2 * Copyright © 2012 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
28 #include <linux/module.h>
29 #include <linux/pm_runtime.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_fourcc.h>
33 #include <drm/drm_plane_helper.h>
35 #include "display/intel_atomic.h"
36 #include "display/intel_display_types.h"
37 #include "display/intel_fbc.h"
38 #include "display/intel_sprite.h"
40 #include "gt/intel_llc.h"
43 #include "i915_fixed.h"
45 #include "i915_trace.h"
46 #include "display/intel_bw.h"
48 #include "intel_sideband.h"
49 #include "../../../platform/x86/intel_ips.h"
51 /* Stores plane specific WM parameters */
52 struct skl_wm_params {
53 bool x_tiled, y_tiled;
60 u32 plane_bytes_per_line;
61 uint_fixed_16_16_t plane_blocks_per_line;
62 uint_fixed_16_16_t y_tile_minimum;
67 /* used in computing the new watermarks state */
68 struct intel_wm_config {
69 unsigned int num_pipes_active;
74 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
76 if (HAS_LLC(dev_priv)) {
78 * WaCompressedResourceDisplayNewHashMode:skl,kbl
79 * Display WA #0390: skl,kbl
81 * Must match Sampler, Pixel Back End, and Media. See
82 * WaCompressedResourceSamplerPbeMediaNewHashMode.
84 I915_WRITE(CHICKEN_PAR1_1,
85 I915_READ(CHICKEN_PAR1_1) |
86 SKL_DE_COMPRESSED_HASH_MODE);
89 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
90 I915_WRITE(CHICKEN_PAR1_1,
91 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
93 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
94 I915_WRITE(GEN8_CHICKEN_DCPR_1,
95 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
97 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
98 /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
99 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
101 DISP_FBC_MEMORY_WAKE);
103 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
104 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
105 ILK_DPFC_DISABLE_DUMMY0);
107 if (IS_SKYLAKE(dev_priv)) {
108 /* WaDisableDopClockGating */
109 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
110 & ~GEN7_DOP_CLOCK_GATE_ENABLE);
114 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
116 gen9_init_clock_gating(dev_priv);
118 /* WaDisableSDEUnitClockGating:bxt */
119 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
120 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
124 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
126 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
127 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
130 * Wa: Backlight PWM may stop in the asserted state, causing backlight
133 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
134 PWM1_GATING_DIS | PWM2_GATING_DIS);
137 * Lower the display internal timeout.
138 * This is needed to avoid any hard hangs when DSI port PLL
139 * is off and a MMIO access is attempted by any privilege
140 * application, using batch buffers or any other means.
142 I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
145 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
147 gen9_init_clock_gating(dev_priv);
150 * WaDisablePWMClockGating:glk
151 * Backlight PWM may stop in the asserted state, causing backlight
154 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
155 PWM1_GATING_DIS | PWM2_GATING_DIS);
158 static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
162 tmp = I915_READ(CLKCFG);
164 switch (tmp & CLKCFG_FSB_MASK) {
166 dev_priv->fsb_freq = 533; /* 133*4 */
169 dev_priv->fsb_freq = 800; /* 200*4 */
172 dev_priv->fsb_freq = 667; /* 167*4 */
175 dev_priv->fsb_freq = 400; /* 100*4 */
179 switch (tmp & CLKCFG_MEM_MASK) {
181 dev_priv->mem_freq = 533;
184 dev_priv->mem_freq = 667;
187 dev_priv->mem_freq = 800;
191 /* detect pineview DDR3 setting */
192 tmp = I915_READ(CSHRDDR3CTL);
193 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
196 static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
200 ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
201 csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
203 switch (ddrpll & 0xff) {
205 dev_priv->mem_freq = 800;
208 dev_priv->mem_freq = 1066;
211 dev_priv->mem_freq = 1333;
214 dev_priv->mem_freq = 1600;
217 drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
219 dev_priv->mem_freq = 0;
223 switch (csipll & 0x3ff) {
225 dev_priv->fsb_freq = 3200;
228 dev_priv->fsb_freq = 3733;
231 dev_priv->fsb_freq = 4266;
234 dev_priv->fsb_freq = 4800;
237 dev_priv->fsb_freq = 5333;
240 dev_priv->fsb_freq = 5866;
243 dev_priv->fsb_freq = 6400;
246 drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
248 dev_priv->fsb_freq = 0;
253 static const struct cxsr_latency cxsr_latency_table[] = {
254 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
255 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
256 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
257 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
258 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
260 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
261 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
262 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
263 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
264 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
266 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
267 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
268 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
269 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
270 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
272 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
273 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
274 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
275 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
276 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
278 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
279 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
280 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
281 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
282 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
284 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
285 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
286 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
287 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
288 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
291 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
296 const struct cxsr_latency *latency;
299 if (fsb == 0 || mem == 0)
302 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
303 latency = &cxsr_latency_table[i];
304 if (is_desktop == latency->is_desktop &&
305 is_ddr3 == latency->is_ddr3 &&
306 fsb == latency->fsb_freq && mem == latency->mem_freq)
310 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
315 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
319 vlv_punit_get(dev_priv);
321 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
323 val &= ~FORCE_DDR_HIGH_FREQ;
325 val |= FORCE_DDR_HIGH_FREQ;
326 val &= ~FORCE_DDR_LOW_FREQ;
327 val |= FORCE_DDR_FREQ_REQ_ACK;
328 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
330 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
331 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
332 drm_err(&dev_priv->drm,
333 "timed out waiting for Punit DDR DVFS request\n");
335 vlv_punit_put(dev_priv);
338 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
342 vlv_punit_get(dev_priv);
344 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
346 val |= DSP_MAXFIFO_PM5_ENABLE;
348 val &= ~DSP_MAXFIFO_PM5_ENABLE;
349 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
351 vlv_punit_put(dev_priv);
354 #define FW_WM(value, plane) \
355 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
357 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
362 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
363 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
364 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
365 POSTING_READ(FW_BLC_SELF_VLV);
366 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
367 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
368 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
369 POSTING_READ(FW_BLC_SELF);
370 } else if (IS_PINEVIEW(dev_priv)) {
371 val = I915_READ(DSPFW3);
372 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
374 val |= PINEVIEW_SELF_REFRESH_EN;
376 val &= ~PINEVIEW_SELF_REFRESH_EN;
377 I915_WRITE(DSPFW3, val);
378 POSTING_READ(DSPFW3);
379 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
380 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
381 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
382 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
383 I915_WRITE(FW_BLC_SELF, val);
384 POSTING_READ(FW_BLC_SELF);
385 } else if (IS_I915GM(dev_priv)) {
387 * FIXME can't find a bit like this for 915G, and
388 * and yet it does have the related watermark in
389 * FW_BLC_SELF. What's going on?
391 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
392 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
393 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
394 I915_WRITE(INSTPM, val);
395 POSTING_READ(INSTPM);
400 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
402 drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
403 enableddisabled(enable),
404 enableddisabled(was_enabled));
410 * intel_set_memory_cxsr - Configure CxSR state
411 * @dev_priv: i915 device
412 * @enable: Allow vs. disallow CxSR
414 * Allow or disallow the system to enter a special CxSR
415 * (C-state self refresh) state. What typically happens in CxSR mode
416 * is that several display FIFOs may get combined into a single larger
417 * FIFO for a particular plane (so called max FIFO mode) to allow the
418 * system to defer memory fetches longer, and the memory will enter
421 * Note that enabling CxSR does not guarantee that the system enter
422 * this special mode, nor does it guarantee that the system stays
423 * in that mode once entered. So this just allows/disallows the system
424 * to autonomously utilize the CxSR mode. Other factors such as core
425 * C-states will affect when/if the system actually enters/exits the
428 * Note that on VLV/CHV this actually only controls the max FIFO mode,
429 * and the system is free to enter/exit memory self refresh at any time
430 * even when the use of CxSR has been disallowed.
432 * While the system is actually in the CxSR/max FIFO mode, some plane
433 * control registers will not get latched on vblank. Thus in order to
434 * guarantee the system will respond to changes in the plane registers
435 * we must always disallow CxSR prior to making changes to those registers.
436 * Unfortunately the system will re-evaluate the CxSR conditions at
437 * frame start which happens after vblank start (which is when the plane
438 * registers would get latched), so we can't proceed with the plane update
439 * during the same frame where we disallowed CxSR.
441 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
442 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
443 * the hardware w.r.t. HPLL SR when writing to plane registers.
444 * Disallowing just CxSR is sufficient.
446 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
450 mutex_lock(&dev_priv->wm.wm_mutex);
451 ret = _intel_set_memory_cxsr(dev_priv, enable);
452 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
453 dev_priv->wm.vlv.cxsr = enable;
454 else if (IS_G4X(dev_priv))
455 dev_priv->wm.g4x.cxsr = enable;
456 mutex_unlock(&dev_priv->wm.wm_mutex);
462 * Latency for FIFO fetches is dependent on several factors:
463 * - memory configuration (speed, channels)
465 * - current MCH state
466 * It can be fairly high in some situations, so here we assume a fairly
467 * pessimal value. It's a tradeoff between extra memory fetches (if we
468 * set this value too high, the FIFO will fetch frequently to stay full)
469 * and power consumption (set it too low to save power and we might see
470 * FIFO underruns and display "flicker").
472 * A value of 5us seems to be a good balance; safe for very low end
473 * platforms but not overly aggressive on lower latency configs.
475 static const int pessimal_latency_ns = 5000;
477 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
478 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
480 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
482 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
483 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
484 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
485 enum pipe pipe = crtc->pipe;
486 int sprite0_start, sprite1_start;
487 u32 dsparb, dsparb2, dsparb3;
491 dsparb = I915_READ(DSPARB);
492 dsparb2 = I915_READ(DSPARB2);
493 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
494 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
497 dsparb = I915_READ(DSPARB);
498 dsparb2 = I915_READ(DSPARB2);
499 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
500 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
503 dsparb2 = I915_READ(DSPARB2);
504 dsparb3 = I915_READ(DSPARB3);
505 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
506 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
513 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
514 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
515 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
516 fifo_state->plane[PLANE_CURSOR] = 63;
519 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
520 enum i9xx_plane_id i9xx_plane)
522 u32 dsparb = I915_READ(DSPARB);
525 size = dsparb & 0x7f;
526 if (i9xx_plane == PLANE_B)
527 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
529 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
530 dsparb, plane_name(i9xx_plane), size);
535 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
536 enum i9xx_plane_id i9xx_plane)
538 u32 dsparb = I915_READ(DSPARB);
541 size = dsparb & 0x1ff;
542 if (i9xx_plane == PLANE_B)
543 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
544 size >>= 1; /* Convert to cachelines */
546 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
547 dsparb, plane_name(i9xx_plane), size);
552 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
553 enum i9xx_plane_id i9xx_plane)
555 u32 dsparb = I915_READ(DSPARB);
558 size = dsparb & 0x7f;
559 size >>= 2; /* Convert to cachelines */
561 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
562 dsparb, plane_name(i9xx_plane), size);
567 /* Pineview has different values for various configs */
568 static const struct intel_watermark_params pnv_display_wm = {
569 .fifo_size = PINEVIEW_DISPLAY_FIFO,
570 .max_wm = PINEVIEW_MAX_WM,
571 .default_wm = PINEVIEW_DFT_WM,
572 .guard_size = PINEVIEW_GUARD_WM,
573 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
576 static const struct intel_watermark_params pnv_display_hplloff_wm = {
577 .fifo_size = PINEVIEW_DISPLAY_FIFO,
578 .max_wm = PINEVIEW_MAX_WM,
579 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
580 .guard_size = PINEVIEW_GUARD_WM,
581 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
584 static const struct intel_watermark_params pnv_cursor_wm = {
585 .fifo_size = PINEVIEW_CURSOR_FIFO,
586 .max_wm = PINEVIEW_CURSOR_MAX_WM,
587 .default_wm = PINEVIEW_CURSOR_DFT_WM,
588 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
589 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
592 static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
593 .fifo_size = PINEVIEW_CURSOR_FIFO,
594 .max_wm = PINEVIEW_CURSOR_MAX_WM,
595 .default_wm = PINEVIEW_CURSOR_DFT_WM,
596 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
597 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
600 static const struct intel_watermark_params i965_cursor_wm_info = {
601 .fifo_size = I965_CURSOR_FIFO,
602 .max_wm = I965_CURSOR_MAX_WM,
603 .default_wm = I965_CURSOR_DFT_WM,
605 .cacheline_size = I915_FIFO_LINE_SIZE,
608 static const struct intel_watermark_params i945_wm_info = {
609 .fifo_size = I945_FIFO_SIZE,
610 .max_wm = I915_MAX_WM,
613 .cacheline_size = I915_FIFO_LINE_SIZE,
616 static const struct intel_watermark_params i915_wm_info = {
617 .fifo_size = I915_FIFO_SIZE,
618 .max_wm = I915_MAX_WM,
621 .cacheline_size = I915_FIFO_LINE_SIZE,
624 static const struct intel_watermark_params i830_a_wm_info = {
625 .fifo_size = I855GM_FIFO_SIZE,
626 .max_wm = I915_MAX_WM,
629 .cacheline_size = I830_FIFO_LINE_SIZE,
632 static const struct intel_watermark_params i830_bc_wm_info = {
633 .fifo_size = I855GM_FIFO_SIZE,
634 .max_wm = I915_MAX_WM/2,
637 .cacheline_size = I830_FIFO_LINE_SIZE,
640 static const struct intel_watermark_params i845_wm_info = {
641 .fifo_size = I830_FIFO_SIZE,
642 .max_wm = I915_MAX_WM,
645 .cacheline_size = I830_FIFO_LINE_SIZE,
649 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
650 * @pixel_rate: Pipe pixel rate in kHz
651 * @cpp: Plane bytes per pixel
652 * @latency: Memory wakeup latency in 0.1us units
654 * Compute the watermark using the method 1 or "small buffer"
655 * formula. The caller may additonally add extra cachelines
656 * to account for TLB misses and clock crossings.
658 * This method is concerned with the short term drain rate
659 * of the FIFO, ie. it does not account for blanking periods
660 * which would effectively reduce the average drain rate across
661 * a longer period. The name "small" refers to the fact the
662 * FIFO is relatively small compared to the amount of data
665 * The FIFO level vs. time graph might look something like:
669 * __---__---__ (- plane active, _ blanking)
672 * or perhaps like this:
675 * __----__----__ (- plane active, _ blanking)
679 * The watermark in bytes
681 static unsigned int intel_wm_method1(unsigned int pixel_rate,
683 unsigned int latency)
687 ret = mul_u32_u32(pixel_rate, cpp * latency);
688 ret = DIV_ROUND_UP_ULL(ret, 10000);
694 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
695 * @pixel_rate: Pipe pixel rate in kHz
696 * @htotal: Pipe horizontal total
697 * @width: Plane width in pixels
698 * @cpp: Plane bytes per pixel
699 * @latency: Memory wakeup latency in 0.1us units
701 * Compute the watermark using the method 2 or "large buffer"
702 * formula. The caller may additonally add extra cachelines
703 * to account for TLB misses and clock crossings.
705 * This method is concerned with the long term drain rate
706 * of the FIFO, ie. it does account for blanking periods
707 * which effectively reduce the average drain rate across
708 * a longer period. The name "large" refers to the fact the
709 * FIFO is relatively large compared to the amount of data
712 * The FIFO level vs. time graph might look something like:
717 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
721 * The watermark in bytes
723 static unsigned int intel_wm_method2(unsigned int pixel_rate,
727 unsigned int latency)
732 * FIXME remove once all users are computing
733 * watermarks in the correct place.
735 if (WARN_ON_ONCE(htotal == 0))
738 ret = (latency * pixel_rate) / (htotal * 10000);
739 ret = (ret + 1) * width * cpp;
745 * intel_calculate_wm - calculate watermark level
746 * @pixel_rate: pixel clock
747 * @wm: chip FIFO params
748 * @fifo_size: size of the FIFO buffer
749 * @cpp: bytes per pixel
750 * @latency_ns: memory latency for the platform
752 * Calculate the watermark level (the level at which the display plane will
753 * start fetching from memory again). Each chip has a different display
754 * FIFO size and allocation, so the caller needs to figure that out and pass
755 * in the correct intel_watermark_params structure.
757 * As the pixel clock runs, the FIFO will be drained at a rate that depends
758 * on the pixel size. When it reaches the watermark level, it'll start
759 * fetching FIFO line sized based chunks from memory until the FIFO fills
760 * past the watermark point. If the FIFO drains completely, a FIFO underrun
761 * will occur, and a display engine hang could result.
763 static unsigned int intel_calculate_wm(int pixel_rate,
764 const struct intel_watermark_params *wm,
765 int fifo_size, int cpp,
766 unsigned int latency_ns)
768 int entries, wm_size;
771 * Note: we need to make sure we don't overflow for various clock &
773 * clocks go from a few thousand to several hundred thousand.
774 * latency is usually a few thousand
776 entries = intel_wm_method1(pixel_rate, cpp,
778 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
780 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
782 wm_size = fifo_size - entries;
783 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
785 /* Don't promote wm_size to unsigned... */
786 if (wm_size > wm->max_wm)
787 wm_size = wm->max_wm;
789 wm_size = wm->default_wm;
792 * Bspec seems to indicate that the value shouldn't be lower than
793 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
794 * Lets go for 8 which is the burst size since certain platforms
795 * already use a hardcoded 8 (which is what the spec says should be
804 static bool is_disabling(int old, int new, int threshold)
806 return old >= threshold && new < threshold;
809 static bool is_enabling(int old, int new, int threshold)
811 return old < threshold && new >= threshold;
814 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
816 return dev_priv->wm.max_level + 1;
819 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
820 const struct intel_plane_state *plane_state)
822 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
824 /* FIXME check the 'enable' instead */
825 if (!crtc_state->hw.active)
829 * Treat cursor with fb as always visible since cursor updates
830 * can happen faster than the vrefresh rate, and the current
831 * watermark code doesn't handle that correctly. Cursor updates
832 * which set/clear the fb or change the cursor size are going
833 * to get throttled by intel_legacy_cursor_update() to work
834 * around this problem with the watermark code.
836 if (plane->id == PLANE_CURSOR)
837 return plane_state->hw.fb != NULL;
839 return plane_state->uapi.visible;
842 static bool intel_crtc_active(struct intel_crtc *crtc)
844 /* Be paranoid as we can arrive here with only partial
845 * state retrieved from the hardware during setup.
847 * We can ditch the adjusted_mode.crtc_clock check as soon
848 * as Haswell has gained clock readout/fastboot support.
850 * We can ditch the crtc->primary->state->fb check as soon as we can
851 * properly reconstruct framebuffers.
853 * FIXME: The intel_crtc->active here should be switched to
854 * crtc->state->active once we have proper CRTC states wired up
857 return crtc->active && crtc->base.primary->state->fb &&
858 crtc->config->hw.adjusted_mode.crtc_clock;
861 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
863 struct intel_crtc *crtc, *enabled = NULL;
865 for_each_intel_crtc(&dev_priv->drm, crtc) {
866 if (intel_crtc_active(crtc)) {
876 static void pnv_update_wm(struct intel_crtc *unused_crtc)
878 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
879 struct intel_crtc *crtc;
880 const struct cxsr_latency *latency;
884 latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
889 drm_dbg_kms(&dev_priv->drm,
890 "Unknown FSB/MEM found, disable CxSR\n");
891 intel_set_memory_cxsr(dev_priv, false);
895 crtc = single_enabled_crtc(dev_priv);
897 const struct drm_display_mode *adjusted_mode =
898 &crtc->config->hw.adjusted_mode;
899 const struct drm_framebuffer *fb =
900 crtc->base.primary->state->fb;
901 int cpp = fb->format->cpp[0];
902 int clock = adjusted_mode->crtc_clock;
905 wm = intel_calculate_wm(clock, &pnv_display_wm,
906 pnv_display_wm.fifo_size,
907 cpp, latency->display_sr);
908 reg = I915_READ(DSPFW1);
909 reg &= ~DSPFW_SR_MASK;
910 reg |= FW_WM(wm, SR);
911 I915_WRITE(DSPFW1, reg);
912 drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
915 wm = intel_calculate_wm(clock, &pnv_cursor_wm,
916 pnv_display_wm.fifo_size,
917 4, latency->cursor_sr);
918 reg = I915_READ(DSPFW3);
919 reg &= ~DSPFW_CURSOR_SR_MASK;
920 reg |= FW_WM(wm, CURSOR_SR);
921 I915_WRITE(DSPFW3, reg);
923 /* Display HPLL off SR */
924 wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
925 pnv_display_hplloff_wm.fifo_size,
926 cpp, latency->display_hpll_disable);
927 reg = I915_READ(DSPFW3);
928 reg &= ~DSPFW_HPLL_SR_MASK;
929 reg |= FW_WM(wm, HPLL_SR);
930 I915_WRITE(DSPFW3, reg);
932 /* cursor HPLL off SR */
933 wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
934 pnv_display_hplloff_wm.fifo_size,
935 4, latency->cursor_hpll_disable);
936 reg = I915_READ(DSPFW3);
937 reg &= ~DSPFW_HPLL_CURSOR_MASK;
938 reg |= FW_WM(wm, HPLL_CURSOR);
939 I915_WRITE(DSPFW3, reg);
940 drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
942 intel_set_memory_cxsr(dev_priv, true);
944 intel_set_memory_cxsr(dev_priv, false);
949 * Documentation says:
950 * "If the line size is small, the TLB fetches can get in the way of the
951 * data fetches, causing some lag in the pixel data return which is not
952 * accounted for in the above formulas. The following adjustment only
953 * needs to be applied if eight whole lines fit in the buffer at once.
954 * The WM is adjusted upwards by the difference between the FIFO size
955 * and the size of 8 whole lines. This adjustment is always performed
956 * in the actual pixel depth regardless of whether FBC is enabled or not."
958 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
960 int tlb_miss = fifo_size * 64 - width * cpp * 8;
962 return max(0, tlb_miss);
965 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
966 const struct g4x_wm_values *wm)
970 for_each_pipe(dev_priv, pipe)
971 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
974 FW_WM(wm->sr.plane, SR) |
975 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
976 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
977 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
979 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
980 FW_WM(wm->sr.fbc, FBC_SR) |
981 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
982 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
983 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
984 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
986 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
987 FW_WM(wm->sr.cursor, CURSOR_SR) |
988 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
989 FW_WM(wm->hpll.plane, HPLL_SR));
991 POSTING_READ(DSPFW1);
994 #define FW_WM_VLV(value, plane) \
995 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
997 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
998 const struct vlv_wm_values *wm)
1002 for_each_pipe(dev_priv, pipe) {
1003 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
1005 I915_WRITE(VLV_DDL(pipe),
1006 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
1007 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
1008 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
1009 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
1013 * Zero the (unused) WM1 watermarks, and also clear all the
1014 * high order bits so that there are no out of bounds values
1015 * present in the registers during the reprogramming.
1017 I915_WRITE(DSPHOWM, 0);
1018 I915_WRITE(DSPHOWM1, 0);
1019 I915_WRITE(DSPFW4, 0);
1020 I915_WRITE(DSPFW5, 0);
1021 I915_WRITE(DSPFW6, 0);
1024 FW_WM(wm->sr.plane, SR) |
1025 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1026 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1027 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1029 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1030 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1031 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1033 FW_WM(wm->sr.cursor, CURSOR_SR));
1035 if (IS_CHERRYVIEW(dev_priv)) {
1036 I915_WRITE(DSPFW7_CHV,
1037 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1038 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1039 I915_WRITE(DSPFW8_CHV,
1040 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1041 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1042 I915_WRITE(DSPFW9_CHV,
1043 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1044 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1046 FW_WM(wm->sr.plane >> 9, SR_HI) |
1047 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1048 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1049 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1050 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1051 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1052 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1053 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1054 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1055 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1058 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1059 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1061 FW_WM(wm->sr.plane >> 9, SR_HI) |
1062 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1063 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1064 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1065 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1066 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1067 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1070 POSTING_READ(DSPFW1);
1075 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1077 /* all latencies in usec */
1078 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1079 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1080 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1082 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1085 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1088 * DSPCNTR[13] supposedly controls whether the
1089 * primary plane can use the FIFO space otherwise
1090 * reserved for the sprite plane. It's not 100% clear
1091 * what the actual FIFO size is, but it looks like we
1092 * can happily set both primary and sprite watermarks
1093 * up to 127 cachelines. So that would seem to mean
1094 * that either DSPCNTR[13] doesn't do anything, or that
1095 * the total FIFO is >= 256 cachelines in size. Either
1096 * way, we don't seem to have to worry about this
1097 * repartitioning as the maximum watermark value the
1098 * register can hold for each plane is lower than the
1099 * minimum FIFO size.
1105 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1107 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1109 MISSING_CASE(plane_id);
1114 static int g4x_fbc_fifo_size(int level)
1117 case G4X_WM_LEVEL_SR:
1119 case G4X_WM_LEVEL_HPLL:
1122 MISSING_CASE(level);
1127 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1128 const struct intel_plane_state *plane_state,
1131 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1132 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1133 const struct drm_display_mode *adjusted_mode =
1134 &crtc_state->hw.adjusted_mode;
1135 unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1136 unsigned int clock, htotal, cpp, width, wm;
1141 if (!intel_wm_plane_visible(crtc_state, plane_state))
1144 cpp = plane_state->hw.fb->format->cpp[0];
1147 * Not 100% sure which way ELK should go here as the
1148 * spec only says CL/CTG should assume 32bpp and BW
1149 * doesn't need to. But as these things followed the
1150 * mobile vs. desktop lines on gen3 as well, let's
1151 * assume ELK doesn't need this.
1153 * The spec also fails to list such a restriction for
1154 * the HPLL watermark, which seems a little strange.
1155 * Let's use 32bpp for the HPLL watermark as well.
1157 if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1158 level != G4X_WM_LEVEL_NORMAL)
1161 clock = adjusted_mode->crtc_clock;
1162 htotal = adjusted_mode->crtc_htotal;
1164 width = drm_rect_width(&plane_state->uapi.dst);
1166 if (plane->id == PLANE_CURSOR) {
1167 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1168 } else if (plane->id == PLANE_PRIMARY &&
1169 level == G4X_WM_LEVEL_NORMAL) {
1170 wm = intel_wm_method1(clock, cpp, latency);
1172 unsigned int small, large;
1174 small = intel_wm_method1(clock, cpp, latency);
1175 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1177 wm = min(small, large);
1180 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1183 wm = DIV_ROUND_UP(wm, 64) + 2;
1185 return min_t(unsigned int, wm, USHRT_MAX);
1188 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1189 int level, enum plane_id plane_id, u16 value)
1191 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1194 for (; level < intel_wm_num_levels(dev_priv); level++) {
1195 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1197 dirty |= raw->plane[plane_id] != value;
1198 raw->plane[plane_id] = value;
1204 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1205 int level, u16 value)
1207 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1210 /* NORMAL level doesn't have an FBC watermark */
1211 level = max(level, G4X_WM_LEVEL_SR);
1213 for (; level < intel_wm_num_levels(dev_priv); level++) {
1214 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1216 dirty |= raw->fbc != value;
1223 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1224 const struct intel_plane_state *plane_state,
1227 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1228 const struct intel_plane_state *plane_state)
1230 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1231 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1232 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1233 enum plane_id plane_id = plane->id;
1237 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1238 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1239 if (plane_id == PLANE_PRIMARY)
1240 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1244 for (level = 0; level < num_levels; level++) {
1245 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1248 wm = g4x_compute_wm(crtc_state, plane_state, level);
1249 max_wm = g4x_plane_fifo_size(plane_id, level);
1254 dirty |= raw->plane[plane_id] != wm;
1255 raw->plane[plane_id] = wm;
1257 if (plane_id != PLANE_PRIMARY ||
1258 level == G4X_WM_LEVEL_NORMAL)
1261 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1262 raw->plane[plane_id]);
1263 max_wm = g4x_fbc_fifo_size(level);
1266 * FBC wm is not mandatory as we
1267 * can always just disable its use.
1272 dirty |= raw->fbc != wm;
1276 /* mark watermarks as invalid */
1277 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1279 if (plane_id == PLANE_PRIMARY)
1280 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1284 drm_dbg_kms(&dev_priv->drm,
1285 "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1287 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1288 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1289 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1291 if (plane_id == PLANE_PRIMARY)
1292 drm_dbg_kms(&dev_priv->drm,
1293 "FBC watermarks: SR=%d, HPLL=%d\n",
1294 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1295 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1301 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1302 enum plane_id plane_id, int level)
1304 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1306 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1309 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1312 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1314 if (level > dev_priv->wm.max_level)
1317 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1318 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1319 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1322 /* mark all levels starting from 'level' as invalid */
1323 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1324 struct g4x_wm_state *wm_state, int level)
1326 if (level <= G4X_WM_LEVEL_NORMAL) {
1327 enum plane_id plane_id;
1329 for_each_plane_id_on_crtc(crtc, plane_id)
1330 wm_state->wm.plane[plane_id] = USHRT_MAX;
1333 if (level <= G4X_WM_LEVEL_SR) {
1334 wm_state->cxsr = false;
1335 wm_state->sr.cursor = USHRT_MAX;
1336 wm_state->sr.plane = USHRT_MAX;
1337 wm_state->sr.fbc = USHRT_MAX;
1340 if (level <= G4X_WM_LEVEL_HPLL) {
1341 wm_state->hpll_en = false;
1342 wm_state->hpll.cursor = USHRT_MAX;
1343 wm_state->hpll.plane = USHRT_MAX;
1344 wm_state->hpll.fbc = USHRT_MAX;
1348 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1350 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1351 struct intel_atomic_state *state =
1352 to_intel_atomic_state(crtc_state->uapi.state);
1353 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1354 int num_active_planes = hweight8(crtc_state->active_planes &
1355 ~BIT(PLANE_CURSOR));
1356 const struct g4x_pipe_wm *raw;
1357 const struct intel_plane_state *old_plane_state;
1358 const struct intel_plane_state *new_plane_state;
1359 struct intel_plane *plane;
1360 enum plane_id plane_id;
1362 unsigned int dirty = 0;
1364 for_each_oldnew_intel_plane_in_state(state, plane,
1366 new_plane_state, i) {
1367 if (new_plane_state->hw.crtc != &crtc->base &&
1368 old_plane_state->hw.crtc != &crtc->base)
1371 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1372 dirty |= BIT(plane->id);
1378 level = G4X_WM_LEVEL_NORMAL;
1379 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1382 raw = &crtc_state->wm.g4x.raw[level];
1383 for_each_plane_id_on_crtc(crtc, plane_id)
1384 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1386 level = G4X_WM_LEVEL_SR;
1388 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1391 raw = &crtc_state->wm.g4x.raw[level];
1392 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1393 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1394 wm_state->sr.fbc = raw->fbc;
1396 wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1398 level = G4X_WM_LEVEL_HPLL;
1400 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1403 raw = &crtc_state->wm.g4x.raw[level];
1404 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1405 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1406 wm_state->hpll.fbc = raw->fbc;
1408 wm_state->hpll_en = wm_state->cxsr;
1413 if (level == G4X_WM_LEVEL_NORMAL)
1416 /* invalidate the higher levels */
1417 g4x_invalidate_wms(crtc, wm_state, level);
1420 * Determine if the FBC watermark(s) can be used. IF
1421 * this isn't the case we prefer to disable the FBC
1422 ( watermark(s) rather than disable the SR/HPLL
1423 * level(s) entirely.
1425 wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1427 if (level >= G4X_WM_LEVEL_SR &&
1428 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1429 wm_state->fbc_en = false;
1430 else if (level >= G4X_WM_LEVEL_HPLL &&
1431 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1432 wm_state->fbc_en = false;
1437 static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1439 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1440 struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1441 const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1442 struct intel_atomic_state *intel_state =
1443 to_intel_atomic_state(new_crtc_state->uapi.state);
1444 const struct intel_crtc_state *old_crtc_state =
1445 intel_atomic_get_old_crtc_state(intel_state, crtc);
1446 const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1447 enum plane_id plane_id;
1449 if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1450 *intermediate = *optimal;
1452 intermediate->cxsr = false;
1453 intermediate->hpll_en = false;
1457 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1458 !new_crtc_state->disable_cxsr;
1459 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1460 !new_crtc_state->disable_cxsr;
1461 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1463 for_each_plane_id_on_crtc(crtc, plane_id) {
1464 intermediate->wm.plane[plane_id] =
1465 max(optimal->wm.plane[plane_id],
1466 active->wm.plane[plane_id]);
1468 WARN_ON(intermediate->wm.plane[plane_id] >
1469 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1472 intermediate->sr.plane = max(optimal->sr.plane,
1474 intermediate->sr.cursor = max(optimal->sr.cursor,
1476 intermediate->sr.fbc = max(optimal->sr.fbc,
1479 intermediate->hpll.plane = max(optimal->hpll.plane,
1480 active->hpll.plane);
1481 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1482 active->hpll.cursor);
1483 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1486 WARN_ON((intermediate->sr.plane >
1487 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1488 intermediate->sr.cursor >
1489 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1490 intermediate->cxsr);
1491 WARN_ON((intermediate->sr.plane >
1492 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1493 intermediate->sr.cursor >
1494 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1495 intermediate->hpll_en);
1497 WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1498 intermediate->fbc_en && intermediate->cxsr);
1499 WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1500 intermediate->fbc_en && intermediate->hpll_en);
1504 * If our intermediate WM are identical to the final WM, then we can
1505 * omit the post-vblank programming; only update if it's different.
1507 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1508 new_crtc_state->wm.need_postvbl_update = true;
1513 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1514 struct g4x_wm_values *wm)
1516 struct intel_crtc *crtc;
1517 int num_active_pipes = 0;
1523 for_each_intel_crtc(&dev_priv->drm, crtc) {
1524 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1529 if (!wm_state->cxsr)
1531 if (!wm_state->hpll_en)
1532 wm->hpll_en = false;
1533 if (!wm_state->fbc_en)
1539 if (num_active_pipes != 1) {
1541 wm->hpll_en = false;
1545 for_each_intel_crtc(&dev_priv->drm, crtc) {
1546 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1547 enum pipe pipe = crtc->pipe;
1549 wm->pipe[pipe] = wm_state->wm;
1550 if (crtc->active && wm->cxsr)
1551 wm->sr = wm_state->sr;
1552 if (crtc->active && wm->hpll_en)
1553 wm->hpll = wm_state->hpll;
1557 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1559 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1560 struct g4x_wm_values new_wm = {};
1562 g4x_merge_wm(dev_priv, &new_wm);
1564 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1567 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1568 _intel_set_memory_cxsr(dev_priv, false);
1570 g4x_write_wm_values(dev_priv, &new_wm);
1572 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1573 _intel_set_memory_cxsr(dev_priv, true);
1578 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1579 struct intel_crtc *crtc)
1581 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1582 const struct intel_crtc_state *crtc_state =
1583 intel_atomic_get_new_crtc_state(state, crtc);
1585 mutex_lock(&dev_priv->wm.wm_mutex);
1586 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1587 g4x_program_watermarks(dev_priv);
1588 mutex_unlock(&dev_priv->wm.wm_mutex);
1591 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1592 struct intel_crtc *crtc)
1594 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1595 const struct intel_crtc_state *crtc_state =
1596 intel_atomic_get_new_crtc_state(state, crtc);
1598 if (!crtc_state->wm.need_postvbl_update)
1601 mutex_lock(&dev_priv->wm.wm_mutex);
1602 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1603 g4x_program_watermarks(dev_priv);
1604 mutex_unlock(&dev_priv->wm.wm_mutex);
1607 /* latency must be in 0.1us units. */
1608 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1609 unsigned int htotal,
1612 unsigned int latency)
1616 ret = intel_wm_method2(pixel_rate, htotal,
1617 width, cpp, latency);
1618 ret = DIV_ROUND_UP(ret, 64);
1623 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1625 /* all latencies in usec */
1626 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1628 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1630 if (IS_CHERRYVIEW(dev_priv)) {
1631 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1632 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1634 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1638 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1639 const struct intel_plane_state *plane_state,
1642 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1643 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1644 const struct drm_display_mode *adjusted_mode =
1645 &crtc_state->hw.adjusted_mode;
1646 unsigned int clock, htotal, cpp, width, wm;
1648 if (dev_priv->wm.pri_latency[level] == 0)
1651 if (!intel_wm_plane_visible(crtc_state, plane_state))
1654 cpp = plane_state->hw.fb->format->cpp[0];
1655 clock = adjusted_mode->crtc_clock;
1656 htotal = adjusted_mode->crtc_htotal;
1657 width = crtc_state->pipe_src_w;
1659 if (plane->id == PLANE_CURSOR) {
1661 * FIXME the formula gives values that are
1662 * too big for the cursor FIFO, and hence we
1663 * would never be able to use cursors. For
1664 * now just hardcode the watermark.
1668 wm = vlv_wm_method2(clock, htotal, width, cpp,
1669 dev_priv->wm.pri_latency[level] * 10);
1672 return min_t(unsigned int, wm, USHRT_MAX);
1675 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1677 return (active_planes & (BIT(PLANE_SPRITE0) |
1678 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1681 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1683 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1684 const struct g4x_pipe_wm *raw =
1685 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1686 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1687 unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1688 int num_active_planes = hweight8(active_planes);
1689 const int fifo_size = 511;
1690 int fifo_extra, fifo_left = fifo_size;
1691 int sprite0_fifo_extra = 0;
1692 unsigned int total_rate;
1693 enum plane_id plane_id;
1696 * When enabling sprite0 after sprite1 has already been enabled
1697 * we tend to get an underrun unless sprite0 already has some
1698 * FIFO space allcoated. Hence we always allocate at least one
1699 * cacheline for sprite0 whenever sprite1 is enabled.
1701 * All other plane enable sequences appear immune to this problem.
1703 if (vlv_need_sprite0_fifo_workaround(active_planes))
1704 sprite0_fifo_extra = 1;
1706 total_rate = raw->plane[PLANE_PRIMARY] +
1707 raw->plane[PLANE_SPRITE0] +
1708 raw->plane[PLANE_SPRITE1] +
1711 if (total_rate > fifo_size)
1714 if (total_rate == 0)
1717 for_each_plane_id_on_crtc(crtc, plane_id) {
1720 if ((active_planes & BIT(plane_id)) == 0) {
1721 fifo_state->plane[plane_id] = 0;
1725 rate = raw->plane[plane_id];
1726 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1727 fifo_left -= fifo_state->plane[plane_id];
1730 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1731 fifo_left -= sprite0_fifo_extra;
1733 fifo_state->plane[PLANE_CURSOR] = 63;
1735 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1737 /* spread the remainder evenly */
1738 for_each_plane_id_on_crtc(crtc, plane_id) {
1744 if ((active_planes & BIT(plane_id)) == 0)
1747 plane_extra = min(fifo_extra, fifo_left);
1748 fifo_state->plane[plane_id] += plane_extra;
1749 fifo_left -= plane_extra;
1752 WARN_ON(active_planes != 0 && fifo_left != 0);
1754 /* give it all to the first plane if none are active */
1755 if (active_planes == 0) {
1756 WARN_ON(fifo_left != fifo_size);
1757 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1763 /* mark all levels starting from 'level' as invalid */
1764 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1765 struct vlv_wm_state *wm_state, int level)
1767 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1769 for (; level < intel_wm_num_levels(dev_priv); level++) {
1770 enum plane_id plane_id;
1772 for_each_plane_id_on_crtc(crtc, plane_id)
1773 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1775 wm_state->sr[level].cursor = USHRT_MAX;
1776 wm_state->sr[level].plane = USHRT_MAX;
1780 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1785 return fifo_size - wm;
1789 * Starting from 'level' set all higher
1790 * levels to 'value' in the "raw" watermarks.
1792 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1793 int level, enum plane_id plane_id, u16 value)
1795 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1796 int num_levels = intel_wm_num_levels(dev_priv);
1799 for (; level < num_levels; level++) {
1800 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1802 dirty |= raw->plane[plane_id] != value;
1803 raw->plane[plane_id] = value;
1809 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1810 const struct intel_plane_state *plane_state)
1812 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1813 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1814 enum plane_id plane_id = plane->id;
1815 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1819 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1820 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1824 for (level = 0; level < num_levels; level++) {
1825 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1826 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1827 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1832 dirty |= raw->plane[plane_id] != wm;
1833 raw->plane[plane_id] = wm;
1836 /* mark all higher levels as invalid */
1837 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1841 drm_dbg_kms(&dev_priv->drm,
1842 "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1844 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1845 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1846 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1851 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1852 enum plane_id plane_id, int level)
1854 const struct g4x_pipe_wm *raw =
1855 &crtc_state->wm.vlv.raw[level];
1856 const struct vlv_fifo_state *fifo_state =
1857 &crtc_state->wm.vlv.fifo_state;
1859 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1862 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1864 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1865 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1866 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1867 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1870 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1872 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1873 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1874 struct intel_atomic_state *state =
1875 to_intel_atomic_state(crtc_state->uapi.state);
1876 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1877 const struct vlv_fifo_state *fifo_state =
1878 &crtc_state->wm.vlv.fifo_state;
1879 int num_active_planes = hweight8(crtc_state->active_planes &
1880 ~BIT(PLANE_CURSOR));
1881 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1882 const struct intel_plane_state *old_plane_state;
1883 const struct intel_plane_state *new_plane_state;
1884 struct intel_plane *plane;
1885 enum plane_id plane_id;
1887 unsigned int dirty = 0;
1889 for_each_oldnew_intel_plane_in_state(state, plane,
1891 new_plane_state, i) {
1892 if (new_plane_state->hw.crtc != &crtc->base &&
1893 old_plane_state->hw.crtc != &crtc->base)
1896 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1897 dirty |= BIT(plane->id);
1901 * DSPARB registers may have been reset due to the
1902 * power well being turned off. Make sure we restore
1903 * them to a consistent state even if no primary/sprite
1904 * planes are initially active.
1907 crtc_state->fifo_changed = true;
1912 /* cursor changes don't warrant a FIFO recompute */
1913 if (dirty & ~BIT(PLANE_CURSOR)) {
1914 const struct intel_crtc_state *old_crtc_state =
1915 intel_atomic_get_old_crtc_state(state, crtc);
1916 const struct vlv_fifo_state *old_fifo_state =
1917 &old_crtc_state->wm.vlv.fifo_state;
1919 ret = vlv_compute_fifo(crtc_state);
1923 if (needs_modeset ||
1924 memcmp(old_fifo_state, fifo_state,
1925 sizeof(*fifo_state)) != 0)
1926 crtc_state->fifo_changed = true;
1929 /* initially allow all levels */
1930 wm_state->num_levels = intel_wm_num_levels(dev_priv);
1932 * Note that enabling cxsr with no primary/sprite planes
1933 * enabled can wedge the pipe. Hence we only allow cxsr
1934 * with exactly one enabled primary/sprite plane.
1936 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1938 for (level = 0; level < wm_state->num_levels; level++) {
1939 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1940 const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1942 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1945 for_each_plane_id_on_crtc(crtc, plane_id) {
1946 wm_state->wm[level].plane[plane_id] =
1947 vlv_invert_wm_value(raw->plane[plane_id],
1948 fifo_state->plane[plane_id]);
1951 wm_state->sr[level].plane =
1952 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1953 raw->plane[PLANE_SPRITE0],
1954 raw->plane[PLANE_SPRITE1]),
1957 wm_state->sr[level].cursor =
1958 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1965 /* limit to only levels we can actually handle */
1966 wm_state->num_levels = level;
1968 /* invalidate the higher levels */
1969 vlv_invalidate_wms(crtc, wm_state, level);
1974 #define VLV_FIFO(plane, value) \
1975 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1977 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1978 struct intel_crtc *crtc)
1980 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1981 struct intel_uncore *uncore = &dev_priv->uncore;
1982 const struct intel_crtc_state *crtc_state =
1983 intel_atomic_get_new_crtc_state(state, crtc);
1984 const struct vlv_fifo_state *fifo_state =
1985 &crtc_state->wm.vlv.fifo_state;
1986 int sprite0_start, sprite1_start, fifo_size;
1987 u32 dsparb, dsparb2, dsparb3;
1989 if (!crtc_state->fifo_changed)
1992 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1993 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1994 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1996 drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
1997 drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
1999 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
2002 * uncore.lock serves a double purpose here. It allows us to
2003 * use the less expensive I915_{READ,WRITE}_FW() functions, and
2004 * it protects the DSPARB registers from getting clobbered by
2005 * parallel updates from multiple pipes.
2007 * intel_pipe_update_start() has already disabled interrupts
2008 * for us, so a plain spin_lock() is sufficient here.
2010 spin_lock(&uncore->lock);
2012 switch (crtc->pipe) {
2014 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2015 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2017 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
2018 VLV_FIFO(SPRITEB, 0xff));
2019 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
2020 VLV_FIFO(SPRITEB, sprite1_start));
2022 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
2023 VLV_FIFO(SPRITEB_HI, 0x1));
2024 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
2025 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
2027 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2028 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2031 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2032 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2034 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2035 VLV_FIFO(SPRITED, 0xff));
2036 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2037 VLV_FIFO(SPRITED, sprite1_start));
2039 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2040 VLV_FIFO(SPRITED_HI, 0xff));
2041 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2042 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2044 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2045 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2048 dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2049 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2051 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2052 VLV_FIFO(SPRITEF, 0xff));
2053 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2054 VLV_FIFO(SPRITEF, sprite1_start));
2056 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2057 VLV_FIFO(SPRITEF_HI, 0xff));
2058 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2059 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2061 intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2062 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2068 intel_uncore_posting_read_fw(uncore, DSPARB);
2070 spin_unlock(&uncore->lock);
2075 static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2077 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2078 struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2079 const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2080 struct intel_atomic_state *intel_state =
2081 to_intel_atomic_state(new_crtc_state->uapi.state);
2082 const struct intel_crtc_state *old_crtc_state =
2083 intel_atomic_get_old_crtc_state(intel_state, crtc);
2084 const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2087 if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2088 *intermediate = *optimal;
2090 intermediate->cxsr = false;
2094 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2095 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2096 !new_crtc_state->disable_cxsr;
2098 for (level = 0; level < intermediate->num_levels; level++) {
2099 enum plane_id plane_id;
2101 for_each_plane_id_on_crtc(crtc, plane_id) {
2102 intermediate->wm[level].plane[plane_id] =
2103 min(optimal->wm[level].plane[plane_id],
2104 active->wm[level].plane[plane_id]);
2107 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2108 active->sr[level].plane);
2109 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2110 active->sr[level].cursor);
2113 vlv_invalidate_wms(crtc, intermediate, level);
2117 * If our intermediate WM are identical to the final WM, then we can
2118 * omit the post-vblank programming; only update if it's different.
2120 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2121 new_crtc_state->wm.need_postvbl_update = true;
2126 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2127 struct vlv_wm_values *wm)
2129 struct intel_crtc *crtc;
2130 int num_active_pipes = 0;
2132 wm->level = dev_priv->wm.max_level;
2135 for_each_intel_crtc(&dev_priv->drm, crtc) {
2136 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2141 if (!wm_state->cxsr)
2145 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2148 if (num_active_pipes != 1)
2151 if (num_active_pipes > 1)
2152 wm->level = VLV_WM_LEVEL_PM2;
2154 for_each_intel_crtc(&dev_priv->drm, crtc) {
2155 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2156 enum pipe pipe = crtc->pipe;
2158 wm->pipe[pipe] = wm_state->wm[wm->level];
2159 if (crtc->active && wm->cxsr)
2160 wm->sr = wm_state->sr[wm->level];
2162 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2163 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2164 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2165 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2169 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2171 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2172 struct vlv_wm_values new_wm = {};
2174 vlv_merge_wm(dev_priv, &new_wm);
2176 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2179 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2180 chv_set_memory_dvfs(dev_priv, false);
2182 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2183 chv_set_memory_pm5(dev_priv, false);
2185 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2186 _intel_set_memory_cxsr(dev_priv, false);
2188 vlv_write_wm_values(dev_priv, &new_wm);
2190 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2191 _intel_set_memory_cxsr(dev_priv, true);
2193 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2194 chv_set_memory_pm5(dev_priv, true);
2196 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2197 chv_set_memory_dvfs(dev_priv, true);
2202 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2203 struct intel_crtc *crtc)
2205 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2206 const struct intel_crtc_state *crtc_state =
2207 intel_atomic_get_new_crtc_state(state, crtc);
2209 mutex_lock(&dev_priv->wm.wm_mutex);
2210 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2211 vlv_program_watermarks(dev_priv);
2212 mutex_unlock(&dev_priv->wm.wm_mutex);
2215 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2216 struct intel_crtc *crtc)
2218 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2219 const struct intel_crtc_state *crtc_state =
2220 intel_atomic_get_new_crtc_state(state, crtc);
2222 if (!crtc_state->wm.need_postvbl_update)
2225 mutex_lock(&dev_priv->wm.wm_mutex);
2226 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2227 vlv_program_watermarks(dev_priv);
2228 mutex_unlock(&dev_priv->wm.wm_mutex);
2231 static void i965_update_wm(struct intel_crtc *unused_crtc)
2233 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2234 struct intel_crtc *crtc;
2239 /* Calc sr entries for one plane configs */
2240 crtc = single_enabled_crtc(dev_priv);
2242 /* self-refresh has much higher latency */
2243 static const int sr_latency_ns = 12000;
2244 const struct drm_display_mode *adjusted_mode =
2245 &crtc->config->hw.adjusted_mode;
2246 const struct drm_framebuffer *fb =
2247 crtc->base.primary->state->fb;
2248 int clock = adjusted_mode->crtc_clock;
2249 int htotal = adjusted_mode->crtc_htotal;
2250 int hdisplay = crtc->config->pipe_src_w;
2251 int cpp = fb->format->cpp[0];
2254 entries = intel_wm_method2(clock, htotal,
2255 hdisplay, cpp, sr_latency_ns / 100);
2256 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2257 srwm = I965_FIFO_SIZE - entries;
2261 drm_dbg_kms(&dev_priv->drm,
2262 "self-refresh entries: %d, wm: %d\n",
2265 entries = intel_wm_method2(clock, htotal,
2266 crtc->base.cursor->state->crtc_w, 4,
2267 sr_latency_ns / 100);
2268 entries = DIV_ROUND_UP(entries,
2269 i965_cursor_wm_info.cacheline_size) +
2270 i965_cursor_wm_info.guard_size;
2272 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2273 if (cursor_sr > i965_cursor_wm_info.max_wm)
2274 cursor_sr = i965_cursor_wm_info.max_wm;
2276 drm_dbg_kms(&dev_priv->drm,
2277 "self-refresh watermark: display plane %d "
2278 "cursor %d\n", srwm, cursor_sr);
2280 cxsr_enabled = true;
2282 cxsr_enabled = false;
2283 /* Turn off self refresh if both pipes are enabled */
2284 intel_set_memory_cxsr(dev_priv, false);
2287 drm_dbg_kms(&dev_priv->drm,
2288 "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2291 /* 965 has limitations... */
2292 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2296 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2297 FW_WM(8, PLANEC_OLD));
2298 /* update cursor SR watermark */
2299 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2302 intel_set_memory_cxsr(dev_priv, true);
2307 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2309 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2310 const struct intel_watermark_params *wm_info;
2315 int planea_wm, planeb_wm;
2316 struct intel_crtc *crtc, *enabled = NULL;
2318 if (IS_I945GM(dev_priv))
2319 wm_info = &i945_wm_info;
2320 else if (!IS_GEN(dev_priv, 2))
2321 wm_info = &i915_wm_info;
2323 wm_info = &i830_a_wm_info;
2325 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2326 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2327 if (intel_crtc_active(crtc)) {
2328 const struct drm_display_mode *adjusted_mode =
2329 &crtc->config->hw.adjusted_mode;
2330 const struct drm_framebuffer *fb =
2331 crtc->base.primary->state->fb;
2334 if (IS_GEN(dev_priv, 2))
2337 cpp = fb->format->cpp[0];
2339 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2340 wm_info, fifo_size, cpp,
2341 pessimal_latency_ns);
2344 planea_wm = fifo_size - wm_info->guard_size;
2345 if (planea_wm > (long)wm_info->max_wm)
2346 planea_wm = wm_info->max_wm;
2349 if (IS_GEN(dev_priv, 2))
2350 wm_info = &i830_bc_wm_info;
2352 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2353 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2354 if (intel_crtc_active(crtc)) {
2355 const struct drm_display_mode *adjusted_mode =
2356 &crtc->config->hw.adjusted_mode;
2357 const struct drm_framebuffer *fb =
2358 crtc->base.primary->state->fb;
2361 if (IS_GEN(dev_priv, 2))
2364 cpp = fb->format->cpp[0];
2366 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2367 wm_info, fifo_size, cpp,
2368 pessimal_latency_ns);
2369 if (enabled == NULL)
2374 planeb_wm = fifo_size - wm_info->guard_size;
2375 if (planeb_wm > (long)wm_info->max_wm)
2376 planeb_wm = wm_info->max_wm;
2379 drm_dbg_kms(&dev_priv->drm,
2380 "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2382 if (IS_I915GM(dev_priv) && enabled) {
2383 struct drm_i915_gem_object *obj;
2385 obj = intel_fb_obj(enabled->base.primary->state->fb);
2387 /* self-refresh seems busted with untiled */
2388 if (!i915_gem_object_is_tiled(obj))
2393 * Overlay gets an aggressive default since video jitter is bad.
2397 /* Play safe and disable self-refresh before adjusting watermarks. */
2398 intel_set_memory_cxsr(dev_priv, false);
2400 /* Calc sr entries for one plane configs */
2401 if (HAS_FW_BLC(dev_priv) && enabled) {
2402 /* self-refresh has much higher latency */
2403 static const int sr_latency_ns = 6000;
2404 const struct drm_display_mode *adjusted_mode =
2405 &enabled->config->hw.adjusted_mode;
2406 const struct drm_framebuffer *fb =
2407 enabled->base.primary->state->fb;
2408 int clock = adjusted_mode->crtc_clock;
2409 int htotal = adjusted_mode->crtc_htotal;
2410 int hdisplay = enabled->config->pipe_src_w;
2414 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2417 cpp = fb->format->cpp[0];
2419 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2420 sr_latency_ns / 100);
2421 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2422 drm_dbg_kms(&dev_priv->drm,
2423 "self-refresh entries: %d\n", entries);
2424 srwm = wm_info->fifo_size - entries;
2428 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2429 I915_WRITE(FW_BLC_SELF,
2430 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2432 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2435 drm_dbg_kms(&dev_priv->drm,
2436 "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2437 planea_wm, planeb_wm, cwm, srwm);
2439 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2440 fwater_hi = (cwm & 0x1f);
2442 /* Set request length to 8 cachelines per fetch */
2443 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2444 fwater_hi = fwater_hi | (1 << 8);
2446 I915_WRITE(FW_BLC, fwater_lo);
2447 I915_WRITE(FW_BLC2, fwater_hi);
2450 intel_set_memory_cxsr(dev_priv, true);
2453 static void i845_update_wm(struct intel_crtc *unused_crtc)
2455 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2456 struct intel_crtc *crtc;
2457 const struct drm_display_mode *adjusted_mode;
2461 crtc = single_enabled_crtc(dev_priv);
2465 adjusted_mode = &crtc->config->hw.adjusted_mode;
2466 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2468 dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2469 4, pessimal_latency_ns);
2470 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2471 fwater_lo |= (3<<8) | planea_wm;
2473 drm_dbg_kms(&dev_priv->drm,
2474 "Setting FIFO watermarks - A: %d\n", planea_wm);
2476 I915_WRITE(FW_BLC, fwater_lo);
2479 /* latency must be in 0.1us units. */
2480 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2482 unsigned int latency)
2486 ret = intel_wm_method1(pixel_rate, cpp, latency);
2487 ret = DIV_ROUND_UP(ret, 64) + 2;
2492 /* latency must be in 0.1us units. */
2493 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2494 unsigned int htotal,
2497 unsigned int latency)
2501 ret = intel_wm_method2(pixel_rate, htotal,
2502 width, cpp, latency);
2503 ret = DIV_ROUND_UP(ret, 64) + 2;
2508 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2511 * Neither of these should be possible since this function shouldn't be
2512 * called if the CRTC is off or the plane is invisible. But let's be
2513 * extra paranoid to avoid a potential divide-by-zero if we screw up
2514 * elsewhere in the driver.
2518 if (WARN_ON(!horiz_pixels))
2521 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2524 struct ilk_wm_maximums {
2532 * For both WM_PIPE and WM_LP.
2533 * mem_value must be in 0.1us units.
2535 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2536 const struct intel_plane_state *plane_state,
2537 u32 mem_value, bool is_lp)
2539 u32 method1, method2;
2545 if (!intel_wm_plane_visible(crtc_state, plane_state))
2548 cpp = plane_state->hw.fb->format->cpp[0];
2550 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2555 method2 = ilk_wm_method2(crtc_state->pixel_rate,
2556 crtc_state->hw.adjusted_mode.crtc_htotal,
2557 drm_rect_width(&plane_state->uapi.dst),
2560 return min(method1, method2);
2564 * For both WM_PIPE and WM_LP.
2565 * mem_value must be in 0.1us units.
2567 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2568 const struct intel_plane_state *plane_state,
2571 u32 method1, method2;
2577 if (!intel_wm_plane_visible(crtc_state, plane_state))
2580 cpp = plane_state->hw.fb->format->cpp[0];
2582 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2583 method2 = ilk_wm_method2(crtc_state->pixel_rate,
2584 crtc_state->hw.adjusted_mode.crtc_htotal,
2585 drm_rect_width(&plane_state->uapi.dst),
2587 return min(method1, method2);
2591 * For both WM_PIPE and WM_LP.
2592 * mem_value must be in 0.1us units.
2594 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2595 const struct intel_plane_state *plane_state,
2603 if (!intel_wm_plane_visible(crtc_state, plane_state))
2606 cpp = plane_state->hw.fb->format->cpp[0];
2608 return ilk_wm_method2(crtc_state->pixel_rate,
2609 crtc_state->hw.adjusted_mode.crtc_htotal,
2610 drm_rect_width(&plane_state->uapi.dst),
2614 /* Only for WM_LP. */
2615 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2616 const struct intel_plane_state *plane_state,
2621 if (!intel_wm_plane_visible(crtc_state, plane_state))
2624 cpp = plane_state->hw.fb->format->cpp[0];
2626 return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
2631 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2633 if (INTEL_GEN(dev_priv) >= 8)
2635 else if (INTEL_GEN(dev_priv) >= 7)
2642 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2643 int level, bool is_sprite)
2645 if (INTEL_GEN(dev_priv) >= 8)
2646 /* BDW primary/sprite plane watermarks */
2647 return level == 0 ? 255 : 2047;
2648 else if (INTEL_GEN(dev_priv) >= 7)
2649 /* IVB/HSW primary/sprite plane watermarks */
2650 return level == 0 ? 127 : 1023;
2651 else if (!is_sprite)
2652 /* ILK/SNB primary plane watermarks */
2653 return level == 0 ? 127 : 511;
2655 /* ILK/SNB sprite plane watermarks */
2656 return level == 0 ? 63 : 255;
2660 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2662 if (INTEL_GEN(dev_priv) >= 7)
2663 return level == 0 ? 63 : 255;
2665 return level == 0 ? 31 : 63;
2668 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2670 if (INTEL_GEN(dev_priv) >= 8)
2676 /* Calculate the maximum primary/sprite plane watermark */
2677 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2679 const struct intel_wm_config *config,
2680 enum intel_ddb_partitioning ddb_partitioning,
2683 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2685 /* if sprites aren't enabled, sprites get nothing */
2686 if (is_sprite && !config->sprites_enabled)
2689 /* HSW allows LP1+ watermarks even with multiple pipes */
2690 if (level == 0 || config->num_pipes_active > 1) {
2691 fifo_size /= INTEL_NUM_PIPES(dev_priv);
2694 * For some reason the non self refresh
2695 * FIFO size is only half of the self
2696 * refresh FIFO size on ILK/SNB.
2698 if (INTEL_GEN(dev_priv) <= 6)
2702 if (config->sprites_enabled) {
2703 /* level 0 is always calculated with 1:1 split */
2704 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2713 /* clamp to max that the registers can hold */
2714 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2717 /* Calculate the maximum cursor plane watermark */
2718 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2720 const struct intel_wm_config *config)
2722 /* HSW LP1+ watermarks w/ multiple pipes */
2723 if (level > 0 && config->num_pipes_active > 1)
2726 /* otherwise just report max that registers can hold */
2727 return ilk_cursor_wm_reg_max(dev_priv, level);
2730 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2732 const struct intel_wm_config *config,
2733 enum intel_ddb_partitioning ddb_partitioning,
2734 struct ilk_wm_maximums *max)
2736 max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2737 max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2738 max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2739 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2742 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2744 struct ilk_wm_maximums *max)
2746 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2747 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2748 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2749 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2752 static bool ilk_validate_wm_level(int level,
2753 const struct ilk_wm_maximums *max,
2754 struct intel_wm_level *result)
2758 /* already determined to be invalid? */
2759 if (!result->enable)
2762 result->enable = result->pri_val <= max->pri &&
2763 result->spr_val <= max->spr &&
2764 result->cur_val <= max->cur;
2766 ret = result->enable;
2769 * HACK until we can pre-compute everything,
2770 * and thus fail gracefully if LP0 watermarks
2773 if (level == 0 && !result->enable) {
2774 if (result->pri_val > max->pri)
2775 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2776 level, result->pri_val, max->pri);
2777 if (result->spr_val > max->spr)
2778 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2779 level, result->spr_val, max->spr);
2780 if (result->cur_val > max->cur)
2781 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2782 level, result->cur_val, max->cur);
2784 result->pri_val = min_t(u32, result->pri_val, max->pri);
2785 result->spr_val = min_t(u32, result->spr_val, max->spr);
2786 result->cur_val = min_t(u32, result->cur_val, max->cur);
2787 result->enable = true;
2793 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2794 const struct intel_crtc *crtc,
2796 struct intel_crtc_state *crtc_state,
2797 const struct intel_plane_state *pristate,
2798 const struct intel_plane_state *sprstate,
2799 const struct intel_plane_state *curstate,
2800 struct intel_wm_level *result)
2802 u16 pri_latency = dev_priv->wm.pri_latency[level];
2803 u16 spr_latency = dev_priv->wm.spr_latency[level];
2804 u16 cur_latency = dev_priv->wm.cur_latency[level];
2806 /* WM1+ latency values stored in 0.5us units */
2814 result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2815 pri_latency, level);
2816 result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2820 result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2823 result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2825 result->enable = true;
2828 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2831 struct intel_uncore *uncore = &dev_priv->uncore;
2833 if (INTEL_GEN(dev_priv) >= 9) {
2836 int level, max_level = ilk_wm_max_level(dev_priv);
2838 /* read the first set of memory latencies[0:3] */
2839 val = 0; /* data0 to be programmed to 0 for first set */
2840 ret = sandybridge_pcode_read(dev_priv,
2841 GEN9_PCODE_READ_MEM_LATENCY,
2845 drm_err(&dev_priv->drm,
2846 "SKL Mailbox read error = %d\n", ret);
2850 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2851 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2852 GEN9_MEM_LATENCY_LEVEL_MASK;
2853 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2854 GEN9_MEM_LATENCY_LEVEL_MASK;
2855 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2856 GEN9_MEM_LATENCY_LEVEL_MASK;
2858 /* read the second set of memory latencies[4:7] */
2859 val = 1; /* data0 to be programmed to 1 for second set */
2860 ret = sandybridge_pcode_read(dev_priv,
2861 GEN9_PCODE_READ_MEM_LATENCY,
2864 drm_err(&dev_priv->drm,
2865 "SKL Mailbox read error = %d\n", ret);
2869 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2870 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2871 GEN9_MEM_LATENCY_LEVEL_MASK;
2872 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2873 GEN9_MEM_LATENCY_LEVEL_MASK;
2874 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2875 GEN9_MEM_LATENCY_LEVEL_MASK;
2878 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2879 * need to be disabled. We make sure to sanitize the values out
2880 * of the punit to satisfy this requirement.
2882 for (level = 1; level <= max_level; level++) {
2883 if (wm[level] == 0) {
2884 for (i = level + 1; i <= max_level; i++)
2891 * WaWmMemoryReadLatency:skl+,glk
2893 * punit doesn't take into account the read latency so we need
2894 * to add 2us to the various latency levels we retrieve from the
2895 * punit when level 0 response data us 0us.
2899 for (level = 1; level <= max_level; level++) {
2907 * WA Level-0 adjustment for 16GB DIMMs: SKL+
2908 * If we could not get dimm info enable this WA to prevent from
2909 * any underrun. If not able to get Dimm info assume 16GB dimm
2910 * to avoid any underrun.
2912 if (dev_priv->dram_info.is_16gb_dimm)
2915 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2916 u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2918 wm[0] = (sskpd >> 56) & 0xFF;
2920 wm[0] = sskpd & 0xF;
2921 wm[1] = (sskpd >> 4) & 0xFF;
2922 wm[2] = (sskpd >> 12) & 0xFF;
2923 wm[3] = (sskpd >> 20) & 0x1FF;
2924 wm[4] = (sskpd >> 32) & 0x1FF;
2925 } else if (INTEL_GEN(dev_priv) >= 6) {
2926 u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2928 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2929 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2930 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2931 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2932 } else if (INTEL_GEN(dev_priv) >= 5) {
2933 u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2935 /* ILK primary LP0 latency is 700 ns */
2937 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2938 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2940 MISSING_CASE(INTEL_DEVID(dev_priv));
2944 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2947 /* ILK sprite LP0 latency is 1300 ns */
2948 if (IS_GEN(dev_priv, 5))
2952 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2955 /* ILK cursor LP0 latency is 1300 ns */
2956 if (IS_GEN(dev_priv, 5))
2960 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2962 /* how many WM levels are we expecting */
2963 if (INTEL_GEN(dev_priv) >= 9)
2965 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2967 else if (INTEL_GEN(dev_priv) >= 6)
2973 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2977 int level, max_level = ilk_wm_max_level(dev_priv);
2979 for (level = 0; level <= max_level; level++) {
2980 unsigned int latency = wm[level];
2983 drm_dbg_kms(&dev_priv->drm,
2984 "%s WM%d latency not provided\n",
2990 * - latencies are in us on gen9.
2991 * - before then, WM1+ latency values are in 0.5us units
2993 if (INTEL_GEN(dev_priv) >= 9)
2998 drm_dbg_kms(&dev_priv->drm,
2999 "%s WM%d latency %u (%u.%u usec)\n", name, level,
3000 wm[level], latency / 10, latency % 10);
3004 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3007 int level, max_level = ilk_wm_max_level(dev_priv);
3012 wm[0] = max(wm[0], min);
3013 for (level = 1; level <= max_level; level++)
3014 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3019 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3024 * The BIOS provided WM memory latency values are often
3025 * inadequate for high resolution displays. Adjust them.
3027 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3028 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3029 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3034 drm_dbg_kms(&dev_priv->drm,
3035 "WM latency values increased to avoid potential underruns\n");
3036 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3037 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3038 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3041 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3044 * On some SNB machines (Thinkpad X220 Tablet at least)
3045 * LP3 usage can cause vblank interrupts to be lost.
3046 * The DEIIR bit will go high but it looks like the CPU
3047 * never gets interrupted.
3049 * It's not clear whether other interrupt source could
3050 * be affected or if this is somehow limited to vblank
3051 * interrupts only. To play it safe we disable LP3
3052 * watermarks entirely.
3054 if (dev_priv->wm.pri_latency[3] == 0 &&
3055 dev_priv->wm.spr_latency[3] == 0 &&
3056 dev_priv->wm.cur_latency[3] == 0)
3059 dev_priv->wm.pri_latency[3] = 0;
3060 dev_priv->wm.spr_latency[3] = 0;
3061 dev_priv->wm.cur_latency[3] = 0;
3063 drm_dbg_kms(&dev_priv->drm,
3064 "LP3 watermarks disabled due to potential for lost interrupts\n");
3065 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3066 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3067 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3070 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3072 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3074 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3075 sizeof(dev_priv->wm.pri_latency));
3076 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3077 sizeof(dev_priv->wm.pri_latency));
3079 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3080 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3082 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3083 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3084 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3086 if (IS_GEN(dev_priv, 6)) {
3087 snb_wm_latency_quirk(dev_priv);
3088 snb_wm_lp3_irq_quirk(dev_priv);
3092 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3094 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3095 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3098 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3099 struct intel_pipe_wm *pipe_wm)
3101 /* LP0 watermark maximums depend on this pipe alone */
3102 const struct intel_wm_config config = {
3103 .num_pipes_active = 1,
3104 .sprites_enabled = pipe_wm->sprites_enabled,
3105 .sprites_scaled = pipe_wm->sprites_scaled,
3107 struct ilk_wm_maximums max;
3109 /* LP0 watermarks always use 1/2 DDB partitioning */
3110 ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3112 /* At least LP0 must be valid */
3113 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3114 drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3121 /* Compute new watermarks for the pipe */
3122 static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3124 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3125 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3126 struct intel_pipe_wm *pipe_wm;
3127 struct intel_plane *plane;
3128 const struct intel_plane_state *plane_state;
3129 const struct intel_plane_state *pristate = NULL;
3130 const struct intel_plane_state *sprstate = NULL;
3131 const struct intel_plane_state *curstate = NULL;
3132 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3133 struct ilk_wm_maximums max;
3135 pipe_wm = &crtc_state->wm.ilk.optimal;
3137 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3138 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3139 pristate = plane_state;
3140 else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3141 sprstate = plane_state;
3142 else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
3143 curstate = plane_state;
3146 pipe_wm->pipe_enabled = crtc_state->hw.active;
3148 pipe_wm->sprites_enabled = sprstate->uapi.visible;
3149 pipe_wm->sprites_scaled = sprstate->uapi.visible &&
3150 (drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
3151 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3154 usable_level = max_level;
3156 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3157 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3160 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3161 if (pipe_wm->sprites_scaled)
3164 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3165 ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3166 pristate, sprstate, curstate, &pipe_wm->wm[0]);
3168 if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3171 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3173 for (level = 1; level <= usable_level; level++) {
3174 struct intel_wm_level *wm = &pipe_wm->wm[level];
3176 ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3177 pristate, sprstate, curstate, wm);
3180 * Disable any watermark level that exceeds the
3181 * register maximums since such watermarks are
3184 if (!ilk_validate_wm_level(level, &max, wm)) {
3185 memset(wm, 0, sizeof(*wm));
3194 * Build a set of 'intermediate' watermark values that satisfy both the old
3195 * state and the new state. These can be programmed to the hardware
3198 static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3200 struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3201 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3202 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3203 struct intel_atomic_state *intel_state =
3204 to_intel_atomic_state(newstate->uapi.state);
3205 const struct intel_crtc_state *oldstate =
3206 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3207 const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3208 int level, max_level = ilk_wm_max_level(dev_priv);
3211 * Start with the final, target watermarks, then combine with the
3212 * currently active watermarks to get values that are safe both before
3213 * and after the vblank.
3215 *a = newstate->wm.ilk.optimal;
3216 if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3217 intel_state->skip_intermediate_wm)
3220 a->pipe_enabled |= b->pipe_enabled;
3221 a->sprites_enabled |= b->sprites_enabled;
3222 a->sprites_scaled |= b->sprites_scaled;
3224 for (level = 0; level <= max_level; level++) {
3225 struct intel_wm_level *a_wm = &a->wm[level];
3226 const struct intel_wm_level *b_wm = &b->wm[level];
3228 a_wm->enable &= b_wm->enable;
3229 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3230 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3231 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3232 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3236 * We need to make sure that these merged watermark values are
3237 * actually a valid configuration themselves. If they're not,
3238 * there's no safe way to transition from the old state to
3239 * the new state, so we need to fail the atomic transaction.
3241 if (!ilk_validate_pipe_wm(dev_priv, a))
3245 * If our intermediate WM are identical to the final WM, then we can
3246 * omit the post-vblank programming; only update if it's different.
3248 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3249 newstate->wm.need_postvbl_update = true;
3255 * Merge the watermarks from all active pipes for a specific level.
3257 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3259 struct intel_wm_level *ret_wm)
3261 const struct intel_crtc *intel_crtc;
3263 ret_wm->enable = true;
3265 for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3266 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3267 const struct intel_wm_level *wm = &active->wm[level];
3269 if (!active->pipe_enabled)
3273 * The watermark values may have been used in the past,
3274 * so we must maintain them in the registers for some
3275 * time even if the level is now disabled.
3278 ret_wm->enable = false;
3280 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3281 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3282 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3283 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3288 * Merge all low power watermarks for all active pipes.
3290 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3291 const struct intel_wm_config *config,
3292 const struct ilk_wm_maximums *max,
3293 struct intel_pipe_wm *merged)
3295 int level, max_level = ilk_wm_max_level(dev_priv);
3296 int last_enabled_level = max_level;
3298 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3299 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3300 config->num_pipes_active > 1)
3301 last_enabled_level = 0;
3303 /* ILK: FBC WM must be disabled always */
3304 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3306 /* merge each WM1+ level */
3307 for (level = 1; level <= max_level; level++) {
3308 struct intel_wm_level *wm = &merged->wm[level];
3310 ilk_merge_wm_level(dev_priv, level, wm);
3312 if (level > last_enabled_level)
3314 else if (!ilk_validate_wm_level(level, max, wm))
3315 /* make sure all following levels get disabled */
3316 last_enabled_level = level - 1;
3319 * The spec says it is preferred to disable
3320 * FBC WMs instead of disabling a WM level.
3322 if (wm->fbc_val > max->fbc) {
3324 merged->fbc_wm_enabled = false;
3329 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3331 * FIXME this is racy. FBC might get enabled later.
3332 * What we should check here is whether FBC can be
3333 * enabled sometime later.
3335 if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3336 intel_fbc_is_active(dev_priv)) {
3337 for (level = 2; level <= max_level; level++) {
3338 struct intel_wm_level *wm = &merged->wm[level];
3345 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3347 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3348 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3351 /* The value we need to program into the WM_LPx latency field */
3352 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3355 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3358 return dev_priv->wm.pri_latency[level];
3361 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3362 const struct intel_pipe_wm *merged,
3363 enum intel_ddb_partitioning partitioning,
3364 struct ilk_wm_values *results)
3366 struct intel_crtc *intel_crtc;
3369 results->enable_fbc_wm = merged->fbc_wm_enabled;
3370 results->partitioning = partitioning;
3372 /* LP1+ register values */
3373 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3374 const struct intel_wm_level *r;
3376 level = ilk_wm_lp_to_level(wm_lp, merged);
3378 r = &merged->wm[level];
3381 * Maintain the watermark values even if the level is
3382 * disabled. Doing otherwise could cause underruns.
3384 results->wm_lp[wm_lp - 1] =
3385 (ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3386 (r->pri_val << WM1_LP_SR_SHIFT) |
3390 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3392 if (INTEL_GEN(dev_priv) >= 8)
3393 results->wm_lp[wm_lp - 1] |=
3394 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3396 results->wm_lp[wm_lp - 1] |=
3397 r->fbc_val << WM1_LP_FBC_SHIFT;
3400 * Always set WM1S_LP_EN when spr_val != 0, even if the
3401 * level is disabled. Doing otherwise could cause underruns.
3403 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3404 drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3405 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3407 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3410 /* LP0 register values */
3411 for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3412 enum pipe pipe = intel_crtc->pipe;
3413 const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
3414 const struct intel_wm_level *r = &pipe_wm->wm[0];
3416 if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3419 results->wm_pipe[pipe] =
3420 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3421 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3426 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3427 * case both are at the same level. Prefer r1 in case they're the same. */
3428 static struct intel_pipe_wm *
3429 ilk_find_best_result(struct drm_i915_private *dev_priv,
3430 struct intel_pipe_wm *r1,
3431 struct intel_pipe_wm *r2)
3433 int level, max_level = ilk_wm_max_level(dev_priv);
3434 int level1 = 0, level2 = 0;
3436 for (level = 1; level <= max_level; level++) {
3437 if (r1->wm[level].enable)
3439 if (r2->wm[level].enable)
3443 if (level1 == level2) {
3444 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3448 } else if (level1 > level2) {
3455 /* dirty bits used to track which watermarks need changes */
3456 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3457 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3458 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3459 #define WM_DIRTY_FBC (1 << 24)
3460 #define WM_DIRTY_DDB (1 << 25)
3462 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3463 const struct ilk_wm_values *old,
3464 const struct ilk_wm_values *new)
3466 unsigned int dirty = 0;
3470 for_each_pipe(dev_priv, pipe) {
3471 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3472 dirty |= WM_DIRTY_PIPE(pipe);
3473 /* Must disable LP1+ watermarks too */
3474 dirty |= WM_DIRTY_LP_ALL;
3478 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3479 dirty |= WM_DIRTY_FBC;
3480 /* Must disable LP1+ watermarks too */
3481 dirty |= WM_DIRTY_LP_ALL;
3484 if (old->partitioning != new->partitioning) {
3485 dirty |= WM_DIRTY_DDB;
3486 /* Must disable LP1+ watermarks too */
3487 dirty |= WM_DIRTY_LP_ALL;
3490 /* LP1+ watermarks already deemed dirty, no need to continue */
3491 if (dirty & WM_DIRTY_LP_ALL)
3494 /* Find the lowest numbered LP1+ watermark in need of an update... */
3495 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3496 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3497 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3501 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3502 for (; wm_lp <= 3; wm_lp++)
3503 dirty |= WM_DIRTY_LP(wm_lp);
3508 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3511 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3512 bool changed = false;
3514 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3515 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3516 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3519 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3520 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3521 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3524 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3525 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3526 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3531 * Don't touch WM1S_LP_EN here.
3532 * Doing so could cause underruns.
3539 * The spec says we shouldn't write when we don't need, because every write
3540 * causes WMs to be re-evaluated, expending some power.
3542 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3543 struct ilk_wm_values *results)
3545 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3549 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3553 _ilk_disable_lp_wm(dev_priv, dirty);
3555 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3556 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3557 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3558 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3559 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3560 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3562 if (dirty & WM_DIRTY_DDB) {
3563 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3564 val = I915_READ(WM_MISC);
3565 if (results->partitioning == INTEL_DDB_PART_1_2)
3566 val &= ~WM_MISC_DATA_PARTITION_5_6;
3568 val |= WM_MISC_DATA_PARTITION_5_6;
3569 I915_WRITE(WM_MISC, val);
3571 val = I915_READ(DISP_ARB_CTL2);
3572 if (results->partitioning == INTEL_DDB_PART_1_2)
3573 val &= ~DISP_DATA_PARTITION_5_6;
3575 val |= DISP_DATA_PARTITION_5_6;
3576 I915_WRITE(DISP_ARB_CTL2, val);
3580 if (dirty & WM_DIRTY_FBC) {
3581 val = I915_READ(DISP_ARB_CTL);
3582 if (results->enable_fbc_wm)
3583 val &= ~DISP_FBC_WM_DIS;
3585 val |= DISP_FBC_WM_DIS;
3586 I915_WRITE(DISP_ARB_CTL, val);
3589 if (dirty & WM_DIRTY_LP(1) &&
3590 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3591 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3593 if (INTEL_GEN(dev_priv) >= 7) {
3594 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3595 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3596 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3597 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3600 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3601 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3602 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3603 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3604 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3605 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3607 dev_priv->wm.hw = *results;
3610 bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3612 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3615 u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3618 int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
3619 u8 enabled_slices_mask = 0;
3621 for (i = 0; i < max_slices; i++) {
3622 if (I915_READ(DBUF_CTL_S(i)) & DBUF_POWER_STATE)
3623 enabled_slices_mask |= BIT(i);
3626 return enabled_slices_mask;
3630 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3631 * so assume we'll always need it in order to avoid underruns.
3633 static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3635 return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3639 intel_has_sagv(struct drm_i915_private *dev_priv)
3641 return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
3642 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3646 skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
3648 if (INTEL_GEN(dev_priv) >= 12) {
3652 ret = sandybridge_pcode_read(dev_priv,
3653 GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
3656 dev_priv->sagv_block_time_us = val;
3660 drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3661 } else if (IS_GEN(dev_priv, 11)) {
3662 dev_priv->sagv_block_time_us = 10;
3664 } else if (IS_GEN(dev_priv, 10)) {
3665 dev_priv->sagv_block_time_us = 20;
3667 } else if (IS_GEN(dev_priv, 9)) {
3668 dev_priv->sagv_block_time_us = 30;
3671 MISSING_CASE(INTEL_GEN(dev_priv));
3674 /* Default to an unusable block time */
3675 dev_priv->sagv_block_time_us = -1;
3679 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3680 * depending on power and performance requirements. The display engine access
3681 * to system memory is blocked during the adjustment time. Because of the
3682 * blocking time, having this enabled can cause full system hangs and/or pipe
3683 * underruns if we don't meet all of the following requirements:
3685 * - <= 1 pipe enabled
3686 * - All planes can enable watermarks for latencies >= SAGV engine block time
3687 * - We're not using an interlaced display configuration
3690 intel_enable_sagv(struct drm_i915_private *dev_priv)
3694 if (!intel_has_sagv(dev_priv))
3697 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3700 drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3701 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3704 /* We don't need to wait for SAGV when enabling */
3707 * Some skl systems, pre-release machines in particular,
3708 * don't actually have SAGV.
3710 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3711 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3712 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3714 } else if (ret < 0) {
3715 drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3719 dev_priv->sagv_status = I915_SAGV_ENABLED;
3724 intel_disable_sagv(struct drm_i915_private *dev_priv)
3728 if (!intel_has_sagv(dev_priv))
3731 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3734 drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3735 /* bspec says to keep retrying for at least 1 ms */
3736 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3738 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3741 * Some skl systems, pre-release machines in particular,
3742 * don't actually have SAGV.
3744 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3745 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3746 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3748 } else if (ret < 0) {
3749 drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3753 dev_priv->sagv_status = I915_SAGV_DISABLED;
3757 void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
3759 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3760 const struct intel_bw_state *new_bw_state;
3761 const struct intel_bw_state *old_bw_state;
3765 * Just return if we can't control SAGV or don't have it.
3766 * This is different from situation when we have SAGV but just can't
3767 * afford it due to DBuf limitation - in case if SAGV is completely
3768 * disabled in a BIOS, we are not even allowed to send a PCode request,
3769 * as it will throw an error. So have to check it here.
3771 if (!intel_has_sagv(dev_priv))
3774 new_bw_state = intel_atomic_get_new_bw_state(state);
3778 if (INTEL_GEN(dev_priv) < 11 && !intel_can_enable_sagv(dev_priv, new_bw_state)) {
3779 intel_disable_sagv(dev_priv);
3783 old_bw_state = intel_atomic_get_old_bw_state(state);
3787 if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
3790 new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
3793 * If new mask is zero - means there is nothing to mask,
3794 * we can only unmask, which should be done in unmask.
3800 * Restrict required qgv points before updating the configuration.
3801 * According to BSpec we can't mask and unmask qgv points at the same
3802 * time. Also masking should be done before updating the configuration
3803 * and unmasking afterwards.
3805 icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3808 void intel_sagv_post_plane_update(struct intel_atomic_state *state)
3810 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3811 const struct intel_bw_state *new_bw_state;
3812 const struct intel_bw_state *old_bw_state;
3816 * Just return if we can't control SAGV or don't have it.
3817 * This is different from situation when we have SAGV but just can't
3818 * afford it due to DBuf limitation - in case if SAGV is completely
3819 * disabled in a BIOS, we are not even allowed to send a PCode request,
3820 * as it will throw an error. So have to check it here.
3822 if (!intel_has_sagv(dev_priv))
3825 new_bw_state = intel_atomic_get_new_bw_state(state);
3829 if (INTEL_GEN(dev_priv) < 11 && intel_can_enable_sagv(dev_priv, new_bw_state)) {
3830 intel_enable_sagv(dev_priv);
3834 old_bw_state = intel_atomic_get_old_bw_state(state);
3838 if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
3841 new_mask = new_bw_state->qgv_points_mask;
3844 * Allow required qgv points after updating the configuration.
3845 * According to BSpec we can't mask and unmask qgv points at the same
3846 * time. Also masking should be done before updating the configuration
3847 * and unmasking afterwards.
3849 icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3852 static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3854 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3855 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3856 struct intel_plane *plane;
3857 const struct intel_plane_state *plane_state;
3860 if (!intel_has_sagv(dev_priv))
3863 if (!crtc_state->hw.active)
3866 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3869 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3870 const struct skl_plane_wm *wm =
3871 &crtc_state->wm.skl.optimal.planes[plane->id];
3873 /* Skip this plane if it's not enabled */
3874 if (!wm->wm[0].plane_en)
3877 /* Find the highest enabled wm level for this plane */
3878 for (level = ilk_wm_max_level(dev_priv);
3879 !wm->wm[level].plane_en; --level)
3882 latency = dev_priv->wm.skl_latency[level];
3884 if (skl_needs_memory_bw_wa(dev_priv) &&
3885 plane_state->uapi.fb->modifier ==
3886 I915_FORMAT_MOD_X_TILED)
3890 * If any of the planes on this pipe don't enable wm levels that
3891 * incur memory latencies higher than sagv_block_time_us we
3892 * can't enable SAGV.
3894 if (latency < dev_priv->sagv_block_time_us)
3901 static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3903 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3904 enum plane_id plane_id;
3906 if (!crtc_state->hw.active)
3909 for_each_plane_id_on_crtc(crtc, plane_id) {
3910 const struct skl_ddb_entry *plane_alloc =
3911 &crtc_state->wm.skl.plane_ddb_y[plane_id];
3912 const struct skl_plane_wm *wm =
3913 &crtc_state->wm.skl.optimal.planes[plane_id];
3915 if (skl_ddb_entry_size(plane_alloc) < wm->sagv_wm0.min_ddb_alloc)
3922 static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3924 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3925 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3927 if (INTEL_GEN(dev_priv) >= 12)
3928 return tgl_crtc_can_enable_sagv(crtc_state);
3930 return skl_crtc_can_enable_sagv(crtc_state);
3933 bool intel_can_enable_sagv(struct drm_i915_private *dev_priv,
3934 const struct intel_bw_state *bw_state)
3936 if (INTEL_GEN(dev_priv) < 11 &&
3937 bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
3940 return bw_state->pipe_sagv_reject == 0;
3943 static int intel_compute_sagv_mask(struct intel_atomic_state *state)
3945 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3947 struct intel_crtc *crtc;
3948 struct intel_crtc_state *new_crtc_state;
3949 struct intel_bw_state *new_bw_state = NULL;
3950 const struct intel_bw_state *old_bw_state = NULL;
3953 for_each_new_intel_crtc_in_state(state, crtc,
3954 new_crtc_state, i) {
3955 new_bw_state = intel_atomic_get_bw_state(state);
3956 if (IS_ERR(new_bw_state))
3957 return PTR_ERR(new_bw_state);
3959 old_bw_state = intel_atomic_get_old_bw_state(state);
3961 if (intel_crtc_can_enable_sagv(new_crtc_state))
3962 new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
3964 new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
3970 new_bw_state->active_pipes =
3971 intel_calc_active_pipes(state, old_bw_state->active_pipes);
3973 if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
3974 ret = intel_atomic_lock_global_state(&new_bw_state->base);
3979 for_each_new_intel_crtc_in_state(state, crtc,
3980 new_crtc_state, i) {
3981 struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
3984 * We store use_sagv_wm in the crtc state rather than relying on
3985 * that bw state since we have no convenient way to get at the
3986 * latter from the plane commit hooks (especially in the legacy
3989 pipe_wm->use_sagv_wm = INTEL_GEN(dev_priv) >= 12 &&
3990 intel_can_enable_sagv(dev_priv, new_bw_state);
3993 if (intel_can_enable_sagv(dev_priv, new_bw_state) !=
3994 intel_can_enable_sagv(dev_priv, old_bw_state)) {
3995 ret = intel_atomic_serialize_global_state(&new_bw_state->base);
3998 } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
3999 ret = intel_atomic_lock_global_state(&new_bw_state->base);
4008 * Calculate initial DBuf slice offset, based on slice size
4009 * and mask(i.e if slice size is 1024 and second slice is enabled
4010 * offset would be 1024)
4013 icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask,
4017 unsigned int offset = 0;
4019 if (!dbuf_slice_mask)
4022 offset = (ffs(dbuf_slice_mask) - 1) * slice_size;
4024 WARN_ON(offset >= ddb_size);
4028 static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv)
4030 u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
4032 drm_WARN_ON(&dev_priv->drm, ddb_size == 0);
4034 if (INTEL_GEN(dev_priv) < 11)
4035 return ddb_size - 4; /* 4 blocks for bypass path allocation */
4040 static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4044 skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
4045 const struct intel_crtc_state *crtc_state,
4046 const u64 total_data_rate,
4047 struct skl_ddb_entry *alloc, /* out */
4048 int *num_active /* out */)
4050 struct drm_atomic_state *state = crtc_state->uapi.state;
4051 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4052 struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
4053 const struct intel_crtc *crtc;
4054 u32 pipe_width = 0, total_width_in_range = 0, width_before_pipe_in_range = 0;
4055 enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
4059 u32 dbuf_slice_mask;
4063 u32 total_slice_mask;
4066 if (drm_WARN_ON(&dev_priv->drm, !state) || !crtc_state->hw.active) {
4069 *num_active = hweight8(dev_priv->active_pipes);
4073 if (intel_state->active_pipe_changes)
4074 active_pipes = intel_state->active_pipes;
4076 active_pipes = dev_priv->active_pipes;
4078 *num_active = hweight8(active_pipes);
4080 ddb_size = intel_get_ddb_size(dev_priv);
4082 slice_size = ddb_size / INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
4085 * If the state doesn't change the active CRTC's or there is no
4086 * modeset request, then there's no need to recalculate;
4087 * the existing pipe allocation limits should remain unchanged.
4088 * Note that we're safe from racing commits since any racing commit
4089 * that changes the active CRTC list or do modeset would need to
4090 * grab _all_ crtc locks, including the one we currently hold.
4092 if (!intel_state->active_pipe_changes && !intel_state->modeset) {
4094 * alloc may be cleared by clear_intel_crtc_state,
4095 * copy from old state to be sure
4097 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
4102 * Get allowed DBuf slices for correspondent pipe and platform.
4104 dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state, active_pipes);
4106 DRM_DEBUG_KMS("DBuf slice mask %x pipe %c active pipes %x\n",
4108 pipe_name(for_pipe), active_pipes);
4111 * Figure out at which DBuf slice we start, i.e if we start at Dbuf S2
4112 * and slice size is 1024, the offset would be 1024
4114 offset = icl_get_first_dbuf_slice_offset(dbuf_slice_mask,
4115 slice_size, ddb_size);
4118 * Figure out total size of allowed DBuf slices, which is basically
4119 * a number of allowed slices for that pipe multiplied by slice size.
4121 * range ddb entries are still allocated in proportion to display width.
4123 ddb_range_size = hweight8(dbuf_slice_mask) * slice_size;
4126 * Watermark/ddb requirement highly depends upon width of the
4127 * framebuffer, So instead of allocating DDB equally among pipes
4128 * distribute DDB based on resolution/width of the display.
4130 total_slice_mask = dbuf_slice_mask;
4131 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
4132 const struct drm_display_mode *adjusted_mode =
4133 &crtc_state->hw.adjusted_mode;
4134 enum pipe pipe = crtc->pipe;
4135 int hdisplay, vdisplay;
4136 u32 pipe_dbuf_slice_mask;
4138 if (!crtc_state->hw.active)
4141 pipe_dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state,
4145 * According to BSpec pipe can share one dbuf slice with another
4146 * pipes or pipe can use multiple dbufs, in both cases we
4147 * account for other pipes only if they have exactly same mask.
4148 * However we need to account how many slices we should enable
4151 total_slice_mask |= pipe_dbuf_slice_mask;
4154 * Do not account pipes using other slice sets
4155 * luckily as of current BSpec slice sets do not partially
4156 * intersect(pipes share either same one slice or same slice set
4157 * i.e no partial intersection), so it is enough to check for
4160 if (dbuf_slice_mask != pipe_dbuf_slice_mask)
4163 drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
4165 total_width_in_range += hdisplay;
4167 if (pipe < for_pipe)
4168 width_before_pipe_in_range += hdisplay;
4169 else if (pipe == for_pipe)
4170 pipe_width = hdisplay;
4174 * FIXME: For now we always enable slice S1 as per
4175 * the Bspec display initialization sequence.
4177 intel_state->enabled_dbuf_slices_mask = total_slice_mask | BIT(DBUF_S1);
4179 start = ddb_range_size * width_before_pipe_in_range / total_width_in_range;
4180 end = ddb_range_size *
4181 (width_before_pipe_in_range + pipe_width) / total_width_in_range;
4183 alloc->start = offset + start;
4184 alloc->end = offset + end;
4186 DRM_DEBUG_KMS("Pipe %d ddb %d-%d\n", for_pipe,
4187 alloc->start, alloc->end);
4188 DRM_DEBUG_KMS("Enabled ddb slices mask %x num supported %d\n",
4189 intel_state->enabled_dbuf_slices_mask,
4190 INTEL_INFO(dev_priv)->num_supported_dbuf_slices);
4193 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4194 int width, const struct drm_format_info *format,
4195 u64 modifier, unsigned int rotation,
4196 u32 plane_pixel_rate, struct skl_wm_params *wp,
4198 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4200 unsigned int latency,
4201 const struct skl_wm_params *wp,
4202 const struct skl_wm_level *result_prev,
4203 struct skl_wm_level *result /* out */);
4206 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
4209 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4210 int level, max_level = ilk_wm_max_level(dev_priv);
4211 struct skl_wm_level wm = {};
4212 int ret, min_ddb_alloc = 0;
4213 struct skl_wm_params wp;
4215 ret = skl_compute_wm_params(crtc_state, 256,
4216 drm_format_info(DRM_FORMAT_ARGB8888),
4217 DRM_FORMAT_MOD_LINEAR,
4219 crtc_state->pixel_rate, &wp, 0);
4220 drm_WARN_ON(&dev_priv->drm, ret);
4222 for (level = 0; level <= max_level; level++) {
4223 unsigned int latency = dev_priv->wm.skl_latency[level];
4225 skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
4226 if (wm.min_ddb_alloc == U16_MAX)
4229 min_ddb_alloc = wm.min_ddb_alloc;
4232 return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4235 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
4236 struct skl_ddb_entry *entry, u32 reg)
4239 entry->start = reg & DDB_ENTRY_MASK;
4240 entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4247 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
4248 const enum pipe pipe,
4249 const enum plane_id plane_id,
4250 struct skl_ddb_entry *ddb_y,
4251 struct skl_ddb_entry *ddb_uv)
4256 /* Cursor doesn't support NV12/planar, so no extra calculation needed */
4257 if (plane_id == PLANE_CURSOR) {
4258 val = I915_READ(CUR_BUF_CFG(pipe));
4259 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4263 val = I915_READ(PLANE_CTL(pipe, plane_id));
4265 /* No DDB allocated for disabled planes */
4266 if (val & PLANE_CTL_ENABLE)
4267 fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
4268 val & PLANE_CTL_ORDER_RGBX,
4269 val & PLANE_CTL_ALPHA_MASK);
4271 if (INTEL_GEN(dev_priv) >= 11) {
4272 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4273 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4275 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4276 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4279 drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4282 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4283 skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4287 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4288 struct skl_ddb_entry *ddb_y,
4289 struct skl_ddb_entry *ddb_uv)
4291 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4292 enum intel_display_power_domain power_domain;
4293 enum pipe pipe = crtc->pipe;
4294 intel_wakeref_t wakeref;
4295 enum plane_id plane_id;
4297 power_domain = POWER_DOMAIN_PIPE(pipe);
4298 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4302 for_each_plane_id_on_crtc(crtc, plane_id)
4303 skl_ddb_get_hw_plane_state(dev_priv, pipe,
4308 intel_display_power_put(dev_priv, power_domain, wakeref);
4311 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv)
4313 dev_priv->enabled_dbuf_slices_mask =
4314 intel_enabled_dbuf_slices_mask(dev_priv);
4318 * Determines the downscale amount of a plane for the purposes of watermark calculations.
4319 * The bspec defines downscale amount as:
4322 * Horizontal down scale amount = maximum[1, Horizontal source size /
4323 * Horizontal destination size]
4324 * Vertical down scale amount = maximum[1, Vertical source size /
4325 * Vertical destination size]
4326 * Total down scale amount = Horizontal down scale amount *
4327 * Vertical down scale amount
4330 * Return value is provided in 16.16 fixed point form to retain fractional part.
4331 * Caller should take care of dividing & rounding off the value.
4333 static uint_fixed_16_16_t
4334 skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
4335 const struct intel_plane_state *plane_state)
4337 u32 src_w, src_h, dst_w, dst_h;
4338 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4339 uint_fixed_16_16_t downscale_h, downscale_w;
4341 if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4342 return u32_to_fixed16(0);
4345 * Src coordinates are already rotated by 270 degrees for
4346 * the 90/270 degree plane rotation cases (to match the
4347 * GTT mapping), hence no need to account for rotation here.
4349 * n.b., src is 16.16 fixed point, dst is whole integer.
4351 src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4352 src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4353 dst_w = drm_rect_width(&plane_state->uapi.dst);
4354 dst_h = drm_rect_height(&plane_state->uapi.dst);
4356 fp_w_ratio = div_fixed16(src_w, dst_w);
4357 fp_h_ratio = div_fixed16(src_h, dst_h);
4358 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4359 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4361 return mul_fixed16(downscale_w, downscale_h);
4364 struct dbuf_slice_conf_entry {
4366 u8 dbuf_mask[I915_MAX_PIPES];
4370 * Table taken from Bspec 12716
4371 * Pipes do have some preferred DBuf slice affinity,
4372 * plus there are some hardcoded requirements on how
4373 * those should be distributed for multipipe scenarios.
4374 * For more DBuf slices algorithm can get even more messy
4375 * and less readable, so decided to use a table almost
4376 * as is from BSpec itself - that way it is at least easier
4377 * to compare, change and check.
4379 static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4380 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4383 .active_pipes = BIT(PIPE_A),
4385 [PIPE_A] = BIT(DBUF_S1),
4389 .active_pipes = BIT(PIPE_B),
4391 [PIPE_B] = BIT(DBUF_S1),
4395 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4397 [PIPE_A] = BIT(DBUF_S1),
4398 [PIPE_B] = BIT(DBUF_S2),
4402 .active_pipes = BIT(PIPE_C),
4404 [PIPE_C] = BIT(DBUF_S2),
4408 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4410 [PIPE_A] = BIT(DBUF_S1),
4411 [PIPE_C] = BIT(DBUF_S2),
4415 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4417 [PIPE_B] = BIT(DBUF_S1),
4418 [PIPE_C] = BIT(DBUF_S2),
4422 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4424 [PIPE_A] = BIT(DBUF_S1),
4425 [PIPE_B] = BIT(DBUF_S1),
4426 [PIPE_C] = BIT(DBUF_S2),
4433 * Table taken from Bspec 49255
4434 * Pipes do have some preferred DBuf slice affinity,
4435 * plus there are some hardcoded requirements on how
4436 * those should be distributed for multipipe scenarios.
4437 * For more DBuf slices algorithm can get even more messy
4438 * and less readable, so decided to use a table almost
4439 * as is from BSpec itself - that way it is at least easier
4440 * to compare, change and check.
4442 static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4443 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4446 .active_pipes = BIT(PIPE_A),
4448 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4452 .active_pipes = BIT(PIPE_B),
4454 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4458 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4460 [PIPE_A] = BIT(DBUF_S2),
4461 [PIPE_B] = BIT(DBUF_S1),
4465 .active_pipes = BIT(PIPE_C),
4467 [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
4471 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4473 [PIPE_A] = BIT(DBUF_S1),
4474 [PIPE_C] = BIT(DBUF_S2),
4478 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4480 [PIPE_B] = BIT(DBUF_S1),
4481 [PIPE_C] = BIT(DBUF_S2),
4485 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4487 [PIPE_A] = BIT(DBUF_S1),
4488 [PIPE_B] = BIT(DBUF_S1),
4489 [PIPE_C] = BIT(DBUF_S2),
4493 .active_pipes = BIT(PIPE_D),
4495 [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
4499 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4501 [PIPE_A] = BIT(DBUF_S1),
4502 [PIPE_D] = BIT(DBUF_S2),
4506 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4508 [PIPE_B] = BIT(DBUF_S1),
4509 [PIPE_D] = BIT(DBUF_S2),
4513 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4515 [PIPE_A] = BIT(DBUF_S1),
4516 [PIPE_B] = BIT(DBUF_S1),
4517 [PIPE_D] = BIT(DBUF_S2),
4521 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4523 [PIPE_C] = BIT(DBUF_S1),
4524 [PIPE_D] = BIT(DBUF_S2),
4528 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4530 [PIPE_A] = BIT(DBUF_S1),
4531 [PIPE_C] = BIT(DBUF_S2),
4532 [PIPE_D] = BIT(DBUF_S2),
4536 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4538 [PIPE_B] = BIT(DBUF_S1),
4539 [PIPE_C] = BIT(DBUF_S2),
4540 [PIPE_D] = BIT(DBUF_S2),
4544 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4546 [PIPE_A] = BIT(DBUF_S1),
4547 [PIPE_B] = BIT(DBUF_S1),
4548 [PIPE_C] = BIT(DBUF_S2),
4549 [PIPE_D] = BIT(DBUF_S2),
4555 static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
4556 const struct dbuf_slice_conf_entry *dbuf_slices)
4560 for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4561 if (dbuf_slices[i].active_pipes == active_pipes)
4562 return dbuf_slices[i].dbuf_mask[pipe];
4568 * This function finds an entry with same enabled pipe configuration and
4569 * returns correspondent DBuf slice mask as stated in BSpec for particular
4572 static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4575 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
4576 * required calculating "pipe ratio" in order to determine
4577 * if one or two slices can be used for single pipe configurations
4578 * as additional constraint to the existing table.
4579 * However based on recent info, it should be not "pipe ratio"
4580 * but rather ratio between pixel_rate and cdclk with additional
4581 * constants, so for now we are using only table until this is
4582 * clarified. Also this is the reason why crtc_state param is
4583 * still here - we will need it once those additional constraints
4586 return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4589 static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4591 return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4594 static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4597 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4598 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4599 enum pipe pipe = crtc->pipe;
4601 if (IS_GEN(dev_priv, 12))
4602 return tgl_compute_dbuf_slices(pipe, active_pipes);
4603 else if (IS_GEN(dev_priv, 11))
4604 return icl_compute_dbuf_slices(pipe, active_pipes);
4606 * For anything else just return one slice yet.
4607 * Should be extended for other platforms.
4609 return BIT(DBUF_S1);
4613 skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
4614 const struct intel_plane_state *plane_state,
4617 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4618 const struct drm_framebuffer *fb = plane_state->hw.fb;
4620 u32 width = 0, height = 0;
4621 uint_fixed_16_16_t down_scale_amount;
4624 if (!plane_state->uapi.visible)
4627 if (plane->id == PLANE_CURSOR)
4630 if (color_plane == 1 &&
4631 !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4635 * Src coordinates are already rotated by 270 degrees for
4636 * the 90/270 degree plane rotation cases (to match the
4637 * GTT mapping), hence no need to account for rotation here.
4639 width = drm_rect_width(&plane_state->uapi.src) >> 16;
4640 height = drm_rect_height(&plane_state->uapi.src) >> 16;
4642 /* UV plane does 1/2 pixel sub-sampling */
4643 if (color_plane == 1) {
4648 data_rate = width * height;
4650 down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4652 rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4654 rate *= fb->format->cpp[color_plane];
4659 skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4660 u64 *plane_data_rate,
4661 u64 *uv_plane_data_rate)
4663 struct intel_plane *plane;
4664 const struct intel_plane_state *plane_state;
4665 u64 total_data_rate = 0;
4667 /* Calculate and cache data rate for each plane */
4668 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
4669 enum plane_id plane_id = plane->id;
4673 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4674 plane_data_rate[plane_id] = rate;
4675 total_data_rate += rate;
4678 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4679 uv_plane_data_rate[plane_id] = rate;
4680 total_data_rate += rate;
4683 return total_data_rate;
4687 icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4688 u64 *plane_data_rate)
4690 struct intel_plane *plane;
4691 const struct intel_plane_state *plane_state;
4692 u64 total_data_rate = 0;
4694 /* Calculate and cache data rate for each plane */
4695 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
4696 enum plane_id plane_id = plane->id;
4699 if (!plane_state->planar_linked_plane) {
4700 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4701 plane_data_rate[plane_id] = rate;
4702 total_data_rate += rate;
4704 enum plane_id y_plane_id;
4707 * The slave plane might not iterate in
4708 * intel_atomic_crtc_state_for_each_plane_state(),
4709 * and needs the master plane state which may be
4710 * NULL if we try get_new_plane_state(), so we
4711 * always calculate from the master.
4713 if (plane_state->planar_slave)
4716 /* Y plane rate is calculated on the slave */
4717 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4718 y_plane_id = plane_state->planar_linked_plane->id;
4719 plane_data_rate[y_plane_id] = rate;
4720 total_data_rate += rate;
4722 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4723 plane_data_rate[plane_id] = rate;
4724 total_data_rate += rate;
4728 return total_data_rate;
4731 static const struct skl_wm_level *
4732 skl_plane_wm_level(const struct intel_crtc_state *crtc_state,
4733 enum plane_id plane_id,
4736 const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
4737 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
4739 if (level == 0 && pipe_wm->use_sagv_wm)
4740 return &wm->sagv_wm0;
4742 return &wm->wm[level];
4746 skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state)
4748 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4749 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4750 struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4751 u16 alloc_size, start = 0;
4752 u16 total[I915_MAX_PLANES] = {};
4753 u16 uv_total[I915_MAX_PLANES] = {};
4754 u64 total_data_rate;
4755 enum plane_id plane_id;
4757 u64 plane_data_rate[I915_MAX_PLANES] = {};
4758 u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4762 /* Clear the partitioning for disabled planes. */
4763 memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
4764 memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4766 if (!crtc_state->hw.active) {
4767 alloc->start = alloc->end = 0;
4771 if (INTEL_GEN(dev_priv) >= 11)
4773 icl_get_total_relative_data_rate(crtc_state,
4777 skl_get_total_relative_data_rate(crtc_state,
4779 uv_plane_data_rate);
4781 skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4782 alloc, &num_active);
4783 alloc_size = skl_ddb_entry_size(alloc);
4784 if (alloc_size == 0)
4787 /* Allocate fixed number of blocks for cursor. */
4788 total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4789 alloc_size -= total[PLANE_CURSOR];
4790 crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4791 alloc->end - total[PLANE_CURSOR];
4792 crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4794 if (total_data_rate == 0)
4798 * Find the highest watermark level for which we can satisfy the block
4799 * requirement of active planes.
4801 for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4803 for_each_plane_id_on_crtc(crtc, plane_id) {
4804 const struct skl_plane_wm *wm =
4805 &crtc_state->wm.skl.optimal.planes[plane_id];
4807 if (plane_id == PLANE_CURSOR) {
4808 if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
4809 drm_WARN_ON(&dev_priv->drm,
4810 wm->wm[level].min_ddb_alloc != U16_MAX);
4817 blocks += wm->wm[level].min_ddb_alloc;
4818 blocks += wm->uv_wm[level].min_ddb_alloc;
4821 if (blocks <= alloc_size) {
4822 alloc_size -= blocks;
4828 drm_dbg_kms(&dev_priv->drm,
4829 "Requested display configuration exceeds system DDB limitations");
4830 drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
4831 blocks, alloc_size);
4836 * Grant each plane the blocks it requires at the highest achievable
4837 * watermark level, plus an extra share of the leftover blocks
4838 * proportional to its relative data rate.
4840 for_each_plane_id_on_crtc(crtc, plane_id) {
4841 const struct skl_plane_wm *wm =
4842 &crtc_state->wm.skl.optimal.planes[plane_id];
4846 if (plane_id == PLANE_CURSOR)
4850 * We've accounted for all active planes; remaining planes are
4853 if (total_data_rate == 0)
4856 rate = plane_data_rate[plane_id];
4857 extra = min_t(u16, alloc_size,
4858 DIV64_U64_ROUND_UP(alloc_size * rate,
4860 total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4861 alloc_size -= extra;
4862 total_data_rate -= rate;
4864 if (total_data_rate == 0)
4867 rate = uv_plane_data_rate[plane_id];
4868 extra = min_t(u16, alloc_size,
4869 DIV64_U64_ROUND_UP(alloc_size * rate,
4871 uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4872 alloc_size -= extra;
4873 total_data_rate -= rate;
4875 drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
4877 /* Set the actual DDB start/end points for each plane */
4878 start = alloc->start;
4879 for_each_plane_id_on_crtc(crtc, plane_id) {
4880 struct skl_ddb_entry *plane_alloc =
4881 &crtc_state->wm.skl.plane_ddb_y[plane_id];
4882 struct skl_ddb_entry *uv_plane_alloc =
4883 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
4885 if (plane_id == PLANE_CURSOR)
4888 /* Gen11+ uses a separate plane for UV watermarks */
4889 drm_WARN_ON(&dev_priv->drm,
4890 INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4892 /* Leave disabled planes at (0,0) */
4893 if (total[plane_id]) {
4894 plane_alloc->start = start;
4895 start += total[plane_id];
4896 plane_alloc->end = start;
4899 if (uv_total[plane_id]) {
4900 uv_plane_alloc->start = start;
4901 start += uv_total[plane_id];
4902 uv_plane_alloc->end = start;
4907 * When we calculated watermark values we didn't know how high
4908 * of a level we'd actually be able to hit, so we just marked
4909 * all levels as "enabled." Go back now and disable the ones
4910 * that aren't actually possible.
4912 for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4913 for_each_plane_id_on_crtc(crtc, plane_id) {
4914 struct skl_plane_wm *wm =
4915 &crtc_state->wm.skl.optimal.planes[plane_id];
4918 * We only disable the watermarks for each plane if
4919 * they exceed the ddb allocation of said plane. This
4920 * is done so that we don't end up touching cursor
4921 * watermarks needlessly when some other plane reduces
4922 * our max possible watermark level.
4924 * Bspec has this to say about the PLANE_WM enable bit:
4925 * "All the watermarks at this level for all enabled
4926 * planes must be enabled before the level will be used."
4927 * So this is actually safe to do.
4929 if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
4930 wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
4931 memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4934 * Wa_1408961008:icl, ehl
4935 * Underruns with WM1+ disabled
4937 if (IS_GEN(dev_priv, 11) &&
4938 level == 1 && wm->wm[0].plane_en) {
4939 wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4940 wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
4941 wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4947 * Go back and disable the transition watermark if it turns out we
4948 * don't have enough DDB blocks for it.
4950 for_each_plane_id_on_crtc(crtc, plane_id) {
4951 struct skl_plane_wm *wm =
4952 &crtc_state->wm.skl.optimal.planes[plane_id];
4954 if (wm->trans_wm.plane_res_b >= total[plane_id])
4955 memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4962 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4963 * for the read latency) and cpp should always be <= 8, so that
4964 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4965 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4967 static uint_fixed_16_16_t
4968 skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
4969 u8 cpp, u32 latency, u32 dbuf_block_size)
4971 u32 wm_intermediate_val;
4972 uint_fixed_16_16_t ret;
4975 return FP_16_16_MAX;
4977 wm_intermediate_val = latency * pixel_rate * cpp;
4978 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4980 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4981 ret = add_fixed16_u32(ret, 1);
4986 static uint_fixed_16_16_t
4987 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
4988 uint_fixed_16_16_t plane_blocks_per_line)
4990 u32 wm_intermediate_val;
4991 uint_fixed_16_16_t ret;
4994 return FP_16_16_MAX;
4996 wm_intermediate_val = latency * pixel_rate;
4997 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4998 pipe_htotal * 1000);
4999 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
5003 static uint_fixed_16_16_t
5004 intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
5008 uint_fixed_16_16_t linetime_us;
5010 if (!crtc_state->hw.active)
5011 return u32_to_fixed16(0);
5013 pixel_rate = crtc_state->pixel_rate;
5015 if (WARN_ON(pixel_rate == 0))
5016 return u32_to_fixed16(0);
5018 crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
5019 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
5025 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
5026 const struct intel_plane_state *plane_state)
5028 u64 adjusted_pixel_rate;
5029 uint_fixed_16_16_t downscale_amount;
5031 /* Shouldn't reach here on disabled planes... */
5032 if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
5036 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
5037 * with additional adjustments for plane-specific scaling.
5039 adjusted_pixel_rate = crtc_state->pixel_rate;
5040 downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
5042 return mul_round_up_u32_fixed16(adjusted_pixel_rate,
5047 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
5048 int width, const struct drm_format_info *format,
5049 u64 modifier, unsigned int rotation,
5050 u32 plane_pixel_rate, struct skl_wm_params *wp,
5053 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5054 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5057 /* only planar format has two planes */
5058 if (color_plane == 1 &&
5059 !intel_format_info_is_yuv_semiplanar(format, modifier)) {
5060 drm_dbg_kms(&dev_priv->drm,
5061 "Non planar format have single plane\n");
5065 wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
5066 modifier == I915_FORMAT_MOD_Yf_TILED ||
5067 modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5068 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5069 wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
5070 wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5071 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5072 wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
5075 if (color_plane == 1 && wp->is_planar)
5078 wp->cpp = format->cpp[color_plane];
5079 wp->plane_pixel_rate = plane_pixel_rate;
5081 if (INTEL_GEN(dev_priv) >= 11 &&
5082 modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1)
5083 wp->dbuf_block_size = 256;
5085 wp->dbuf_block_size = 512;
5087 if (drm_rotation_90_or_270(rotation)) {
5090 wp->y_min_scanlines = 16;
5093 wp->y_min_scanlines = 8;
5096 wp->y_min_scanlines = 4;
5099 MISSING_CASE(wp->cpp);
5103 wp->y_min_scanlines = 4;
5106 if (skl_needs_memory_bw_wa(dev_priv))
5107 wp->y_min_scanlines *= 2;
5109 wp->plane_bytes_per_line = wp->width * wp->cpp;
5111 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
5112 wp->y_min_scanlines,
5113 wp->dbuf_block_size);
5115 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5118 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
5119 wp->y_min_scanlines);
5121 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
5122 wp->dbuf_block_size);
5125 INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5128 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
5131 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
5132 wp->plane_blocks_per_line);
5134 wp->linetime_us = fixed16_to_u32_round_up(
5135 intel_get_linetime_us(crtc_state));
5141 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
5142 const struct intel_plane_state *plane_state,
5143 struct skl_wm_params *wp, int color_plane)
5145 const struct drm_framebuffer *fb = plane_state->hw.fb;
5149 * Src coordinates are already rotated by 270 degrees for
5150 * the 90/270 degree plane rotation cases (to match the
5151 * GTT mapping), hence no need to account for rotation here.
5153 width = drm_rect_width(&plane_state->uapi.src) >> 16;
5155 return skl_compute_wm_params(crtc_state, width,
5156 fb->format, fb->modifier,
5157 plane_state->hw.rotation,
5158 skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
5162 static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
5164 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5167 /* The number of lines are ignored for the level 0 watermark. */
5171 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5173 unsigned int latency,
5174 const struct skl_wm_params *wp,
5175 const struct skl_wm_level *result_prev,
5176 struct skl_wm_level *result /* out */)
5178 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5179 uint_fixed_16_16_t method1, method2;
5180 uint_fixed_16_16_t selected_result;
5181 u32 res_blocks, res_lines, min_ddb_alloc = 0;
5185 result->min_ddb_alloc = U16_MAX;
5190 * WaIncreaseLatencyIPCEnabled: kbl,cfl
5191 * Display WA #1141: kbl,cfl
5193 if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
5194 dev_priv->ipc_enabled)
5197 if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5200 method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5201 wp->cpp, latency, wp->dbuf_block_size);
5202 method2 = skl_wm_method2(wp->plane_pixel_rate,
5203 crtc_state->hw.adjusted_mode.crtc_htotal,
5205 wp->plane_blocks_per_line);
5208 selected_result = max_fixed16(method2, wp->y_tile_minimum);
5210 if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
5211 wp->dbuf_block_size < 1) &&
5212 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5213 selected_result = method2;
5214 } else if (latency >= wp->linetime_us) {
5215 if (IS_GEN(dev_priv, 9) &&
5216 !IS_GEMINILAKE(dev_priv))
5217 selected_result = min_fixed16(method1, method2);
5219 selected_result = method2;
5221 selected_result = method1;
5225 res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
5226 res_lines = div_round_up_fixed16(selected_result,
5227 wp->plane_blocks_per_line);
5229 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
5230 /* Display WA #1125: skl,bxt,kbl */
5231 if (level == 0 && wp->rc_surface)
5233 fixed16_to_u32_round_up(wp->y_tile_minimum);
5235 /* Display WA #1126: skl,bxt,kbl */
5236 if (level >= 1 && level <= 7) {
5239 fixed16_to_u32_round_up(wp->y_tile_minimum);
5240 res_lines += wp->y_min_scanlines;
5246 * Make sure result blocks for higher latency levels are
5247 * atleast as high as level below the current level.
5248 * Assumption in DDB algorithm optimization for special
5249 * cases. Also covers Display WA #1125 for RC.
5251 if (result_prev->plane_res_b > res_blocks)
5252 res_blocks = result_prev->plane_res_b;
5256 if (INTEL_GEN(dev_priv) >= 11) {
5260 if (res_lines % wp->y_min_scanlines == 0)
5261 extra_lines = wp->y_min_scanlines;
5263 extra_lines = wp->y_min_scanlines * 2 -
5264 res_lines % wp->y_min_scanlines;
5266 min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
5267 wp->plane_blocks_per_line);
5269 min_ddb_alloc = res_blocks +
5270 DIV_ROUND_UP(res_blocks, 10);
5274 if (!skl_wm_has_lines(dev_priv, level))
5277 if (res_lines > 31) {
5279 result->min_ddb_alloc = U16_MAX;
5284 * If res_lines is valid, assume we can use this watermark level
5285 * for now. We'll come back and disable it after we calculate the
5286 * DDB allocation if it turns out we don't actually have enough
5287 * blocks to satisfy it.
5289 result->plane_res_b = res_blocks;
5290 result->plane_res_l = res_lines;
5291 /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
5292 result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
5293 result->plane_en = true;
5297 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5298 const struct skl_wm_params *wm_params,
5299 struct skl_wm_level *levels)
5301 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5302 int level, max_level = ilk_wm_max_level(dev_priv);
5303 struct skl_wm_level *result_prev = &levels[0];
5305 for (level = 0; level <= max_level; level++) {
5306 struct skl_wm_level *result = &levels[level];
5307 unsigned int latency = dev_priv->wm.skl_latency[level];
5309 skl_compute_plane_wm(crtc_state, level, latency,
5310 wm_params, result_prev, result);
5312 result_prev = result;
5316 static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
5317 const struct skl_wm_params *wm_params,
5318 struct skl_plane_wm *plane_wm)
5320 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5321 struct skl_wm_level *sagv_wm = &plane_wm->sagv_wm0;
5322 struct skl_wm_level *levels = plane_wm->wm;
5323 unsigned int latency = dev_priv->wm.skl_latency[0] + dev_priv->sagv_block_time_us;
5325 skl_compute_plane_wm(crtc_state, 0, latency,
5326 wm_params, &levels[0],
5330 static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
5331 const struct skl_wm_params *wp,
5332 struct skl_plane_wm *wm)
5334 struct drm_device *dev = crtc_state->uapi.crtc->dev;
5335 const struct drm_i915_private *dev_priv = to_i915(dev);
5336 u16 trans_min, trans_amount, trans_y_tile_min;
5337 u16 wm0_sel_res_b, trans_offset_b, res_blocks;
5339 /* Transition WM don't make any sense if ipc is disabled */
5340 if (!dev_priv->ipc_enabled)
5344 * WaDisableTWM:skl,kbl,cfl,bxt
5345 * Transition WM are not recommended by HW team for GEN9
5347 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
5350 if (INTEL_GEN(dev_priv) >= 11)
5355 /* Display WA #1140: glk,cnl */
5356 if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
5359 trans_amount = 10; /* This is configurable amount */
5361 trans_offset_b = trans_min + trans_amount;
5364 * The spec asks for Selected Result Blocks for wm0 (the real value),
5365 * not Result Blocks (the integer value). Pay attention to the capital
5366 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
5367 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
5368 * and since we later will have to get the ceiling of the sum in the
5369 * transition watermarks calculation, we can just pretend Selected
5370 * Result Blocks is Result Blocks minus 1 and it should work for the
5371 * current platforms.
5373 wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
5377 (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5378 res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
5381 res_blocks = wm0_sel_res_b + trans_offset_b;
5385 * Just assume we can enable the transition watermark. After
5386 * computing the DDB we'll come back and disable it if that
5387 * assumption turns out to be false.
5389 wm->trans_wm.plane_res_b = res_blocks + 1;
5390 wm->trans_wm.plane_en = true;
5393 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5394 const struct intel_plane_state *plane_state,
5395 enum plane_id plane_id, int color_plane)
5397 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5398 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5399 struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5400 struct skl_wm_params wm_params;
5403 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5404 &wm_params, color_plane);
5408 skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5410 if (INTEL_GEN(dev_priv) >= 12)
5411 tgl_compute_sagv_wm(crtc_state, &wm_params, wm);
5413 skl_compute_transition_wm(crtc_state, &wm_params, wm);
5418 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5419 const struct intel_plane_state *plane_state,
5420 enum plane_id plane_id)
5422 struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5423 struct skl_wm_params wm_params;
5426 wm->is_planar = true;
5428 /* uv plane watermarks must also be validated for NV12/Planar */
5429 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5434 skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5439 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5440 const struct intel_plane_state *plane_state)
5442 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5443 const struct drm_framebuffer *fb = plane_state->hw.fb;
5444 enum plane_id plane_id = plane->id;
5447 if (!intel_wm_plane_visible(crtc_state, plane_state))
5450 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5455 if (fb->format->is_yuv && fb->format->num_planes > 1) {
5456 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5465 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5466 const struct intel_plane_state *plane_state)
5468 enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id;
5471 /* Watermarks calculated in master */
5472 if (plane_state->planar_slave)
5475 if (plane_state->planar_linked_plane) {
5476 const struct drm_framebuffer *fb = plane_state->hw.fb;
5477 enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5479 WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
5480 WARN_ON(!fb->format->is_yuv ||
5481 fb->format->num_planes == 1);
5483 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5488 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5492 } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5493 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5502 static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5504 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5505 struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5506 struct intel_plane *plane;
5507 const struct intel_plane_state *plane_state;
5511 * We'll only calculate watermarks for planes that are actually
5512 * enabled, so make sure all other planes are set as disabled.
5514 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
5516 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
5519 if (INTEL_GEN(dev_priv) >= 11)
5520 ret = icl_build_plane_wm(crtc_state, plane_state);
5522 ret = skl_build_plane_wm(crtc_state, plane_state);
5530 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5532 const struct skl_ddb_entry *entry)
5535 intel_de_write_fw(dev_priv, reg,
5536 (entry->end - 1) << 16 | entry->start);
5538 intel_de_write_fw(dev_priv, reg, 0);
5541 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5543 const struct skl_wm_level *level)
5547 if (level->plane_en)
5549 if (level->ignore_lines)
5550 val |= PLANE_WM_IGNORE_LINES;
5551 val |= level->plane_res_b;
5552 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5554 intel_de_write_fw(dev_priv, reg, val);
5557 void skl_write_plane_wm(struct intel_plane *plane,
5558 const struct intel_crtc_state *crtc_state)
5560 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5561 int level, max_level = ilk_wm_max_level(dev_priv);
5562 enum plane_id plane_id = plane->id;
5563 enum pipe pipe = plane->pipe;
5564 const struct skl_plane_wm *wm =
5565 &crtc_state->wm.skl.optimal.planes[plane_id];
5566 const struct skl_ddb_entry *ddb_y =
5567 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5568 const struct skl_ddb_entry *ddb_uv =
5569 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
5571 for (level = 0; level <= max_level; level++) {
5572 const struct skl_wm_level *wm_level;
5574 wm_level = skl_plane_wm_level(crtc_state, plane_id, level);
5576 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5579 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5582 if (INTEL_GEN(dev_priv) >= 11) {
5583 skl_ddb_entry_write(dev_priv,
5584 PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5589 swap(ddb_y, ddb_uv);
5591 skl_ddb_entry_write(dev_priv,
5592 PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5593 skl_ddb_entry_write(dev_priv,
5594 PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5597 void skl_write_cursor_wm(struct intel_plane *plane,
5598 const struct intel_crtc_state *crtc_state)
5600 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5601 int level, max_level = ilk_wm_max_level(dev_priv);
5602 enum plane_id plane_id = plane->id;
5603 enum pipe pipe = plane->pipe;
5604 const struct skl_plane_wm *wm =
5605 &crtc_state->wm.skl.optimal.planes[plane_id];
5606 const struct skl_ddb_entry *ddb =
5607 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5609 for (level = 0; level <= max_level; level++) {
5610 const struct skl_wm_level *wm_level;
5612 wm_level = skl_plane_wm_level(crtc_state, plane_id, level);
5614 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5617 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5619 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5622 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5623 const struct skl_wm_level *l2)
5625 return l1->plane_en == l2->plane_en &&
5626 l1->ignore_lines == l2->ignore_lines &&
5627 l1->plane_res_l == l2->plane_res_l &&
5628 l1->plane_res_b == l2->plane_res_b;
5631 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5632 const struct skl_plane_wm *wm1,
5633 const struct skl_plane_wm *wm2)
5635 int level, max_level = ilk_wm_max_level(dev_priv);
5637 for (level = 0; level <= max_level; level++) {
5639 * We don't check uv_wm as the hardware doesn't actually
5640 * use it. It only gets used for calculating the required
5643 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5647 return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5650 static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5651 const struct skl_ddb_entry *b)
5653 return a->start < b->end && b->start < a->end;
5656 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5657 const struct skl_ddb_entry *entries,
5658 int num_entries, int ignore_idx)
5662 for (i = 0; i < num_entries; i++) {
5663 if (i != ignore_idx &&
5664 skl_ddb_entries_overlap(ddb, &entries[i]))
5672 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5673 struct intel_crtc_state *new_crtc_state)
5675 struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
5676 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5677 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5678 struct intel_plane *plane;
5680 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5681 struct intel_plane_state *plane_state;
5682 enum plane_id plane_id = plane->id;
5684 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5685 &new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
5686 skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
5687 &new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5690 plane_state = intel_atomic_get_plane_state(state, plane);
5691 if (IS_ERR(plane_state))
5692 return PTR_ERR(plane_state);
5694 new_crtc_state->update_planes |= BIT(plane_id);
5701 skl_compute_ddb(struct intel_atomic_state *state)
5703 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5704 struct intel_crtc_state *old_crtc_state;
5705 struct intel_crtc_state *new_crtc_state;
5706 struct intel_crtc *crtc;
5709 state->enabled_dbuf_slices_mask = dev_priv->enabled_dbuf_slices_mask;
5711 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5712 new_crtc_state, i) {
5713 ret = skl_allocate_pipe_ddb(new_crtc_state);
5717 ret = skl_ddb_add_affected_planes(old_crtc_state,
5726 static char enast(bool enable)
5728 return enable ? '*' : ' ';
5732 skl_print_wm_changes(struct intel_atomic_state *state)
5734 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5735 const struct intel_crtc_state *old_crtc_state;
5736 const struct intel_crtc_state *new_crtc_state;
5737 struct intel_plane *plane;
5738 struct intel_crtc *crtc;
5741 if (!drm_debug_enabled(DRM_UT_KMS))
5744 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5745 new_crtc_state, i) {
5746 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
5748 old_pipe_wm = &old_crtc_state->wm.skl.optimal;
5749 new_pipe_wm = &new_crtc_state->wm.skl.optimal;
5751 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5752 enum plane_id plane_id = plane->id;
5753 const struct skl_ddb_entry *old, *new;
5755 old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
5756 new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5758 if (skl_ddb_entry_equal(old, new))
5761 drm_dbg_kms(&dev_priv->drm,
5762 "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
5763 plane->base.base.id, plane->base.name,
5764 old->start, old->end, new->start, new->end,
5765 skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5768 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5769 enum plane_id plane_id = plane->id;
5770 const struct skl_plane_wm *old_wm, *new_wm;
5772 old_wm = &old_pipe_wm->planes[plane_id];
5773 new_wm = &new_pipe_wm->planes[plane_id];
5775 if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
5778 drm_dbg_kms(&dev_priv->drm,
5779 "[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm"
5780 " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm\n",
5781 plane->base.base.id, plane->base.name,
5782 enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
5783 enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
5784 enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
5785 enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
5786 enast(old_wm->trans_wm.plane_en),
5787 enast(old_wm->sagv_wm0.plane_en),
5788 enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
5789 enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
5790 enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
5791 enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5792 enast(new_wm->trans_wm.plane_en),
5793 enast(new_wm->sagv_wm0.plane_en));
5795 drm_dbg_kms(&dev_priv->drm,
5796 "[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5797 " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5798 plane->base.base.id, plane->base.name,
5799 enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
5800 enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
5801 enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
5802 enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
5803 enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
5804 enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
5805 enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
5806 enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
5807 enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5808 enast(old_wm->sagv_wm0.ignore_lines), old_wm->sagv_wm0.plane_res_l,
5810 enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
5811 enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
5812 enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
5813 enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
5814 enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
5815 enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
5816 enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
5817 enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5818 enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l,
5819 enast(new_wm->sagv_wm0.ignore_lines), new_wm->sagv_wm0.plane_res_l);
5821 drm_dbg_kms(&dev_priv->drm,
5822 "[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5823 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5824 plane->base.base.id, plane->base.name,
5825 old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
5826 old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
5827 old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
5828 old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
5829 old_wm->trans_wm.plane_res_b,
5830 old_wm->sagv_wm0.plane_res_b,
5831 new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
5832 new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
5833 new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
5834 new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5835 new_wm->trans_wm.plane_res_b,
5836 new_wm->sagv_wm0.plane_res_b);
5838 drm_dbg_kms(&dev_priv->drm,
5839 "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5840 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5841 plane->base.base.id, plane->base.name,
5842 old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
5843 old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
5844 old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
5845 old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
5846 old_wm->trans_wm.min_ddb_alloc,
5847 old_wm->sagv_wm0.min_ddb_alloc,
5848 new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
5849 new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
5850 new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
5851 new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5852 new_wm->trans_wm.min_ddb_alloc,
5853 new_wm->sagv_wm0.min_ddb_alloc);
5858 static int intel_add_all_pipes(struct intel_atomic_state *state)
5860 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5861 struct intel_crtc *crtc;
5863 for_each_intel_crtc(&dev_priv->drm, crtc) {
5864 struct intel_crtc_state *crtc_state;
5866 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
5867 if (IS_ERR(crtc_state))
5868 return PTR_ERR(crtc_state);
5875 skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5877 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5881 * If this is our first atomic update following hardware readout,
5882 * we can't trust the DDB that the BIOS programmed for us. Let's
5883 * pretend that all pipes switched active status so that we'll
5884 * ensure a full DDB recompute.
5886 if (dev_priv->wm.distrust_bios_wm) {
5887 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5888 state->base.acquire_ctx);
5892 state->active_pipe_changes = INTEL_INFO(dev_priv)->pipe_mask;
5895 * We usually only initialize state->active_pipes if we
5896 * we're doing a modeset; make sure this field is always
5897 * initialized during the sanitization process that happens
5898 * on the first commit too.
5900 if (!state->modeset)
5901 state->active_pipes = dev_priv->active_pipes;
5905 * If the modeset changes which CRTC's are active, we need to
5906 * recompute the DDB allocation for *all* active pipes, even
5907 * those that weren't otherwise being modified in any way by this
5908 * atomic commit. Due to the shrinking of the per-pipe allocations
5909 * when new active CRTC's are added, it's possible for a pipe that
5910 * we were already using and aren't changing at all here to suddenly
5911 * become invalid if its DDB needs exceeds its new allocation.
5913 * Note that if we wind up doing a full DDB recompute, we can't let
5914 * any other display updates race with this transaction, so we need
5915 * to grab the lock on *all* CRTC's.
5917 if (state->active_pipe_changes || state->modeset) {
5918 ret = intel_add_all_pipes(state);
5927 * To make sure the cursor watermark registers are always consistent
5928 * with our computed state the following scenario needs special
5932 * 2. move cursor entirely offscreen
5935 * Step 2. does call .disable_plane() but does not zero the watermarks
5936 * (since we consider an offscreen cursor still active for the purposes
5937 * of watermarks). Step 3. would not normally call .disable_plane()
5938 * because the actual plane visibility isn't changing, and we don't
5939 * deallocate the cursor ddb until the pipe gets disabled. So we must
5940 * force step 3. to call .disable_plane() to update the watermark
5941 * registers properly.
5943 * Other planes do not suffer from this issues as their watermarks are
5944 * calculated based on the actual plane visibility. The only time this
5945 * can trigger for the other planes is during the initial readout as the
5946 * default value of the watermarks registers is not zero.
5948 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
5949 struct intel_crtc *crtc)
5951 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5952 const struct intel_crtc_state *old_crtc_state =
5953 intel_atomic_get_old_crtc_state(state, crtc);
5954 struct intel_crtc_state *new_crtc_state =
5955 intel_atomic_get_new_crtc_state(state, crtc);
5956 struct intel_plane *plane;
5958 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5959 struct intel_plane_state *plane_state;
5960 enum plane_id plane_id = plane->id;
5963 * Force a full wm update for every plane on modeset.
5964 * Required because the reset value of the wm registers
5965 * is non-zero, whereas we want all disabled planes to
5966 * have zero watermarks. So if we turn off the relevant
5967 * power well the hardware state will go out of sync
5968 * with the software state.
5970 if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
5971 skl_plane_wm_equals(dev_priv,
5972 &old_crtc_state->wm.skl.optimal.planes[plane_id],
5973 &new_crtc_state->wm.skl.optimal.planes[plane_id]))
5976 plane_state = intel_atomic_get_plane_state(state, plane);
5977 if (IS_ERR(plane_state))
5978 return PTR_ERR(plane_state);
5980 new_crtc_state->update_planes |= BIT(plane_id);
5987 skl_compute_wm(struct intel_atomic_state *state)
5989 struct intel_crtc *crtc;
5990 struct intel_crtc_state *new_crtc_state;
5991 struct intel_crtc_state *old_crtc_state;
5994 ret = skl_ddb_add_affected_pipes(state);
5999 * Calculate WM's for all pipes that are part of this transaction.
6000 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
6001 * weren't otherwise being modified if pipe allocations had to change.
6003 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6004 new_crtc_state, i) {
6005 ret = skl_build_pipe_wm(new_crtc_state);
6010 ret = skl_compute_ddb(state);
6014 ret = intel_compute_sagv_mask(state);
6019 * skl_compute_ddb() will have adjusted the final watermarks
6020 * based on how much ddb is available. Now we can actually
6021 * check if the final watermarks changed.
6023 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6024 new_crtc_state, i) {
6025 ret = skl_wm_add_affected_planes(state, crtc);
6030 skl_print_wm_changes(state);
6035 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
6036 struct intel_wm_config *config)
6038 struct intel_crtc *crtc;
6040 /* Compute the currently _active_ config */
6041 for_each_intel_crtc(&dev_priv->drm, crtc) {
6042 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
6044 if (!wm->pipe_enabled)
6047 config->sprites_enabled |= wm->sprites_enabled;
6048 config->sprites_scaled |= wm->sprites_scaled;
6049 config->num_pipes_active++;
6053 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
6055 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
6056 struct ilk_wm_maximums max;
6057 struct intel_wm_config config = {};
6058 struct ilk_wm_values results = {};
6059 enum intel_ddb_partitioning partitioning;
6061 ilk_compute_wm_config(dev_priv, &config);
6063 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
6064 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
6066 /* 5/6 split only in single pipe config on IVB+ */
6067 if (INTEL_GEN(dev_priv) >= 7 &&
6068 config.num_pipes_active == 1 && config.sprites_enabled) {
6069 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
6070 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
6072 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
6074 best_lp_wm = &lp_wm_1_2;
6077 partitioning = (best_lp_wm == &lp_wm_1_2) ?
6078 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
6080 ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
6082 ilk_write_wm_values(dev_priv, &results);
6085 static void ilk_initial_watermarks(struct intel_atomic_state *state,
6086 struct intel_crtc *crtc)
6088 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6089 const struct intel_crtc_state *crtc_state =
6090 intel_atomic_get_new_crtc_state(state, crtc);
6092 mutex_lock(&dev_priv->wm.wm_mutex);
6093 crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
6094 ilk_program_watermarks(dev_priv);
6095 mutex_unlock(&dev_priv->wm.wm_mutex);
6098 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
6099 struct intel_crtc *crtc)
6101 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6102 const struct intel_crtc_state *crtc_state =
6103 intel_atomic_get_new_crtc_state(state, crtc);
6105 if (!crtc_state->wm.need_postvbl_update)
6108 mutex_lock(&dev_priv->wm.wm_mutex);
6109 crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
6110 ilk_program_watermarks(dev_priv);
6111 mutex_unlock(&dev_priv->wm.wm_mutex);
6114 static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
6116 level->plane_en = val & PLANE_WM_EN;
6117 level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
6118 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
6119 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
6120 PLANE_WM_LINES_MASK;
6123 void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
6124 struct skl_pipe_wm *out)
6126 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6127 enum pipe pipe = crtc->pipe;
6128 int level, max_level;
6129 enum plane_id plane_id;
6132 max_level = ilk_wm_max_level(dev_priv);
6134 for_each_plane_id_on_crtc(crtc, plane_id) {
6135 struct skl_plane_wm *wm = &out->planes[plane_id];
6137 for (level = 0; level <= max_level; level++) {
6138 if (plane_id != PLANE_CURSOR)
6139 val = I915_READ(PLANE_WM(pipe, plane_id, level));
6141 val = I915_READ(CUR_WM(pipe, level));
6143 skl_wm_level_from_reg_val(val, &wm->wm[level]);
6146 if (INTEL_GEN(dev_priv) >= 12)
6147 wm->sagv_wm0 = wm->wm[0];
6149 if (plane_id != PLANE_CURSOR)
6150 val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
6152 val = I915_READ(CUR_WM_TRANS(pipe));
6154 skl_wm_level_from_reg_val(val, &wm->trans_wm);
6161 void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
6163 struct intel_crtc *crtc;
6164 struct intel_crtc_state *crtc_state;
6166 skl_ddb_get_hw_state(dev_priv);
6167 for_each_intel_crtc(&dev_priv->drm, crtc) {
6168 crtc_state = to_intel_crtc_state(crtc->base.state);
6170 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
6173 if (dev_priv->active_pipes) {
6174 /* Fully recompute DDB on first atomic commit */
6175 dev_priv->wm.distrust_bios_wm = true;
6179 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
6181 struct drm_device *dev = crtc->base.dev;
6182 struct drm_i915_private *dev_priv = to_i915(dev);
6183 struct ilk_wm_values *hw = &dev_priv->wm.hw;
6184 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
6185 struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
6186 enum pipe pipe = crtc->pipe;
6187 static const i915_reg_t wm0_pipe_reg[] = {
6188 [PIPE_A] = WM0_PIPEA_ILK,
6189 [PIPE_B] = WM0_PIPEB_ILK,
6190 [PIPE_C] = WM0_PIPEC_IVB,
6193 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
6195 memset(active, 0, sizeof(*active));
6197 active->pipe_enabled = crtc->active;
6199 if (active->pipe_enabled) {
6200 u32 tmp = hw->wm_pipe[pipe];
6203 * For active pipes LP0 watermark is marked as
6204 * enabled, and LP1+ watermaks as disabled since
6205 * we can't really reverse compute them in case
6206 * multiple pipes are active.
6208 active->wm[0].enable = true;
6209 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
6210 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
6211 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
6213 int level, max_level = ilk_wm_max_level(dev_priv);
6216 * For inactive pipes, all watermark levels
6217 * should be marked as enabled but zeroed,
6218 * which is what we'd compute them to.
6220 for (level = 0; level <= max_level; level++)
6221 active->wm[level].enable = true;
6224 crtc->wm.active.ilk = *active;
6227 #define _FW_WM(value, plane) \
6228 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
6229 #define _FW_WM_VLV(value, plane) \
6230 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
6232 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
6233 struct g4x_wm_values *wm)
6237 tmp = I915_READ(DSPFW1);
6238 wm->sr.plane = _FW_WM(tmp, SR);
6239 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6240 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
6241 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
6243 tmp = I915_READ(DSPFW2);
6244 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
6245 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
6246 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
6247 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
6248 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6249 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
6251 tmp = I915_READ(DSPFW3);
6252 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
6253 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6254 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
6255 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
6258 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
6259 struct vlv_wm_values *wm)
6264 for_each_pipe(dev_priv, pipe) {
6265 tmp = I915_READ(VLV_DDL(pipe));
6267 wm->ddl[pipe].plane[PLANE_PRIMARY] =
6268 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6269 wm->ddl[pipe].plane[PLANE_CURSOR] =
6270 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6271 wm->ddl[pipe].plane[PLANE_SPRITE0] =
6272 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6273 wm->ddl[pipe].plane[PLANE_SPRITE1] =
6274 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6277 tmp = I915_READ(DSPFW1);
6278 wm->sr.plane = _FW_WM(tmp, SR);
6279 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6280 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
6281 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6283 tmp = I915_READ(DSPFW2);
6284 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
6285 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6286 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6288 tmp = I915_READ(DSPFW3);
6289 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6291 if (IS_CHERRYVIEW(dev_priv)) {
6292 tmp = I915_READ(DSPFW7_CHV);
6293 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6294 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6296 tmp = I915_READ(DSPFW8_CHV);
6297 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
6298 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6300 tmp = I915_READ(DSPFW9_CHV);
6301 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
6302 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6304 tmp = I915_READ(DSPHOWM);
6305 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6306 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
6307 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
6308 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
6309 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6310 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6311 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6312 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6313 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6314 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6316 tmp = I915_READ(DSPFW7);
6317 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6318 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6320 tmp = I915_READ(DSPHOWM);
6321 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6322 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6323 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6324 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6325 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6326 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6327 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6334 void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6336 struct g4x_wm_values *wm = &dev_priv->wm.g4x;
6337 struct intel_crtc *crtc;
6339 g4x_read_wm_values(dev_priv, wm);
6341 wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
6343 for_each_intel_crtc(&dev_priv->drm, crtc) {
6344 struct intel_crtc_state *crtc_state =
6345 to_intel_crtc_state(crtc->base.state);
6346 struct g4x_wm_state *active = &crtc->wm.active.g4x;
6347 struct g4x_pipe_wm *raw;
6348 enum pipe pipe = crtc->pipe;
6349 enum plane_id plane_id;
6350 int level, max_level;
6352 active->cxsr = wm->cxsr;
6353 active->hpll_en = wm->hpll_en;
6354 active->fbc_en = wm->fbc_en;
6356 active->sr = wm->sr;
6357 active->hpll = wm->hpll;
6359 for_each_plane_id_on_crtc(crtc, plane_id) {
6360 active->wm.plane[plane_id] =
6361 wm->pipe[pipe].plane[plane_id];
6364 if (wm->cxsr && wm->hpll_en)
6365 max_level = G4X_WM_LEVEL_HPLL;
6367 max_level = G4X_WM_LEVEL_SR;
6369 max_level = G4X_WM_LEVEL_NORMAL;
6371 level = G4X_WM_LEVEL_NORMAL;
6372 raw = &crtc_state->wm.g4x.raw[level];
6373 for_each_plane_id_on_crtc(crtc, plane_id)
6374 raw->plane[plane_id] = active->wm.plane[plane_id];
6376 if (++level > max_level)
6379 raw = &crtc_state->wm.g4x.raw[level];
6380 raw->plane[PLANE_PRIMARY] = active->sr.plane;
6381 raw->plane[PLANE_CURSOR] = active->sr.cursor;
6382 raw->plane[PLANE_SPRITE0] = 0;
6383 raw->fbc = active->sr.fbc;
6385 if (++level > max_level)
6388 raw = &crtc_state->wm.g4x.raw[level];
6389 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6390 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6391 raw->plane[PLANE_SPRITE0] = 0;
6392 raw->fbc = active->hpll.fbc;
6395 for_each_plane_id_on_crtc(crtc, plane_id)
6396 g4x_raw_plane_wm_set(crtc_state, level,
6397 plane_id, USHRT_MAX);
6398 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6400 crtc_state->wm.g4x.optimal = *active;
6401 crtc_state->wm.g4x.intermediate = *active;
6403 drm_dbg_kms(&dev_priv->drm,
6404 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6406 wm->pipe[pipe].plane[PLANE_PRIMARY],
6407 wm->pipe[pipe].plane[PLANE_CURSOR],
6408 wm->pipe[pipe].plane[PLANE_SPRITE0]);
6411 drm_dbg_kms(&dev_priv->drm,
6412 "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6413 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6414 drm_dbg_kms(&dev_priv->drm,
6415 "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6416 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6417 drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
6418 yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6421 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6423 struct intel_plane *plane;
6424 struct intel_crtc *crtc;
6426 mutex_lock(&dev_priv->wm.wm_mutex);
6428 for_each_intel_plane(&dev_priv->drm, plane) {
6429 struct intel_crtc *crtc =
6430 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6431 struct intel_crtc_state *crtc_state =
6432 to_intel_crtc_state(crtc->base.state);
6433 struct intel_plane_state *plane_state =
6434 to_intel_plane_state(plane->base.state);
6435 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6436 enum plane_id plane_id = plane->id;
6439 if (plane_state->uapi.visible)
6442 for (level = 0; level < 3; level++) {
6443 struct g4x_pipe_wm *raw =
6444 &crtc_state->wm.g4x.raw[level];
6446 raw->plane[plane_id] = 0;
6447 wm_state->wm.plane[plane_id] = 0;
6450 if (plane_id == PLANE_PRIMARY) {
6451 for (level = 0; level < 3; level++) {
6452 struct g4x_pipe_wm *raw =
6453 &crtc_state->wm.g4x.raw[level];
6457 wm_state->sr.fbc = 0;
6458 wm_state->hpll.fbc = 0;
6459 wm_state->fbc_en = false;
6463 for_each_intel_crtc(&dev_priv->drm, crtc) {
6464 struct intel_crtc_state *crtc_state =
6465 to_intel_crtc_state(crtc->base.state);
6467 crtc_state->wm.g4x.intermediate =
6468 crtc_state->wm.g4x.optimal;
6469 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6472 g4x_program_watermarks(dev_priv);
6474 mutex_unlock(&dev_priv->wm.wm_mutex);
6477 void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6479 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6480 struct intel_crtc *crtc;
6483 vlv_read_wm_values(dev_priv, wm);
6485 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6486 wm->level = VLV_WM_LEVEL_PM2;
6488 if (IS_CHERRYVIEW(dev_priv)) {
6489 vlv_punit_get(dev_priv);
6491 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6492 if (val & DSP_MAXFIFO_PM5_ENABLE)
6493 wm->level = VLV_WM_LEVEL_PM5;
6496 * If DDR DVFS is disabled in the BIOS, Punit
6497 * will never ack the request. So if that happens
6498 * assume we don't have to enable/disable DDR DVFS
6499 * dynamically. To test that just set the REQ_ACK
6500 * bit to poke the Punit, but don't change the
6501 * HIGH/LOW bits so that we don't actually change
6502 * the current state.
6504 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6505 val |= FORCE_DDR_FREQ_REQ_ACK;
6506 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6508 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6509 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6510 drm_dbg_kms(&dev_priv->drm,
6511 "Punit not acking DDR DVFS request, "
6512 "assuming DDR DVFS is disabled\n");
6513 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6515 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6516 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6517 wm->level = VLV_WM_LEVEL_DDR_DVFS;
6520 vlv_punit_put(dev_priv);
6523 for_each_intel_crtc(&dev_priv->drm, crtc) {
6524 struct intel_crtc_state *crtc_state =
6525 to_intel_crtc_state(crtc->base.state);
6526 struct vlv_wm_state *active = &crtc->wm.active.vlv;
6527 const struct vlv_fifo_state *fifo_state =
6528 &crtc_state->wm.vlv.fifo_state;
6529 enum pipe pipe = crtc->pipe;
6530 enum plane_id plane_id;
6533 vlv_get_fifo_size(crtc_state);
6535 active->num_levels = wm->level + 1;
6536 active->cxsr = wm->cxsr;
6538 for (level = 0; level < active->num_levels; level++) {
6539 struct g4x_pipe_wm *raw =
6540 &crtc_state->wm.vlv.raw[level];
6542 active->sr[level].plane = wm->sr.plane;
6543 active->sr[level].cursor = wm->sr.cursor;
6545 for_each_plane_id_on_crtc(crtc, plane_id) {
6546 active->wm[level].plane[plane_id] =
6547 wm->pipe[pipe].plane[plane_id];
6549 raw->plane[plane_id] =
6550 vlv_invert_wm_value(active->wm[level].plane[plane_id],
6551 fifo_state->plane[plane_id]);
6555 for_each_plane_id_on_crtc(crtc, plane_id)
6556 vlv_raw_plane_wm_set(crtc_state, level,
6557 plane_id, USHRT_MAX);
6558 vlv_invalidate_wms(crtc, active, level);
6560 crtc_state->wm.vlv.optimal = *active;
6561 crtc_state->wm.vlv.intermediate = *active;
6563 drm_dbg_kms(&dev_priv->drm,
6564 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6566 wm->pipe[pipe].plane[PLANE_PRIMARY],
6567 wm->pipe[pipe].plane[PLANE_CURSOR],
6568 wm->pipe[pipe].plane[PLANE_SPRITE0],
6569 wm->pipe[pipe].plane[PLANE_SPRITE1]);
6572 drm_dbg_kms(&dev_priv->drm,
6573 "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
6574 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6577 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
6579 struct intel_plane *plane;
6580 struct intel_crtc *crtc;
6582 mutex_lock(&dev_priv->wm.wm_mutex);
6584 for_each_intel_plane(&dev_priv->drm, plane) {
6585 struct intel_crtc *crtc =
6586 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6587 struct intel_crtc_state *crtc_state =
6588 to_intel_crtc_state(crtc->base.state);
6589 struct intel_plane_state *plane_state =
6590 to_intel_plane_state(plane->base.state);
6591 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
6592 const struct vlv_fifo_state *fifo_state =
6593 &crtc_state->wm.vlv.fifo_state;
6594 enum plane_id plane_id = plane->id;
6597 if (plane_state->uapi.visible)
6600 for (level = 0; level < wm_state->num_levels; level++) {
6601 struct g4x_pipe_wm *raw =
6602 &crtc_state->wm.vlv.raw[level];
6604 raw->plane[plane_id] = 0;
6606 wm_state->wm[level].plane[plane_id] =
6607 vlv_invert_wm_value(raw->plane[plane_id],
6608 fifo_state->plane[plane_id]);
6612 for_each_intel_crtc(&dev_priv->drm, crtc) {
6613 struct intel_crtc_state *crtc_state =
6614 to_intel_crtc_state(crtc->base.state);
6616 crtc_state->wm.vlv.intermediate =
6617 crtc_state->wm.vlv.optimal;
6618 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6621 vlv_program_watermarks(dev_priv);
6623 mutex_unlock(&dev_priv->wm.wm_mutex);
6627 * FIXME should probably kill this and improve
6628 * the real watermark readout/sanitation instead
6630 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6632 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6633 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6634 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6637 * Don't touch WM1S_LP_EN here.
6638 * Doing so could cause underruns.
6642 void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6644 struct ilk_wm_values *hw = &dev_priv->wm.hw;
6645 struct intel_crtc *crtc;
6647 ilk_init_lp_watermarks(dev_priv);
6649 for_each_intel_crtc(&dev_priv->drm, crtc)
6650 ilk_pipe_wm_get_hw_state(crtc);
6652 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6653 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6654 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6656 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6657 if (INTEL_GEN(dev_priv) >= 7) {
6658 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6659 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6662 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6663 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6664 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6665 else if (IS_IVYBRIDGE(dev_priv))
6666 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6667 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6670 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6674 * intel_update_watermarks - update FIFO watermark values based on current modes
6675 * @crtc: the #intel_crtc on which to compute the WM
6677 * Calculate watermark values for the various WM regs based on current mode
6678 * and plane configuration.
6680 * There are several cases to deal with here:
6681 * - normal (i.e. non-self-refresh)
6682 * - self-refresh (SR) mode
6683 * - lines are large relative to FIFO size (buffer can hold up to 2)
6684 * - lines are small relative to FIFO size (buffer can hold more than 2
6685 * lines), so need to account for TLB latency
6687 * The normal calculation is:
6688 * watermark = dotclock * bytes per pixel * latency
6689 * where latency is platform & configuration dependent (we assume pessimal
6692 * The SR calculation is:
6693 * watermark = (trunc(latency/line time)+1) * surface width *
6696 * line time = htotal / dotclock
6697 * surface width = hdisplay for normal plane and 64 for cursor
6698 * and latency is assumed to be high, as above.
6700 * The final value programmed to the register should always be rounded up,
6701 * and include an extra 2 entries to account for clock crossings.
6703 * We don't use the sprite, so we can ignore that. And on Crestline we have
6704 * to set the non-SR watermarks to 8.
6706 void intel_update_watermarks(struct intel_crtc *crtc)
6708 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6710 if (dev_priv->display.update_wm)
6711 dev_priv->display.update_wm(crtc);
6714 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6718 if (!HAS_IPC(dev_priv))
6721 val = I915_READ(DISP_ARB_CTL2);
6723 if (dev_priv->ipc_enabled)
6724 val |= DISP_IPC_ENABLE;
6726 val &= ~DISP_IPC_ENABLE;
6728 I915_WRITE(DISP_ARB_CTL2, val);
6731 static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
6733 /* Display WA #0477 WaDisableIPC: skl */
6734 if (IS_SKYLAKE(dev_priv))
6737 /* Display WA #1141: SKL:all KBL:all CFL */
6738 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
6739 return dev_priv->dram_info.symmetric_memory;
6744 void intel_init_ipc(struct drm_i915_private *dev_priv)
6746 if (!HAS_IPC(dev_priv))
6749 dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6751 intel_enable_ipc(dev_priv);
6754 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6757 * On Ibex Peak and Cougar Point, we need to disable clock
6758 * gating for the panel power sequencer or it will fail to
6759 * start up when no ports are active.
6761 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6764 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6768 for_each_pipe(dev_priv, pipe) {
6769 I915_WRITE(DSPCNTR(pipe),
6770 I915_READ(DSPCNTR(pipe)) |
6771 DISPPLANE_TRICKLE_FEED_DISABLE);
6773 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6774 POSTING_READ(DSPSURF(pipe));
6778 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6780 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6784 * WaFbcDisableDpfcClockGating:ilk
6786 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6787 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6788 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6790 I915_WRITE(PCH_3DCGDIS0,
6791 MARIUNIT_CLOCK_GATE_DISABLE |
6792 SVSMUNIT_CLOCK_GATE_DISABLE);
6793 I915_WRITE(PCH_3DCGDIS1,
6794 VFMUNIT_CLOCK_GATE_DISABLE);
6797 * According to the spec the following bits should be set in
6798 * order to enable memory self-refresh
6799 * The bit 22/21 of 0x42004
6800 * The bit 5 of 0x42020
6801 * The bit 15 of 0x45000
6803 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6804 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6805 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6806 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6807 I915_WRITE(DISP_ARB_CTL,
6808 (I915_READ(DISP_ARB_CTL) |
6812 * Based on the document from hardware guys the following bits
6813 * should be set unconditionally in order to enable FBC.
6814 * The bit 22 of 0x42000
6815 * The bit 22 of 0x42004
6816 * The bit 7,8,9 of 0x42020.
6818 if (IS_IRONLAKE_M(dev_priv)) {
6819 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6820 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6821 I915_READ(ILK_DISPLAY_CHICKEN1) |
6823 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6824 I915_READ(ILK_DISPLAY_CHICKEN2) |
6828 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6830 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6831 I915_READ(ILK_DISPLAY_CHICKEN2) |
6832 ILK_ELPIN_409_SELECT);
6834 g4x_disable_trickle_feed(dev_priv);
6836 ibx_init_clock_gating(dev_priv);
6839 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6845 * On Ibex Peak and Cougar Point, we need to disable clock
6846 * gating for the panel power sequencer or it will fail to
6847 * start up when no ports are active.
6849 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6850 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6851 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6852 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6853 DPLS_EDP_PPS_FIX_DIS);
6854 /* The below fixes the weird display corruption, a few pixels shifted
6855 * downward, on (only) LVDS of some HP laptops with IVY.
6857 for_each_pipe(dev_priv, pipe) {
6858 val = I915_READ(TRANS_CHICKEN2(pipe));
6859 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6860 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6861 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6862 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6863 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6864 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6865 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6867 /* WADP0ClockGatingDisable */
6868 for_each_pipe(dev_priv, pipe) {
6869 I915_WRITE(TRANS_CHICKEN1(pipe),
6870 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6874 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6878 tmp = I915_READ(MCH_SSKPD);
6879 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6880 drm_dbg_kms(&dev_priv->drm,
6881 "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6885 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6887 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6889 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6891 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6892 I915_READ(ILK_DISPLAY_CHICKEN2) |
6893 ILK_ELPIN_409_SELECT);
6895 I915_WRITE(GEN6_UCGCTL1,
6896 I915_READ(GEN6_UCGCTL1) |
6897 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6898 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6900 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6901 * gating disable must be set. Failure to set it results in
6902 * flickering pixels due to Z write ordering failures after
6903 * some amount of runtime in the Mesa "fire" demo, and Unigine
6904 * Sanctuary and Tropics, and apparently anything else with
6905 * alpha test or pixel discard.
6907 * According to the spec, bit 11 (RCCUNIT) must also be set,
6908 * but we didn't debug actual testcases to find it out.
6910 * WaDisableRCCUnitClockGating:snb
6911 * WaDisableRCPBUnitClockGating:snb
6913 I915_WRITE(GEN6_UCGCTL2,
6914 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6915 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6918 * According to the spec the following bits should be
6919 * set in order to enable memory self-refresh and fbc:
6920 * The bit21 and bit22 of 0x42000
6921 * The bit21 and bit22 of 0x42004
6922 * The bit5 and bit7 of 0x42020
6923 * The bit14 of 0x70180
6924 * The bit14 of 0x71180
6926 * WaFbcAsynchFlipDisableFbcQueue:snb
6928 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6929 I915_READ(ILK_DISPLAY_CHICKEN1) |
6930 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6931 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6932 I915_READ(ILK_DISPLAY_CHICKEN2) |
6933 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6934 I915_WRITE(ILK_DSPCLK_GATE_D,
6935 I915_READ(ILK_DSPCLK_GATE_D) |
6936 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6937 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6939 g4x_disable_trickle_feed(dev_priv);
6941 cpt_init_clock_gating(dev_priv);
6943 gen6_check_mch_setup(dev_priv);
6946 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
6949 * TODO: this bit should only be enabled when really needed, then
6950 * disabled when not needed anymore in order to save power.
6952 if (HAS_PCH_LPT_LP(dev_priv))
6953 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6954 I915_READ(SOUTH_DSPCLK_GATE_D) |
6955 PCH_LP_PARTITION_LEVEL_DISABLE);
6957 /* WADPOClockGatingDisable:hsw */
6958 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6959 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6960 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6963 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
6965 if (HAS_PCH_LPT_LP(dev_priv)) {
6966 u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6968 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6969 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6973 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
6974 int general_prio_credits,
6975 int high_prio_credits)
6980 /* WaTempDisableDOPClkGating:bdw */
6981 misccpctl = I915_READ(GEN7_MISCCPCTL);
6982 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6984 val = I915_READ(GEN8_L3SQCREG1);
6985 val &= ~L3_PRIO_CREDITS_MASK;
6986 val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
6987 val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
6988 I915_WRITE(GEN8_L3SQCREG1, val);
6991 * Wait at least 100 clocks before re-enabling clock gating.
6992 * See the definition of L3SQCREG1 in BSpec.
6994 POSTING_READ(GEN8_L3SQCREG1);
6996 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6999 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
7001 /* This is not an Wa. Enable to reduce Sampler power */
7002 I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
7003 I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
7005 /*Wa_14010594013:icl, ehl */
7006 intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
7007 0, CNL_DELAY_PMRSP);
7010 static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
7012 u32 vd_pg_enable = 0;
7015 /* This is not a WA. Enable VD HCP & MFX_ENC powergate */
7016 for (i = 0; i < I915_MAX_VCS; i++) {
7017 if (HAS_ENGINE(dev_priv, _VCS(i)))
7018 vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
7019 VDN_MFX_POWERGATE_ENABLE(i);
7022 I915_WRITE(POWERGATE_ENABLE,
7023 I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
7025 /* Wa_1409825376:tgl (pre-prod)*/
7026 if (IS_TGL_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0))
7027 I915_WRITE(GEN9_CLKGATE_DIS_3, I915_READ(GEN9_CLKGATE_DIS_3) |
7028 TGL_VRH_GATING_DIS);
7030 /* Wa_14011059788:tgl */
7031 intel_uncore_rmw(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN,
7035 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
7037 if (!HAS_PCH_CNP(dev_priv))
7040 /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
7041 I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
7042 CNP_PWM_CGE_GATING_DISABLE);
7045 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
7048 cnp_init_clock_gating(dev_priv);
7050 /* This is not an Wa. Enable for better image quality */
7051 I915_WRITE(_3D_CHICKEN3,
7052 _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
7054 /* WaEnableChickenDCPR:cnl */
7055 I915_WRITE(GEN8_CHICKEN_DCPR_1,
7056 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
7058 /* WaFbcWakeMemOn:cnl */
7059 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
7060 DISP_FBC_MEMORY_WAKE);
7062 val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
7063 /* ReadHitWriteOnlyDisable:cnl */
7064 val |= RCCUNIT_CLKGATE_DIS;
7065 I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
7067 /* Wa_2201832410:cnl */
7068 val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
7069 val |= GWUNIT_CLKGATE_DIS;
7070 I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
7072 /* WaDisableVFclkgate:cnl */
7073 /* WaVFUnitClockGatingDisable:cnl */
7074 val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
7075 val |= VFUNIT_CLKGATE_DIS;
7076 I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
7079 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
7081 cnp_init_clock_gating(dev_priv);
7082 gen9_init_clock_gating(dev_priv);
7084 /* WaFbcNukeOnHostModify:cfl */
7085 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7086 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7089 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
7091 gen9_init_clock_gating(dev_priv);
7093 /* WaDisableSDEUnitClockGating:kbl */
7094 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7095 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7096 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7098 /* WaDisableGamClockGating:kbl */
7099 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7100 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7101 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7103 /* WaFbcNukeOnHostModify:kbl */
7104 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7105 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7108 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
7110 gen9_init_clock_gating(dev_priv);
7112 /* WAC6entrylatency:skl */
7113 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7114 FBC_LLC_FULLY_OPEN);
7116 /* WaFbcNukeOnHostModify:skl */
7117 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7118 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7121 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
7125 /* WaSwitchSolVfFArbitrationPriority:bdw */
7126 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7128 /* WaPsrDPAMaskVBlankInSRD:bdw */
7129 I915_WRITE(CHICKEN_PAR1_1,
7130 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7132 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7133 for_each_pipe(dev_priv, pipe) {
7134 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7135 I915_READ(CHICKEN_PIPESL_1(pipe)) |
7136 BDW_DPRS_MASK_VBLANK_SRD);
7139 /* WaVSRefCountFullforceMissDisable:bdw */
7140 /* WaDSRefCountFullforceMissDisable:bdw */
7141 I915_WRITE(GEN7_FF_THREAD_MODE,
7142 I915_READ(GEN7_FF_THREAD_MODE) &
7143 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7145 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7146 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7148 /* WaDisableSDEUnitClockGating:bdw */
7149 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7150 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7152 /* WaProgramL3SqcReg1Default:bdw */
7153 gen8_set_l3sqc_credits(dev_priv, 30, 2);
7155 /* WaKVMNotificationOnConfigChange:bdw */
7156 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7157 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7159 lpt_init_clock_gating(dev_priv);
7161 /* WaDisableDopClockGating:bdw
7163 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
7166 I915_WRITE(GEN6_UCGCTL1,
7167 I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
7170 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7172 /* This is required by WaCatErrorRejectionIssue:hsw */
7173 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7174 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7175 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7177 /* WaSwitchSolVfFArbitrationPriority:hsw */
7178 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7180 lpt_init_clock_gating(dev_priv);
7183 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7187 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7189 /* WaDisableBackToBackFlipFix:ivb */
7190 I915_WRITE(IVB_CHICKEN3,
7191 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7192 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7194 if (IS_IVB_GT1(dev_priv))
7195 I915_WRITE(GEN7_ROW_CHICKEN2,
7196 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7198 /* must write both registers */
7199 I915_WRITE(GEN7_ROW_CHICKEN2,
7200 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7201 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7202 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7206 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7207 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7209 I915_WRITE(GEN6_UCGCTL2,
7210 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7212 /* This is required by WaCatErrorRejectionIssue:ivb */
7213 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7214 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7215 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7217 g4x_disable_trickle_feed(dev_priv);
7219 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7220 snpcr &= ~GEN6_MBC_SNPCR_MASK;
7221 snpcr |= GEN6_MBC_SNPCR_MED;
7222 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7224 if (!HAS_PCH_NOP(dev_priv))
7225 cpt_init_clock_gating(dev_priv);
7227 gen6_check_mch_setup(dev_priv);
7230 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7232 /* WaDisableBackToBackFlipFix:vlv */
7233 I915_WRITE(IVB_CHICKEN3,
7234 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7235 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7237 /* WaDisableDopClockGating:vlv */
7238 I915_WRITE(GEN7_ROW_CHICKEN2,
7239 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7241 /* This is required by WaCatErrorRejectionIssue:vlv */
7242 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7243 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7244 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7247 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7248 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7250 I915_WRITE(GEN6_UCGCTL2,
7251 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7253 /* WaDisableL3Bank2xClockGate:vlv
7254 * Disabling L3 clock gating- MMIO 940c[25] = 1
7255 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7256 I915_WRITE(GEN7_UCGCTL4,
7257 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7260 * WaDisableVLVClockGating_VBIIssue:vlv
7261 * Disable clock gating on th GCFG unit to prevent a delay
7262 * in the reporting of vblank events.
7264 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7267 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7269 /* WaVSRefCountFullforceMissDisable:chv */
7270 /* WaDSRefCountFullforceMissDisable:chv */
7271 I915_WRITE(GEN7_FF_THREAD_MODE,
7272 I915_READ(GEN7_FF_THREAD_MODE) &
7273 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7275 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7276 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7277 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7279 /* WaDisableCSUnitClockGating:chv */
7280 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7281 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7283 /* WaDisableSDEUnitClockGating:chv */
7284 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7285 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7288 * WaProgramL3SqcReg1Default:chv
7289 * See gfxspecs/Related Documents/Performance Guide/
7290 * LSQC Setting Recommendations.
7292 gen8_set_l3sqc_credits(dev_priv, 38, 2);
7295 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7299 I915_WRITE(RENCLK_GATE_D1, 0);
7300 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7301 GS_UNIT_CLOCK_GATE_DISABLE |
7302 CL_UNIT_CLOCK_GATE_DISABLE);
7303 I915_WRITE(RAMCLK_GATE_D, 0);
7304 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7305 OVRUNIT_CLOCK_GATE_DISABLE |
7306 OVCUNIT_CLOCK_GATE_DISABLE;
7307 if (IS_GM45(dev_priv))
7308 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7309 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7311 /* WaDisableRenderCachePipelinedFlush */
7312 I915_WRITE(CACHE_MODE_0,
7313 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7315 /* WaDisable_RenderCache_OperationalFlush:g4x */
7316 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7318 g4x_disable_trickle_feed(dev_priv);
7321 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7323 struct intel_uncore *uncore = &dev_priv->uncore;
7325 intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7326 intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
7327 intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
7328 intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
7329 intel_uncore_write16(uncore, DEUC, 0);
7330 intel_uncore_write(uncore,
7332 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7334 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7335 intel_uncore_write(uncore,
7337 _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7340 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7342 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7343 I965_RCC_CLOCK_GATE_DISABLE |
7344 I965_RCPB_CLOCK_GATE_DISABLE |
7345 I965_ISC_CLOCK_GATE_DISABLE |
7346 I965_FBC_CLOCK_GATE_DISABLE);
7347 I915_WRITE(RENCLK_GATE_D2, 0);
7348 I915_WRITE(MI_ARB_STATE,
7349 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7351 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7352 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7355 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7357 u32 dstate = I915_READ(D_STATE);
7359 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7360 DSTATE_DOT_CLOCK_GATING;
7361 I915_WRITE(D_STATE, dstate);
7363 if (IS_PINEVIEW(dev_priv))
7364 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7366 /* IIR "flip pending" means done if this bit is set */
7367 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7369 /* interrupts should cause a wake up from C3 */
7370 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7372 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7373 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7375 I915_WRITE(MI_ARB_STATE,
7376 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7379 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7381 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7383 /* interrupts should cause a wake up from C3 */
7384 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7385 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7387 I915_WRITE(MEM_MODE,
7388 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7391 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7393 I915_WRITE(MEM_MODE,
7394 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7395 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7398 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7400 dev_priv->display.init_clock_gating(dev_priv);
7403 void intel_suspend_hw(struct drm_i915_private *dev_priv)
7405 if (HAS_PCH_LPT(dev_priv))
7406 lpt_suspend_hw(dev_priv);
7409 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7411 drm_dbg_kms(&dev_priv->drm,
7412 "No clock gating settings or workarounds applied.\n");
7416 * intel_init_clock_gating_hooks - setup the clock gating hooks
7417 * @dev_priv: device private
7419 * Setup the hooks that configure which clocks of a given platform can be
7420 * gated and also apply various GT and display specific workarounds for these
7421 * platforms. Note that some GT specific workarounds are applied separately
7422 * when GPU contexts or batchbuffers start their execution.
7424 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7426 if (IS_GEN(dev_priv, 12))
7427 dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7428 else if (IS_GEN(dev_priv, 11))
7429 dev_priv->display.init_clock_gating = icl_init_clock_gating;
7430 else if (IS_CANNONLAKE(dev_priv))
7431 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7432 else if (IS_COFFEELAKE(dev_priv))
7433 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7434 else if (IS_SKYLAKE(dev_priv))
7435 dev_priv->display.init_clock_gating = skl_init_clock_gating;
7436 else if (IS_KABYLAKE(dev_priv))
7437 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7438 else if (IS_BROXTON(dev_priv))
7439 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7440 else if (IS_GEMINILAKE(dev_priv))
7441 dev_priv->display.init_clock_gating = glk_init_clock_gating;
7442 else if (IS_BROADWELL(dev_priv))
7443 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7444 else if (IS_CHERRYVIEW(dev_priv))
7445 dev_priv->display.init_clock_gating = chv_init_clock_gating;
7446 else if (IS_HASWELL(dev_priv))
7447 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7448 else if (IS_IVYBRIDGE(dev_priv))
7449 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7450 else if (IS_VALLEYVIEW(dev_priv))
7451 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7452 else if (IS_GEN(dev_priv, 6))
7453 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7454 else if (IS_GEN(dev_priv, 5))
7455 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7456 else if (IS_G4X(dev_priv))
7457 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7458 else if (IS_I965GM(dev_priv))
7459 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7460 else if (IS_I965G(dev_priv))
7461 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7462 else if (IS_GEN(dev_priv, 3))
7463 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7464 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7465 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7466 else if (IS_GEN(dev_priv, 2))
7467 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7469 MISSING_CASE(INTEL_DEVID(dev_priv));
7470 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7474 /* Set up chip specific power management-related functions */
7475 void intel_init_pm(struct drm_i915_private *dev_priv)
7478 if (IS_PINEVIEW(dev_priv))
7479 pnv_get_mem_freq(dev_priv);
7480 else if (IS_GEN(dev_priv, 5))
7481 ilk_get_mem_freq(dev_priv);
7483 if (intel_has_sagv(dev_priv))
7484 skl_setup_sagv_block_time(dev_priv);
7486 /* For FIFO watermark updates */
7487 if (INTEL_GEN(dev_priv) >= 9) {
7488 skl_setup_wm_latency(dev_priv);
7489 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7490 } else if (HAS_PCH_SPLIT(dev_priv)) {
7491 ilk_setup_wm_latency(dev_priv);
7493 if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7494 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7495 (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7496 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7497 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7498 dev_priv->display.compute_intermediate_wm =
7499 ilk_compute_intermediate_wm;
7500 dev_priv->display.initial_watermarks =
7501 ilk_initial_watermarks;
7502 dev_priv->display.optimize_watermarks =
7503 ilk_optimize_watermarks;
7505 drm_dbg_kms(&dev_priv->drm,
7506 "Failed to read display plane latency. "
7509 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7510 vlv_setup_wm_latency(dev_priv);
7511 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7512 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7513 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7514 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7515 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7516 } else if (IS_G4X(dev_priv)) {
7517 g4x_setup_wm_latency(dev_priv);
7518 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
7519 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
7520 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
7521 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7522 } else if (IS_PINEVIEW(dev_priv)) {
7523 if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7526 dev_priv->mem_freq)) {
7527 drm_info(&dev_priv->drm,
7528 "failed to find known CxSR latency "
7529 "(found ddr%s fsb freq %d, mem freq %d), "
7531 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7532 dev_priv->fsb_freq, dev_priv->mem_freq);
7533 /* Disable CxSR and never update its watermark again */
7534 intel_set_memory_cxsr(dev_priv, false);
7535 dev_priv->display.update_wm = NULL;
7537 dev_priv->display.update_wm = pnv_update_wm;
7538 } else if (IS_GEN(dev_priv, 4)) {
7539 dev_priv->display.update_wm = i965_update_wm;
7540 } else if (IS_GEN(dev_priv, 3)) {
7541 dev_priv->display.update_wm = i9xx_update_wm;
7542 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7543 } else if (IS_GEN(dev_priv, 2)) {
7544 if (INTEL_NUM_PIPES(dev_priv) == 1) {
7545 dev_priv->display.update_wm = i845_update_wm;
7546 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7548 dev_priv->display.update_wm = i9xx_update_wm;
7549 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7552 drm_err(&dev_priv->drm,
7553 "unexpected fall-through in %s\n", __func__);
7557 void intel_pm_setup(struct drm_i915_private *dev_priv)
7559 dev_priv->runtime_pm.suspended = false;
7560 atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);