2 * Copyright © 2012 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
28 #include <linux/cpufreq.h>
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <drm/i915_powerwell.h>
35 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
36 * framebuffer contents in-memory, aiming at reducing the required bandwidth
37 * during in-memory transfers and, therefore, reduce the power packet.
39 * The benefits of FBC are mostly visible with solid backgrounds and
40 * variation-less patterns.
42 * FBC-related functionality can be enabled by the means of the
43 * i915.i915_enable_fbc parameter
46 static bool intel_crtc_active(struct drm_crtc *crtc)
48 /* Be paranoid as we can arrive here with only partial
49 * state retrieved from the hardware during setup.
51 return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
54 static void i8xx_disable_fbc(struct drm_device *dev)
56 struct drm_i915_private *dev_priv = dev->dev_private;
59 /* Disable compression */
60 fbc_ctl = I915_READ(FBC_CONTROL);
61 if ((fbc_ctl & FBC_CTL_EN) == 0)
64 fbc_ctl &= ~FBC_CTL_EN;
65 I915_WRITE(FBC_CONTROL, fbc_ctl);
67 /* Wait for compressing bit to clear */
68 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
69 DRM_DEBUG_KMS("FBC idle timed out\n");
73 DRM_DEBUG_KMS("disabled FBC\n");
76 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
78 struct drm_device *dev = crtc->dev;
79 struct drm_i915_private *dev_priv = dev->dev_private;
80 struct drm_framebuffer *fb = crtc->fb;
81 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
82 struct drm_i915_gem_object *obj = intel_fb->obj;
83 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
86 u32 fbc_ctl, fbc_ctl2;
88 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
89 if (fb->pitches[0] < cfb_pitch)
90 cfb_pitch = fb->pitches[0];
92 /* FBC_CTL wants 64B units */
93 cfb_pitch = (cfb_pitch / 64) - 1;
94 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
97 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
98 I915_WRITE(FBC_TAG + (i * 4), 0);
101 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
103 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
104 I915_WRITE(FBC_FENCE_OFF, crtc->y);
107 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
109 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
110 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
111 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
112 fbc_ctl |= obj->fence_reg;
113 I915_WRITE(FBC_CONTROL, fbc_ctl);
115 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
116 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
119 static bool i8xx_fbc_enabled(struct drm_device *dev)
121 struct drm_i915_private *dev_priv = dev->dev_private;
123 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
126 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
128 struct drm_device *dev = crtc->dev;
129 struct drm_i915_private *dev_priv = dev->dev_private;
130 struct drm_framebuffer *fb = crtc->fb;
131 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
132 struct drm_i915_gem_object *obj = intel_fb->obj;
133 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
134 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
135 unsigned long stall_watermark = 200;
138 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
139 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
140 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
142 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
143 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
144 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
145 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
148 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
150 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
153 static void g4x_disable_fbc(struct drm_device *dev)
155 struct drm_i915_private *dev_priv = dev->dev_private;
158 /* Disable compression */
159 dpfc_ctl = I915_READ(DPFC_CONTROL);
160 if (dpfc_ctl & DPFC_CTL_EN) {
161 dpfc_ctl &= ~DPFC_CTL_EN;
162 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
164 DRM_DEBUG_KMS("disabled FBC\n");
168 static bool g4x_fbc_enabled(struct drm_device *dev)
170 struct drm_i915_private *dev_priv = dev->dev_private;
172 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
175 static void sandybridge_blit_fbc_update(struct drm_device *dev)
177 struct drm_i915_private *dev_priv = dev->dev_private;
180 /* Make sure blitter notifies FBC of writes */
181 gen6_gt_force_wake_get(dev_priv);
182 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
183 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
184 GEN6_BLITTER_LOCK_SHIFT;
185 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
186 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
187 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
188 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
189 GEN6_BLITTER_LOCK_SHIFT);
190 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
191 POSTING_READ(GEN6_BLITTER_ECOSKPD);
192 gen6_gt_force_wake_put(dev_priv);
195 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
197 struct drm_device *dev = crtc->dev;
198 struct drm_i915_private *dev_priv = dev->dev_private;
199 struct drm_framebuffer *fb = crtc->fb;
200 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
201 struct drm_i915_gem_object *obj = intel_fb->obj;
202 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
203 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
204 unsigned long stall_watermark = 200;
207 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
208 dpfc_ctl &= DPFC_RESERVED;
209 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
210 /* Set persistent mode for front-buffer rendering, ala X. */
211 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
212 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
213 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
215 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
216 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
217 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
218 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
219 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
221 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
224 I915_WRITE(SNB_DPFC_CTL_SA,
225 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
226 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
227 sandybridge_blit_fbc_update(dev);
230 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
233 static void ironlake_disable_fbc(struct drm_device *dev)
235 struct drm_i915_private *dev_priv = dev->dev_private;
238 /* Disable compression */
239 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
240 if (dpfc_ctl & DPFC_CTL_EN) {
241 dpfc_ctl &= ~DPFC_CTL_EN;
242 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
244 if (IS_IVYBRIDGE(dev))
245 /* WaFbcDisableDpfcClockGating:ivb */
246 I915_WRITE(ILK_DSPCLK_GATE_D,
247 I915_READ(ILK_DSPCLK_GATE_D) &
248 ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
251 /* WaFbcDisableDpfcClockGating:hsw */
252 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
253 I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
254 ~HSW_DPFC_GATING_DISABLE);
256 DRM_DEBUG_KMS("disabled FBC\n");
260 static bool ironlake_fbc_enabled(struct drm_device *dev)
262 struct drm_i915_private *dev_priv = dev->dev_private;
264 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
267 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
269 struct drm_device *dev = crtc->dev;
270 struct drm_i915_private *dev_priv = dev->dev_private;
271 struct drm_framebuffer *fb = crtc->fb;
272 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
273 struct drm_i915_gem_object *obj = intel_fb->obj;
274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
276 I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
278 I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
279 IVB_DPFC_CTL_FENCE_EN |
280 intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
282 if (IS_IVYBRIDGE(dev)) {
283 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
284 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
285 /* WaFbcDisableDpfcClockGating:ivb */
286 I915_WRITE(ILK_DSPCLK_GATE_D,
287 I915_READ(ILK_DSPCLK_GATE_D) |
288 ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
290 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
291 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
292 HSW_BYPASS_FBC_QUEUE);
293 /* WaFbcDisableDpfcClockGating:hsw */
294 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
295 I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
296 HSW_DPFC_GATING_DISABLE);
299 I915_WRITE(SNB_DPFC_CTL_SA,
300 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
301 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
303 sandybridge_blit_fbc_update(dev);
305 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
308 bool intel_fbc_enabled(struct drm_device *dev)
310 struct drm_i915_private *dev_priv = dev->dev_private;
312 if (!dev_priv->display.fbc_enabled)
315 return dev_priv->display.fbc_enabled(dev);
318 static void intel_fbc_work_fn(struct work_struct *__work)
320 struct intel_fbc_work *work =
321 container_of(to_delayed_work(__work),
322 struct intel_fbc_work, work);
323 struct drm_device *dev = work->crtc->dev;
324 struct drm_i915_private *dev_priv = dev->dev_private;
326 mutex_lock(&dev->struct_mutex);
327 if (work == dev_priv->fbc.fbc_work) {
328 /* Double check that we haven't switched fb without cancelling
331 if (work->crtc->fb == work->fb) {
332 dev_priv->display.enable_fbc(work->crtc,
335 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
336 dev_priv->fbc.fb_id = work->crtc->fb->base.id;
337 dev_priv->fbc.y = work->crtc->y;
340 dev_priv->fbc.fbc_work = NULL;
342 mutex_unlock(&dev->struct_mutex);
347 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
349 if (dev_priv->fbc.fbc_work == NULL)
352 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
354 /* Synchronisation is provided by struct_mutex and checking of
355 * dev_priv->fbc.fbc_work, so we can perform the cancellation
356 * entirely asynchronously.
358 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
359 /* tasklet was killed before being run, clean up */
360 kfree(dev_priv->fbc.fbc_work);
362 /* Mark the work as no longer wanted so that if it does
363 * wake-up (because the work was already running and waiting
364 * for our mutex), it will discover that is no longer
367 dev_priv->fbc.fbc_work = NULL;
370 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
372 struct intel_fbc_work *work;
373 struct drm_device *dev = crtc->dev;
374 struct drm_i915_private *dev_priv = dev->dev_private;
376 if (!dev_priv->display.enable_fbc)
379 intel_cancel_fbc_work(dev_priv);
381 work = kzalloc(sizeof *work, GFP_KERNEL);
383 DRM_ERROR("Failed to allocate FBC work structure\n");
384 dev_priv->display.enable_fbc(crtc, interval);
390 work->interval = interval;
391 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
393 dev_priv->fbc.fbc_work = work;
395 /* Delay the actual enabling to let pageflipping cease and the
396 * display to settle before starting the compression. Note that
397 * this delay also serves a second purpose: it allows for a
398 * vblank to pass after disabling the FBC before we attempt
399 * to modify the control registers.
401 * A more complicated solution would involve tracking vblanks
402 * following the termination of the page-flipping sequence
403 * and indeed performing the enable as a co-routine and not
404 * waiting synchronously upon the vblank.
406 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
408 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
411 void intel_disable_fbc(struct drm_device *dev)
413 struct drm_i915_private *dev_priv = dev->dev_private;
415 intel_cancel_fbc_work(dev_priv);
417 if (!dev_priv->display.disable_fbc)
420 dev_priv->display.disable_fbc(dev);
421 dev_priv->fbc.plane = -1;
424 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
425 enum no_fbc_reason reason)
427 if (dev_priv->fbc.no_fbc_reason == reason)
430 dev_priv->fbc.no_fbc_reason = reason;
435 * intel_update_fbc - enable/disable FBC as needed
436 * @dev: the drm_device
438 * Set up the framebuffer compression hardware at mode set time. We
439 * enable it if possible:
440 * - plane A only (on pre-965)
441 * - no pixel mulitply/line duplication
442 * - no alpha buffer discard
444 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
446 * We can't assume that any compression will take place (worst case),
447 * so the compressed buffer has to be the same size as the uncompressed
448 * one. It also must reside (along with the line length buffer) in
451 * We need to enable/disable FBC on a global basis.
453 void intel_update_fbc(struct drm_device *dev)
455 struct drm_i915_private *dev_priv = dev->dev_private;
456 struct drm_crtc *crtc = NULL, *tmp_crtc;
457 struct intel_crtc *intel_crtc;
458 struct drm_framebuffer *fb;
459 struct intel_framebuffer *intel_fb;
460 struct drm_i915_gem_object *obj;
461 unsigned int max_hdisplay, max_vdisplay;
463 if (!I915_HAS_FBC(dev)) {
464 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
468 if (!i915_powersave) {
469 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
470 DRM_DEBUG_KMS("fbc disabled per module param\n");
475 * If FBC is already on, we just have to verify that we can
476 * keep it that way...
477 * Need to disable if:
478 * - more than one pipe is active
479 * - changing FBC params (stride, fence, mode)
480 * - new fb is too large to fit in compressed buffer
481 * - going to an unsupported config (interlace, pixel multiply, etc.)
483 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
484 if (intel_crtc_active(tmp_crtc) &&
485 !to_intel_crtc(tmp_crtc)->primary_disabled) {
487 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
488 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
495 if (!crtc || crtc->fb == NULL) {
496 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
497 DRM_DEBUG_KMS("no output, disabling\n");
501 intel_crtc = to_intel_crtc(crtc);
503 intel_fb = to_intel_framebuffer(fb);
506 if (i915_enable_fbc < 0 &&
507 INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
508 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
509 DRM_DEBUG_KMS("disabled per chip default\n");
512 if (!i915_enable_fbc) {
513 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
514 DRM_DEBUG_KMS("fbc disabled per module param\n");
517 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
518 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
519 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
520 DRM_DEBUG_KMS("mode incompatible with compression, "
525 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
532 if ((crtc->mode.hdisplay > max_hdisplay) ||
533 (crtc->mode.vdisplay > max_vdisplay)) {
534 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
535 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
538 if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
539 intel_crtc->plane != 0) {
540 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
541 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
545 /* The use of a CPU fence is mandatory in order to detect writes
546 * by the CPU to the scanout and trigger updates to the FBC.
548 if (obj->tiling_mode != I915_TILING_X ||
549 obj->fence_reg == I915_FENCE_REG_NONE) {
550 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
551 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
555 /* If the kernel debugger is active, always disable compression */
559 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
560 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
561 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
565 /* If the scanout has not changed, don't modify the FBC settings.
566 * Note that we make the fundamental assumption that the fb->obj
567 * cannot be unpinned (and have its GTT offset and fence revoked)
568 * without first being decoupled from the scanout and FBC disabled.
570 if (dev_priv->fbc.plane == intel_crtc->plane &&
571 dev_priv->fbc.fb_id == fb->base.id &&
572 dev_priv->fbc.y == crtc->y)
575 if (intel_fbc_enabled(dev)) {
576 /* We update FBC along two paths, after changing fb/crtc
577 * configuration (modeswitching) and after page-flipping
578 * finishes. For the latter, we know that not only did
579 * we disable the FBC at the start of the page-flip
580 * sequence, but also more than one vblank has passed.
582 * For the former case of modeswitching, it is possible
583 * to switch between two FBC valid configurations
584 * instantaneously so we do need to disable the FBC
585 * before we can modify its control registers. We also
586 * have to wait for the next vblank for that to take
587 * effect. However, since we delay enabling FBC we can
588 * assume that a vblank has passed since disabling and
589 * that we can safely alter the registers in the deferred
592 * In the scenario that we go from a valid to invalid
593 * and then back to valid FBC configuration we have
594 * no strict enforcement that a vblank occurred since
595 * disabling the FBC. However, along all current pipe
596 * disabling paths we do need to wait for a vblank at
597 * some point. And we wait before enabling FBC anyway.
599 DRM_DEBUG_KMS("disabling active FBC for update\n");
600 intel_disable_fbc(dev);
603 intel_enable_fbc(crtc, 500);
604 dev_priv->fbc.no_fbc_reason = FBC_OK;
608 /* Multiple disables should be harmless */
609 if (intel_fbc_enabled(dev)) {
610 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
611 intel_disable_fbc(dev);
613 i915_gem_stolen_cleanup_compression(dev);
616 static void i915_pineview_get_mem_freq(struct drm_device *dev)
618 drm_i915_private_t *dev_priv = dev->dev_private;
621 tmp = I915_READ(CLKCFG);
623 switch (tmp & CLKCFG_FSB_MASK) {
625 dev_priv->fsb_freq = 533; /* 133*4 */
628 dev_priv->fsb_freq = 800; /* 200*4 */
631 dev_priv->fsb_freq = 667; /* 167*4 */
634 dev_priv->fsb_freq = 400; /* 100*4 */
638 switch (tmp & CLKCFG_MEM_MASK) {
640 dev_priv->mem_freq = 533;
643 dev_priv->mem_freq = 667;
646 dev_priv->mem_freq = 800;
650 /* detect pineview DDR3 setting */
651 tmp = I915_READ(CSHRDDR3CTL);
652 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
655 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
657 drm_i915_private_t *dev_priv = dev->dev_private;
660 ddrpll = I915_READ16(DDRMPLL1);
661 csipll = I915_READ16(CSIPLL0);
663 switch (ddrpll & 0xff) {
665 dev_priv->mem_freq = 800;
668 dev_priv->mem_freq = 1066;
671 dev_priv->mem_freq = 1333;
674 dev_priv->mem_freq = 1600;
677 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
679 dev_priv->mem_freq = 0;
683 dev_priv->ips.r_t = dev_priv->mem_freq;
685 switch (csipll & 0x3ff) {
687 dev_priv->fsb_freq = 3200;
690 dev_priv->fsb_freq = 3733;
693 dev_priv->fsb_freq = 4266;
696 dev_priv->fsb_freq = 4800;
699 dev_priv->fsb_freq = 5333;
702 dev_priv->fsb_freq = 5866;
705 dev_priv->fsb_freq = 6400;
708 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
710 dev_priv->fsb_freq = 0;
714 if (dev_priv->fsb_freq == 3200) {
715 dev_priv->ips.c_m = 0;
716 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
717 dev_priv->ips.c_m = 1;
719 dev_priv->ips.c_m = 2;
723 static const struct cxsr_latency cxsr_latency_table[] = {
724 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
725 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
726 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
727 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
728 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
730 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
731 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
732 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
733 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
734 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
736 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
737 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
738 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
739 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
740 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
742 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
743 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
744 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
745 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
746 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
748 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
749 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
750 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
751 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
752 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
754 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
755 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
756 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
757 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
758 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
761 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
766 const struct cxsr_latency *latency;
769 if (fsb == 0 || mem == 0)
772 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
773 latency = &cxsr_latency_table[i];
774 if (is_desktop == latency->is_desktop &&
775 is_ddr3 == latency->is_ddr3 &&
776 fsb == latency->fsb_freq && mem == latency->mem_freq)
780 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
785 static void pineview_disable_cxsr(struct drm_device *dev)
787 struct drm_i915_private *dev_priv = dev->dev_private;
789 /* deactivate cxsr */
790 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
794 * Latency for FIFO fetches is dependent on several factors:
795 * - memory configuration (speed, channels)
797 * - current MCH state
798 * It can be fairly high in some situations, so here we assume a fairly
799 * pessimal value. It's a tradeoff between extra memory fetches (if we
800 * set this value too high, the FIFO will fetch frequently to stay full)
801 * and power consumption (set it too low to save power and we might see
802 * FIFO underruns and display "flicker").
804 * A value of 5us seems to be a good balance; safe for very low end
805 * platforms but not overly aggressive on lower latency configs.
807 static const int latency_ns = 5000;
809 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
811 struct drm_i915_private *dev_priv = dev->dev_private;
812 uint32_t dsparb = I915_READ(DSPARB);
815 size = dsparb & 0x7f;
817 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
819 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
820 plane ? "B" : "A", size);
825 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
827 struct drm_i915_private *dev_priv = dev->dev_private;
828 uint32_t dsparb = I915_READ(DSPARB);
831 size = dsparb & 0x1ff;
833 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
834 size >>= 1; /* Convert to cachelines */
836 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
837 plane ? "B" : "A", size);
842 static int i845_get_fifo_size(struct drm_device *dev, int plane)
844 struct drm_i915_private *dev_priv = dev->dev_private;
845 uint32_t dsparb = I915_READ(DSPARB);
848 size = dsparb & 0x7f;
849 size >>= 2; /* Convert to cachelines */
851 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
858 static int i830_get_fifo_size(struct drm_device *dev, int plane)
860 struct drm_i915_private *dev_priv = dev->dev_private;
861 uint32_t dsparb = I915_READ(DSPARB);
864 size = dsparb & 0x7f;
865 size >>= 1; /* Convert to cachelines */
867 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
868 plane ? "B" : "A", size);
873 /* Pineview has different values for various configs */
874 static const struct intel_watermark_params pineview_display_wm = {
875 PINEVIEW_DISPLAY_FIFO,
879 PINEVIEW_FIFO_LINE_SIZE
881 static const struct intel_watermark_params pineview_display_hplloff_wm = {
882 PINEVIEW_DISPLAY_FIFO,
884 PINEVIEW_DFT_HPLLOFF_WM,
886 PINEVIEW_FIFO_LINE_SIZE
888 static const struct intel_watermark_params pineview_cursor_wm = {
889 PINEVIEW_CURSOR_FIFO,
890 PINEVIEW_CURSOR_MAX_WM,
891 PINEVIEW_CURSOR_DFT_WM,
892 PINEVIEW_CURSOR_GUARD_WM,
893 PINEVIEW_FIFO_LINE_SIZE,
895 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
896 PINEVIEW_CURSOR_FIFO,
897 PINEVIEW_CURSOR_MAX_WM,
898 PINEVIEW_CURSOR_DFT_WM,
899 PINEVIEW_CURSOR_GUARD_WM,
900 PINEVIEW_FIFO_LINE_SIZE
902 static const struct intel_watermark_params g4x_wm_info = {
909 static const struct intel_watermark_params g4x_cursor_wm_info = {
916 static const struct intel_watermark_params valleyview_wm_info = {
917 VALLEYVIEW_FIFO_SIZE,
923 static const struct intel_watermark_params valleyview_cursor_wm_info = {
925 VALLEYVIEW_CURSOR_MAX_WM,
930 static const struct intel_watermark_params i965_cursor_wm_info = {
937 static const struct intel_watermark_params i945_wm_info = {
944 static const struct intel_watermark_params i915_wm_info = {
951 static const struct intel_watermark_params i855_wm_info = {
958 static const struct intel_watermark_params i830_wm_info = {
966 static const struct intel_watermark_params ironlake_display_wm_info = {
973 static const struct intel_watermark_params ironlake_cursor_wm_info = {
980 static const struct intel_watermark_params ironlake_display_srwm_info = {
982 ILK_DISPLAY_MAX_SRWM,
983 ILK_DISPLAY_DFT_SRWM,
987 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
995 static const struct intel_watermark_params sandybridge_display_wm_info = {
1002 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
1009 static const struct intel_watermark_params sandybridge_display_srwm_info = {
1010 SNB_DISPLAY_SR_FIFO,
1011 SNB_DISPLAY_MAX_SRWM,
1012 SNB_DISPLAY_DFT_SRWM,
1016 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1018 SNB_CURSOR_MAX_SRWM,
1019 SNB_CURSOR_DFT_SRWM,
1026 * intel_calculate_wm - calculate watermark level
1027 * @clock_in_khz: pixel clock
1028 * @wm: chip FIFO params
1029 * @pixel_size: display pixel size
1030 * @latency_ns: memory latency for the platform
1032 * Calculate the watermark level (the level at which the display plane will
1033 * start fetching from memory again). Each chip has a different display
1034 * FIFO size and allocation, so the caller needs to figure that out and pass
1035 * in the correct intel_watermark_params structure.
1037 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1038 * on the pixel size. When it reaches the watermark level, it'll start
1039 * fetching FIFO line sized based chunks from memory until the FIFO fills
1040 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1041 * will occur, and a display engine hang could result.
1043 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1044 const struct intel_watermark_params *wm,
1047 unsigned long latency_ns)
1049 long entries_required, wm_size;
1052 * Note: we need to make sure we don't overflow for various clock &
1054 * clocks go from a few thousand to several hundred thousand.
1055 * latency is usually a few thousand
1057 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1059 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1061 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1063 wm_size = fifo_size - (entries_required + wm->guard_size);
1065 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1067 /* Don't promote wm_size to unsigned... */
1068 if (wm_size > (long)wm->max_wm)
1069 wm_size = wm->max_wm;
1071 wm_size = wm->default_wm;
1075 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1077 struct drm_crtc *crtc, *enabled = NULL;
1079 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1080 if (intel_crtc_active(crtc)) {
1090 static void pineview_update_wm(struct drm_device *dev)
1092 struct drm_i915_private *dev_priv = dev->dev_private;
1093 struct drm_crtc *crtc;
1094 const struct cxsr_latency *latency;
1098 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1099 dev_priv->fsb_freq, dev_priv->mem_freq);
1101 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1102 pineview_disable_cxsr(dev);
1106 crtc = single_enabled_crtc(dev);
1108 int clock = crtc->mode.clock;
1109 int pixel_size = crtc->fb->bits_per_pixel / 8;
1112 wm = intel_calculate_wm(clock, &pineview_display_wm,
1113 pineview_display_wm.fifo_size,
1114 pixel_size, latency->display_sr);
1115 reg = I915_READ(DSPFW1);
1116 reg &= ~DSPFW_SR_MASK;
1117 reg |= wm << DSPFW_SR_SHIFT;
1118 I915_WRITE(DSPFW1, reg);
1119 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1122 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1123 pineview_display_wm.fifo_size,
1124 pixel_size, latency->cursor_sr);
1125 reg = I915_READ(DSPFW3);
1126 reg &= ~DSPFW_CURSOR_SR_MASK;
1127 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1128 I915_WRITE(DSPFW3, reg);
1130 /* Display HPLL off SR */
1131 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1132 pineview_display_hplloff_wm.fifo_size,
1133 pixel_size, latency->display_hpll_disable);
1134 reg = I915_READ(DSPFW3);
1135 reg &= ~DSPFW_HPLL_SR_MASK;
1136 reg |= wm & DSPFW_HPLL_SR_MASK;
1137 I915_WRITE(DSPFW3, reg);
1139 /* cursor HPLL off SR */
1140 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1141 pineview_display_hplloff_wm.fifo_size,
1142 pixel_size, latency->cursor_hpll_disable);
1143 reg = I915_READ(DSPFW3);
1144 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1145 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1146 I915_WRITE(DSPFW3, reg);
1147 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1151 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1152 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1154 pineview_disable_cxsr(dev);
1155 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1159 static bool g4x_compute_wm0(struct drm_device *dev,
1161 const struct intel_watermark_params *display,
1162 int display_latency_ns,
1163 const struct intel_watermark_params *cursor,
1164 int cursor_latency_ns,
1168 struct drm_crtc *crtc;
1169 int htotal, hdisplay, clock, pixel_size;
1170 int line_time_us, line_count;
1171 int entries, tlb_miss;
1173 crtc = intel_get_crtc_for_plane(dev, plane);
1174 if (!intel_crtc_active(crtc)) {
1175 *cursor_wm = cursor->guard_size;
1176 *plane_wm = display->guard_size;
1180 htotal = crtc->mode.htotal;
1181 hdisplay = crtc->mode.hdisplay;
1182 clock = crtc->mode.clock;
1183 pixel_size = crtc->fb->bits_per_pixel / 8;
1185 /* Use the small buffer method to calculate plane watermark */
1186 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1187 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1189 entries += tlb_miss;
1190 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1191 *plane_wm = entries + display->guard_size;
1192 if (*plane_wm > (int)display->max_wm)
1193 *plane_wm = display->max_wm;
1195 /* Use the large buffer method to calculate cursor watermark */
1196 line_time_us = ((htotal * 1000) / clock);
1197 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1198 entries = line_count * 64 * pixel_size;
1199 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1201 entries += tlb_miss;
1202 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1203 *cursor_wm = entries + cursor->guard_size;
1204 if (*cursor_wm > (int)cursor->max_wm)
1205 *cursor_wm = (int)cursor->max_wm;
1211 * Check the wm result.
1213 * If any calculated watermark values is larger than the maximum value that
1214 * can be programmed into the associated watermark register, that watermark
1217 static bool g4x_check_srwm(struct drm_device *dev,
1218 int display_wm, int cursor_wm,
1219 const struct intel_watermark_params *display,
1220 const struct intel_watermark_params *cursor)
1222 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1223 display_wm, cursor_wm);
1225 if (display_wm > display->max_wm) {
1226 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1227 display_wm, display->max_wm);
1231 if (cursor_wm > cursor->max_wm) {
1232 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1233 cursor_wm, cursor->max_wm);
1237 if (!(display_wm || cursor_wm)) {
1238 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1245 static bool g4x_compute_srwm(struct drm_device *dev,
1248 const struct intel_watermark_params *display,
1249 const struct intel_watermark_params *cursor,
1250 int *display_wm, int *cursor_wm)
1252 struct drm_crtc *crtc;
1253 int hdisplay, htotal, pixel_size, clock;
1254 unsigned long line_time_us;
1255 int line_count, line_size;
1260 *display_wm = *cursor_wm = 0;
1264 crtc = intel_get_crtc_for_plane(dev, plane);
1265 hdisplay = crtc->mode.hdisplay;
1266 htotal = crtc->mode.htotal;
1267 clock = crtc->mode.clock;
1268 pixel_size = crtc->fb->bits_per_pixel / 8;
1270 line_time_us = (htotal * 1000) / clock;
1271 line_count = (latency_ns / line_time_us + 1000) / 1000;
1272 line_size = hdisplay * pixel_size;
1274 /* Use the minimum of the small and large buffer method for primary */
1275 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1276 large = line_count * line_size;
1278 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1279 *display_wm = entries + display->guard_size;
1281 /* calculate the self-refresh watermark for display cursor */
1282 entries = line_count * pixel_size * 64;
1283 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1284 *cursor_wm = entries + cursor->guard_size;
1286 return g4x_check_srwm(dev,
1287 *display_wm, *cursor_wm,
1291 static bool vlv_compute_drain_latency(struct drm_device *dev,
1293 int *plane_prec_mult,
1295 int *cursor_prec_mult,
1298 struct drm_crtc *crtc;
1299 int clock, pixel_size;
1302 crtc = intel_get_crtc_for_plane(dev, plane);
1303 if (!intel_crtc_active(crtc))
1306 clock = crtc->mode.clock; /* VESA DOT Clock */
1307 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1309 entries = (clock / 1000) * pixel_size;
1310 *plane_prec_mult = (entries > 256) ?
1311 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1312 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1315 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1316 *cursor_prec_mult = (entries > 256) ?
1317 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1318 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1324 * Update drain latency registers of memory arbiter
1326 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1327 * to be programmed. Each plane has a drain latency multiplier and a drain
1331 static void vlv_update_drain_latency(struct drm_device *dev)
1333 struct drm_i915_private *dev_priv = dev->dev_private;
1334 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1335 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1336 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1339 /* For plane A, Cursor A */
1340 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1341 &cursor_prec_mult, &cursora_dl)) {
1342 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1343 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1344 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1345 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1347 I915_WRITE(VLV_DDL1, cursora_prec |
1348 (cursora_dl << DDL_CURSORA_SHIFT) |
1349 planea_prec | planea_dl);
1352 /* For plane B, Cursor B */
1353 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1354 &cursor_prec_mult, &cursorb_dl)) {
1355 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1356 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1357 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1358 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1360 I915_WRITE(VLV_DDL2, cursorb_prec |
1361 (cursorb_dl << DDL_CURSORB_SHIFT) |
1362 planeb_prec | planeb_dl);
1366 #define single_plane_enabled(mask) is_power_of_2(mask)
1368 static void valleyview_update_wm(struct drm_device *dev)
1370 static const int sr_latency_ns = 12000;
1371 struct drm_i915_private *dev_priv = dev->dev_private;
1372 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1373 int plane_sr, cursor_sr;
1374 int ignore_plane_sr, ignore_cursor_sr;
1375 unsigned int enabled = 0;
1377 vlv_update_drain_latency(dev);
1379 if (g4x_compute_wm0(dev, PIPE_A,
1380 &valleyview_wm_info, latency_ns,
1381 &valleyview_cursor_wm_info, latency_ns,
1382 &planea_wm, &cursora_wm))
1383 enabled |= 1 << PIPE_A;
1385 if (g4x_compute_wm0(dev, PIPE_B,
1386 &valleyview_wm_info, latency_ns,
1387 &valleyview_cursor_wm_info, latency_ns,
1388 &planeb_wm, &cursorb_wm))
1389 enabled |= 1 << PIPE_B;
1391 if (single_plane_enabled(enabled) &&
1392 g4x_compute_srwm(dev, ffs(enabled) - 1,
1394 &valleyview_wm_info,
1395 &valleyview_cursor_wm_info,
1396 &plane_sr, &ignore_cursor_sr) &&
1397 g4x_compute_srwm(dev, ffs(enabled) - 1,
1399 &valleyview_wm_info,
1400 &valleyview_cursor_wm_info,
1401 &ignore_plane_sr, &cursor_sr)) {
1402 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1404 I915_WRITE(FW_BLC_SELF_VLV,
1405 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1406 plane_sr = cursor_sr = 0;
1409 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1410 planea_wm, cursora_wm,
1411 planeb_wm, cursorb_wm,
1412 plane_sr, cursor_sr);
1415 (plane_sr << DSPFW_SR_SHIFT) |
1416 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1417 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1420 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1421 (cursora_wm << DSPFW_CURSORA_SHIFT));
1423 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1424 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1427 static void g4x_update_wm(struct drm_device *dev)
1429 static const int sr_latency_ns = 12000;
1430 struct drm_i915_private *dev_priv = dev->dev_private;
1431 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1432 int plane_sr, cursor_sr;
1433 unsigned int enabled = 0;
1435 if (g4x_compute_wm0(dev, PIPE_A,
1436 &g4x_wm_info, latency_ns,
1437 &g4x_cursor_wm_info, latency_ns,
1438 &planea_wm, &cursora_wm))
1439 enabled |= 1 << PIPE_A;
1441 if (g4x_compute_wm0(dev, PIPE_B,
1442 &g4x_wm_info, latency_ns,
1443 &g4x_cursor_wm_info, latency_ns,
1444 &planeb_wm, &cursorb_wm))
1445 enabled |= 1 << PIPE_B;
1447 if (single_plane_enabled(enabled) &&
1448 g4x_compute_srwm(dev, ffs(enabled) - 1,
1451 &g4x_cursor_wm_info,
1452 &plane_sr, &cursor_sr)) {
1453 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1455 I915_WRITE(FW_BLC_SELF,
1456 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1457 plane_sr = cursor_sr = 0;
1460 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1461 planea_wm, cursora_wm,
1462 planeb_wm, cursorb_wm,
1463 plane_sr, cursor_sr);
1466 (plane_sr << DSPFW_SR_SHIFT) |
1467 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1468 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1471 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1472 (cursora_wm << DSPFW_CURSORA_SHIFT));
1473 /* HPLL off in SR has some issues on G4x... disable it */
1475 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1476 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1479 static void i965_update_wm(struct drm_device *dev)
1481 struct drm_i915_private *dev_priv = dev->dev_private;
1482 struct drm_crtc *crtc;
1486 /* Calc sr entries for one plane configs */
1487 crtc = single_enabled_crtc(dev);
1489 /* self-refresh has much higher latency */
1490 static const int sr_latency_ns = 12000;
1491 int clock = crtc->mode.clock;
1492 int htotal = crtc->mode.htotal;
1493 int hdisplay = crtc->mode.hdisplay;
1494 int pixel_size = crtc->fb->bits_per_pixel / 8;
1495 unsigned long line_time_us;
1498 line_time_us = ((htotal * 1000) / clock);
1500 /* Use ns/us then divide to preserve precision */
1501 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1502 pixel_size * hdisplay;
1503 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1504 srwm = I965_FIFO_SIZE - entries;
1508 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1511 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1513 entries = DIV_ROUND_UP(entries,
1514 i965_cursor_wm_info.cacheline_size);
1515 cursor_sr = i965_cursor_wm_info.fifo_size -
1516 (entries + i965_cursor_wm_info.guard_size);
1518 if (cursor_sr > i965_cursor_wm_info.max_wm)
1519 cursor_sr = i965_cursor_wm_info.max_wm;
1521 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1522 "cursor %d\n", srwm, cursor_sr);
1524 if (IS_CRESTLINE(dev))
1525 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1527 /* Turn off self refresh if both pipes are enabled */
1528 if (IS_CRESTLINE(dev))
1529 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1533 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1536 /* 965 has limitations... */
1537 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1538 (8 << 16) | (8 << 8) | (8 << 0));
1539 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1540 /* update cursor SR watermark */
1541 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1544 static void i9xx_update_wm(struct drm_device *dev)
1546 struct drm_i915_private *dev_priv = dev->dev_private;
1547 const struct intel_watermark_params *wm_info;
1552 int planea_wm, planeb_wm;
1553 struct drm_crtc *crtc, *enabled = NULL;
1556 wm_info = &i945_wm_info;
1557 else if (!IS_GEN2(dev))
1558 wm_info = &i915_wm_info;
1560 wm_info = &i855_wm_info;
1562 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1563 crtc = intel_get_crtc_for_plane(dev, 0);
1564 if (intel_crtc_active(crtc)) {
1565 int cpp = crtc->fb->bits_per_pixel / 8;
1569 planea_wm = intel_calculate_wm(crtc->mode.clock,
1570 wm_info, fifo_size, cpp,
1574 planea_wm = fifo_size - wm_info->guard_size;
1576 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1577 crtc = intel_get_crtc_for_plane(dev, 1);
1578 if (intel_crtc_active(crtc)) {
1579 int cpp = crtc->fb->bits_per_pixel / 8;
1583 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1584 wm_info, fifo_size, cpp,
1586 if (enabled == NULL)
1591 planeb_wm = fifo_size - wm_info->guard_size;
1593 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1596 * Overlay gets an aggressive default since video jitter is bad.
1600 /* Play safe and disable self-refresh before adjusting watermarks. */
1601 if (IS_I945G(dev) || IS_I945GM(dev))
1602 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1603 else if (IS_I915GM(dev))
1604 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1606 /* Calc sr entries for one plane configs */
1607 if (HAS_FW_BLC(dev) && enabled) {
1608 /* self-refresh has much higher latency */
1609 static const int sr_latency_ns = 6000;
1610 int clock = enabled->mode.clock;
1611 int htotal = enabled->mode.htotal;
1612 int hdisplay = enabled->mode.hdisplay;
1613 int pixel_size = enabled->fb->bits_per_pixel / 8;
1614 unsigned long line_time_us;
1617 line_time_us = (htotal * 1000) / clock;
1619 /* Use ns/us then divide to preserve precision */
1620 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1621 pixel_size * hdisplay;
1622 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1623 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1624 srwm = wm_info->fifo_size - entries;
1628 if (IS_I945G(dev) || IS_I945GM(dev))
1629 I915_WRITE(FW_BLC_SELF,
1630 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1631 else if (IS_I915GM(dev))
1632 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1635 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1636 planea_wm, planeb_wm, cwm, srwm);
1638 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1639 fwater_hi = (cwm & 0x1f);
1641 /* Set request length to 8 cachelines per fetch */
1642 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1643 fwater_hi = fwater_hi | (1 << 8);
1645 I915_WRITE(FW_BLC, fwater_lo);
1646 I915_WRITE(FW_BLC2, fwater_hi);
1648 if (HAS_FW_BLC(dev)) {
1650 if (IS_I945G(dev) || IS_I945GM(dev))
1651 I915_WRITE(FW_BLC_SELF,
1652 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1653 else if (IS_I915GM(dev))
1654 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1655 DRM_DEBUG_KMS("memory self refresh enabled\n");
1657 DRM_DEBUG_KMS("memory self refresh disabled\n");
1661 static void i830_update_wm(struct drm_device *dev)
1663 struct drm_i915_private *dev_priv = dev->dev_private;
1664 struct drm_crtc *crtc;
1668 crtc = single_enabled_crtc(dev);
1672 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1673 dev_priv->display.get_fifo_size(dev, 0),
1675 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1676 fwater_lo |= (3<<8) | planea_wm;
1678 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1680 I915_WRITE(FW_BLC, fwater_lo);
1684 * Check the wm result.
1686 * If any calculated watermark values is larger than the maximum value that
1687 * can be programmed into the associated watermark register, that watermark
1690 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1691 int fbc_wm, int display_wm, int cursor_wm,
1692 const struct intel_watermark_params *display,
1693 const struct intel_watermark_params *cursor)
1695 struct drm_i915_private *dev_priv = dev->dev_private;
1697 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1698 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1700 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1701 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1702 fbc_wm, SNB_FBC_MAX_SRWM, level);
1704 /* fbc has it's own way to disable FBC WM */
1705 I915_WRITE(DISP_ARB_CTL,
1706 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1708 } else if (INTEL_INFO(dev)->gen >= 6) {
1709 /* enable FBC WM (except on ILK, where it must remain off) */
1710 I915_WRITE(DISP_ARB_CTL,
1711 I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1714 if (display_wm > display->max_wm) {
1715 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1716 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1720 if (cursor_wm > cursor->max_wm) {
1721 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1722 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1726 if (!(fbc_wm || display_wm || cursor_wm)) {
1727 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1735 * Compute watermark values of WM[1-3],
1737 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1739 const struct intel_watermark_params *display,
1740 const struct intel_watermark_params *cursor,
1741 int *fbc_wm, int *display_wm, int *cursor_wm)
1743 struct drm_crtc *crtc;
1744 unsigned long line_time_us;
1745 int hdisplay, htotal, pixel_size, clock;
1746 int line_count, line_size;
1751 *fbc_wm = *display_wm = *cursor_wm = 0;
1755 crtc = intel_get_crtc_for_plane(dev, plane);
1756 hdisplay = crtc->mode.hdisplay;
1757 htotal = crtc->mode.htotal;
1758 clock = crtc->mode.clock;
1759 pixel_size = crtc->fb->bits_per_pixel / 8;
1761 line_time_us = (htotal * 1000) / clock;
1762 line_count = (latency_ns / line_time_us + 1000) / 1000;
1763 line_size = hdisplay * pixel_size;
1765 /* Use the minimum of the small and large buffer method for primary */
1766 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1767 large = line_count * line_size;
1769 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1770 *display_wm = entries + display->guard_size;
1774 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1776 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1778 /* calculate the self-refresh watermark for display cursor */
1779 entries = line_count * pixel_size * 64;
1780 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1781 *cursor_wm = entries + cursor->guard_size;
1783 return ironlake_check_srwm(dev, level,
1784 *fbc_wm, *display_wm, *cursor_wm,
1788 static void ironlake_update_wm(struct drm_device *dev)
1790 struct drm_i915_private *dev_priv = dev->dev_private;
1791 int fbc_wm, plane_wm, cursor_wm;
1792 unsigned int enabled;
1795 if (g4x_compute_wm0(dev, PIPE_A,
1796 &ironlake_display_wm_info,
1797 dev_priv->wm.pri_latency[0] * 100,
1798 &ironlake_cursor_wm_info,
1799 dev_priv->wm.cur_latency[0] * 100,
1800 &plane_wm, &cursor_wm)) {
1801 I915_WRITE(WM0_PIPEA_ILK,
1802 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1803 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1804 " plane %d, " "cursor: %d\n",
1805 plane_wm, cursor_wm);
1806 enabled |= 1 << PIPE_A;
1809 if (g4x_compute_wm0(dev, PIPE_B,
1810 &ironlake_display_wm_info,
1811 dev_priv->wm.pri_latency[0] * 100,
1812 &ironlake_cursor_wm_info,
1813 dev_priv->wm.cur_latency[0] * 100,
1814 &plane_wm, &cursor_wm)) {
1815 I915_WRITE(WM0_PIPEB_ILK,
1816 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1817 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1818 " plane %d, cursor: %d\n",
1819 plane_wm, cursor_wm);
1820 enabled |= 1 << PIPE_B;
1824 * Calculate and update the self-refresh watermark only when one
1825 * display plane is used.
1827 I915_WRITE(WM3_LP_ILK, 0);
1828 I915_WRITE(WM2_LP_ILK, 0);
1829 I915_WRITE(WM1_LP_ILK, 0);
1831 if (!single_plane_enabled(enabled))
1833 enabled = ffs(enabled) - 1;
1836 if (!ironlake_compute_srwm(dev, 1, enabled,
1837 dev_priv->wm.pri_latency[1] * 500,
1838 &ironlake_display_srwm_info,
1839 &ironlake_cursor_srwm_info,
1840 &fbc_wm, &plane_wm, &cursor_wm))
1843 I915_WRITE(WM1_LP_ILK,
1845 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1846 (fbc_wm << WM1_LP_FBC_SHIFT) |
1847 (plane_wm << WM1_LP_SR_SHIFT) |
1851 if (!ironlake_compute_srwm(dev, 2, enabled,
1852 dev_priv->wm.pri_latency[2] * 500,
1853 &ironlake_display_srwm_info,
1854 &ironlake_cursor_srwm_info,
1855 &fbc_wm, &plane_wm, &cursor_wm))
1858 I915_WRITE(WM2_LP_ILK,
1860 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1861 (fbc_wm << WM1_LP_FBC_SHIFT) |
1862 (plane_wm << WM1_LP_SR_SHIFT) |
1866 * WM3 is unsupported on ILK, probably because we don't have latency
1867 * data for that power state
1871 static void sandybridge_update_wm(struct drm_device *dev)
1873 struct drm_i915_private *dev_priv = dev->dev_private;
1874 int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
1876 int fbc_wm, plane_wm, cursor_wm;
1877 unsigned int enabled;
1880 if (g4x_compute_wm0(dev, PIPE_A,
1881 &sandybridge_display_wm_info, latency,
1882 &sandybridge_cursor_wm_info, latency,
1883 &plane_wm, &cursor_wm)) {
1884 val = I915_READ(WM0_PIPEA_ILK);
1885 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1886 I915_WRITE(WM0_PIPEA_ILK, val |
1887 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1888 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1889 " plane %d, " "cursor: %d\n",
1890 plane_wm, cursor_wm);
1891 enabled |= 1 << PIPE_A;
1894 if (g4x_compute_wm0(dev, PIPE_B,
1895 &sandybridge_display_wm_info, latency,
1896 &sandybridge_cursor_wm_info, latency,
1897 &plane_wm, &cursor_wm)) {
1898 val = I915_READ(WM0_PIPEB_ILK);
1899 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1900 I915_WRITE(WM0_PIPEB_ILK, val |
1901 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1902 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1903 " plane %d, cursor: %d\n",
1904 plane_wm, cursor_wm);
1905 enabled |= 1 << PIPE_B;
1909 * Calculate and update the self-refresh watermark only when one
1910 * display plane is used.
1912 * SNB support 3 levels of watermark.
1914 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1915 * and disabled in the descending order
1918 I915_WRITE(WM3_LP_ILK, 0);
1919 I915_WRITE(WM2_LP_ILK, 0);
1920 I915_WRITE(WM1_LP_ILK, 0);
1922 if (!single_plane_enabled(enabled) ||
1923 dev_priv->sprite_scaling_enabled)
1925 enabled = ffs(enabled) - 1;
1928 if (!ironlake_compute_srwm(dev, 1, enabled,
1929 dev_priv->wm.pri_latency[1] * 500,
1930 &sandybridge_display_srwm_info,
1931 &sandybridge_cursor_srwm_info,
1932 &fbc_wm, &plane_wm, &cursor_wm))
1935 I915_WRITE(WM1_LP_ILK,
1937 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1938 (fbc_wm << WM1_LP_FBC_SHIFT) |
1939 (plane_wm << WM1_LP_SR_SHIFT) |
1943 if (!ironlake_compute_srwm(dev, 2, enabled,
1944 dev_priv->wm.pri_latency[2] * 500,
1945 &sandybridge_display_srwm_info,
1946 &sandybridge_cursor_srwm_info,
1947 &fbc_wm, &plane_wm, &cursor_wm))
1950 I915_WRITE(WM2_LP_ILK,
1952 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1953 (fbc_wm << WM1_LP_FBC_SHIFT) |
1954 (plane_wm << WM1_LP_SR_SHIFT) |
1958 if (!ironlake_compute_srwm(dev, 3, enabled,
1959 dev_priv->wm.pri_latency[3] * 500,
1960 &sandybridge_display_srwm_info,
1961 &sandybridge_cursor_srwm_info,
1962 &fbc_wm, &plane_wm, &cursor_wm))
1965 I915_WRITE(WM3_LP_ILK,
1967 (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
1968 (fbc_wm << WM1_LP_FBC_SHIFT) |
1969 (plane_wm << WM1_LP_SR_SHIFT) |
1973 static void ivybridge_update_wm(struct drm_device *dev)
1975 struct drm_i915_private *dev_priv = dev->dev_private;
1976 int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
1978 int fbc_wm, plane_wm, cursor_wm;
1979 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1980 unsigned int enabled;
1983 if (g4x_compute_wm0(dev, PIPE_A,
1984 &sandybridge_display_wm_info, latency,
1985 &sandybridge_cursor_wm_info, latency,
1986 &plane_wm, &cursor_wm)) {
1987 val = I915_READ(WM0_PIPEA_ILK);
1988 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1989 I915_WRITE(WM0_PIPEA_ILK, val |
1990 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1991 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1992 " plane %d, " "cursor: %d\n",
1993 plane_wm, cursor_wm);
1994 enabled |= 1 << PIPE_A;
1997 if (g4x_compute_wm0(dev, PIPE_B,
1998 &sandybridge_display_wm_info, latency,
1999 &sandybridge_cursor_wm_info, latency,
2000 &plane_wm, &cursor_wm)) {
2001 val = I915_READ(WM0_PIPEB_ILK);
2002 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2003 I915_WRITE(WM0_PIPEB_ILK, val |
2004 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2005 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
2006 " plane %d, cursor: %d\n",
2007 plane_wm, cursor_wm);
2008 enabled |= 1 << PIPE_B;
2011 if (g4x_compute_wm0(dev, PIPE_C,
2012 &sandybridge_display_wm_info, latency,
2013 &sandybridge_cursor_wm_info, latency,
2014 &plane_wm, &cursor_wm)) {
2015 val = I915_READ(WM0_PIPEC_IVB);
2016 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2017 I915_WRITE(WM0_PIPEC_IVB, val |
2018 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2019 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2020 " plane %d, cursor: %d\n",
2021 plane_wm, cursor_wm);
2022 enabled |= 1 << PIPE_C;
2026 * Calculate and update the self-refresh watermark only when one
2027 * display plane is used.
2029 * SNB support 3 levels of watermark.
2031 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2032 * and disabled in the descending order
2035 I915_WRITE(WM3_LP_ILK, 0);
2036 I915_WRITE(WM2_LP_ILK, 0);
2037 I915_WRITE(WM1_LP_ILK, 0);
2039 if (!single_plane_enabled(enabled) ||
2040 dev_priv->sprite_scaling_enabled)
2042 enabled = ffs(enabled) - 1;
2045 if (!ironlake_compute_srwm(dev, 1, enabled,
2046 dev_priv->wm.pri_latency[1] * 500,
2047 &sandybridge_display_srwm_info,
2048 &sandybridge_cursor_srwm_info,
2049 &fbc_wm, &plane_wm, &cursor_wm))
2052 I915_WRITE(WM1_LP_ILK,
2054 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
2055 (fbc_wm << WM1_LP_FBC_SHIFT) |
2056 (plane_wm << WM1_LP_SR_SHIFT) |
2060 if (!ironlake_compute_srwm(dev, 2, enabled,
2061 dev_priv->wm.pri_latency[2] * 500,
2062 &sandybridge_display_srwm_info,
2063 &sandybridge_cursor_srwm_info,
2064 &fbc_wm, &plane_wm, &cursor_wm))
2067 I915_WRITE(WM2_LP_ILK,
2069 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
2070 (fbc_wm << WM1_LP_FBC_SHIFT) |
2071 (plane_wm << WM1_LP_SR_SHIFT) |
2074 /* WM3, note we have to correct the cursor latency */
2075 if (!ironlake_compute_srwm(dev, 3, enabled,
2076 dev_priv->wm.pri_latency[3] * 500,
2077 &sandybridge_display_srwm_info,
2078 &sandybridge_cursor_srwm_info,
2079 &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2080 !ironlake_compute_srwm(dev, 3, enabled,
2081 dev_priv->wm.cur_latency[3] * 500,
2082 &sandybridge_display_srwm_info,
2083 &sandybridge_cursor_srwm_info,
2084 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2087 I915_WRITE(WM3_LP_ILK,
2089 (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2090 (fbc_wm << WM1_LP_FBC_SHIFT) |
2091 (plane_wm << WM1_LP_SR_SHIFT) |
2095 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
2096 struct drm_crtc *crtc)
2098 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2099 uint32_t pixel_rate;
2101 pixel_rate = intel_crtc->config.adjusted_mode.clock;
2103 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2104 * adjust the pixel_rate here. */
2106 if (intel_crtc->config.pch_pfit.enabled) {
2107 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2108 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
2110 pipe_w = intel_crtc->config.requested_mode.hdisplay;
2111 pipe_h = intel_crtc->config.requested_mode.vdisplay;
2112 pfit_w = (pfit_size >> 16) & 0xFFFF;
2113 pfit_h = pfit_size & 0xFFFF;
2114 if (pipe_w < pfit_w)
2116 if (pipe_h < pfit_h)
2119 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2126 /* latency must be in 0.1us units. */
2127 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2132 if (WARN(latency == 0, "Latency value missing\n"))
2135 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2136 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2141 /* latency must be in 0.1us units. */
2142 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2143 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2148 if (WARN(latency == 0, "Latency value missing\n"))
2151 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2152 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2153 ret = DIV_ROUND_UP(ret, 64) + 2;
2157 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2158 uint8_t bytes_per_pixel)
2160 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2163 struct hsw_pipe_wm_parameters {
2165 uint32_t pipe_htotal;
2166 uint32_t pixel_rate;
2167 struct intel_plane_wm_parameters pri;
2168 struct intel_plane_wm_parameters spr;
2169 struct intel_plane_wm_parameters cur;
2172 struct hsw_wm_maximums {
2179 struct hsw_wm_values {
2180 uint32_t wm_pipe[3];
2182 uint32_t wm_lp_spr[3];
2183 uint32_t wm_linetime[3];
2187 /* used in computing the new watermarks state */
2188 struct intel_wm_config {
2189 unsigned int num_pipes_active;
2190 bool sprites_enabled;
2191 bool sprites_scaled;
2192 bool fbc_wm_enabled;
2196 * For both WM_PIPE and WM_LP.
2197 * mem_value must be in 0.1us units.
2199 static uint32_t ilk_compute_pri_wm(struct hsw_pipe_wm_parameters *params,
2203 uint32_t method1, method2;
2205 if (!params->active || !params->pri.enabled)
2208 method1 = ilk_wm_method1(params->pixel_rate,
2209 params->pri.bytes_per_pixel,
2215 method2 = ilk_wm_method2(params->pixel_rate,
2216 params->pipe_htotal,
2217 params->pri.horiz_pixels,
2218 params->pri.bytes_per_pixel,
2221 return min(method1, method2);
2225 * For both WM_PIPE and WM_LP.
2226 * mem_value must be in 0.1us units.
2228 static uint32_t ilk_compute_spr_wm(struct hsw_pipe_wm_parameters *params,
2231 uint32_t method1, method2;
2233 if (!params->active || !params->spr.enabled)
2236 method1 = ilk_wm_method1(params->pixel_rate,
2237 params->spr.bytes_per_pixel,
2239 method2 = ilk_wm_method2(params->pixel_rate,
2240 params->pipe_htotal,
2241 params->spr.horiz_pixels,
2242 params->spr.bytes_per_pixel,
2244 return min(method1, method2);
2248 * For both WM_PIPE and WM_LP.
2249 * mem_value must be in 0.1us units.
2251 static uint32_t ilk_compute_cur_wm(struct hsw_pipe_wm_parameters *params,
2254 if (!params->active || !params->cur.enabled)
2257 return ilk_wm_method2(params->pixel_rate,
2258 params->pipe_htotal,
2259 params->cur.horiz_pixels,
2260 params->cur.bytes_per_pixel,
2264 /* Only for WM_LP. */
2265 static uint32_t ilk_compute_fbc_wm(struct hsw_pipe_wm_parameters *params,
2268 if (!params->active || !params->pri.enabled)
2271 return ilk_wm_fbc(pri_val,
2272 params->pri.horiz_pixels,
2273 params->pri.bytes_per_pixel);
2276 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2278 if (INTEL_INFO(dev)->gen >= 7)
2284 /* Calculate the maximum primary/sprite plane watermark */
2285 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2287 const struct intel_wm_config *config,
2288 enum intel_ddb_partitioning ddb_partitioning,
2291 unsigned int fifo_size = ilk_display_fifo_size(dev);
2294 /* if sprites aren't enabled, sprites get nothing */
2295 if (is_sprite && !config->sprites_enabled)
2298 /* HSW allows LP1+ watermarks even with multiple pipes */
2299 if (level == 0 || config->num_pipes_active > 1) {
2300 fifo_size /= INTEL_INFO(dev)->num_pipes;
2303 * For some reason the non self refresh
2304 * FIFO size is only half of the self
2305 * refresh FIFO size on ILK/SNB.
2307 if (INTEL_INFO(dev)->gen <= 6)
2311 if (config->sprites_enabled) {
2312 /* level 0 is always calculated with 1:1 split */
2313 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2322 /* clamp to max that the registers can hold */
2323 if (INTEL_INFO(dev)->gen >= 7)
2324 /* IVB/HSW primary/sprite plane watermarks */
2325 max = level == 0 ? 127 : 1023;
2326 else if (!is_sprite)
2327 /* ILK/SNB primary plane watermarks */
2328 max = level == 0 ? 127 : 511;
2330 /* ILK/SNB sprite plane watermarks */
2331 max = level == 0 ? 63 : 255;
2333 return min(fifo_size, max);
2336 /* Calculate the maximum cursor plane watermark */
2337 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2339 const struct intel_wm_config *config)
2341 /* HSW LP1+ watermarks w/ multiple pipes */
2342 if (level > 0 && config->num_pipes_active > 1)
2345 /* otherwise just report max that registers can hold */
2346 if (INTEL_INFO(dev)->gen >= 7)
2347 return level == 0 ? 63 : 255;
2349 return level == 0 ? 31 : 63;
2352 /* Calculate the maximum FBC watermark */
2353 static unsigned int ilk_fbc_wm_max(void)
2355 /* max that registers can hold */
2359 static void ilk_wm_max(struct drm_device *dev,
2361 const struct intel_wm_config *config,
2362 enum intel_ddb_partitioning ddb_partitioning,
2363 struct hsw_wm_maximums *max)
2365 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2366 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2367 max->cur = ilk_cursor_wm_max(dev, level, config);
2368 max->fbc = ilk_fbc_wm_max();
2371 static bool ilk_check_wm(int level,
2372 const struct hsw_wm_maximums *max,
2373 struct intel_wm_level *result)
2377 /* already determined to be invalid? */
2378 if (!result->enable)
2381 result->enable = result->pri_val <= max->pri &&
2382 result->spr_val <= max->spr &&
2383 result->cur_val <= max->cur;
2385 ret = result->enable;
2388 * HACK until we can pre-compute everything,
2389 * and thus fail gracefully if LP0 watermarks
2392 if (level == 0 && !result->enable) {
2393 if (result->pri_val > max->pri)
2394 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2395 level, result->pri_val, max->pri);
2396 if (result->spr_val > max->spr)
2397 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2398 level, result->spr_val, max->spr);
2399 if (result->cur_val > max->cur)
2400 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2401 level, result->cur_val, max->cur);
2403 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2404 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2405 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2406 result->enable = true;
2409 DRM_DEBUG_KMS("WM%d: %sabled\n", level, result->enable ? "en" : "dis");
2414 static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
2416 struct hsw_pipe_wm_parameters *p,
2417 struct intel_wm_level *result)
2419 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2420 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2421 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2423 /* WM1+ latency values stored in 0.5us units */
2430 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2431 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2432 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2433 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2434 result->enable = true;
2437 static bool hsw_compute_lp_wm(struct drm_i915_private *dev_priv,
2438 int level, struct hsw_wm_maximums *max,
2439 struct hsw_pipe_wm_parameters *params,
2440 struct intel_wm_level *result)
2443 struct intel_wm_level res[3];
2445 for (pipe = PIPE_A; pipe <= PIPE_C; pipe++)
2446 ilk_compute_wm_level(dev_priv, level, ¶ms[pipe], &res[pipe]);
2448 result->pri_val = max3(res[0].pri_val, res[1].pri_val, res[2].pri_val);
2449 result->spr_val = max3(res[0].spr_val, res[1].spr_val, res[2].spr_val);
2450 result->cur_val = max3(res[0].cur_val, res[1].cur_val, res[2].cur_val);
2451 result->fbc_val = max3(res[0].fbc_val, res[1].fbc_val, res[2].fbc_val);
2452 result->enable = true;
2454 return ilk_check_wm(level, max, result);
2457 static uint32_t hsw_compute_wm_pipe(struct drm_i915_private *dev_priv,
2459 struct hsw_pipe_wm_parameters *params)
2461 uint32_t pri_val, cur_val, spr_val;
2462 /* WM0 latency values stored in 0.1us units */
2463 uint16_t pri_latency = dev_priv->wm.pri_latency[0];
2464 uint16_t spr_latency = dev_priv->wm.spr_latency[0];
2465 uint16_t cur_latency = dev_priv->wm.cur_latency[0];
2467 pri_val = ilk_compute_pri_wm(params, pri_latency, false);
2468 spr_val = ilk_compute_spr_wm(params, spr_latency);
2469 cur_val = ilk_compute_cur_wm(params, cur_latency);
2472 "Primary WM error, mode not supported for pipe %c\n",
2475 "Sprite WM error, mode not supported for pipe %c\n",
2478 "Cursor WM error, mode not supported for pipe %c\n",
2481 return (pri_val << WM0_PIPE_PLANE_SHIFT) |
2482 (spr_val << WM0_PIPE_SPRITE_SHIFT) |
2487 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2489 struct drm_i915_private *dev_priv = dev->dev_private;
2490 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2491 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2492 u32 linetime, ips_linetime;
2494 if (!intel_crtc_active(crtc))
2497 /* The WM are computed with base on how long it takes to fill a single
2498 * row at the given clock rate, multiplied by 8.
2500 linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2501 ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2502 intel_ddi_get_cdclk_freq(dev_priv));
2504 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2505 PIPE_WM_LINETIME_TIME(linetime);
2508 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2510 struct drm_i915_private *dev_priv = dev->dev_private;
2512 if (IS_HASWELL(dev)) {
2513 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2515 wm[0] = (sskpd >> 56) & 0xFF;
2517 wm[0] = sskpd & 0xF;
2518 wm[1] = (sskpd >> 4) & 0xFF;
2519 wm[2] = (sskpd >> 12) & 0xFF;
2520 wm[3] = (sskpd >> 20) & 0x1FF;
2521 wm[4] = (sskpd >> 32) & 0x1FF;
2522 } else if (INTEL_INFO(dev)->gen >= 6) {
2523 uint32_t sskpd = I915_READ(MCH_SSKPD);
2525 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2526 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2527 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2528 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2529 } else if (INTEL_INFO(dev)->gen >= 5) {
2530 uint32_t mltr = I915_READ(MLTR_ILK);
2532 /* ILK primary LP0 latency is 700 ns */
2534 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2535 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2539 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2541 /* ILK sprite LP0 latency is 1300 ns */
2542 if (INTEL_INFO(dev)->gen == 5)
2546 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2548 /* ILK cursor LP0 latency is 1300 ns */
2549 if (INTEL_INFO(dev)->gen == 5)
2552 /* WaDoubleCursorLP3Latency:ivb */
2553 if (IS_IVYBRIDGE(dev))
2557 static void intel_print_wm_latency(struct drm_device *dev,
2559 const uint16_t wm[5])
2561 int level, max_level;
2563 /* how many WM levels are we expecting */
2564 if (IS_HASWELL(dev))
2566 else if (INTEL_INFO(dev)->gen >= 6)
2571 for (level = 0; level <= max_level; level++) {
2572 unsigned int latency = wm[level];
2575 DRM_ERROR("%s WM%d latency not provided\n",
2580 /* WM1+ latency values in 0.5us units */
2584 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2585 name, level, wm[level],
2586 latency / 10, latency % 10);
2590 static void intel_setup_wm_latency(struct drm_device *dev)
2592 struct drm_i915_private *dev_priv = dev->dev_private;
2594 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2596 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2597 sizeof(dev_priv->wm.pri_latency));
2598 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2599 sizeof(dev_priv->wm.pri_latency));
2601 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2602 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2604 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2605 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2606 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2609 static void hsw_compute_wm_parameters(struct drm_device *dev,
2610 struct hsw_pipe_wm_parameters *params,
2611 struct hsw_wm_maximums *lp_max_1_2,
2612 struct hsw_wm_maximums *lp_max_5_6)
2614 struct drm_crtc *crtc;
2615 struct drm_plane *plane;
2617 struct intel_wm_config config = {};
2619 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2620 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2621 struct hsw_pipe_wm_parameters *p;
2623 pipe = intel_crtc->pipe;
2626 p->active = intel_crtc_active(crtc);
2630 config.num_pipes_active++;
2632 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2633 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2634 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2635 p->cur.bytes_per_pixel = 4;
2636 p->pri.horiz_pixels =
2637 intel_crtc->config.requested_mode.hdisplay;
2638 p->cur.horiz_pixels = 64;
2639 /* TODO: for now, assume primary and cursor planes are always enabled. */
2640 p->pri.enabled = true;
2641 p->cur.enabled = true;
2644 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2645 struct intel_plane *intel_plane = to_intel_plane(plane);
2646 struct hsw_pipe_wm_parameters *p;
2648 pipe = intel_plane->pipe;
2651 p->spr = intel_plane->wm;
2653 config.sprites_enabled |= p->spr.enabled;
2654 config.sprites_scaled |= p->spr.scaled;
2657 ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_1_2, lp_max_1_2);
2659 /* 5/6 split only in single pipe config on IVB+ */
2660 if (INTEL_INFO(dev)->gen >= 7 && config.num_pipes_active <= 1)
2661 ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_5_6, lp_max_5_6);
2663 *lp_max_5_6 = *lp_max_1_2;
2666 static void hsw_compute_wm_results(struct drm_device *dev,
2667 struct hsw_pipe_wm_parameters *params,
2668 struct hsw_wm_maximums *lp_maximums,
2669 struct hsw_wm_values *results)
2671 struct drm_i915_private *dev_priv = dev->dev_private;
2672 struct drm_crtc *crtc;
2673 struct intel_wm_level lp_results[4] = {};
2675 int level, max_level, wm_lp;
2677 for (level = 1; level <= 4; level++)
2678 if (!hsw_compute_lp_wm(dev_priv, level,
2679 lp_maximums, params,
2680 &lp_results[level - 1]))
2682 max_level = level - 1;
2684 memset(results, 0, sizeof(*results));
2686 /* The spec says it is preferred to disable FBC WMs instead of disabling
2688 results->enable_fbc_wm = true;
2689 for (level = 1; level <= max_level; level++) {
2690 if (lp_results[level - 1].fbc_val > lp_maximums->fbc) {
2691 results->enable_fbc_wm = false;
2692 lp_results[level - 1].fbc_val = 0;
2696 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2697 const struct intel_wm_level *r;
2699 level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
2700 if (level > max_level)
2703 r = &lp_results[level - 1];
2704 results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
2708 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2712 results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev_priv, pipe,
2715 for_each_pipe(pipe) {
2716 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2717 results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
2721 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2722 * case both are at the same level. Prefer r1 in case they're the same. */
2723 static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
2724 struct hsw_wm_values *r2)
2726 int i, val_r1 = 0, val_r2 = 0;
2728 for (i = 0; i < 3; i++) {
2729 if (r1->wm_lp[i] & WM3_LP_EN)
2730 val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
2731 if (r2->wm_lp[i] & WM3_LP_EN)
2732 val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
2735 if (val_r1 == val_r2) {
2736 if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
2740 } else if (val_r1 > val_r2) {
2748 * The spec says we shouldn't write when we don't need, because every write
2749 * causes WMs to be re-evaluated, expending some power.
2751 static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2752 struct hsw_wm_values *results,
2753 enum intel_ddb_partitioning partitioning)
2755 struct hsw_wm_values previous;
2757 enum intel_ddb_partitioning prev_partitioning;
2758 bool prev_enable_fbc_wm;
2760 previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
2761 previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
2762 previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
2763 previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
2764 previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
2765 previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
2766 previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2767 previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2768 previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2769 previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
2770 previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
2771 previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
2773 prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2774 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2776 prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2778 if (memcmp(results->wm_pipe, previous.wm_pipe,
2779 sizeof(results->wm_pipe)) == 0 &&
2780 memcmp(results->wm_lp, previous.wm_lp,
2781 sizeof(results->wm_lp)) == 0 &&
2782 memcmp(results->wm_lp_spr, previous.wm_lp_spr,
2783 sizeof(results->wm_lp_spr)) == 0 &&
2784 memcmp(results->wm_linetime, previous.wm_linetime,
2785 sizeof(results->wm_linetime)) == 0 &&
2786 partitioning == prev_partitioning &&
2787 results->enable_fbc_wm == prev_enable_fbc_wm)
2790 if (previous.wm_lp[2] != 0)
2791 I915_WRITE(WM3_LP_ILK, 0);
2792 if (previous.wm_lp[1] != 0)
2793 I915_WRITE(WM2_LP_ILK, 0);
2794 if (previous.wm_lp[0] != 0)
2795 I915_WRITE(WM1_LP_ILK, 0);
2797 if (previous.wm_pipe[0] != results->wm_pipe[0])
2798 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2799 if (previous.wm_pipe[1] != results->wm_pipe[1])
2800 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2801 if (previous.wm_pipe[2] != results->wm_pipe[2])
2802 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2804 if (previous.wm_linetime[0] != results->wm_linetime[0])
2805 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2806 if (previous.wm_linetime[1] != results->wm_linetime[1])
2807 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2808 if (previous.wm_linetime[2] != results->wm_linetime[2])
2809 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2811 if (prev_partitioning != partitioning) {
2812 val = I915_READ(WM_MISC);
2813 if (partitioning == INTEL_DDB_PART_1_2)
2814 val &= ~WM_MISC_DATA_PARTITION_5_6;
2816 val |= WM_MISC_DATA_PARTITION_5_6;
2817 I915_WRITE(WM_MISC, val);
2820 if (prev_enable_fbc_wm != results->enable_fbc_wm) {
2821 val = I915_READ(DISP_ARB_CTL);
2822 if (results->enable_fbc_wm)
2823 val &= ~DISP_FBC_WM_DIS;
2825 val |= DISP_FBC_WM_DIS;
2826 I915_WRITE(DISP_ARB_CTL, val);
2829 if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
2830 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2831 if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
2832 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2833 if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
2834 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2836 if (results->wm_lp[0] != 0)
2837 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2838 if (results->wm_lp[1] != 0)
2839 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2840 if (results->wm_lp[2] != 0)
2841 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2844 static void haswell_update_wm(struct drm_device *dev)
2846 struct drm_i915_private *dev_priv = dev->dev_private;
2847 struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
2848 struct hsw_pipe_wm_parameters params[3];
2849 struct hsw_wm_values results_1_2, results_5_6, *best_results;
2850 enum intel_ddb_partitioning partitioning;
2852 hsw_compute_wm_parameters(dev, params, &lp_max_1_2, &lp_max_5_6);
2854 hsw_compute_wm_results(dev, params,
2855 &lp_max_1_2, &results_1_2);
2856 if (lp_max_1_2.pri != lp_max_5_6.pri) {
2857 hsw_compute_wm_results(dev, params,
2858 &lp_max_5_6, &results_5_6);
2859 best_results = hsw_find_best_result(&results_1_2, &results_5_6);
2861 best_results = &results_1_2;
2864 partitioning = (best_results == &results_1_2) ?
2865 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2867 hsw_write_wm_values(dev_priv, best_results, partitioning);
2870 static void haswell_update_sprite_wm(struct drm_plane *plane,
2871 struct drm_crtc *crtc,
2872 uint32_t sprite_width, int pixel_size,
2873 bool enabled, bool scaled)
2875 struct intel_plane *intel_plane = to_intel_plane(plane);
2877 intel_plane->wm.enabled = enabled;
2878 intel_plane->wm.scaled = scaled;
2879 intel_plane->wm.horiz_pixels = sprite_width;
2880 intel_plane->wm.bytes_per_pixel = pixel_size;
2882 haswell_update_wm(plane->dev);
2886 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2887 uint32_t sprite_width, int pixel_size,
2888 const struct intel_watermark_params *display,
2889 int display_latency_ns, int *sprite_wm)
2891 struct drm_crtc *crtc;
2893 int entries, tlb_miss;
2895 crtc = intel_get_crtc_for_plane(dev, plane);
2896 if (!intel_crtc_active(crtc)) {
2897 *sprite_wm = display->guard_size;
2901 clock = crtc->mode.clock;
2903 /* Use the small buffer method to calculate the sprite watermark */
2904 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2905 tlb_miss = display->fifo_size*display->cacheline_size -
2908 entries += tlb_miss;
2909 entries = DIV_ROUND_UP(entries, display->cacheline_size);
2910 *sprite_wm = entries + display->guard_size;
2911 if (*sprite_wm > (int)display->max_wm)
2912 *sprite_wm = display->max_wm;
2918 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2919 uint32_t sprite_width, int pixel_size,
2920 const struct intel_watermark_params *display,
2921 int latency_ns, int *sprite_wm)
2923 struct drm_crtc *crtc;
2924 unsigned long line_time_us;
2926 int line_count, line_size;
2935 crtc = intel_get_crtc_for_plane(dev, plane);
2936 clock = crtc->mode.clock;
2942 line_time_us = (sprite_width * 1000) / clock;
2943 if (!line_time_us) {
2948 line_count = (latency_ns / line_time_us + 1000) / 1000;
2949 line_size = sprite_width * pixel_size;
2951 /* Use the minimum of the small and large buffer method for primary */
2952 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2953 large = line_count * line_size;
2955 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2956 *sprite_wm = entries + display->guard_size;
2958 return *sprite_wm > 0x3ff ? false : true;
2961 static void sandybridge_update_sprite_wm(struct drm_plane *plane,
2962 struct drm_crtc *crtc,
2963 uint32_t sprite_width, int pixel_size,
2964 bool enabled, bool scaled)
2966 struct drm_device *dev = plane->dev;
2967 struct drm_i915_private *dev_priv = dev->dev_private;
2968 int pipe = to_intel_plane(plane)->pipe;
2969 int latency = dev_priv->wm.spr_latency[0] * 100; /* In unit 0.1us */
2979 reg = WM0_PIPEA_ILK;
2982 reg = WM0_PIPEB_ILK;
2985 reg = WM0_PIPEC_IVB;
2988 return; /* bad pipe */
2991 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2992 &sandybridge_display_wm_info,
2993 latency, &sprite_wm);
2995 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
3000 val = I915_READ(reg);
3001 val &= ~WM0_PIPE_SPRITE_MASK;
3002 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
3003 DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
3006 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3008 &sandybridge_display_srwm_info,
3009 dev_priv->wm.spr_latency[1] * 500,
3012 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
3016 I915_WRITE(WM1S_LP_ILK, sprite_wm);
3018 /* Only IVB has two more LP watermarks for sprite */
3019 if (!IS_IVYBRIDGE(dev))
3022 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3024 &sandybridge_display_srwm_info,
3025 dev_priv->wm.spr_latency[2] * 500,
3028 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
3032 I915_WRITE(WM2S_LP_IVB, sprite_wm);
3034 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3036 &sandybridge_display_srwm_info,
3037 dev_priv->wm.spr_latency[3] * 500,
3040 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
3044 I915_WRITE(WM3S_LP_IVB, sprite_wm);
3048 * intel_update_watermarks - update FIFO watermark values based on current modes
3050 * Calculate watermark values for the various WM regs based on current mode
3051 * and plane configuration.
3053 * There are several cases to deal with here:
3054 * - normal (i.e. non-self-refresh)
3055 * - self-refresh (SR) mode
3056 * - lines are large relative to FIFO size (buffer can hold up to 2)
3057 * - lines are small relative to FIFO size (buffer can hold more than 2
3058 * lines), so need to account for TLB latency
3060 * The normal calculation is:
3061 * watermark = dotclock * bytes per pixel * latency
3062 * where latency is platform & configuration dependent (we assume pessimal
3065 * The SR calculation is:
3066 * watermark = (trunc(latency/line time)+1) * surface width *
3069 * line time = htotal / dotclock
3070 * surface width = hdisplay for normal plane and 64 for cursor
3071 * and latency is assumed to be high, as above.
3073 * The final value programmed to the register should always be rounded up,
3074 * and include an extra 2 entries to account for clock crossings.
3076 * We don't use the sprite, so we can ignore that. And on Crestline we have
3077 * to set the non-SR watermarks to 8.
3079 void intel_update_watermarks(struct drm_device *dev)
3081 struct drm_i915_private *dev_priv = dev->dev_private;
3083 if (dev_priv->display.update_wm)
3084 dev_priv->display.update_wm(dev);
3087 void intel_update_sprite_watermarks(struct drm_plane *plane,
3088 struct drm_crtc *crtc,
3089 uint32_t sprite_width, int pixel_size,
3090 bool enabled, bool scaled)
3092 struct drm_i915_private *dev_priv = plane->dev->dev_private;
3094 if (dev_priv->display.update_sprite_wm)
3095 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
3096 pixel_size, enabled, scaled);
3099 static struct drm_i915_gem_object *
3100 intel_alloc_context_page(struct drm_device *dev)
3102 struct drm_i915_gem_object *ctx;
3105 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3107 ctx = i915_gem_alloc_object(dev, 4096);
3109 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3113 ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
3115 DRM_ERROR("failed to pin power context: %d\n", ret);
3119 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3121 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3128 i915_gem_object_unpin(ctx);
3130 drm_gem_object_unreference(&ctx->base);
3135 * Lock protecting IPS related data structures
3137 DEFINE_SPINLOCK(mchdev_lock);
3139 /* Global for IPS driver to get at the current i915 device. Protected by
3141 static struct drm_i915_private *i915_mch_dev;
3143 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3145 struct drm_i915_private *dev_priv = dev->dev_private;
3148 assert_spin_locked(&mchdev_lock);
3150 rgvswctl = I915_READ16(MEMSWCTL);
3151 if (rgvswctl & MEMCTL_CMD_STS) {
3152 DRM_DEBUG("gpu busy, RCS change rejected\n");
3153 return false; /* still busy with another command */
3156 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3157 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3158 I915_WRITE16(MEMSWCTL, rgvswctl);
3159 POSTING_READ16(MEMSWCTL);
3161 rgvswctl |= MEMCTL_CMD_STS;
3162 I915_WRITE16(MEMSWCTL, rgvswctl);
3167 static void ironlake_enable_drps(struct drm_device *dev)
3169 struct drm_i915_private *dev_priv = dev->dev_private;
3170 u32 rgvmodectl = I915_READ(MEMMODECTL);
3171 u8 fmax, fmin, fstart, vstart;
3173 spin_lock_irq(&mchdev_lock);
3175 /* Enable temp reporting */
3176 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3177 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3179 /* 100ms RC evaluation intervals */
3180 I915_WRITE(RCUPEI, 100000);
3181 I915_WRITE(RCDNEI, 100000);
3183 /* Set max/min thresholds to 90ms and 80ms respectively */
3184 I915_WRITE(RCBMAXAVG, 90000);
3185 I915_WRITE(RCBMINAVG, 80000);
3187 I915_WRITE(MEMIHYST, 1);
3189 /* Set up min, max, and cur for interrupt handling */
3190 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3191 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3192 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3193 MEMMODE_FSTART_SHIFT;
3195 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3198 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3199 dev_priv->ips.fstart = fstart;
3201 dev_priv->ips.max_delay = fstart;
3202 dev_priv->ips.min_delay = fmin;
3203 dev_priv->ips.cur_delay = fstart;
3205 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3206 fmax, fmin, fstart);
3208 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3211 * Interrupts will be enabled in ironlake_irq_postinstall
3214 I915_WRITE(VIDSTART, vstart);
3215 POSTING_READ(VIDSTART);
3217 rgvmodectl |= MEMMODE_SWMODE_EN;
3218 I915_WRITE(MEMMODECTL, rgvmodectl);
3220 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3221 DRM_ERROR("stuck trying to change perf mode\n");
3224 ironlake_set_drps(dev, fstart);
3226 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3228 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3229 dev_priv->ips.last_count2 = I915_READ(0x112f4);
3230 getrawmonotonic(&dev_priv->ips.last_time2);
3232 spin_unlock_irq(&mchdev_lock);
3235 static void ironlake_disable_drps(struct drm_device *dev)
3237 struct drm_i915_private *dev_priv = dev->dev_private;
3240 spin_lock_irq(&mchdev_lock);
3242 rgvswctl = I915_READ16(MEMSWCTL);
3244 /* Ack interrupts, disable EFC interrupt */
3245 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3246 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3247 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3248 I915_WRITE(DEIIR, DE_PCU_EVENT);
3249 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3251 /* Go back to the starting frequency */
3252 ironlake_set_drps(dev, dev_priv->ips.fstart);
3254 rgvswctl |= MEMCTL_CMD_STS;
3255 I915_WRITE(MEMSWCTL, rgvswctl);
3258 spin_unlock_irq(&mchdev_lock);
3261 /* There's a funny hw issue where the hw returns all 0 when reading from
3262 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3263 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3264 * all limits and the gpu stuck at whatever frequency it is at atm).
3266 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3272 if (*val >= dev_priv->rps.max_delay)
3273 *val = dev_priv->rps.max_delay;
3274 limits |= dev_priv->rps.max_delay << 24;
3276 /* Only set the down limit when we've reached the lowest level to avoid
3277 * getting more interrupts, otherwise leave this clear. This prevents a
3278 * race in the hw when coming out of rc6: There's a tiny window where
3279 * the hw runs at the minimal clock before selecting the desired
3280 * frequency, if the down threshold expires in that window we will not
3281 * receive a down interrupt. */
3282 if (*val <= dev_priv->rps.min_delay) {
3283 *val = dev_priv->rps.min_delay;
3284 limits |= dev_priv->rps.min_delay << 16;
3290 void gen6_set_rps(struct drm_device *dev, u8 val)
3292 struct drm_i915_private *dev_priv = dev->dev_private;
3293 u32 limits = gen6_rps_limits(dev_priv, &val);
3295 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3296 WARN_ON(val > dev_priv->rps.max_delay);
3297 WARN_ON(val < dev_priv->rps.min_delay);
3299 if (val == dev_priv->rps.cur_delay)
3302 if (IS_HASWELL(dev))
3303 I915_WRITE(GEN6_RPNSWREQ,
3304 HSW_FREQUENCY(val));
3306 I915_WRITE(GEN6_RPNSWREQ,
3307 GEN6_FREQUENCY(val) |
3309 GEN6_AGGRESSIVE_TURBO);
3311 /* Make sure we continue to get interrupts
3312 * until we hit the minimum or maximum frequencies.
3314 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3316 POSTING_READ(GEN6_RPNSWREQ);
3318 dev_priv->rps.cur_delay = val;
3320 trace_intel_gpu_freq_change(val * 50);
3324 * Wait until the previous freq change has completed,
3325 * or the timeout elapsed, and then update our notion
3326 * of the current GPU frequency.
3328 static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
3332 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3334 if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
3335 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3339 if (pval != dev_priv->rps.cur_delay)
3340 DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
3341 vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
3342 dev_priv->rps.cur_delay,
3343 vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
3345 dev_priv->rps.cur_delay = pval;
3348 void valleyview_set_rps(struct drm_device *dev, u8 val)
3350 struct drm_i915_private *dev_priv = dev->dev_private;
3352 gen6_rps_limits(dev_priv, &val);
3354 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3355 WARN_ON(val > dev_priv->rps.max_delay);
3356 WARN_ON(val < dev_priv->rps.min_delay);
3358 vlv_update_rps_cur_delay(dev_priv);
3360 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3361 vlv_gpu_freq(dev_priv->mem_freq,
3362 dev_priv->rps.cur_delay),
3363 dev_priv->rps.cur_delay,
3364 vlv_gpu_freq(dev_priv->mem_freq, val), val);
3366 if (val == dev_priv->rps.cur_delay)
3369 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3371 dev_priv->rps.cur_delay = val;
3373 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3376 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3378 struct drm_i915_private *dev_priv = dev->dev_private;
3380 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3381 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3382 /* Complete PM interrupt masking here doesn't race with the rps work
3383 * item again unmasking PM interrupts because that is using a different
3384 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3385 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3387 spin_lock_irq(&dev_priv->irq_lock);
3388 dev_priv->rps.pm_iir = 0;
3389 spin_unlock_irq(&dev_priv->irq_lock);
3391 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3394 static void gen6_disable_rps(struct drm_device *dev)
3396 struct drm_i915_private *dev_priv = dev->dev_private;
3398 I915_WRITE(GEN6_RC_CONTROL, 0);
3399 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3401 gen6_disable_rps_interrupts(dev);
3404 static void valleyview_disable_rps(struct drm_device *dev)
3406 struct drm_i915_private *dev_priv = dev->dev_private;
3408 I915_WRITE(GEN6_RC_CONTROL, 0);
3410 gen6_disable_rps_interrupts(dev);
3412 if (dev_priv->vlv_pctx) {
3413 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3414 dev_priv->vlv_pctx = NULL;
3418 int intel_enable_rc6(const struct drm_device *dev)
3420 /* No RC6 before Ironlake */
3421 if (INTEL_INFO(dev)->gen < 5)
3424 /* Respect the kernel parameter if it is set */
3425 if (i915_enable_rc6 >= 0)
3426 return i915_enable_rc6;
3428 /* Disable RC6 on Ironlake */
3429 if (INTEL_INFO(dev)->gen == 5)
3432 if (IS_HASWELL(dev)) {
3433 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3434 return INTEL_RC6_ENABLE;
3437 /* snb/ivb have more than one rc6 state. */
3438 if (INTEL_INFO(dev)->gen == 6) {
3439 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3440 return INTEL_RC6_ENABLE;
3443 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
3444 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3447 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3449 struct drm_i915_private *dev_priv = dev->dev_private;
3452 spin_lock_irq(&dev_priv->irq_lock);
3453 WARN_ON(dev_priv->rps.pm_iir);
3454 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3455 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3456 spin_unlock_irq(&dev_priv->irq_lock);
3458 /* only unmask PM interrupts we need. Mask all others. */
3459 enabled_intrs = GEN6_PM_RPS_EVENTS;
3461 /* IVB and SNB hard hangs on looping batchbuffer
3462 * if GEN6_PM_UP_EI_EXPIRED is masked.
3464 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3465 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3467 I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3470 static void gen6_enable_rps(struct drm_device *dev)
3472 struct drm_i915_private *dev_priv = dev->dev_private;
3473 struct intel_ring_buffer *ring;
3476 u32 rc6vids, pcu_mbox, rc6_mask = 0;
3481 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3483 /* Here begins a magic sequence of register writes to enable
3484 * auto-downclocking.
3486 * Perhaps there might be some value in exposing these to
3489 I915_WRITE(GEN6_RC_STATE, 0);
3491 /* Clear the DBG now so we don't confuse earlier errors */
3492 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3493 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3494 I915_WRITE(GTFIFODBG, gtfifodbg);
3497 gen6_gt_force_wake_get(dev_priv);
3499 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3500 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3502 /* In units of 50MHz */
3503 dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3504 dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
3505 dev_priv->rps.cur_delay = 0;
3507 /* disable the counters and set deterministic thresholds */
3508 I915_WRITE(GEN6_RC_CONTROL, 0);
3510 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3511 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3512 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3513 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3514 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3516 for_each_ring(ring, dev_priv, i)
3517 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3519 I915_WRITE(GEN6_RC_SLEEP, 0);
3520 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3521 if (INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev))
3522 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3524 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3525 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3526 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3528 /* Check if we are enabling RC6 */
3529 rc6_mode = intel_enable_rc6(dev_priv->dev);
3530 if (rc6_mode & INTEL_RC6_ENABLE)
3531 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3533 /* We don't use those on Haswell */
3534 if (!IS_HASWELL(dev)) {
3535 if (rc6_mode & INTEL_RC6p_ENABLE)
3536 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3538 if (rc6_mode & INTEL_RC6pp_ENABLE)
3539 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3542 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3543 (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3544 (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3545 (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3547 I915_WRITE(GEN6_RC_CONTROL,
3549 GEN6_RC_CTL_EI_MODE(1) |
3550 GEN6_RC_CTL_HW_ENABLE);
3552 if (IS_HASWELL(dev)) {
3553 I915_WRITE(GEN6_RPNSWREQ,
3555 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3558 I915_WRITE(GEN6_RPNSWREQ,
3559 GEN6_FREQUENCY(10) |
3561 GEN6_AGGRESSIVE_TURBO);
3562 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3563 GEN6_FREQUENCY(12));
3566 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
3567 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3568 dev_priv->rps.max_delay << 24 |
3569 dev_priv->rps.min_delay << 16);
3571 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3572 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3573 I915_WRITE(GEN6_RP_UP_EI, 66000);
3574 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3576 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3577 I915_WRITE(GEN6_RP_CONTROL,
3578 GEN6_RP_MEDIA_TURBO |
3579 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3580 GEN6_RP_MEDIA_IS_GFX |
3582 GEN6_RP_UP_BUSY_AVG |
3583 (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
3585 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3588 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3589 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3590 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3591 (dev_priv->rps.max_delay & 0xff) * 50,
3592 (pcu_mbox & 0xff) * 50);
3593 dev_priv->rps.hw_max = pcu_mbox & 0xff;
3596 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3599 gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
3601 gen6_enable_rps_interrupts(dev);
3604 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3605 if (IS_GEN6(dev) && ret) {
3606 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3607 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3608 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3609 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3610 rc6vids &= 0xffff00;
3611 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3612 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3614 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3617 gen6_gt_force_wake_put(dev_priv);
3620 void gen6_update_ring_freq(struct drm_device *dev)
3622 struct drm_i915_private *dev_priv = dev->dev_private;
3624 unsigned int gpu_freq;
3625 unsigned int max_ia_freq, min_ring_freq;
3626 int scaling_factor = 180;
3628 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3630 max_ia_freq = cpufreq_quick_get_max(0);
3632 * Default to measured freq if none found, PCU will ensure we don't go
3636 max_ia_freq = tsc_khz;
3638 /* Convert from kHz to MHz */
3639 max_ia_freq /= 1000;
3641 min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
3642 /* convert DDR frequency from units of 133.3MHz to bandwidth */
3643 min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
3646 * For each potential GPU frequency, load a ring frequency we'd like
3647 * to use for memory access. We do this by specifying the IA frequency
3648 * the PCU should use as a reference to determine the ring frequency.
3650 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3652 int diff = dev_priv->rps.max_delay - gpu_freq;
3653 unsigned int ia_freq = 0, ring_freq = 0;
3655 if (IS_HASWELL(dev)) {
3656 ring_freq = (gpu_freq * 5 + 3) / 4;
3657 ring_freq = max(min_ring_freq, ring_freq);
3658 /* leave ia_freq as the default, chosen by cpufreq */
3660 /* On older processors, there is no separate ring
3661 * clock domain, so in order to boost the bandwidth
3662 * of the ring, we need to upclock the CPU (ia_freq).
3664 * For GPU frequencies less than 750MHz,
3665 * just use the lowest ring freq.
3667 if (gpu_freq < min_freq)
3670 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3671 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3674 sandybridge_pcode_write(dev_priv,
3675 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3676 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3677 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3682 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3686 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3688 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3690 rp0 = min_t(u32, rp0, 0xea);
3695 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3699 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3700 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3701 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3702 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3707 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3709 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3712 static void vlv_rps_timer_work(struct work_struct *work)
3714 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3718 * Timer fired, we must be idle. Drop to min voltage state.
3719 * Note: we use RPe here since it should match the
3720 * Vmin we were shooting for. That should give us better
3721 * perf when we come back out of RC6 than if we used the
3722 * min freq available.
3724 mutex_lock(&dev_priv->rps.hw_lock);
3725 if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
3726 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3727 mutex_unlock(&dev_priv->rps.hw_lock);
3730 static void valleyview_setup_pctx(struct drm_device *dev)
3732 struct drm_i915_private *dev_priv = dev->dev_private;
3733 struct drm_i915_gem_object *pctx;
3734 unsigned long pctx_paddr;
3736 int pctx_size = 24*1024;
3738 pcbr = I915_READ(VLV_PCBR);
3740 /* BIOS set it up already, grab the pre-alloc'd space */
3743 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3744 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3746 I915_GTT_OFFSET_NONE,
3752 * From the Gunit register HAS:
3753 * The Gfx driver is expected to program this register and ensure
3754 * proper allocation within Gfx stolen memory. For example, this
3755 * register should be programmed such than the PCBR range does not
3756 * overlap with other ranges, such as the frame buffer, protected
3757 * memory, or any other relevant ranges.
3759 pctx = i915_gem_object_create_stolen(dev, pctx_size);
3761 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3765 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3766 I915_WRITE(VLV_PCBR, pctx_paddr);
3769 dev_priv->vlv_pctx = pctx;
3772 static void valleyview_enable_rps(struct drm_device *dev)
3774 struct drm_i915_private *dev_priv = dev->dev_private;
3775 struct intel_ring_buffer *ring;
3779 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3781 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3782 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3783 I915_WRITE(GTFIFODBG, gtfifodbg);
3786 valleyview_setup_pctx(dev);
3788 gen6_gt_force_wake_get(dev_priv);
3790 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3791 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3792 I915_WRITE(GEN6_RP_UP_EI, 66000);
3793 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3795 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3797 I915_WRITE(GEN6_RP_CONTROL,
3798 GEN6_RP_MEDIA_TURBO |
3799 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3800 GEN6_RP_MEDIA_IS_GFX |
3802 GEN6_RP_UP_BUSY_AVG |
3803 GEN6_RP_DOWN_IDLE_CONT);
3805 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3806 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3807 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3809 for_each_ring(ring, dev_priv, i)
3810 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3812 I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
3814 /* allows RC6 residency counter to work */
3815 I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
3816 I915_WRITE(GEN6_RC_CONTROL,
3817 GEN7_RC_CTL_TO_MODE);
3819 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3820 switch ((val >> 6) & 3) {
3823 dev_priv->mem_freq = 800;
3826 dev_priv->mem_freq = 1066;
3829 dev_priv->mem_freq = 1333;
3832 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3834 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3835 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3837 dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3838 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3839 vlv_gpu_freq(dev_priv->mem_freq,
3840 dev_priv->rps.cur_delay),
3841 dev_priv->rps.cur_delay);
3843 dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3844 dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3845 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3846 vlv_gpu_freq(dev_priv->mem_freq,
3847 dev_priv->rps.max_delay),
3848 dev_priv->rps.max_delay);
3850 dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3851 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3852 vlv_gpu_freq(dev_priv->mem_freq,
3853 dev_priv->rps.rpe_delay),
3854 dev_priv->rps.rpe_delay);
3856 dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3857 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3858 vlv_gpu_freq(dev_priv->mem_freq,
3859 dev_priv->rps.min_delay),
3860 dev_priv->rps.min_delay);
3862 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3863 vlv_gpu_freq(dev_priv->mem_freq,
3864 dev_priv->rps.rpe_delay),
3865 dev_priv->rps.rpe_delay);
3867 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3869 gen6_enable_rps_interrupts(dev);
3871 gen6_gt_force_wake_put(dev_priv);
3874 void ironlake_teardown_rc6(struct drm_device *dev)
3876 struct drm_i915_private *dev_priv = dev->dev_private;
3878 if (dev_priv->ips.renderctx) {
3879 i915_gem_object_unpin(dev_priv->ips.renderctx);
3880 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3881 dev_priv->ips.renderctx = NULL;
3884 if (dev_priv->ips.pwrctx) {
3885 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3886 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3887 dev_priv->ips.pwrctx = NULL;
3891 static void ironlake_disable_rc6(struct drm_device *dev)
3893 struct drm_i915_private *dev_priv = dev->dev_private;
3895 if (I915_READ(PWRCTXA)) {
3896 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3897 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3898 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3901 I915_WRITE(PWRCTXA, 0);
3902 POSTING_READ(PWRCTXA);
3904 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3905 POSTING_READ(RSTDBYCTL);
3909 static int ironlake_setup_rc6(struct drm_device *dev)
3911 struct drm_i915_private *dev_priv = dev->dev_private;
3913 if (dev_priv->ips.renderctx == NULL)
3914 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3915 if (!dev_priv->ips.renderctx)
3918 if (dev_priv->ips.pwrctx == NULL)
3919 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3920 if (!dev_priv->ips.pwrctx) {
3921 ironlake_teardown_rc6(dev);
3928 static void ironlake_enable_rc6(struct drm_device *dev)
3930 struct drm_i915_private *dev_priv = dev->dev_private;
3931 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3932 bool was_interruptible;
3935 /* rc6 disabled by default due to repeated reports of hanging during
3938 if (!intel_enable_rc6(dev))
3941 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3943 ret = ironlake_setup_rc6(dev);
3947 was_interruptible = dev_priv->mm.interruptible;
3948 dev_priv->mm.interruptible = false;
3951 * GPU can automatically power down the render unit if given a page
3954 ret = intel_ring_begin(ring, 6);
3956 ironlake_teardown_rc6(dev);
3957 dev_priv->mm.interruptible = was_interruptible;
3961 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3962 intel_ring_emit(ring, MI_SET_CONTEXT);
3963 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3965 MI_SAVE_EXT_STATE_EN |
3966 MI_RESTORE_EXT_STATE_EN |
3967 MI_RESTORE_INHIBIT);
3968 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3969 intel_ring_emit(ring, MI_NOOP);
3970 intel_ring_emit(ring, MI_FLUSH);
3971 intel_ring_advance(ring);
3974 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3975 * does an implicit flush, combined with MI_FLUSH above, it should be
3976 * safe to assume that renderctx is valid
3978 ret = intel_ring_idle(ring);
3979 dev_priv->mm.interruptible = was_interruptible;
3981 DRM_ERROR("failed to enable ironlake power savings\n");
3982 ironlake_teardown_rc6(dev);
3986 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3987 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3990 static unsigned long intel_pxfreq(u32 vidfreq)
3993 int div = (vidfreq & 0x3f0000) >> 16;
3994 int post = (vidfreq & 0x3000) >> 12;
3995 int pre = (vidfreq & 0x7);
4000 freq = ((div * 133333) / ((1<<post) * pre));
4005 static const struct cparams {
4011 { 1, 1333, 301, 28664 },
4012 { 1, 1066, 294, 24460 },
4013 { 1, 800, 294, 25192 },
4014 { 0, 1333, 276, 27605 },
4015 { 0, 1066, 276, 27605 },
4016 { 0, 800, 231, 23784 },
4019 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4021 u64 total_count, diff, ret;
4022 u32 count1, count2, count3, m = 0, c = 0;
4023 unsigned long now = jiffies_to_msecs(jiffies), diff1;
4026 assert_spin_locked(&mchdev_lock);
4028 diff1 = now - dev_priv->ips.last_time1;
4030 /* Prevent division-by-zero if we are asking too fast.
4031 * Also, we don't get interesting results if we are polling
4032 * faster than once in 10ms, so just return the saved value
4036 return dev_priv->ips.chipset_power;
4038 count1 = I915_READ(DMIEC);
4039 count2 = I915_READ(DDREC);
4040 count3 = I915_READ(CSIEC);
4042 total_count = count1 + count2 + count3;
4044 /* FIXME: handle per-counter overflow */
4045 if (total_count < dev_priv->ips.last_count1) {
4046 diff = ~0UL - dev_priv->ips.last_count1;
4047 diff += total_count;
4049 diff = total_count - dev_priv->ips.last_count1;
4052 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4053 if (cparams[i].i == dev_priv->ips.c_m &&
4054 cparams[i].t == dev_priv->ips.r_t) {
4061 diff = div_u64(diff, diff1);
4062 ret = ((m * diff) + c);
4063 ret = div_u64(ret, 10);
4065 dev_priv->ips.last_count1 = total_count;
4066 dev_priv->ips.last_time1 = now;
4068 dev_priv->ips.chipset_power = ret;
4073 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4077 if (dev_priv->info->gen != 5)
4080 spin_lock_irq(&mchdev_lock);
4082 val = __i915_chipset_val(dev_priv);
4084 spin_unlock_irq(&mchdev_lock);
4089 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4091 unsigned long m, x, b;
4094 tsfs = I915_READ(TSFS);
4096 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4097 x = I915_READ8(TR1);
4099 b = tsfs & TSFS_INTR_MASK;
4101 return ((m * x) / 127) - b;
4104 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4106 static const struct v_table {
4107 u16 vd; /* in .1 mil */
4108 u16 vm; /* in .1 mil */
4239 if (dev_priv->info->is_mobile)
4240 return v_table[pxvid].vm;
4242 return v_table[pxvid].vd;
4245 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4247 struct timespec now, diff1;
4249 unsigned long diffms;
4252 assert_spin_locked(&mchdev_lock);
4254 getrawmonotonic(&now);
4255 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4257 /* Don't divide by 0 */
4258 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4262 count = I915_READ(GFXEC);
4264 if (count < dev_priv->ips.last_count2) {
4265 diff = ~0UL - dev_priv->ips.last_count2;
4268 diff = count - dev_priv->ips.last_count2;
4271 dev_priv->ips.last_count2 = count;
4272 dev_priv->ips.last_time2 = now;
4274 /* More magic constants... */
4276 diff = div_u64(diff, diffms * 10);
4277 dev_priv->ips.gfx_power = diff;
4280 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4282 if (dev_priv->info->gen != 5)
4285 spin_lock_irq(&mchdev_lock);
4287 __i915_update_gfx_val(dev_priv);
4289 spin_unlock_irq(&mchdev_lock);
4292 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4294 unsigned long t, corr, state1, corr2, state2;
4297 assert_spin_locked(&mchdev_lock);
4299 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4300 pxvid = (pxvid >> 24) & 0x7f;
4301 ext_v = pvid_to_extvid(dev_priv, pxvid);
4305 t = i915_mch_val(dev_priv);
4307 /* Revel in the empirically derived constants */
4309 /* Correction factor in 1/100000 units */
4311 corr = ((t * 2349) + 135940);
4313 corr = ((t * 964) + 29317);
4315 corr = ((t * 301) + 1004);
4317 corr = corr * ((150142 * state1) / 10000 - 78642);
4319 corr2 = (corr * dev_priv->ips.corr);
4321 state2 = (corr2 * state1) / 10000;
4322 state2 /= 100; /* convert to mW */
4324 __i915_update_gfx_val(dev_priv);
4326 return dev_priv->ips.gfx_power + state2;
4329 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4333 if (dev_priv->info->gen != 5)
4336 spin_lock_irq(&mchdev_lock);
4338 val = __i915_gfx_val(dev_priv);
4340 spin_unlock_irq(&mchdev_lock);
4346 * i915_read_mch_val - return value for IPS use
4348 * Calculate and return a value for the IPS driver to use when deciding whether
4349 * we have thermal and power headroom to increase CPU or GPU power budget.
4351 unsigned long i915_read_mch_val(void)
4353 struct drm_i915_private *dev_priv;
4354 unsigned long chipset_val, graphics_val, ret = 0;
4356 spin_lock_irq(&mchdev_lock);
4359 dev_priv = i915_mch_dev;
4361 chipset_val = __i915_chipset_val(dev_priv);
4362 graphics_val = __i915_gfx_val(dev_priv);
4364 ret = chipset_val + graphics_val;
4367 spin_unlock_irq(&mchdev_lock);
4371 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4374 * i915_gpu_raise - raise GPU frequency limit
4376 * Raise the limit; IPS indicates we have thermal headroom.
4378 bool i915_gpu_raise(void)
4380 struct drm_i915_private *dev_priv;
4383 spin_lock_irq(&mchdev_lock);
4384 if (!i915_mch_dev) {
4388 dev_priv = i915_mch_dev;
4390 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4391 dev_priv->ips.max_delay--;
4394 spin_unlock_irq(&mchdev_lock);
4398 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4401 * i915_gpu_lower - lower GPU frequency limit
4403 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4404 * frequency maximum.
4406 bool i915_gpu_lower(void)
4408 struct drm_i915_private *dev_priv;
4411 spin_lock_irq(&mchdev_lock);
4412 if (!i915_mch_dev) {
4416 dev_priv = i915_mch_dev;
4418 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4419 dev_priv->ips.max_delay++;
4422 spin_unlock_irq(&mchdev_lock);
4426 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4429 * i915_gpu_busy - indicate GPU business to IPS
4431 * Tell the IPS driver whether or not the GPU is busy.
4433 bool i915_gpu_busy(void)
4435 struct drm_i915_private *dev_priv;
4436 struct intel_ring_buffer *ring;
4440 spin_lock_irq(&mchdev_lock);
4443 dev_priv = i915_mch_dev;
4445 for_each_ring(ring, dev_priv, i)
4446 ret |= !list_empty(&ring->request_list);
4449 spin_unlock_irq(&mchdev_lock);
4453 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4456 * i915_gpu_turbo_disable - disable graphics turbo
4458 * Disable graphics turbo by resetting the max frequency and setting the
4459 * current frequency to the default.
4461 bool i915_gpu_turbo_disable(void)
4463 struct drm_i915_private *dev_priv;
4466 spin_lock_irq(&mchdev_lock);
4467 if (!i915_mch_dev) {
4471 dev_priv = i915_mch_dev;
4473 dev_priv->ips.max_delay = dev_priv->ips.fstart;
4475 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4479 spin_unlock_irq(&mchdev_lock);
4483 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4486 * Tells the intel_ips driver that the i915 driver is now loaded, if
4487 * IPS got loaded first.
4489 * This awkward dance is so that neither module has to depend on the
4490 * other in order for IPS to do the appropriate communication of
4491 * GPU turbo limits to i915.
4494 ips_ping_for_i915_load(void)
4498 link = symbol_get(ips_link_to_i915_driver);
4501 symbol_put(ips_link_to_i915_driver);
4505 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4507 /* We only register the i915 ips part with intel-ips once everything is
4508 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4509 spin_lock_irq(&mchdev_lock);
4510 i915_mch_dev = dev_priv;
4511 spin_unlock_irq(&mchdev_lock);
4513 ips_ping_for_i915_load();
4516 void intel_gpu_ips_teardown(void)
4518 spin_lock_irq(&mchdev_lock);
4519 i915_mch_dev = NULL;
4520 spin_unlock_irq(&mchdev_lock);
4522 static void intel_init_emon(struct drm_device *dev)
4524 struct drm_i915_private *dev_priv = dev->dev_private;
4529 /* Disable to program */
4533 /* Program energy weights for various events */
4534 I915_WRITE(SDEW, 0x15040d00);
4535 I915_WRITE(CSIEW0, 0x007f0000);
4536 I915_WRITE(CSIEW1, 0x1e220004);
4537 I915_WRITE(CSIEW2, 0x04000004);
4539 for (i = 0; i < 5; i++)
4540 I915_WRITE(PEW + (i * 4), 0);
4541 for (i = 0; i < 3; i++)
4542 I915_WRITE(DEW + (i * 4), 0);
4544 /* Program P-state weights to account for frequency power adjustment */
4545 for (i = 0; i < 16; i++) {
4546 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4547 unsigned long freq = intel_pxfreq(pxvidfreq);
4548 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4553 val *= (freq / 1000);
4555 val /= (127*127*900);
4557 DRM_ERROR("bad pxval: %ld\n", val);
4560 /* Render standby states get 0 weight */
4564 for (i = 0; i < 4; i++) {
4565 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4566 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4567 I915_WRITE(PXW + (i * 4), val);
4570 /* Adjust magic regs to magic values (more experimental results) */
4571 I915_WRITE(OGW0, 0);
4572 I915_WRITE(OGW1, 0);
4573 I915_WRITE(EG0, 0x00007f00);
4574 I915_WRITE(EG1, 0x0000000e);
4575 I915_WRITE(EG2, 0x000e0000);
4576 I915_WRITE(EG3, 0x68000300);
4577 I915_WRITE(EG4, 0x42000000);
4578 I915_WRITE(EG5, 0x00140031);
4582 for (i = 0; i < 8; i++)
4583 I915_WRITE(PXWL + (i * 4), 0);
4585 /* Enable PMON + select events */
4586 I915_WRITE(ECR, 0x80000019);
4588 lcfuse = I915_READ(LCFUSE02);
4590 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4593 void intel_disable_gt_powersave(struct drm_device *dev)
4595 struct drm_i915_private *dev_priv = dev->dev_private;
4597 /* Interrupts should be disabled already to avoid re-arming. */
4598 WARN_ON(dev->irq_enabled);
4600 if (IS_IRONLAKE_M(dev)) {
4601 ironlake_disable_drps(dev);
4602 ironlake_disable_rc6(dev);
4603 } else if (INTEL_INFO(dev)->gen >= 6) {
4604 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4605 cancel_work_sync(&dev_priv->rps.work);
4606 if (IS_VALLEYVIEW(dev))
4607 cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
4608 mutex_lock(&dev_priv->rps.hw_lock);
4609 if (IS_VALLEYVIEW(dev))
4610 valleyview_disable_rps(dev);
4612 gen6_disable_rps(dev);
4613 mutex_unlock(&dev_priv->rps.hw_lock);
4617 static void intel_gen6_powersave_work(struct work_struct *work)
4619 struct drm_i915_private *dev_priv =
4620 container_of(work, struct drm_i915_private,
4621 rps.delayed_resume_work.work);
4622 struct drm_device *dev = dev_priv->dev;
4624 mutex_lock(&dev_priv->rps.hw_lock);
4626 if (IS_VALLEYVIEW(dev)) {
4627 valleyview_enable_rps(dev);
4629 gen6_enable_rps(dev);
4630 gen6_update_ring_freq(dev);
4632 mutex_unlock(&dev_priv->rps.hw_lock);
4635 void intel_enable_gt_powersave(struct drm_device *dev)
4637 struct drm_i915_private *dev_priv = dev->dev_private;
4639 if (IS_IRONLAKE_M(dev)) {
4640 ironlake_enable_drps(dev);
4641 ironlake_enable_rc6(dev);
4642 intel_init_emon(dev);
4643 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4645 * PCU communication is slow and this doesn't need to be
4646 * done at any specific time, so do this out of our fast path
4647 * to make resume and init faster.
4649 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4650 round_jiffies_up_relative(HZ));
4654 static void ibx_init_clock_gating(struct drm_device *dev)
4656 struct drm_i915_private *dev_priv = dev->dev_private;
4659 * On Ibex Peak and Cougar Point, we need to disable clock
4660 * gating for the panel power sequencer or it will fail to
4661 * start up when no ports are active.
4663 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4666 static void g4x_disable_trickle_feed(struct drm_device *dev)
4668 struct drm_i915_private *dev_priv = dev->dev_private;
4671 for_each_pipe(pipe) {
4672 I915_WRITE(DSPCNTR(pipe),
4673 I915_READ(DSPCNTR(pipe)) |
4674 DISPPLANE_TRICKLE_FEED_DISABLE);
4675 intel_flush_display_plane(dev_priv, pipe);
4679 static void ironlake_init_clock_gating(struct drm_device *dev)
4681 struct drm_i915_private *dev_priv = dev->dev_private;
4682 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4686 * WaFbcDisableDpfcClockGating:ilk
4688 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4689 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4690 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4692 I915_WRITE(PCH_3DCGDIS0,
4693 MARIUNIT_CLOCK_GATE_DISABLE |
4694 SVSMUNIT_CLOCK_GATE_DISABLE);
4695 I915_WRITE(PCH_3DCGDIS1,
4696 VFMUNIT_CLOCK_GATE_DISABLE);
4699 * According to the spec the following bits should be set in
4700 * order to enable memory self-refresh
4701 * The bit 22/21 of 0x42004
4702 * The bit 5 of 0x42020
4703 * The bit 15 of 0x45000
4705 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4706 (I915_READ(ILK_DISPLAY_CHICKEN2) |
4707 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4708 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4709 I915_WRITE(DISP_ARB_CTL,
4710 (I915_READ(DISP_ARB_CTL) |
4712 I915_WRITE(WM3_LP_ILK, 0);
4713 I915_WRITE(WM2_LP_ILK, 0);
4714 I915_WRITE(WM1_LP_ILK, 0);
4717 * Based on the document from hardware guys the following bits
4718 * should be set unconditionally in order to enable FBC.
4719 * The bit 22 of 0x42000
4720 * The bit 22 of 0x42004
4721 * The bit 7,8,9 of 0x42020.
4723 if (IS_IRONLAKE_M(dev)) {
4724 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4725 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4726 I915_READ(ILK_DISPLAY_CHICKEN1) |
4728 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4729 I915_READ(ILK_DISPLAY_CHICKEN2) |
4733 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4735 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4736 I915_READ(ILK_DISPLAY_CHICKEN2) |
4737 ILK_ELPIN_409_SELECT);
4738 I915_WRITE(_3D_CHICKEN2,
4739 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4740 _3D_CHICKEN2_WM_READ_PIPELINED);
4742 /* WaDisableRenderCachePipelinedFlush:ilk */
4743 I915_WRITE(CACHE_MODE_0,
4744 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4746 g4x_disable_trickle_feed(dev);
4748 ibx_init_clock_gating(dev);
4751 static void cpt_init_clock_gating(struct drm_device *dev)
4753 struct drm_i915_private *dev_priv = dev->dev_private;
4758 * On Ibex Peak and Cougar Point, we need to disable clock
4759 * gating for the panel power sequencer or it will fail to
4760 * start up when no ports are active.
4762 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4763 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4764 DPLS_EDP_PPS_FIX_DIS);
4765 /* The below fixes the weird display corruption, a few pixels shifted
4766 * downward, on (only) LVDS of some HP laptops with IVY.
4768 for_each_pipe(pipe) {
4769 val = I915_READ(TRANS_CHICKEN2(pipe));
4770 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4771 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4772 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4773 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4774 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4775 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4776 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4777 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4779 /* WADP0ClockGatingDisable */
4780 for_each_pipe(pipe) {
4781 I915_WRITE(TRANS_CHICKEN1(pipe),
4782 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4786 static void gen6_check_mch_setup(struct drm_device *dev)
4788 struct drm_i915_private *dev_priv = dev->dev_private;
4791 tmp = I915_READ(MCH_SSKPD);
4792 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4793 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4794 DRM_INFO("This can cause pipe underruns and display issues.\n");
4795 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4799 static void gen6_init_clock_gating(struct drm_device *dev)
4801 struct drm_i915_private *dev_priv = dev->dev_private;
4802 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4804 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4806 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4807 I915_READ(ILK_DISPLAY_CHICKEN2) |
4808 ILK_ELPIN_409_SELECT);
4810 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4811 I915_WRITE(_3D_CHICKEN,
4812 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4814 /* WaSetupGtModeTdRowDispatch:snb */
4815 if (IS_SNB_GT1(dev))
4816 I915_WRITE(GEN6_GT_MODE,
4817 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4819 I915_WRITE(WM3_LP_ILK, 0);
4820 I915_WRITE(WM2_LP_ILK, 0);
4821 I915_WRITE(WM1_LP_ILK, 0);
4823 I915_WRITE(CACHE_MODE_0,
4824 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4826 I915_WRITE(GEN6_UCGCTL1,
4827 I915_READ(GEN6_UCGCTL1) |
4828 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4829 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4831 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4832 * gating disable must be set. Failure to set it results in
4833 * flickering pixels due to Z write ordering failures after
4834 * some amount of runtime in the Mesa "fire" demo, and Unigine
4835 * Sanctuary and Tropics, and apparently anything else with
4836 * alpha test or pixel discard.
4838 * According to the spec, bit 11 (RCCUNIT) must also be set,
4839 * but we didn't debug actual testcases to find it out.
4841 * Also apply WaDisableVDSUnitClockGating:snb and
4842 * WaDisableRCPBUnitClockGating:snb.
4844 I915_WRITE(GEN6_UCGCTL2,
4845 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4846 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4847 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4849 /* Bspec says we need to always set all mask bits. */
4850 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4851 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4854 * According to the spec the following bits should be
4855 * set in order to enable memory self-refresh and fbc:
4856 * The bit21 and bit22 of 0x42000
4857 * The bit21 and bit22 of 0x42004
4858 * The bit5 and bit7 of 0x42020
4859 * The bit14 of 0x70180
4860 * The bit14 of 0x71180
4862 * WaFbcAsynchFlipDisableFbcQueue:snb
4864 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4865 I915_READ(ILK_DISPLAY_CHICKEN1) |
4866 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4867 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4868 I915_READ(ILK_DISPLAY_CHICKEN2) |
4869 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4870 I915_WRITE(ILK_DSPCLK_GATE_D,
4871 I915_READ(ILK_DSPCLK_GATE_D) |
4872 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
4873 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4875 g4x_disable_trickle_feed(dev);
4877 /* The default value should be 0x200 according to docs, but the two
4878 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4879 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4880 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4882 cpt_init_clock_gating(dev);
4884 gen6_check_mch_setup(dev);
4887 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4889 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4891 reg &= ~GEN7_FF_SCHED_MASK;
4892 reg |= GEN7_FF_TS_SCHED_HW;
4893 reg |= GEN7_FF_VS_SCHED_HW;
4894 reg |= GEN7_FF_DS_SCHED_HW;
4896 if (IS_HASWELL(dev_priv->dev))
4897 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4899 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4902 static void lpt_init_clock_gating(struct drm_device *dev)
4904 struct drm_i915_private *dev_priv = dev->dev_private;
4907 * TODO: this bit should only be enabled when really needed, then
4908 * disabled when not needed anymore in order to save power.
4910 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4911 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4912 I915_READ(SOUTH_DSPCLK_GATE_D) |
4913 PCH_LP_PARTITION_LEVEL_DISABLE);
4915 /* WADPOClockGatingDisable:hsw */
4916 I915_WRITE(_TRANSA_CHICKEN1,
4917 I915_READ(_TRANSA_CHICKEN1) |
4918 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4921 static void lpt_suspend_hw(struct drm_device *dev)
4923 struct drm_i915_private *dev_priv = dev->dev_private;
4925 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4926 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4928 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4929 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4933 static void haswell_init_clock_gating(struct drm_device *dev)
4935 struct drm_i915_private *dev_priv = dev->dev_private;
4937 I915_WRITE(WM3_LP_ILK, 0);
4938 I915_WRITE(WM2_LP_ILK, 0);
4939 I915_WRITE(WM1_LP_ILK, 0);
4941 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4942 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4944 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4946 /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4947 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4948 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4950 /* WaApplyL3ControlAndL3ChickenMode:hsw */
4951 I915_WRITE(GEN7_L3CNTLREG1,
4952 GEN7_WA_FOR_GEN7_L3_CONTROL);
4953 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4954 GEN7_WA_L3_CHICKEN_MODE);
4956 /* L3 caching of data atomics doesn't work -- disable it. */
4957 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
4958 I915_WRITE(HSW_ROW_CHICKEN3,
4959 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
4961 /* This is required by WaCatErrorRejectionIssue:hsw */
4962 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4963 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4964 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4966 /* WaVSRefCountFullforceMissDisable:hsw */
4967 gen7_setup_fixed_func_scheduler(dev_priv);
4969 /* WaDisable4x2SubspanOptimization:hsw */
4970 I915_WRITE(CACHE_MODE_1,
4971 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4973 /* WaSwitchSolVfFArbitrationPriority:hsw */
4974 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4976 /* WaRsPkgCStateDisplayPMReq:hsw */
4977 I915_WRITE(CHICKEN_PAR1_1,
4978 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4980 lpt_init_clock_gating(dev);
4983 static void ivybridge_init_clock_gating(struct drm_device *dev)
4985 struct drm_i915_private *dev_priv = dev->dev_private;
4988 I915_WRITE(WM3_LP_ILK, 0);
4989 I915_WRITE(WM2_LP_ILK, 0);
4990 I915_WRITE(WM1_LP_ILK, 0);
4992 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4994 /* WaDisableEarlyCull:ivb */
4995 I915_WRITE(_3D_CHICKEN3,
4996 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4998 /* WaDisableBackToBackFlipFix:ivb */
4999 I915_WRITE(IVB_CHICKEN3,
5000 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5001 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5003 /* WaDisablePSDDualDispatchEnable:ivb */
5004 if (IS_IVB_GT1(dev))
5005 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5006 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5008 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
5009 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5011 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5012 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5013 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5015 /* WaApplyL3ControlAndL3ChickenMode:ivb */
5016 I915_WRITE(GEN7_L3CNTLREG1,
5017 GEN7_WA_FOR_GEN7_L3_CONTROL);
5018 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5019 GEN7_WA_L3_CHICKEN_MODE);
5020 if (IS_IVB_GT1(dev))
5021 I915_WRITE(GEN7_ROW_CHICKEN2,
5022 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5024 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5025 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5028 /* WaForceL3Serialization:ivb */
5029 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5030 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5032 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5033 * gating disable must be set. Failure to set it results in
5034 * flickering pixels due to Z write ordering failures after
5035 * some amount of runtime in the Mesa "fire" demo, and Unigine
5036 * Sanctuary and Tropics, and apparently anything else with
5037 * alpha test or pixel discard.
5039 * According to the spec, bit 11 (RCCUNIT) must also be set,
5040 * but we didn't debug actual testcases to find it out.
5042 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5043 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5045 I915_WRITE(GEN6_UCGCTL2,
5046 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5047 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5049 /* This is required by WaCatErrorRejectionIssue:ivb */
5050 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5051 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5052 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5054 g4x_disable_trickle_feed(dev);
5056 /* WaVSRefCountFullforceMissDisable:ivb */
5057 gen7_setup_fixed_func_scheduler(dev_priv);
5059 /* WaDisable4x2SubspanOptimization:ivb */
5060 I915_WRITE(CACHE_MODE_1,
5061 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5063 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5064 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5065 snpcr |= GEN6_MBC_SNPCR_MED;
5066 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5068 if (!HAS_PCH_NOP(dev))
5069 cpt_init_clock_gating(dev);
5071 gen6_check_mch_setup(dev);
5074 static void valleyview_init_clock_gating(struct drm_device *dev)
5076 struct drm_i915_private *dev_priv = dev->dev_private;
5078 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5080 /* WaDisableEarlyCull:vlv */
5081 I915_WRITE(_3D_CHICKEN3,
5082 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5084 /* WaDisableBackToBackFlipFix:vlv */
5085 I915_WRITE(IVB_CHICKEN3,
5086 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5087 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5089 /* WaDisablePSDDualDispatchEnable:vlv */
5090 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5091 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5092 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5094 /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
5095 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5096 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5098 /* WaApplyL3ControlAndL3ChickenMode:vlv */
5099 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
5100 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
5102 /* WaForceL3Serialization:vlv */
5103 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5104 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5106 /* WaDisableDopClockGating:vlv */
5107 I915_WRITE(GEN7_ROW_CHICKEN2,
5108 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5110 /* This is required by WaCatErrorRejectionIssue:vlv */
5111 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5112 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5113 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5115 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5116 * gating disable must be set. Failure to set it results in
5117 * flickering pixels due to Z write ordering failures after
5118 * some amount of runtime in the Mesa "fire" demo, and Unigine
5119 * Sanctuary and Tropics, and apparently anything else with
5120 * alpha test or pixel discard.
5122 * According to the spec, bit 11 (RCCUNIT) must also be set,
5123 * but we didn't debug actual testcases to find it out.
5125 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5126 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5128 * Also apply WaDisableVDSUnitClockGating:vlv and
5129 * WaDisableRCPBUnitClockGating:vlv.
5131 I915_WRITE(GEN6_UCGCTL2,
5132 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5133 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
5134 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5135 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5136 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5138 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5140 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5142 I915_WRITE(CACHE_MODE_1,
5143 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5146 * WaDisableVLVClockGating_VBIIssue:vlv
5147 * Disable clock gating on th GCFG unit to prevent a delay
5148 * in the reporting of vblank events.
5150 I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
5152 /* Conservative clock gating settings for now */
5153 I915_WRITE(0x9400, 0xffffffff);
5154 I915_WRITE(0x9404, 0xffffffff);
5155 I915_WRITE(0x9408, 0xffffffff);
5156 I915_WRITE(0x940c, 0xffffffff);
5157 I915_WRITE(0x9410, 0xffffffff);
5158 I915_WRITE(0x9414, 0xffffffff);
5159 I915_WRITE(0x9418, 0xffffffff);
5162 static void g4x_init_clock_gating(struct drm_device *dev)
5164 struct drm_i915_private *dev_priv = dev->dev_private;
5165 uint32_t dspclk_gate;
5167 I915_WRITE(RENCLK_GATE_D1, 0);
5168 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5169 GS_UNIT_CLOCK_GATE_DISABLE |
5170 CL_UNIT_CLOCK_GATE_DISABLE);
5171 I915_WRITE(RAMCLK_GATE_D, 0);
5172 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5173 OVRUNIT_CLOCK_GATE_DISABLE |
5174 OVCUNIT_CLOCK_GATE_DISABLE;
5176 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5177 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5179 /* WaDisableRenderCachePipelinedFlush */
5180 I915_WRITE(CACHE_MODE_0,
5181 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5183 g4x_disable_trickle_feed(dev);
5186 static void crestline_init_clock_gating(struct drm_device *dev)
5188 struct drm_i915_private *dev_priv = dev->dev_private;
5190 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5191 I915_WRITE(RENCLK_GATE_D2, 0);
5192 I915_WRITE(DSPCLK_GATE_D, 0);
5193 I915_WRITE(RAMCLK_GATE_D, 0);
5194 I915_WRITE16(DEUC, 0);
5195 I915_WRITE(MI_ARB_STATE,
5196 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5199 static void broadwater_init_clock_gating(struct drm_device *dev)
5201 struct drm_i915_private *dev_priv = dev->dev_private;
5203 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5204 I965_RCC_CLOCK_GATE_DISABLE |
5205 I965_RCPB_CLOCK_GATE_DISABLE |
5206 I965_ISC_CLOCK_GATE_DISABLE |
5207 I965_FBC_CLOCK_GATE_DISABLE);
5208 I915_WRITE(RENCLK_GATE_D2, 0);
5209 I915_WRITE(MI_ARB_STATE,
5210 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5213 static void gen3_init_clock_gating(struct drm_device *dev)
5215 struct drm_i915_private *dev_priv = dev->dev_private;
5216 u32 dstate = I915_READ(D_STATE);
5218 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5219 DSTATE_DOT_CLOCK_GATING;
5220 I915_WRITE(D_STATE, dstate);
5222 if (IS_PINEVIEW(dev))
5223 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5225 /* IIR "flip pending" means done if this bit is set */
5226 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5229 static void i85x_init_clock_gating(struct drm_device *dev)
5231 struct drm_i915_private *dev_priv = dev->dev_private;
5233 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5236 static void i830_init_clock_gating(struct drm_device *dev)
5238 struct drm_i915_private *dev_priv = dev->dev_private;
5240 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5243 void intel_init_clock_gating(struct drm_device *dev)
5245 struct drm_i915_private *dev_priv = dev->dev_private;
5247 dev_priv->display.init_clock_gating(dev);
5250 void intel_suspend_hw(struct drm_device *dev)
5252 if (HAS_PCH_LPT(dev))
5253 lpt_suspend_hw(dev);
5257 * We should only use the power well if we explicitly asked the hardware to
5258 * enable it, so check if it's enabled and also check if we've requested it to
5261 bool intel_display_power_enabled(struct drm_device *dev,
5262 enum intel_display_power_domain domain)
5264 struct drm_i915_private *dev_priv = dev->dev_private;
5266 if (!HAS_POWER_WELL(dev))
5270 case POWER_DOMAIN_PIPE_A:
5271 case POWER_DOMAIN_TRANSCODER_EDP:
5273 case POWER_DOMAIN_PIPE_B:
5274 case POWER_DOMAIN_PIPE_C:
5275 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5276 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5277 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5278 case POWER_DOMAIN_TRANSCODER_A:
5279 case POWER_DOMAIN_TRANSCODER_B:
5280 case POWER_DOMAIN_TRANSCODER_C:
5281 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5282 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5288 static void __intel_set_power_well(struct drm_device *dev, bool enable)
5290 struct drm_i915_private *dev_priv = dev->dev_private;
5291 bool is_enabled, enable_requested;
5294 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5295 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5296 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5299 if (!enable_requested)
5300 I915_WRITE(HSW_PWR_WELL_DRIVER,
5301 HSW_PWR_WELL_ENABLE_REQUEST);
5304 DRM_DEBUG_KMS("Enabling power well\n");
5305 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5306 HSW_PWR_WELL_STATE_ENABLED), 20))
5307 DRM_ERROR("Timeout enabling power well\n");
5310 if (enable_requested) {
5311 unsigned long irqflags;
5314 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5315 POSTING_READ(HSW_PWR_WELL_DRIVER);
5316 DRM_DEBUG_KMS("Requesting to disable the power well\n");
5319 * After this, the registers on the pipes that are part
5320 * of the power well will become zero, so we have to
5321 * adjust our counters according to that.
5323 * FIXME: Should we do this in general in
5324 * drm_vblank_post_modeset?
5326 spin_lock_irqsave(&dev->vbl_lock, irqflags);
5329 dev->last_vblank[p] = 0;
5330 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5335 static struct i915_power_well *hsw_pwr;
5337 /* Display audio driver power well request */
5338 void i915_request_power_well(void)
5340 if (WARN_ON(!hsw_pwr))
5343 spin_lock_irq(&hsw_pwr->lock);
5344 if (!hsw_pwr->count++ &&
5345 !hsw_pwr->i915_request)
5346 __intel_set_power_well(hsw_pwr->device, true);
5347 spin_unlock_irq(&hsw_pwr->lock);
5349 EXPORT_SYMBOL_GPL(i915_request_power_well);
5351 /* Display audio driver power well release */
5352 void i915_release_power_well(void)
5354 if (WARN_ON(!hsw_pwr))
5357 spin_lock_irq(&hsw_pwr->lock);
5358 WARN_ON(!hsw_pwr->count);
5359 if (!--hsw_pwr->count &&
5360 !hsw_pwr->i915_request)
5361 __intel_set_power_well(hsw_pwr->device, false);
5362 spin_unlock_irq(&hsw_pwr->lock);
5364 EXPORT_SYMBOL_GPL(i915_release_power_well);
5366 int i915_init_power_well(struct drm_device *dev)
5368 struct drm_i915_private *dev_priv = dev->dev_private;
5370 hsw_pwr = &dev_priv->power_well;
5372 hsw_pwr->device = dev;
5373 spin_lock_init(&hsw_pwr->lock);
5379 void i915_remove_power_well(struct drm_device *dev)
5384 void intel_set_power_well(struct drm_device *dev, bool enable)
5386 struct drm_i915_private *dev_priv = dev->dev_private;
5387 struct i915_power_well *power_well = &dev_priv->power_well;
5389 if (!HAS_POWER_WELL(dev))
5392 if (!i915_disable_power_well && !enable)
5395 spin_lock_irq(&power_well->lock);
5396 power_well->i915_request = enable;
5398 /* only reject "disable" power well request */
5399 if (power_well->count && !enable) {
5400 spin_unlock_irq(&power_well->lock);
5404 __intel_set_power_well(dev, enable);
5405 spin_unlock_irq(&power_well->lock);
5409 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5410 * when not needed anymore. We have 4 registers that can request the power well
5411 * to be enabled, and it will only be disabled if none of the registers is
5412 * requesting it to be enabled.
5414 void intel_init_power_well(struct drm_device *dev)
5416 struct drm_i915_private *dev_priv = dev->dev_private;
5418 if (!HAS_POWER_WELL(dev))
5421 /* For now, we need the power well to be always enabled. */
5422 intel_set_power_well(dev, true);
5424 /* We're taking over the BIOS, so clear any requests made by it since
5425 * the driver is in charge now. */
5426 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5427 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5430 /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5431 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5433 hsw_disable_package_c8(dev_priv);
5436 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5438 hsw_enable_package_c8(dev_priv);
5441 /* Set up chip specific power management-related functions */
5442 void intel_init_pm(struct drm_device *dev)
5444 struct drm_i915_private *dev_priv = dev->dev_private;
5446 if (I915_HAS_FBC(dev)) {
5447 if (HAS_PCH_SPLIT(dev)) {
5448 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5449 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5450 dev_priv->display.enable_fbc =
5453 dev_priv->display.enable_fbc =
5454 ironlake_enable_fbc;
5455 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5456 } else if (IS_GM45(dev)) {
5457 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5458 dev_priv->display.enable_fbc = g4x_enable_fbc;
5459 dev_priv->display.disable_fbc = g4x_disable_fbc;
5460 } else if (IS_CRESTLINE(dev)) {
5461 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5462 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5463 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5465 /* 855GM needs testing */
5469 if (IS_PINEVIEW(dev))
5470 i915_pineview_get_mem_freq(dev);
5471 else if (IS_GEN5(dev))
5472 i915_ironlake_get_mem_freq(dev);
5474 /* For FIFO watermark updates */
5475 if (HAS_PCH_SPLIT(dev)) {
5476 intel_setup_wm_latency(dev);
5479 if (dev_priv->wm.pri_latency[1] &&
5480 dev_priv->wm.spr_latency[1] &&
5481 dev_priv->wm.cur_latency[1])
5482 dev_priv->display.update_wm = ironlake_update_wm;
5484 DRM_DEBUG_KMS("Failed to get proper latency. "
5486 dev_priv->display.update_wm = NULL;
5488 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5489 } else if (IS_GEN6(dev)) {
5490 if (dev_priv->wm.pri_latency[0] &&
5491 dev_priv->wm.spr_latency[0] &&
5492 dev_priv->wm.cur_latency[0]) {
5493 dev_priv->display.update_wm = sandybridge_update_wm;
5494 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5496 DRM_DEBUG_KMS("Failed to read display plane latency. "
5498 dev_priv->display.update_wm = NULL;
5500 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5501 } else if (IS_IVYBRIDGE(dev)) {
5502 if (dev_priv->wm.pri_latency[0] &&
5503 dev_priv->wm.spr_latency[0] &&
5504 dev_priv->wm.cur_latency[0]) {
5505 dev_priv->display.update_wm = ivybridge_update_wm;
5506 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5508 DRM_DEBUG_KMS("Failed to read display plane latency. "
5510 dev_priv->display.update_wm = NULL;
5512 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5513 } else if (IS_HASWELL(dev)) {
5514 if (dev_priv->wm.pri_latency[0] &&
5515 dev_priv->wm.spr_latency[0] &&
5516 dev_priv->wm.cur_latency[0]) {
5517 dev_priv->display.update_wm = haswell_update_wm;
5518 dev_priv->display.update_sprite_wm =
5519 haswell_update_sprite_wm;
5521 DRM_DEBUG_KMS("Failed to read display plane latency. "
5523 dev_priv->display.update_wm = NULL;
5525 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5527 dev_priv->display.update_wm = NULL;
5528 } else if (IS_VALLEYVIEW(dev)) {
5529 dev_priv->display.update_wm = valleyview_update_wm;
5530 dev_priv->display.init_clock_gating =
5531 valleyview_init_clock_gating;
5532 } else if (IS_PINEVIEW(dev)) {
5533 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5536 dev_priv->mem_freq)) {
5537 DRM_INFO("failed to find known CxSR latency "
5538 "(found ddr%s fsb freq %d, mem freq %d), "
5540 (dev_priv->is_ddr3 == 1) ? "3" : "2",
5541 dev_priv->fsb_freq, dev_priv->mem_freq);
5542 /* Disable CxSR and never update its watermark again */
5543 pineview_disable_cxsr(dev);
5544 dev_priv->display.update_wm = NULL;
5546 dev_priv->display.update_wm = pineview_update_wm;
5547 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5548 } else if (IS_G4X(dev)) {
5549 dev_priv->display.update_wm = g4x_update_wm;
5550 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5551 } else if (IS_GEN4(dev)) {
5552 dev_priv->display.update_wm = i965_update_wm;
5553 if (IS_CRESTLINE(dev))
5554 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5555 else if (IS_BROADWATER(dev))
5556 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5557 } else if (IS_GEN3(dev)) {
5558 dev_priv->display.update_wm = i9xx_update_wm;
5559 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5560 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5561 } else if (IS_I865G(dev)) {
5562 dev_priv->display.update_wm = i830_update_wm;
5563 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5564 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5565 } else if (IS_I85X(dev)) {
5566 dev_priv->display.update_wm = i9xx_update_wm;
5567 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5568 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5570 dev_priv->display.update_wm = i830_update_wm;
5571 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5573 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5575 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5579 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5581 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5583 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5584 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5588 I915_WRITE(GEN6_PCODE_DATA, *val);
5589 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5591 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5593 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5597 *val = I915_READ(GEN6_PCODE_DATA);
5598 I915_WRITE(GEN6_PCODE_DATA, 0);
5603 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5605 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5607 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5608 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5612 I915_WRITE(GEN6_PCODE_DATA, val);
5613 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5615 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5617 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5621 I915_WRITE(GEN6_PCODE_DATA, 0);
5626 int vlv_gpu_freq(int ddr_freq, int val)
5647 return ((val - 0xbd) * mult) + base;
5650 int vlv_freq_opcode(int ddr_freq, int val)
5681 void intel_pm_init(struct drm_device *dev)
5683 struct drm_i915_private *dev_priv = dev->dev_private;
5685 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5686 intel_gen6_powersave_work);
5688 INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);