
3679
3680 static void gen6_disable_rps(struct drm_device *dev)
3681 {
3682         struct drm_i915_private *dev_priv = dev->dev_private;
3683
3684         I915_WRITE(GEN6_RC_CONTROL, 0);
3685         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3686
3687         gen6_disable_rps_interrupts(dev);
3688 }
3689
3690 static void valleyview_disable_rps(struct drm_device *dev)
3691 {
3692         struct drm_i915_private *dev_priv = dev->dev_private;
3693
3694         I915_WRITE(GEN6_RC_CONTROL, 0);
3695
3696         gen6_disable_rps_interrupts(dev);
3697
3698         if (dev_priv->vlv_pctx) {
3699                 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3700                 dev_priv->vlv_pctx = NULL;
3701         }
3702 }
3703
3704 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3705 {
3706         if (IS_GEN6(dev))
3707                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3708
3709         if (IS_HASWELL(dev))
3710                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3711
3712         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3713                         (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3714                         (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3715                         (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3716 }
3717
3718 int intel_enable_rc6(const struct drm_device *dev)
3719 {
3720         /* No RC6 before Ironlake */
3721         if (INTEL_INFO(dev)->gen < 5)
3722                 return 0;
3723
3724         /* Respect the kernel parameter if it is set */
3725         if (i915_enable_rc6 >= 0)
3726                 return i915_enable_rc6;
3727
3728         /* Disable RC6 on Ironlake */
3729         if (INTEL_INFO(dev)->gen == 5)
3730                 return 0;
3731
3732         if (IS_HASWELL(dev))
3733                 return INTEL_RC6_ENABLE;
3734
3735         /* snb/ivb have more than one rc6 state. */
3736         if (INTEL_INFO(dev)->gen == 6)
3737                 return INTEL_RC6_ENABLE;
3738
3739         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3740 }
3741
3742 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3743 {
3744         struct drm_i915_private *dev_priv = dev->dev_private;
3745         u32 enabled_intrs;
3746
3747         spin_lock_irq(&dev_priv->irq_lock);
3748         WARN_ON(dev_priv->rps.pm_iir);
3749         snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3750         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3751         spin_unlock_irq(&dev_priv->irq_lock);
3752
3753         /* only unmask PM interrupts we need. Mask all others. */
3754         enabled_intrs = GEN6_PM_RPS_EVENTS;
3755
3756         /* IVB and SNB hard hangs on looping batchbuffer
3757          * if GEN6_PM_UP_EI_EXPIRED is masked.
3758          */
3759         if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3760                 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3761
3762         I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3763 }
3764
3765 static void gen6_enable_rps(struct drm_device *dev)
3766 {
3767         struct drm_i915_private *dev_priv = dev->dev_private;
3768         struct intel_ring_buffer *ring;
3769         u32 rp_state_cap;
3770         u32 gt_perf_status;
3771         u32 rc6vids, pcu_mbox, rc6_mask = 0;
3772         u32 gtfifodbg;
3773         int rc6_mode;
3774         int i, ret;
3775
3776         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3777
3778         /* Here begins a magic sequence of register writes to enable
3779          * auto-downclocking.
3780          *
3781          * Perhaps there might be some value in exposing these to
3782          * userspace...
3783          */
3784         I915_WRITE(GEN6_RC_STATE, 0);
3785
3786         /* Clear the DBG now so we don't confuse earlier errors */
3787         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3788                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3789                 I915_WRITE(GTFIFODBG, gtfifodbg);
3790         }
3791
3792         gen6_gt_force_wake_get(dev_priv);
3793
3794         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3795         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3796
3797         /* In units of 50MHz */
3798         dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3799         dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
3800         dev_priv->rps.rp1_delay = (rp_state_cap >>  8) & 0xff;
3801         dev_priv->rps.rp0_delay = (rp_state_cap >>  0) & 0xff;
3802         dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
3803         dev_priv->rps.cur_delay = 0;
3804
3805         /* disable the counters and set deterministic thresholds */
3806         I915_WRITE(GEN6_RC_CONTROL, 0);
3807
3808         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3809         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3810         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3811         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3812         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3813
3814         for_each_ring(ring, dev_priv, i)
3815                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3816
3817         I915_WRITE(GEN6_RC_SLEEP, 0);
3818         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3819         if (INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev))
3820                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3821         else
3822                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3823         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3824         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3825
3826         /* Check if we are enabling RC6 */
3827         rc6_mode = intel_enable_rc6(dev_priv->dev);
3828         if (rc6_mode & INTEL_RC6_ENABLE)
3829                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3830
3831         /* We don't use those on Haswell */
3832         if (!IS_HASWELL(dev)) {
3833                 if (rc6_mode & INTEL_RC6p_ENABLE)
3834                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3835
3836                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3837                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3838         }
3839
3840         intel_print_rc6_info(dev, rc6_mask);
3841
3842         I915_WRITE(GEN6_RC_CONTROL,
3843                    rc6_mask |
3844                    GEN6_RC_CTL_EI_MODE(1) |
3845                    GEN6_RC_CTL_HW_ENABLE);
3846
3847         /* Power down if completely idle for over 50ms */
3848         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3849         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3850
3851         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3852         if (!ret) {
3853                 pcu_mbox = 0;
3854                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3855                 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3856                         DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3857                                          (dev_priv->rps.max_delay & 0xff) * 50,
3858                                          (pcu_mbox & 0xff) * 50);
3859                         dev_priv->rps.hw_max = pcu_mbox & 0xff;
3860                 }
3861         } else {
3862                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3863         }
3864
3865         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3866         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3867
3868         gen6_enable_rps_interrupts(dev);
3869
3870         rc6vids = 0;
3871         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3872         if (IS_GEN6(dev) && ret) {
3873                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3874         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3875                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3876                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3877                 rc6vids &= 0xffff00;
3878                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3879                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3880                 if (ret)
3881                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3882         }
3883
3884         gen6_gt_force_wake_put(dev_priv);
3885 }
3886
3887 void gen6_update_ring_freq(struct drm_device *dev)
3888 {
3889         struct drm_i915_private *dev_priv = dev->dev_private;
3890         int min_freq = 15;
3891         unsigned int gpu_freq;
3892         unsigned int max_ia_freq, min_ring_freq;
3893         int scaling_factor = 180;
3894         struct cpufreq_policy *policy;
3895
3896         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3897
3898         policy = cpufreq_cpu_get(0);
3899         if (policy) {
3900                 max_ia_freq = policy->cpuinfo.max_freq;
3901                 cpufreq_cpu_put(policy);
3902         } else {
3903                 /*
3904                  * Default to measured freq if none found, PCU will ensure we
3905                  * don't go over
3906                  */
3907                 max_ia_freq = tsc_khz;
3908         }
3909
3910         /* Convert from kHz to MHz */
3911         max_ia_freq /= 1000;
3912
3913         min_ring_freq = I915_READ(DCLK) & 0xf;
3914         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3915         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3916
3917         /*
3918          * For each potential GPU frequency, load a ring frequency we'd like
3919          * to use for memory access.  We do this by specifying the IA frequency
3920          * the PCU should use as a reference to determine the ring frequency.
3921          */
3922         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3923              gpu_freq--) {
3924                 int diff = dev_priv->rps.max_delay - gpu_freq;
3925                 unsigned int ia_freq = 0, ring_freq = 0;
3926
3927                 if (INTEL_INFO(dev)->gen >= 8) {
3928                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3929                         ring_freq = max(min_ring_freq, gpu_freq);
3930                 } else if (IS_HASWELL(dev)) {
3931                         ring_freq = mult_frac(gpu_freq, 5, 4);
3932                         ring_freq = max(min_ring_freq, ring_freq);
3933                         /* leave ia_freq as the default, chosen by cpufreq */
3934                 } else {
3935                         /* On older processors, there is no separate ring
3936                          * clock domain, so in order to boost the bandwidth
3937                          * of the ring, we need to upclock the CPU (ia_freq).
3938                          *
3939                          * For GPU frequencies less than 750MHz,
3940                          * just use the lowest ring freq.
3941                          */
3942                         if (gpu_freq < min_freq)
3943                                 ia_freq = 800;
3944                         else
3945                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3946                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3947                 }
3948
3949                 sandybridge_pcode_write(dev_priv,
3950                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3951                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3952                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3953                                         gpu_freq);
3954         }
3955 }
3956
3957 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3958 {
3959         u32 val, rp0;
3960
3961         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3962
3963         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3964         /* Clamp to max */
3965         rp0 = min_t(u32, rp0, 0xea);
3966
3967         return rp0;
3968 }
3969
3970 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3971 {
3972         u32 val, rpe;
3973
3974         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3975         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3976         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3977         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3978
3979         return rpe;
3980 }
3981
3982 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3983 {
3984         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3985 }
3986
3987 static void valleyview_setup_pctx(struct drm_device *dev)
3988 {
3989         struct drm_i915_private *dev_priv = dev->dev_private;
3990         struct drm_i915_gem_object *pctx;
3991         unsigned long pctx_paddr;
3992         u32 pcbr;
3993         int pctx_size = 24*1024;
3994
3995         pcbr = I915_READ(VLV_PCBR);
3996         if (pcbr) {
3997                 /* BIOS set it up already, grab the pre-alloc'd space */
3998                 int pcbr_offset;
3999
4000                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4001                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4002                                                                       pcbr_offset,
4003                                                                       I915_GTT_OFFSET_NONE,
4004                                                                       pctx_size);
4005                 goto out;
4006         }
4007
4008         /*
4009          * From the Gunit register HAS:
4010          * The Gfx driver is expected to program this register and ensure
4011          * proper allocation within Gfx stolen memory.  For example, this
4012          * register should be programmed such than the PCBR range does not
4013          * overlap with other ranges, such as the frame buffer, protected
4014          * memory, or any other relevant ranges.
4015          */
4016         pctx = i915_gem_object_create_stolen(dev, pctx_size);
4017         if (!pctx) {
4018                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4019                 return;
4020         }
4021
4022         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4023         I915_WRITE(VLV_PCBR, pctx_paddr);
4024
4025 out:
4026         dev_priv->vlv_pctx = pctx;
4027 }
4028
4029 static void valleyview_enable_rps(struct drm_device *dev)
4030 {
4031         struct drm_i915_private *dev_priv = dev->dev_private;
4032         struct intel_ring_buffer *ring;
4033         u32 gtfifodbg, val, rc6_mode = 0;
4034         int i;
4035
4036         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4037
4038         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4039                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4040                                  gtfifodbg);
4041                 I915_WRITE(GTFIFODBG, gtfifodbg);
4042         }
4043
4044         valleyview_setup_pctx(dev);
4045
4046         gen6_gt_force_wake_get(dev_priv);
4047
4048         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4049         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4050         I915_WRITE(GEN6_RP_UP_EI, 66000);
4051         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4052
4053         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4054
4055         I915_WRITE(GEN6_RP_CONTROL,
4056                    GEN6_RP_MEDIA_TURBO |
4057                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4058                    GEN6_RP_MEDIA_IS_GFX |
4059                    GEN6_RP_ENABLE |
4060                    GEN6_RP_UP_BUSY_AVG |
4061                    GEN6_RP_DOWN_IDLE_CONT);
4062
4063         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4064         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4065         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4066
4067         for_each_ring(ring, dev_priv, i)
4068                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4069
4070         I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
4071
4072         /* allows RC6 residency counter to work */
4073         I915_WRITE(VLV_COUNTER_CONTROL,
4074                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4075                                       VLV_MEDIA_RC6_COUNT_EN |
4076                                       VLV_RENDER_RC6_COUNT_EN));
4077         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4078                 rc6_mode = GEN7_RC_CTL_TO_MODE;
4079
4080         intel_print_rc6_info(dev, rc6_mode);
4081
4082         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4083
4084         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4085         switch ((val >> 6) & 3) {
4086         case 0:
4087         case 1:
4088                 dev_priv->mem_freq = 800;
4089                 break;
4090         case 2:
4091                 dev_priv->mem_freq = 1066;
4092                 break;
4093         case 3:
4094                 dev_priv->mem_freq = 1333;
4095                 break;
4096         }
4097         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4098
4099         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4100         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4101
4102         dev_priv->rps.cur_delay = (val >> 8) & 0xff;
4103         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4104                          vlv_gpu_freq(dev_priv->mem_freq,
4105                                       dev_priv->rps.cur_delay),
4106                          dev_priv->rps.cur_delay);
4107
4108         dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
4109         dev_priv->rps.hw_max = dev_priv->rps.max_delay;
4110         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4111                          vlv_gpu_freq(dev_priv->mem_freq,
4112                                       dev_priv->rps.max_delay),
4113                          dev_priv->rps.max_delay);
4114
4115         dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
4116         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4117                          vlv_gpu_freq(dev_priv->mem_freq,
4118                                       dev_priv->rps.rpe_delay),
4119                          dev_priv->rps.rpe_delay);
4120
4121         dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
4122         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4123                          vlv_gpu_freq(dev_priv->mem_freq,
4124                                       dev_priv->rps.min_delay),
4125                          dev_priv->rps.min_delay);
4126
4127         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4128                          vlv_gpu_freq(dev_priv->mem_freq,
4129                                       dev_priv->rps.rpe_delay),
4130                          dev_priv->rps.rpe_delay);
4131
4132         valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
4133
4134         gen6_enable_rps_interrupts(dev);
4135
4136         gen6_gt_force_wake_put(dev_priv);
4137 }
4138
4139 void ironlake_teardown_rc6(struct drm_device *dev)
4140 {
4141         struct drm_i915_private *dev_priv = dev->dev_private;
4142
4143         if (dev_priv->ips.renderctx) {
4144                 i915_gem_object_unpin(dev_priv->ips.renderctx);
4145                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4146                 dev_priv->ips.renderctx = NULL;
4147         }
4148
4149         if (dev_priv->ips.pwrctx) {
4150                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
4151                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4152                 dev_priv->ips.pwrctx = NULL;
4153         }
4154 }
4155
4156 static void ironlake_disable_rc6(struct drm_device *dev)
4157 {
4158         struct drm_i915_private *dev_priv = dev->dev_private;
4159
4160         if (I915_READ(PWRCTXA)) {
4161                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4162                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4163                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4164                          50);
4165
4166                 I915_WRITE(PWRCTXA, 0);
4167                 POSTING_READ(PWRCTXA);
4168
4169                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4170                 POSTING_READ(RSTDBYCTL);
4171         }
4172 }
4173
4174 static int ironlake_setup_rc6(struct drm_device *dev)
4175 {
4176         struct drm_i915_private *dev_priv = dev->dev_private;
4177
4178         if (dev_priv->ips.renderctx == NULL)
4179                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4180         if (!dev_priv->ips.renderctx)
4181                 return -ENOMEM;
4182
4183         if (dev_priv->ips.pwrctx == NULL)
4184                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4185         if (!dev_priv->ips.pwrctx) {
4186                 ironlake_teardown_rc6(dev);
4187                 return -ENOMEM;
4188         }
4189
4190         return 0;
4191 }
4192
4193 static void ironlake_enable_rc6(struct drm_device *dev)
4194 {
4195         struct drm_i915_private *dev_priv = dev->dev_private;
4196         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
4197         bool was_interruptible;
4198         int ret;
4199
4200         /* rc6 disabled by default due to repeated reports of hanging during
4201          * boot and resume.
4202          */
4203         if (!intel_enable_rc6(dev))
4204                 return;
4205
4206         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4207
4208         ret = ironlake_setup_rc6(dev);
4209         if (ret)
4210                 return;
4211
4212         was_interruptible = dev_priv->mm.interruptible;
4213         dev_priv->mm.interruptible = false;
4214
4215         /*
4216          * GPU can automatically power down the render unit if given a page
4217          * to save state.
4218          */
4219         ret = intel_ring_begin(ring, 6);
4220         if (ret) {
4221                 ironlake_teardown_rc6(dev);
4222                 dev_priv->mm.interruptible = was_interruptible;
4223                 return;
4224         }
4225
4226         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4227         intel_ring_emit(ring, MI_SET_CONTEXT);
4228         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4229                         MI_MM_SPACE_GTT |
4230                         MI_SAVE_EXT_STATE_EN |
4231                         MI_RESTORE_EXT_STATE_EN |
4232                         MI_RESTORE_INHIBIT);
4233         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4234         intel_ring_emit(ring, MI_NOOP);
4235         intel_ring_emit(ring, MI_FLUSH);
4236         intel_ring_advance(ring);
4237
4238         /*
4239          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4240          * does an implicit flush, combined with MI_FLUSH above, it should be
4241          * safe to assume that renderctx is valid
4242          */
4243         ret = intel_ring_idle(ring);
4244         dev_priv->mm.interruptible = was_interruptible;
4245         if (ret) {
4246                 DRM_ERROR("failed to enable ironlake power savings\n");
4247                 ironlake_teardown_rc6(dev);
4248                 return;
4249         }
4250
4251         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4252         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4253
4254         intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
4255 }
4256
4257 static unsigned long intel_pxfreq(u32 vidfreq)
4258 {
4259         unsigned long freq;
4260         int div = (vidfreq & 0x3f0000) >> 16;
4261         int post = (vidfreq & 0x3000) >> 12;
4262         int pre = (vidfreq & 0x7);
4263
4264         if (!pre)
4265                 return 0;
4266
4267         freq = ((div * 133333) / ((1<<post) * pre));
4268
4269         return freq;
4270 }
4271
4272 static const struct cparams {
4273         u16 i;
4274         u16 t;
4275         u16 m;
4276         u16 c;
4277 } cparams[] = {
4278         { 1, 1333, 301, 28664 },
4279         { 1, 1066, 294, 24460 },
4280         { 1, 800, 294, 25192 },
4281         { 0, 1333, 276, 27605 },
4282         { 0, 1066, 276, 27605 },
4283         { 0, 800, 231, 23784 },
4284 };
4285
4286 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4287 {
4288         u64 total_count, diff, ret;
4289         u32 count1, count2, count3, m = 0, c = 0;
4290         unsigned long now = jiffies_to_msecs(jiffies), diff1;
4291         int i;
4292
4293         assert_spin_locked(&mchdev_lock);
4294
4295         diff1 = now - dev_priv->ips.last_time1;
4296
4297         /* Prevent division-by-zero if we are asking too fast.
4298          * Also, we don't get interesting results if we are polling
4299          * faster than once in 10ms, so just return the saved value
4300          * in such cases.
4301          */
4302         if (diff1 <= 10)
4303                 return dev_priv->ips.chipset_power;
4304
4305         count1 = I915_READ(DMIEC);
4306         count2 = I915_READ(DDREC);
4307         count3 = I915_READ(CSIEC);
4308
4309         total_count = count1 + count2 + count3;
4310
4311         /* FIXME: handle per-counter overflow */
4312         if (total_count < dev_priv->ips.last_count1) {
4313                 diff = ~0UL - dev_priv->ips.last_count1;
4314                 diff += total_count;
4315         } else {
4316                 diff = total_count - dev_priv->ips.last_count1;
4317         }
4318
4319         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4320                 if (cparams[i].i == dev_priv->ips.c_m &&
4321                     cparams[i].t == dev_priv->ips.r_t) {
4322                         m = cparams[i].m;
4323                         c = cparams[i].c;
4324                         break;
4325                 }
4326         }
4327
4328         diff = div_u64(diff, diff1);
4329         ret = ((m * diff) + c);
4330         ret = div_u64(ret, 10);
4331
4332         dev_priv->ips.last_count1 = total_count;
4333         dev_priv->ips.last_time1 = now;
4334
4335         dev_priv->ips.chipset_power = ret;
4336
4337         return ret;
4338 }
4339
4340 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4341 {
4342         unsigned long val;
4343
4344         if (dev_priv->info->gen != 5)
4345                 return 0;
4346
4347         spin_lock_irq(&mchdev_lock);
4348
4349         val = __i915_chipset_val(dev_priv);
4350
4351         spin_unlock_irq(&mchdev_lock);
4352
4353         return val;
4354 }
4355
4356 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4357 {
4358         unsigned long m, x, b;
4359         u32 tsfs;
4360
4361         tsfs = I915_READ(TSFS);
4362
4363         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4364         x = I915_READ8(TR1);
4365
4366         b = tsfs & TSFS_INTR_MASK;
4367
4368         return ((m * x) / 127) - b;
4369 }
4370
4371 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4372 {
4373         static const struct v_table {
4374                 u16 vd; /* in .1 mil */
4375                 u16 vm; /* in .1 mil */
4376         } v_table[] = {
4377                 { 0, 0, },
4378                 { 375, 0, },
4379                 { 500, 0, },
4380                 { 625, 0, },
4381                 { 750, 0, },
4382                 { 875, 0, },
4383                 { 1000, 0, },
4384                 { 1125, 0, },
4385                 { 4125, 3000, },
4386                 { 4125, 3000, },
4387                 { 4125, 3000, },
4388                 { 4125, 3000, },
4389                 { 4125, 3000, },
4390                 { 4125, 3000, },
4391                 { 4125, 3000, },
4392                 { 4125, 3000, },
4393                 { 4125, 3000, },
4394                 { 4125, 3000, },
4395                 { 4125, 3000, },
4396                 { 4125, 3000, },
4397                 { 4125, 3000, },
4398                 { 4125, 3000, },
4399                 { 4125, 3000, },
4400                 { 4125, 3000, },
4401                 { 4125, 3000, },
4402                 { 4125, 3000, },
4403                 { 4125, 3000, },
4404                 { 4125, 3000, },
4405                 { 4125, 3000, },
4406                 { 4125, 3000, },
4407                 { 4125, 3000, },
4408                 { 4125, 3000, },
4409                 { 4250, 3125, },
4410                 { 4375, 3250, },
4411                 { 4500, 3375, },
4412                 { 4625, 3500, },
4413                 { 4750, 3625, },
4414                 { 4875, 3750, },
4415                 { 5000, 3875, },
4416                 { 5125, 4000, },
4417                 { 5250, 4125, },
4418                 { 5375, 4250, },
4419                 { 5500, 4375, },
4420                 { 5625, 4500, },
4421                 { 5750, 4625, },
4422                 { 5875, 4750, },
4423                 { 6000, 4875, },
4424                 { 6125, 5000, },
4425                 { 6250, 5125, },
4426                 { 6375, 5250, },
4427                 { 6500, 5375, },
4428                 { 6625, 5500, },
4429                 { 6750, 5625, },
4430                 { 6875, 5750, },
4431                 { 7000, 5875, },
4432                 { 7125, 6000, },
4433                 { 7250, 6125, },
4434                 { 7375, 6250, },
4435                 { 7500, 6375, },
4436                 { 7625, 6500, },
4437                 { 7750, 6625, },
4438                 { 7875, 6750, },
4439                 { 8000, 6875, },
4440                 { 8125, 7000, },
4441                 { 8250, 7125, },
4442                 { 8375, 7250, },
4443                 { 8500, 7375, },
4444                 { 8625, 7500, },
4445                 { 8750, 7625, },
4446                 { 8875, 7750, },
4447                 { 9000, 7875, },
4448                 { 9125, 8000, },
4449                 { 9250, 8125, },
4450                 { 9375, 8250, },
4451                 { 9500, 8375, },
4452                 { 9625, 8500, },
4453                 { 9750, 8625, },
4454                 { 9875, 8750, },
4455                 { 10000, 8875, },
4456                 { 10125, 9000, },
4457                 { 10250, 9125, },
4458                 { 10375, 9250, },
4459                 { 10500, 9375, },
4460                 { 10625, 9500, },
4461                 { 10750, 9625, },
4462                 { 10875, 9750, },
4463                 { 11000, 9875, },
4464                 { 11125, 10000, },
4465                 { 11250, 10125, },
4466                 { 11375, 10250, },
4467                 { 11500, 10375, },
4468                 { 11625, 10500, },
4469                 { 11750, 10625, },
4470                 { 11875, 10750, },
4471                 { 12000, 10875, },
4472                 { 12125, 11000, },
4473                 { 12250, 11125, },
4474                 { 12375, 11250, },
4475                 { 12500, 11375, },
4476                 { 12625, 11500, },
4477                 { 12750, 11625, },
4478                 { 12875, 11750, },
4479                 { 13000, 11875, },
4480                 { 13125, 12000, },
4481                 { 13250, 12125, },
4482                 { 13375, 12250, },
4483                 { 13500, 12375, },
4484                 { 13625, 12500, },
4485                 { 13750, 12625, },
4486                 { 13875, 12750, },
4487                 { 14000, 12875, },
4488                 { 14125, 13000, },
4489                 { 14250, 13125, },
4490                 { 14375, 13250, },
4491                 { 14500, 13375, },
4492                 { 14625, 13500, },
4493                 { 14750, 13625, },
4494                 { 14875, 13750, },
4495                 { 15000, 13875, },
4496                 { 15125, 14000, },
4497                 { 15250, 14125, },
4498                 { 15375, 14250, },
4499                 { 15500, 14375, },
4500                 { 15625, 14500, },
4501                 { 15750, 14625, },
4502                 { 15875, 14750, },
4503                 { 16000, 14875, },
4504                 { 16125, 15000, },
4505         };
4506         if (dev_priv->info->is_mobile)
4507                 return v_table[pxvid].vm;
4508         else
4509                 return v_table[pxvid].vd;
4510 }
4511
4512 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4513 {
4514         struct timespec now, diff1;
4515         u64 diff;
4516         unsigned long diffms;
4517         u32 count;
4518
4519         assert_spin_locked(&mchdev_lock);
4520
4521         getrawmonotonic(&now);
4522         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4523
4524         /* Don't divide by 0 */
4525         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4526         if (!diffms)
4527                 return;
4528
4529         count = I915_READ(GFXEC);
4530
4531         if (count < dev_priv->ips.last_count2) {
4532                 diff = ~0UL - dev_priv->ips.last_count2;
4533                 diff += count;
4534         } else {
4535                 diff = count - dev_priv->ips.last_count2;
4536         }
4537
4538         dev_priv->ips.last_count2 = count;
4539         dev_priv->ips.last_time2 = now;
4540
4541         /* More magic constants... */
4542         diff = diff * 1181;
4543         diff = div_u64(diff, diffms * 10);
4544         dev_priv->ips.gfx_power = diff;
4545 }
4546
4547 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4548 {
4549         if (dev_priv->info->gen != 5)
4550                 return;
4551
4552         spin_lock_irq(&mchdev_lock);
4553
4554         __i915_update_gfx_val(dev_priv);
4555
4556         spin_unlock_irq(&mchdev_lock);
4557 }
4558
4559 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4560 {
4561         unsigned long t, corr, state1, corr2, state2;
4562         u32 pxvid, ext_v;
4563
4564         assert_spin_locked(&mchdev_lock);
4565
4566         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4567         pxvid = (pxvid >> 24) & 0x7f;
4568         ext_v = pvid_to_extvid(dev_priv, pxvid);
4569
4570         state1 = ext_v;
4571
4572         t = i915_mch_val(dev_priv);
4573
4574         /* Revel in the empirically derived constants */
4575
4576         /* Correction factor in 1/100000 units */
4577         if (t > 80)
4578                 corr = ((t * 2349) + 135940);
4579         else if (t >= 50)
4580                 corr = ((t * 964) + 29317);
4581         else /* < 50 */
4582                 corr = ((t * 301) + 1004);
4583
4584         corr = corr * ((150142 * state1) / 10000 - 78642);
4585         corr /= 100000;
4586         corr2 = (corr * dev_priv->ips.corr);
4587
4588         state2 = (corr2 * state1) / 10000;
4589         state2 /= 100; /* convert to mW */
4590
4591         __i915_update_gfx_val(dev_priv);
4592
4593         return dev_priv->ips.gfx_power + state2;
4594 }
4595
4596 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4597 {
4598         unsigned long val;
4599
4600         if (dev_priv->info->gen != 5)
4601                 return 0;
4602
4603         spin_lock_irq(&mchdev_lock);
4604
4605         val = __i915_gfx_val(dev_priv);
4606
4607         spin_unlock_irq(&mchdev_lock);
4608
4609         return val;
4610 }
4611
4612 /**
4613  * i915_read_mch_val - return value for IPS use
4614  *
4615  * Calculate and return a value for the IPS driver to use when deciding whether
4616  * we have thermal and power headroom to increase CPU or GPU power budget.
4617  */
4618 unsigned long i915_read_mch_val(void)
4619 {
4620         struct drm_i915_private *dev_priv;
4621         unsigned long chipset_val, graphics_val, ret = 0;
4622
4623         spin_lock_irq(&mchdev_lock);
4624         if (!i915_mch_dev)
4625                 goto out_unlock;
4626         dev_priv = i915_mch_dev;
4627
4628         chipset_val = __i915_chipset_val(dev_priv);
4629         graphics_val = __i915_gfx_val(dev_priv);
4630
4631         ret = chipset_val + graphics_val;
4632
4633 out_unlock:
4634         spin_unlock_irq(&mchdev_lock);
4635
4636         return ret;
4637 }
4638 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4639
4640 /**
4641  * i915_gpu_raise - raise GPU frequency limit
4642  *
4643  * Raise the limit; IPS indicates we have thermal headroom.
4644  */
4645 bool i915_gpu_raise(void)
4646 {
4647         struct drm_i915_private *dev_priv;
4648         bool ret = true;
4649
4650         spin_lock_irq(&mchdev_lock);
4651         if (!i915_mch_dev) {
4652                 ret = false;
4653                 goto out_unlock;
4654         }
4655         dev_priv = i915_mch_dev;
4656
4657         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4658                 dev_priv->ips.max_delay--;
4659
4660 out_unlock:
4661         spin_unlock_irq(&mchdev_lock);
4662
4663         return ret;
4664 }
4665 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4666
4667 /**
4668  * i915_gpu_lower - lower GPU frequency limit
4669  *
4670  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4671  * frequency maximum.
4672  */
4673 bool i915_gpu_lower(void)
4674 {
4675         struct drm_i915_private *dev_priv;
4676         bool ret = true;
4677
4678         spin_lock_irq(&mchdev_lock);
4679         if (!i915_mch_dev) {
4680                 ret = false;
4681                 goto out_unlock;
4682         }
4683         dev_priv = i915_mch_dev;
4684
4685         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4686                 dev_priv->ips.max_delay++;
4687
4688 out_unlock:
4689         spin_unlock_irq(&mchdev_lock);
4690
4691         return ret;
4692 }
4693 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4694
4695 /**
4696  * i915_gpu_busy - indicate GPU business to IPS
4697  *
4698  * Tell the IPS driver whether or not the GPU is busy.
4699  */
4700 bool i915_gpu_busy(void)
4701 {
4702         struct drm_i915_private *dev_priv;
4703         struct intel_ring_buffer *ring;
4704         bool ret = false;
4705         int i;
4706
4707         spin_lock_irq(&mchdev_lock);
4708         if (!i915_mch_dev)
4709                 goto out_unlock;
4710         dev_priv = i915_mch_dev;
4711
4712         for_each_ring(ring, dev_priv, i)
4713                 ret |= !list_empty(&ring->request_list);
4714
4715 out_unlock:
4716         spin_unlock_irq(&mchdev_lock);
4717
4718         return ret;
4719 }
4720 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4721
4722 /**
4723  * i915_gpu_turbo_disable - disable graphics turbo
4724  *
4725  * Disable graphics turbo by resetting the max frequency and setting the
4726  * current frequency to the default.
4727  */
4728 bool i915_gpu_turbo_disable(void)
4729 {
4730         struct drm_i915_private *dev_priv;
4731         bool ret = true;
4732
4733         spin_lock_irq(&mchdev_lock);
4734         if (!i915_mch_dev) {
4735                 ret = false;
4736                 goto out_unlock;
4737         }
4738         dev_priv = i915_mch_dev;
4739
4740         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4741
4742         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4743                 ret = false;
4744
4745 out_unlock:
4746         spin_unlock_irq(&mchdev_lock);
4747
4748         return ret;
4749 }
4750 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4751
4752 /**
4753  * Tells the intel_ips driver that the i915 driver is now loaded, if
4754  * IPS got loaded first.
4755  *
4756  * This awkward dance is so that neither module has to depend on the
4757  * other in order for IPS to do the appropriate communication of
4758  * GPU turbo limits to i915.
4759  */
4760 static void
4761 ips_ping_for_i915_load(void)
4762 {
4763         void (*link)(void);
4764
4765         link = symbol_get(ips_link_to_i915_driver);
4766         if (link) {
4767                 link();
4768                 symbol_put(ips_link_to_i915_driver);
4769         }
4770 }
4771
4772 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4773 {
4774         /* We only register the i915 ips part with intel-ips once everything is
4775          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4776         spin_lock_irq(&mchdev_lock);
4777         i915_mch_dev = dev_priv;
4778         spin_unlock_irq(&mchdev_lock);
4779
4780         ips_ping_for_i915_load();
4781 }
4782
4783 void intel_gpu_ips_teardown(void)
4784 {
4785         spin_lock_irq(&mchdev_lock);
4786         i915_mch_dev = NULL;
4787         spin_unlock_irq(&mchdev_lock);
4788 }
4789 static void intel_init_emon(struct drm_device *dev)
4790 {
4791         struct drm_i915_private *dev_priv = dev->dev_private;
4792         u32 lcfuse;
4793         u8 pxw[16];
4794         int i;
4795
4796         /* Disable to program */
4797         I915_WRITE(ECR, 0);
4798         POSTING_READ(ECR);
4799
4800         /* Program energy weights for various events */
4801         I915_WRITE(SDEW, 0x15040d00);
4802         I915_WRITE(CSIEW0, 0x007f0000);
4803         I915_WRITE(CSIEW1, 0x1e220004);
4804         I915_WRITE(CSIEW2, 0x04000004);
4805
4806         for (i = 0; i < 5; i++)
4807                 I915_WRITE(PEW + (i * 4), 0);
4808         for (i = 0; i < 3; i++)
4809                 I915_WRITE(DEW + (i * 4), 0);
4810
4811         /* Program P-state weights to account for frequency power adjustment */
4812         for (i = 0; i < 16; i++) {
4813                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4814                 unsigned long freq = intel_pxfreq(pxvidfreq);
4815                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4816                         PXVFREQ_PX_SHIFT;
4817                 unsigned long val;
4818
4819                 val = vid * vid;
4820                 val *= (freq / 1000);
4821                 val *= 255;
4822                 val /= (127*127*900);
4823                 if (val > 0xff)
4824                         DRM_ERROR("bad pxval: %ld\n", val);
4825                 pxw[i] = val;
4826         }
4827         /* Render standby states get 0 weight */
4828         pxw[14] = 0;
4829         pxw[15] = 0;
4830
4831         for (i = 0; i < 4; i++) {
4832                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4833                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4834                 I915_WRITE(PXW + (i * 4), val);
4835         }
4836
4837         /* Adjust magic regs to magic values (more experimental results) */
4838         I915_WRITE(OGW0, 0);
4839         I915_WRITE(OGW1, 0);
4840         I915_WRITE(EG0, 0x00007f00);
4841         I915_WRITE(EG1, 0x0000000e);
4842         I915_WRITE(EG2, 0x000e0000);
4843         I915_WRITE(EG3, 0x68000300);
4844         I915_WRITE(EG4, 0x42000000);
4845         I915_WRITE(EG5, 0x00140031);
4846         I915_WRITE(EG6, 0);
4847         I915_WRITE(EG7, 0);
4848
4849         for (i = 0; i < 8; i++)
4850                 I915_WRITE(PXWL + (i * 4), 0);
4851
4852         /* Enable PMON + select events */
4853         I915_WRITE(ECR, 0x80000019);
4854
4855         lcfuse = I915_READ(LCFUSE02);
4856
4857         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4858 }
4859
4860 void intel_disable_gt_powersave(struct drm_device *dev)
4861 {
4862         struct drm_i915_private *dev_priv = dev->dev_private;
4863
4864         /* Interrupts should be disabled already to avoid re-arming. */
4865         WARN_ON(dev->irq_enabled);
4866
4867         if (IS_IRONLAKE_M(dev)) {
4868                 ironlake_disable_drps(dev);
4869                 ironlake_disable_rc6(dev);
4870         } else if (INTEL_INFO(dev)->gen >= 6) {
4871                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4872                 cancel_work_sync(&dev_priv->rps.work);
4873                 mutex_lock(&dev_priv->rps.hw_lock);
4874                 if (IS_VALLEYVIEW(dev))
4875                         valleyview_disable_rps(dev);
4876                 else
4877                         gen6_disable_rps(dev);
4878                 dev_priv->rps.enabled = false;
4879                 mutex_unlock(&dev_priv->rps.hw_lock);
4880         }
4881 }
4882
4883 static void intel_gen6_powersave_work(struct work_struct *work)
4884 {
4885         struct drm_i915_private *dev_priv =
4886                 container_of(work, struct drm_i915_private,
4887                              rps.delayed_resume_work.work);
4888         struct drm_device *dev = dev_priv->dev;
4889
4890         mutex_lock(&dev_priv->rps.hw_lock);
4891
4892         if (IS_VALLEYVIEW(dev)) {
4893                 valleyview_enable_rps(dev);
4894         } else {
4895                 gen6_enable_rps(dev);
4896                 gen6_update_ring_freq(dev);
4897         }
4898         dev_priv->rps.enabled = true;
4899         mutex_unlock(&dev_priv->rps.hw_lock);
4900 }
4901
4902 void intel_enable_gt_powersave(struct drm_device *dev)
4903 {
4904         struct drm_i915_private *dev_priv = dev->dev_private;
4905
4906         if (IS_IRONLAKE_M(dev)) {
4907                 ironlake_enable_drps(dev);
4908                 ironlake_enable_rc6(dev);
4909                 intel_init_emon(dev);
4910         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4911                 /*
4912                  * PCU communication is slow and this doesn't need to be
4913                  * done at any specific time, so do this out of our fast path
4914                  * to make resume and init faster.
4915                  */
4916                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4917                                       round_jiffies_up_relative(HZ));
4918         }
4919 }
4920
4921 static void ibx_init_clock_gating(struct drm_device *dev)
4922 {
4923         struct drm_i915_private *dev_priv = dev->dev_private;
4924
4925         /*
4926          * On Ibex Peak and Cougar Point, we need to disable clock
4927          * gating for the panel power sequencer or it will fail to
4928          * start up when no ports are active.
4929          */
4930         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4931 }
4932
4933 static void g4x_disable_trickle_feed(struct drm_device *dev)
4934 {
4935         struct drm_i915_private *dev_priv = dev->dev_private;
4936         int pipe;
4937
4938         for_each_pipe(pipe) {
4939                 I915_WRITE(DSPCNTR(pipe),
4940                            I915_READ(DSPCNTR(pipe)) |
4941                            DISPPLANE_TRICKLE_FEED_DISABLE);
4942                 intel_flush_primary_plane(dev_priv, pipe);
4943         }
4944 }
4945
4946 static void ironlake_init_clock_gating(struct drm_device *dev)
4947 {
4948         struct drm_i915_private *dev_priv = dev->dev_private;
4949         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4950
4951         /*
4952          * Required for FBC
4953          * WaFbcDisableDpfcClockGating:ilk
4954          */
4955         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4956                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4957                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4958
4959         I915_WRITE(PCH_3DCGDIS0,
4960                    MARIUNIT_CLOCK_GATE_DISABLE |
4961                    SVSMUNIT_CLOCK_GATE_DISABLE);
4962         I915_WRITE(PCH_3DCGDIS1,
4963                    VFMUNIT_CLOCK_GATE_DISABLE);
4964
4965         /*
4966          * According to the spec the following bits should be set in
4967          * order to enable memory self-refresh
4968          * The bit 22/21 of 0x42004
4969          * The bit 5 of 0x42020
4970          * The bit 15 of 0x45000
4971          */
4972         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4973                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
4974                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4975         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4976         I915_WRITE(DISP_ARB_CTL,
4977                    (I915_READ(DISP_ARB_CTL) |
4978                     DISP_FBC_WM_DIS));
4979         I915_WRITE(WM3_LP_ILK, 0);
4980         I915_WRITE(WM2_LP_ILK, 0);
4981         I915_WRITE(WM1_LP_ILK, 0);
4982
4983         /*
4984          * Based on the document from hardware guys the following bits
4985          * should be set unconditionally in order to enable FBC.
4986          * The bit 22 of 0x42000
4987          * The bit 22 of 0x42004
4988          * The bit 7,8,9 of 0x42020.
4989          */
4990         if (IS_IRONLAKE_M(dev)) {
4991                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4992                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4993                            I915_READ(ILK_DISPLAY_CHICKEN1) |
4994                            ILK_FBCQ_DIS);
4995                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4996                            I915_READ(ILK_DISPLAY_CHICKEN2) |
4997                            ILK_DPARB_GATE);
4998         }
4999
5000         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5001
5002         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5003                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5004                    ILK_ELPIN_409_SELECT);
5005         I915_WRITE(_3D_CHICKEN2,
5006                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5007                    _3D_CHICKEN2_WM_READ_PIPELINED);
5008
5009         /* WaDisableRenderCachePipelinedFlush:ilk */
5010         I915_WRITE(CACHE_MODE_0,
5011                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5012
5013         g4x_disable_trickle_feed(dev);
5014
5015         ibx_init_clock_gating(dev);
5016 }
5017
5018 static void cpt_init_clock_gating(struct drm_device *dev)
5019 {
5020         struct drm_i915_private *dev_priv = dev->dev_private;
5021         int pipe;
5022         uint32_t val;
5023
5024         /*
5025          * On Ibex Peak and Cougar Point, we need to disable clock
5026          * gating for the panel power sequencer or it will fail to
5027          * start up when no ports are active.
5028          */
5029         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5030                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5031                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
5032         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5033                    DPLS_EDP_PPS_FIX_DIS);
5034         /* The below fixes the weird display corruption, a few pixels shifted
5035          * downward, on (only) LVDS of some HP laptops with IVY.
5036          */
5037         for_each_pipe(pipe) {
5038                 val = I915_READ(TRANS_CHICKEN2(pipe));
5039                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5040                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5041                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5042                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5043                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5044                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5045                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5046                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5047         }
5048         /* WADP0ClockGatingDisable */
5049         for_each_pipe(pipe) {
5050                 I915_WRITE(TRANS_CHICKEN1(pipe),
5051                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5052         }
5053 }
5054
5055 static void gen6_check_mch_setup(struct drm_device *dev)
5056 {
5057         struct drm_i915_private *dev_priv = dev->dev_private;
5058         uint32_t tmp;
5059
5060         tmp = I915_READ(MCH_SSKPD);
5061         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
5062                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
5063                 DRM_INFO("This can cause pipe underruns and display issues.\n");
5064                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
5065         }
5066 }
5067
5068 static void gen6_init_clock_gating(struct drm_device *dev)
5069 {
5070         struct drm_i915_private *dev_priv = dev->dev_private;
5071         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5072
5073         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5074
5075         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5076                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5077                    ILK_ELPIN_409_SELECT);
5078
5079         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5080         I915_WRITE(_3D_CHICKEN,
5081                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5082
5083         /* WaSetupGtModeTdRowDispatch:snb */
5084         if (IS_SNB_GT1(dev))
5085                 I915_WRITE(GEN6_GT_MODE,
5086                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5087
5088         I915_WRITE(WM3_LP_ILK, 0);
5089         I915_WRITE(WM2_LP_ILK, 0);
5090         I915_WRITE(WM1_LP_ILK, 0);
5091
5092         I915_WRITE(CACHE_MODE_0,
5093                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5094
5095         I915_WRITE(GEN6_UCGCTL1,
5096                    I915_READ(GEN6_UCGCTL1) |
5097                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5098                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5099
5100         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5101          * gating disable must be set.  Failure to set it results in
5102          * flickering pixels due to Z write ordering failures after
5103          * some amount of runtime in the Mesa "fire" demo, and Unigine
5104          * Sanctuary and Tropics, and apparently anything else with
5105          * alpha test or pixel discard.
5106          *
5107          * According to the spec, bit 11 (RCCUNIT) must also be set,
5108          * but we didn't debug actual testcases to find it out.
5109          *
5110          * Also apply WaDisableVDSUnitClockGating:snb and
5111          * WaDisableRCPBUnitClockGating:snb.
5112          */
5113         I915_WRITE(GEN6_UCGCTL2,
5114                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5115                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5116                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5117
5118         /* Bspec says we need to always set all mask bits. */
5119         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
5120                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
5121
5122         /*
5123          * According to the spec the following bits should be
5124          * set in order to enable memory self-refresh and fbc:
5125          * The bit21 and bit22 of 0x42000
5126          * The bit21 and bit22 of 0x42004
5127          * The bit5 and bit7 of 0x42020
5128          * The bit14 of 0x70180
5129          * The bit14 of 0x71180
5130          *
5131          * WaFbcAsynchFlipDisableFbcQueue:snb
5132          */
5133         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5134                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5135                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5136         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5137                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5138                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5139         I915_WRITE(ILK_DSPCLK_GATE_D,
5140                    I915_READ(ILK_DSPCLK_GATE_D) |
5141                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
5142                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5143
5144         g4x_disable_trickle_feed(dev);
5145
5146         /* The default value should be 0x200 according to docs, but the two
5147          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
5148         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
5149         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
5150
5151         cpt_init_clock_gating(dev);
5152
5153         gen6_check_mch_setup(dev);
5154 }
5155
5156 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5157 {
5158         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5159
5160         reg &= ~GEN7_FF_SCHED_MASK;
5161         reg |= GEN7_FF_TS_SCHED_HW;
5162         reg |= GEN7_FF_VS_SCHED_HW;
5163         reg |= GEN7_FF_DS_SCHED_HW;
5164
5165         if (IS_HASWELL(dev_priv->dev))
5166                 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
5167
5168         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5169 }
5170
5171 static void lpt_init_clock_gating(struct drm_device *dev)
5172 {
5173         struct drm_i915_private *dev_priv = dev->dev_private;
5174
5175         /*
5176          * TODO: this bit should only be enabled when really needed, then
5177          * disabled when not needed anymore in order to save power.
5178          */
5179         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5180                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5181                            I915_READ(SOUTH_DSPCLK_GATE_D) |
5182                            PCH_LP_PARTITION_LEVEL_DISABLE);
5183
5184         /* WADPOClockGatingDisable:hsw */
5185         I915_WRITE(_TRANSA_CHICKEN1,
5186                    I915_READ(_TRANSA_CHICKEN1) |
5187                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5188 }
5189
5190 static void lpt_suspend_hw(struct drm_device *dev)
5191 {
5192         struct drm_i915_private *dev_priv = dev->dev_private;
5193
5194         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5195                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5196
5197                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5198                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5199         }
5200 }
5201
5202 static void gen8_init_clock_gating(struct drm_device *dev)
5203 {
5204         struct drm_i915_private *dev_priv = dev->dev_private;
5205
5206         I915_WRITE(WM3_LP_ILK, 0);
5207         I915_WRITE(WM2_LP_ILK, 0);
5208         I915_WRITE(WM1_LP_ILK, 0);
5209
5210         /* FIXME(BDW): Check all the w/a, some might only apply to
5211          * pre-production hw. */
5212
5213         /* WaSwitchSolVfFArbitrationPriority */
5214         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5215 }
5216
5217 static void haswell_init_clock_gating(struct drm_device *dev)
5218 {
5219         struct drm_i915_private *dev_priv = dev->dev_private;
5220
5221         I915_WRITE(WM3_LP_ILK, 0);
5222         I915_WRITE(WM2_LP_ILK, 0);
5223         I915_WRITE(WM1_LP_ILK, 0);
5224
5225         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5226          * This implements the WaDisableRCZUnitClockGating:hsw workaround.
5227          */
5228         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5229
5230         /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
5231         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5232                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5233
5234         /* WaApplyL3ControlAndL3ChickenMode:hsw */
5235         I915_WRITE(GEN7_L3CNTLREG1,
5236                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5237         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5238                         GEN7_WA_L3_CHICKEN_MODE);
5239
5240         /* L3 caching of data atomics doesn't work -- disable it. */
5241         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5242         I915_WRITE(HSW_ROW_CHICKEN3,
5243                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5244
5245         /* This is required by WaCatErrorRejectionIssue:hsw */
5246         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5247                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5248                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5249
5250         /* WaVSRefCountFullforceMissDisable:hsw */
5251         gen7_setup_fixed_func_scheduler(dev_priv);
5252
5253         /* WaDisable4x2SubspanOptimization:hsw */
5254         I915_WRITE(CACHE_MODE_1,
5255                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5256
5257         /* WaSwitchSolVfFArbitrationPriority:hsw */
5258         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5259
5260         /* WaRsPkgCStateDisplayPMReq:hsw */
5261         I915_WRITE(CHICKEN_PAR1_1,
5262                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5263
5264         lpt_init_clock_gating(dev);
5265 }
5266
5267 static void ivybridge_init_clock_gating(struct drm_device *dev)
5268 {
5269         struct drm_i915_private *dev_priv = dev->dev_private;
5270         uint32_t snpcr;
5271
5272         I915_WRITE(WM3_LP_ILK, 0);
5273         I915_WRITE(WM2_LP_ILK, 0);
5274         I915_WRITE(WM1_LP_ILK, 0);
5275
5276         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5277
5278         /* WaDisableEarlyCull:ivb */
5279         I915_WRITE(_3D_CHICKEN3,
5280                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5281
5282         /* WaDisableBackToBackFlipFix:ivb */
5283         I915_WRITE(IVB_CHICKEN3,
5284                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5285                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5286
5287         /* WaDisablePSDDualDispatchEnable:ivb */
5288         if (IS_IVB_GT1(dev))
5289                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5290                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5291         else
5292                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
5293                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5294
5295         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5296         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5297                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5298
5299         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5300         I915_WRITE(GEN7_L3CNTLREG1,
5301                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5302         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5303                    GEN7_WA_L3_CHICKEN_MODE);
5304         if (IS_IVB_GT1(dev))
5305                 I915_WRITE(GEN7_ROW_CHICKEN2,
5306                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5307         else
5308                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5309                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5310
5311
5312         /* WaForceL3Serialization:ivb */
5313         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5314                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5315
5316         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5317          * gating disable must be set.  Failure to set it results in
5318          * flickering pixels due to Z write ordering failures after
5319          * some amount of runtime in the Mesa "fire" demo, and Unigine
5320          * Sanctuary and Tropics, and apparently anything else with
5321          * alpha test or pixel discard.
5322          *
5323          * According to the spec, bit 11 (RCCUNIT) must also be set,
5324          * but we didn't debug actual testcases to find it out.
5325          *
5326          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5327          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5328          */
5329         I915_WRITE(GEN6_UCGCTL2,
5330                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5331                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5332
5333         /* This is required by WaCatErrorRejectionIssue:ivb */
5334         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5335                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5336                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5337
5338         g4x_disable_trickle_feed(dev);
5339
5340         /* WaVSRefCountFullforceMissDisable:ivb */
5341         gen7_setup_fixed_func_scheduler(dev_priv);
5342
5343         /* WaDisable4x2SubspanOptimization:ivb */
5344         I915_WRITE(CACHE_MODE_1,
5345                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5346
5347         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5348         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5349         snpcr |= GEN6_MBC_SNPCR_MED;
5350         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5351
5352         if (!HAS_PCH_NOP(dev))
5353                 cpt_init_clock_gating(dev);
5354
5355         gen6_check_mch_setup(dev);
5356 }
5357
5358 static void valleyview_init_clock_gating(struct drm_device *dev)
5359 {
5360         struct drm_i915_private *dev_priv = dev->dev_private;
5361
5362         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5363
5364         /* WaDisableEarlyCull:vlv */
5365         I915_WRITE(_3D_CHICKEN3,
5366                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5367
5368         /* WaDisableBackToBackFlipFix:vlv */
5369         I915_WRITE(IVB_CHICKEN3,
5370                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5371                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5372
5373         /* WaDisablePSDDualDispatchEnable:vlv */
5374         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5375                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5376                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5377
5378         /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
5379         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5380                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5381
5382         /* WaApplyL3ControlAndL3ChickenMode:vlv */
5383         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
5384         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
5385
5386         /* WaForceL3Serialization:vlv */
5387         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5388                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5389
5390         /* WaDisableDopClockGating:vlv */
5391         I915_WRITE(GEN7_ROW_CHICKEN2,
5392                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5393
5394         /* This is required by WaCatErrorRejectionIssue:vlv */
5395         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5396                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5397                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5398
5399         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5400          * gating disable must be set.  Failure to set it results in
5401          * flickering pixels due to Z write ordering failures after
5402          * some amount of runtime in the Mesa "fire" demo, and Unigine
5403          * Sanctuary and Tropics, and apparently anything else with
5404          * alpha test or pixel discard.
5405          *
5406          * According to the spec, bit 11 (RCCUNIT) must also be set,
5407          * but we didn't debug actual testcases to find it out.
5408          *
5409          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5410          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5411          *
5412          * Also apply WaDisableVDSUnitClockGating:vlv and
5413          * WaDisableRCPBUnitClockGating:vlv.
5414          */
5415         I915_WRITE(GEN6_UCGCTL2,
5416                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5417                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
5418                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5419                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5420                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5421
5422         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5423
5424         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5425
5426         I915_WRITE(CACHE_MODE_1,
5427                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5428
5429         /*
5430          * WaDisableVLVClockGating_VBIIssue:vlv
5431          * Disable clock gating on th GCFG unit to prevent a delay
5432          * in the reporting of vblank events.
5433          */
5434         I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
5435
5436         /* Conservative clock gating settings for now */
5437         I915_WRITE(0x9400, 0xffffffff);
5438         I915_WRITE(0x9404, 0xffffffff);
5439         I915_WRITE(0x9408, 0xffffffff);
5440         I915_WRITE(0x940c, 0xffffffff);
5441         I915_WRITE(0x9410, 0xffffffff);
5442         I915_WRITE(0x9414, 0xffffffff);
5443         I915_WRITE(0x9418, 0xffffffff);
5444 }
5445
5446 static void g4x_init_clock_gating(struct drm_device *dev)
5447 {
5448         struct drm_i915_private *dev_priv = dev->dev_private;
5449         uint32_t dspclk_gate;
5450
5451         I915_WRITE(RENCLK_GATE_D1, 0);
5452         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5453                    GS_UNIT_CLOCK_GATE_DISABLE |
5454                    CL_UNIT_CLOCK_GATE_DISABLE);
5455         I915_WRITE(RAMCLK_GATE_D, 0);
5456         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5457                 OVRUNIT_CLOCK_GATE_DISABLE |
5458                 OVCUNIT_CLOCK_GATE_DISABLE;
5459         if (IS_GM45(dev))
5460                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5461         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5462
5463         /* WaDisableRenderCachePipelinedFlush */
5464         I915_WRITE(CACHE_MODE_0,
5465                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5466
5467         g4x_disable_trickle_feed(dev);
5468 }
5469
5470 static void crestline_init_clock_gating(struct drm_device *dev)
5471 {
5472         struct drm_i915_private *dev_priv = dev->dev_private;
5473
5474         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5475         I915_WRITE(RENCLK_GATE_D2, 0);
5476         I915_WRITE(DSPCLK_GATE_D, 0);
5477         I915_WRITE(RAMCLK_GATE_D, 0);
5478         I915_WRITE16(DEUC, 0);
5479         I915_WRITE(MI_ARB_STATE,
5480                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5481 }
5482
5483 static void broadwater_init_clock_gating(struct drm_device *dev)
5484 {
5485         struct drm_i915_private *dev_priv = dev->dev_private;
5486
5487         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5488                    I965_RCC_CLOCK_GATE_DISABLE |
5489                    I965_RCPB_CLOCK_GATE_DISABLE |
5490                    I965_ISC_CLOCK_GATE_DISABLE |
5491                    I965_FBC_CLOCK_GATE_DISABLE);
5492         I915_WRITE(RENCLK_GATE_D2, 0);
5493         I915_WRITE(MI_ARB_STATE,
5494                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5495 }
5496
5497 static void gen3_init_clock_gating(struct drm_device *dev)
5498 {
5499         struct drm_i915_private *dev_priv = dev->dev_private;
5500         u32 dstate = I915_READ(D_STATE);
5501
5502         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5503                 DSTATE_DOT_CLOCK_GATING;
5504         I915_WRITE(D_STATE, dstate);
5505
5506         if (IS_PINEVIEW(dev))
5507                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5508
5509         /* IIR "flip pending" means done if this bit is set */
5510         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5511 }
5512
5513 static void i85x_init_clock_gating(struct drm_device *dev)
5514 {
5515         struct drm_i915_private *dev_priv = dev->dev_private;
5516
5517         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5518 }
5519
5520 static void i830_init_clock_gating(struct drm_device *dev)
5521 {
5522         struct drm_i915_private *dev_priv = dev->dev_private;
5523
5524         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5525 }
5526
5527 void intel_init_clock_gating(struct drm_device *dev)
5528 {
5529         struct drm_i915_private *dev_priv = dev->dev_private;
5530
5531         dev_priv->display.init_clock_gating(dev);
5532 }
5533
5534 void intel_suspend_hw(struct drm_device *dev)
5535 {
5536         if (HAS_PCH_LPT(dev))
5537                 lpt_suspend_hw(dev);
5538 }
5539
5540 static bool is_always_on_power_domain(struct drm_device *dev,
5541                                       enum intel_display_power_domain domain)
5542 {
5543         unsigned long always_on_domains;
5544
5545         BUG_ON(BIT(domain) & ~POWER_DOMAIN_MASK);
5546
5547         if (IS_BROADWELL(dev)) {
5548                 always_on_domains = BDW_ALWAYS_ON_POWER_DOMAINS;
5549         } else if (IS_HASWELL(dev)) {
5550                 always_on_domains = HSW_ALWAYS_ON_POWER_DOMAINS;
5551         } else {
5552                 WARN_ON(1);
5553                 return true;
5554         }
5555
5556         return BIT(domain) & always_on_domains;
5557 }
5558
5559 /**
5560  * We should only use the power well if we explicitly asked the hardware to
5561  * enable it, so check if it's enabled and also check if we've requested it to
5562  * be enabled.
5563  */
5564 bool intel_display_power_enabled(struct drm_device *dev,
5565                                  enum intel_display_power_domain domain)
5566 {
5567         struct drm_i915_private *dev_priv = dev->dev_private;
5568
5569         if (!HAS_POWER_WELL(dev))
5570                 return true;
5571
5572         if (is_always_on_power_domain(dev, domain))
5573                 return true;
5574
5575         return I915_READ(HSW_PWR_WELL_DRIVER) ==
5576                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5577 }
5578
5579 static void __intel_set_power_well(struct drm_device *dev, bool enable)
5580 {
5581         struct drm_i915_private *dev_priv = dev->dev_private;
5582         bool is_enabled, enable_requested;
5583         uint32_t tmp;
5584
5585         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5586         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5587         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5588
5589         if (enable) {
5590                 if (!enable_requested)
5591                         I915_WRITE(HSW_PWR_WELL_DRIVER,
5592                                    HSW_PWR_WELL_ENABLE_REQUEST);
5593
5594                 if (!is_enabled) {
5595                         DRM_DEBUG_KMS("Enabling power well\n");
5596                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5597                                       HSW_PWR_WELL_STATE_ENABLED), 20))
5598                                 DRM_ERROR("Timeout enabling power well\n");
5599                 }
5600         } else {
5601                 if (enable_requested) {
5602                         unsigned long irqflags;
5603                         enum pipe p;
5604
5605                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5606                         POSTING_READ(HSW_PWR_WELL_DRIVER);
5607                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5608
5609                         /*
5610                          * After this, the registers on the pipes that are part
5611                          * of the power well will become zero, so we have to
5612                          * adjust our counters according to that.
5613                          *
5614                          * FIXME: Should we do this in general in
5615                          * drm_vblank_post_modeset?
5616                          */
5617                         spin_lock_irqsave(&dev->vbl_lock, irqflags);
5618                         for_each_pipe(p)
5619                                 if (p != PIPE_A)
5620                                         dev->vblank[p].last = 0;
5621                         spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5622                 }
5623         }
5624 }
5625
5626 static void __intel_power_well_get(struct drm_device *dev,
5627                                    struct i915_power_well *power_well)
5628 {
5629         if (!power_well->count++)
5630                 __intel_set_power_well(dev, true);
5631 }
5632
5633 static void __intel_power_well_put(struct drm_device *dev,
5634                                    struct i915_power_well *power_well)
5635 {
5636         WARN_ON(!power_well->count);
5637         if (!--power_well->count && i915_disable_power_well)
5638                 __intel_set_power_well(dev, false);
5639 }
5640
5641 void intel_display_power_get(struct drm_device *dev,
5642                              enum intel_display_power_domain domain)
5643 {
5644         struct drm_i915_private *dev_priv = dev->dev_private;
5645         struct i915_power_domains *power_domains;
5646
5647         if (!HAS_POWER_WELL(dev))
5648                 return;
5649
5650         if (is_always_on_power_domain(dev, domain))
5651                 return;
5652
5653         power_domains = &dev_priv->power_domains;
5654
5655         mutex_lock(&power_domains->lock);
5656         __intel_power_well_get(dev, &power_domains->power_wells[0]);
5657         mutex_unlock(&power_domains->lock);
5658 }
5659
5660 void intel_display_power_put(struct drm_device *dev,
5661                              enum intel_display_power_domain domain)
5662 {
5663         struct drm_i915_private *dev_priv = dev->dev_private;
5664         struct i915_power_domains *power_domains;
5665
5666         if (!HAS_POWER_WELL(dev))
5667                 return;
5668
5669         if (is_always_on_power_domain(dev, domain))
5670                 return;
5671
5672         power_domains = &dev_priv->power_domains;
5673
5674         mutex_lock(&power_domains->lock);
5675         __intel_power_well_put(dev, &power_domains->power_wells[0]);
5676         mutex_unlock(&power_domains->lock);
5677 }
5678
5679 static struct i915_power_domains *hsw_pwr;
5680
5681 /* Display audio driver power well request */
5682 void i915_request_power_well(void)
5683 {
5684         struct drm_i915_private *dev_priv;
5685
5686         if (WARN_ON(!hsw_pwr))
5687                 return;
5688
5689         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5690                                 power_domains);
5691
5692         mutex_lock(&hsw_pwr->lock);
5693         __intel_power_well_get(dev_priv->dev, &hsw_pwr->power_wells[0]);
5694         mutex_unlock(&hsw_pwr->lock);
5695 }
5696 EXPORT_SYMBOL_GPL(i915_request_power_well);
5697
5698 /* Display audio driver power well release */
5699 void i915_release_power_well(void)
5700 {
5701         struct drm_i915_private *dev_priv;
5702
5703         if (WARN_ON(!hsw_pwr))
5704                 return;
5705
5706         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5707                                 power_domains);
5708
5709         mutex_lock(&hsw_pwr->lock);
5710         __intel_power_well_put(dev_priv->dev, &hsw_pwr->power_wells[0]);
5711         mutex_unlock(&hsw_pwr->lock);
5712 }
5713 EXPORT_SYMBOL_GPL(i915_release_power_well);
5714
5715 int intel_power_domains_init(struct drm_device *dev)
5716 {
5717         struct drm_i915_private *dev_priv = dev->dev_private;
5718         struct i915_power_domains *power_domains = &dev_priv->power_domains;
5719         struct i915_power_well *power_well;
5720
5721         mutex_init(&power_domains->lock);
5722         hsw_pwr = power_domains;
5723
5724         power_well = &power_domains->power_wells[0];
5725         power_well->count = 0;
5726
5727         return 0;
5728 }
5729
5730 void intel_power_domains_remove(struct drm_device *dev)
5731 {
5732         hsw_pwr = NULL;
5733 }
5734
5735 static void intel_power_domains_resume(struct drm_device *dev)
5736 {
5737         struct drm_i915_private *dev_priv = dev->dev_private;
5738         struct i915_power_domains *power_domains = &dev_priv->power_domains;
5739         struct i915_power_well *power_well;
5740
5741         if (!HAS_POWER_WELL(dev))
5742                 return;
5743
5744         mutex_lock(&power_domains->lock);
5745
5746         power_well = &power_domains->power_wells[0];
5747         __intel_set_power_well(dev, power_well->count > 0);
5748
5749         mutex_unlock(&power_domains->lock);
5750 }
5751
5752 /*
5753  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5754  * when not needed anymore. We have 4 registers that can request the power well
5755  * to be enabled, and it will only be disabled if none of the registers is
5756  * requesting it to be enabled.
5757  */
5758 void intel_power_domains_init_hw(struct drm_device *dev)
5759 {
5760         struct drm_i915_private *dev_priv = dev->dev_private;
5761
5762         if (!HAS_POWER_WELL(dev))
5763                 return;
5764
5765         /* For now, we need the power well to be always enabled. */
5766         intel_display_set_init_power(dev, true);
5767         intel_power_domains_resume(dev);
5768
5769         /* We're taking over the BIOS, so clear any requests made by it since
5770          * the driver is in charge now. */
5771         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5772                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5773 }
5774
5775 /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5776 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5777 {
5778         hsw_disable_package_c8(dev_priv);
5779 }
5780
5781 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5782 {
5783         hsw_enable_package_c8(dev_priv);
5784 }
5785
5786 /* Set up chip specific power management-related functions */
5787 void intel_init_pm(struct drm_device *dev)
5788 {
5789         struct drm_i915_private *dev_priv = dev->dev_private;
5790
5791         if (I915_HAS_FBC(dev)) {
5792                 if (HAS_PCH_SPLIT(dev)) {
5793                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5794                         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5795                                 dev_priv->display.enable_fbc =
5796                                         gen7_enable_fbc;
5797                         else
5798                                 dev_priv->display.enable_fbc =
5799                                         ironlake_enable_fbc;
5800                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5801                 } else if (IS_GM45(dev)) {
5802                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5803                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5804                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5805                 } else if (IS_CRESTLINE(dev)) {
5806                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5807                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5808                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5809                 }
5810                 /* 855GM needs testing */
5811         }
5812
5813         /* For cxsr */
5814         if (IS_PINEVIEW(dev))
5815                 i915_pineview_get_mem_freq(dev);
5816         else if (IS_GEN5(dev))
5817                 i915_ironlake_get_mem_freq(dev);
5818
5819         /* For FIFO watermark updates */
5820         if (HAS_PCH_SPLIT(dev)) {
5821                 intel_setup_wm_latency(dev);
5822
5823                 if (IS_GEN5(dev)) {
5824                         if (dev_priv->wm.pri_latency[1] &&
5825                             dev_priv->wm.spr_latency[1] &&
5826                             dev_priv->wm.cur_latency[1])
5827                                 dev_priv->display.update_wm = ironlake_update_wm;
5828                         else {
5829                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5830                                               "Disable CxSR\n");
5831                                 dev_priv->display.update_wm = NULL;
5832                         }
5833                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5834                 } else if (IS_GEN6(dev)) {
5835                         if (dev_priv->wm.pri_latency[0] &&
5836                             dev_priv->wm.spr_latency[0] &&
5837                             dev_priv->wm.cur_latency[0]) {
5838                                 dev_priv->display.update_wm = sandybridge_update_wm;
5839                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5840                         } else {
5841                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5842                                               "Disable CxSR\n");
5843                                 dev_priv->display.update_wm = NULL;
5844                         }
5845                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5846                 } else if (IS_IVYBRIDGE(dev)) {
5847                         if (dev_priv->wm.pri_latency[0] &&
5848                             dev_priv->wm.spr_latency[0] &&
5849                             dev_priv->wm.cur_latency[0]) {
5850                                 dev_priv->display.update_wm = ivybridge_update_wm;
5851                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5852                         } else {
5853                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5854                                               "Disable CxSR\n");
5855                                 dev_priv->display.update_wm = NULL;
5856                         }
5857                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5858                 } else if (IS_HASWELL(dev)) {
5859                         if (dev_priv->wm.pri_latency[0] &&
5860                             dev_priv->wm.spr_latency[0] &&
5861                             dev_priv->wm.cur_latency[0]) {
5862                                 dev_priv->display.update_wm = haswell_update_wm;
5863                                 dev_priv->display.update_sprite_wm =
5864                                         haswell_update_sprite_wm;
5865                         } else {
5866                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5867                                               "Disable CxSR\n");
5868                                 dev_priv->display.update_wm = NULL;
5869                         }
5870                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5871                 } else if (INTEL_INFO(dev)->gen == 8) {
5872                         dev_priv->display.init_clock_gating = gen8_init_clock_gating;
5873                 } else
5874                         dev_priv->display.update_wm = NULL;
5875         } else if (IS_VALLEYVIEW(dev)) {
5876                 dev_priv->display.update_wm = valleyview_update_wm;
5877                 dev_priv->display.init_clock_gating =
5878                         valleyview_init_clock_gating;
5879         } else if (IS_PINEVIEW(dev)) {
5880                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5881                                             dev_priv->is_ddr3,
5882                                             dev_priv->fsb_freq,
5883                                             dev_priv->mem_freq)) {
5884                         DRM_INFO("failed to find known CxSR latency "
5885                                  "(found ddr%s fsb freq %d, mem freq %d), "
5886                                  "disabling CxSR\n",
5887                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
5888                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5889                         /* Disable CxSR and never update its watermark again */
5890                         pineview_disable_cxsr(dev);
5891                         dev_priv->display.update_wm = NULL;
5892                 } else
5893                         dev_priv->display.update_wm = pineview_update_wm;
5894                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5895         } else if (IS_G4X(dev)) {
5896                 dev_priv->display.update_wm = g4x_update_wm;
5897                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5898         } else if (IS_GEN4(dev)) {
5899                 dev_priv->display.update_wm = i965_update_wm;
5900                 if (IS_CRESTLINE(dev))
5901                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5902                 else if (IS_BROADWATER(dev))
5903                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5904         } else if (IS_GEN3(dev)) {
5905                 dev_priv->display.update_wm = i9xx_update_wm;
5906                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5907                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5908         } else if (IS_I865G(dev)) {
5909                 dev_priv->display.update_wm = i830_update_wm;
5910                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5911                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5912         } else if (IS_I85X(dev)) {
5913                 dev_priv->display.update_wm = i9xx_update_wm;
5914                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5915                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5916         } else {
5917                 dev_priv->display.update_wm = i830_update_wm;
5918                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5919                 if (IS_845G(dev))
5920                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5921                 else
5922                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5923         }
5924 }
5925
5926 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5927 {
5928         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5929
5930         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5931                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5932                 return -EAGAIN;
5933         }
5934
5935         I915_WRITE(GEN6_PCODE_DATA, *val);
5936         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5937
5938         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5939                      500)) {
5940                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5941                 return -ETIMEDOUT;
5942         }
5943
5944         *val = I915_READ(GEN6_PCODE_DATA);
5945         I915_WRITE(GEN6_PCODE_DATA, 0);
5946
5947         return 0;
5948 }
5949
5950 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5951 {
5952         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5953
5954         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5955                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5956                 return -EAGAIN;
5957         }
5958
5959         I915_WRITE(GEN6_PCODE_DATA, val);
5960         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5961
5962         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5963                      500)) {
5964                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5965                 return -ETIMEDOUT;
5966         }
5967
5968         I915_WRITE(GEN6_PCODE_DATA, 0);
5969
5970         return 0;
5971 }
5972
5973 int vlv_gpu_freq(int ddr_freq, int val)
5974 {
5975         int mult, base;
5976
5977         switch (ddr_freq) {
5978         case 800:
5979                 mult = 20;
5980                 base = 120;
5981                 break;
5982         case 1066:
5983                 mult = 22;
5984                 base = 133;
5985                 break;
5986         case 1333:
5987                 mult = 21;
5988                 base = 125;
5989                 break;
5990         default:
5991                 return -1;
5992         }
5993
5994         return ((val - 0xbd) * mult) + base;
5995 }
5996
5997 int vlv_freq_opcode(int ddr_freq, int val)
5998 {
5999         int mult, base;
6000
6001         switch (ddr_freq) {
6002         case 800:
6003                 mult = 20;
6004                 base = 120;
6005                 break;
6006         case 1066:
6007                 mult = 22;
6008                 base = 133;
6009                 break;
6010         case 1333:
6011                 mult = 21;
6012                 base = 125;
6013                 break;
6014         default:
6015                 return -1;
6016         }
6017
6018         val /= mult;
6019         val -= base / mult;
6020         val += 0xbd;
6021
6022         if (val > 0xea)
6023                 val = 0xea;
6024
6025         return val;
6026 }
6027
6028 void intel_pm_init(struct drm_device *dev)
6029 {
6030         struct drm_i915_private *dev_priv = dev->dev_private;
6031
6032         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6033                           intel_gen6_powersave_work);
6034 }